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1. INERTIAL REFERENCE FRAMES AND THE PRINCIPLE OF RELATIVITY
1.1. Newton’s Three Laws of Motion

A clear understanding of how objects move near the earth’s surface begins with Newton’s
three laws of motion:

1. The Law of Inertia: an object moving in a straight line will continue to move along
that same straight line at a constant rate of speed unless acted upon by some outside,
unequal force. This law, in effect, defines the natural state of matter as one of constant
velocity. Now:

e Velocity is a vector with both magnitude and direction.

e The components of this velocity vector depend upon the choice of coordinate
system.

e The zero velocity vector is also a possible natural state of an object.

But how do we define constant velocity? Is there a reference frame fized in space
relative to which we can measure this constant velocity? Although we might have
some difficulty in coming up with a precise way of defining a “fixed” coordinate system
from which we can measure constant velocity, we define an inertial reference frame to
be one in which the law of inertia is valid.

2. An object changes its natural state when acted upon by a net external force: the rate
of change of the velocity is proportional to the size of the applied force and inversely
proportional to the inertial mass of the object. This is usually written mathematically

as
F=ma (1)
where @ = dv/dt.

3. For every action there is an equal and opposite reaction. This law essentially states
that forces of nature always occur in pairs.
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1.2. Intertial Reference Frames and the Principle of Galilean Relativity

Let’s look more closely at some of the implications of Newton’s laws of motion. First we
will assume that we have an idealized, fixed coordinate system (for the moment ignoring the
problem of actually finding such a coordinate system), and that this coordinate system is a
Cartesian coordinate system with orthogonal axes labeled x,y,and z. We will call this the

Home Frame. Let a vector ﬁ locate an object relative to the origin of this fixed coordinate
system. This vector can be expressed in terms of its components along the x,y, and z axes
in the form: R

ﬁzix—i—jy—l—kz:(x,y,z) (2)

Now, in general, the position of the object may change in time. We therefore define the
velocity vector as the time rate of change of the position vector R, or

V(1) = @ — R =T 45+ RE = (8,9, 2) (3)

where a dot above a quantity stands for the time derivative.
In addition, the velocity vector itself may be a function of time. It may change in
magnitude, or in direction, or both. We define the acceleration vector as the time rate of

change of the velocity vector V (t), or

A(t) = @ = V(1) =00 + 30, + ko, = (b, by, 0.) (4)

Now, according to the second law, when the net external force acting on an object is
zero, the acceleration of that object is also zero, so that the velocity of the object must be
a constant. This is the natural state of the object.

Let’s assume that an object is moving at constant velocity along the z-axis of a fixed
coordinate system. We now construct a new coordinate system which we will designate as
the 2/, ¢/, 2’ coordinate system (the Other Frame) with axes parallel to the original z,y, z
coordinate system and which moves along the +x axis at the same speed as the object under
consideration. In this new coordinate system, the object is at rest! Both of these coordinate
systems are inertial, because the law of inertia holds in both systems: if there is no net
external force acting on the object, the velocity of the object remains constant. Thus, any
coordinate system moving at constant velocity is an inertial reference system in which the
laws of physics are the same. This is a statement of the principle of relativity! To make
this argument a little more concrete, consider the diagram shown in Figure[I] The location
of the object relative to the fixed reference frame is given by x,y, z and the location of the
object relative to the moving reference frame is given by z’,y’, 2’ where x = 2’ + vt, y = ¢/,
and z = 2/. Taking the time derivative of these equations gives

=1 +v
y=1 (5)
=7

from which we derive Galileo’s law of velocity addition. This is the law we use when we
determine the velocity of a speedboat relative to the shore if we know the velocity of the boat
relative to the moving water and the velocity of the water relative to the shore. Similarly,
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FIG. 1: The location of a particle as seen in two inertial reference frames, one moving with a speed
v relative to the other.

these are the equations used when we wish to determine the velocity of a plane relative to
the ground when we know the velocity of the wind and the velocity of the plane relative to
the air. Notice that in deriving these equations we made the reasonable assumption that
time intervals measured in the moving frame are equivalent to time intervals in the rest
frame.

EXERCISE 1.1 An airplane flies with speed ¢ relative to still air from point A to point B
and then returns. Compare the time, tparaier, required for the round trip when the wind blows
from A to B with speed v with the time, tperpendicutar, When the wind blows perpendicular to
the line AB with speed v, (i.e., compute tparaiier/tperpendicular)-

Now, since the moving reference frame is moving with constant velocity, if we take the time
derivative of the velocity vectors in the last equation, we obtain

i
=T

=i (6)
=3

or equivalently,

mA =mA’ (7)

which demonstrates that Newton’s laws of motion are identical in these two reference frames.
Thus, we conclude that the laws of physics should be the same in any two inertial reference
frames (i.e., in any two reference frames moving with a constant velocity relative to one
another). This means that there is no way to tell, based upon physical measurements, if a
coordinate system is moving or not. We may be able to tell if something is moving relative
to us, but we cannot determine absolute motion.



1.3. Maxwell’s Equations, the Velocity of Light, and the Principle of Special
Relativity

In the last section we showed that two reference frames moving with constant velocity rel-
ative to each other are equivalent reference frames as far as the laws of physics are concerned
- or at least as far as Newton’s second law is concerned, since the acceleration of an object
is the same in both reference frames. One of the assumptions made in that section is that
the velocity of an object measured in the Home Frame is the velocity of that same object
measured in the Other Frame plus the relative velocity of the two reference frames. The
equivalence of two inertial frames in which the velocities are additive is called the principle
of Galilean relativity. As we also pointed out, the principle of Galilean relativity depends
upon the assumption that time intervals are equivalent in all inertial reference frames.

In 1873 James Clerk Maxwell published a set of equations which summarized our under-
standing of electric and magnetic fields, and their interrelationship. One of the important
consequences of these equations is that they predict the existance of electromagnetic waves.
In its simplest form, the electromagnetic wave equation is given by

0’E, 0*’FE,
92 P

=0 (8)

where ¢, and p, are constants known as the permittivity constant and the permeability
constant, respectively. The solution to this differential equation is of the form

E.(t) = Eycos(kz — wt) 9)
where the velocity of the traveling wave is given by

w 1
vV = — =

ko \/eolto

This means that the velocity of an electromagnetic wave measured in the laboratory de-
pends only upon the two electrostatic constants €, and p,. If Galilean relativity is correct,
the wvelocity of light should depend upon the velocity of the reference frame in which the
measurements are obtained. But this would imply that the electrostatic constants would
also depend upon the velocity of the reference frame in which electrostatic measurements
were made. If this were true, the laws of electromagnetism would not be the same in all
inertial reference frames.

A number of attempts have been made to measure a variation in the speed of light which
would be consistent with Galilean relativity, but these attempts have all failed. Experimental
evidence so far indicates that the speed of light is a constant in all inertial reference frames.
This would seem to indicate that the principle of relativity should be extended to include
all of physics (not just mechanics).

We therefore state, as a fundamental postulate of physics, that the laws of physics are
equivalent in all tnertial reference frames. This is a statement of what we call the principle
of special relativity, as first presented by Albert Einstein. [Einstein later extended this
principle to accelerating reference frames (known as the principle of general relativity)
which is beyond the scope of this text.]

The conclusion that the speed of light is the same in all inertial reference frames means, of
course, that the Galilean velocity transform is incorrect. Thus, we must re-examine the laws

(10)



of mechanics from which the Galilean velocity transform is derived. As was also pointed out
earlier, the Galilean transformation is based upon the assumption that time intervals are
equivalent in all inertial reference frames. As we examine the consequences of the special
theory of relativity (that the speed of light is the same in all reference systems), we will
be lead to some very interesting and unexpected conclusions regarding time intervals and
distance measurements in inertial reference frames.

2. SPECIAL RELATIVITY: A NEW LOOK AT TIME AND DISTANCE

2.1. Time Intervals in Different Inertial Frames
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FIG. 2: A light source O is located equidistant from two detectors A and B. When light from
source O reaches a detector, it sends out a green pulse of light.

To get a clear picture of the implications of the special theory of relativity we will examine
a very special situation. Consider a rigid rod of length L with a light source located at the
mid-point of the rod as shown in Figure 2] Let’s assume this light source emits white light
in all directions when triggered. At each end of the rod we place a special light sensitive
detector. The instant either detector detects a light pulse, that detector will emit a light
flash (we will assume that this light flash is green). At some instant of time ¢; the light
source is triggered. The light from the source radiates spherically outward in all directions
and the light pulse reaches each end of the rod simultaneously, i.e.,

ty =t = L—/Q, (11)
c
where c is the speed of light.

In order to precisely describe the situation in a totally unambiguous manner, let us
carefully talk about the different events described in this situation. We will use the term
event to describe the location and the time that a certain thing occurs. We can then record
these events on a space-time diagram, like the one shown in Figure [3] On this diagram
the initial light pulse at O and the subsequent flashes from the detectors at points A and
B can be expressed in terms of when and where the event occurred using a coupled pair,
e.g., (ty,2y). Thus, the event O (a flash of light emitted from the source) occurs at the
origin of the coordinate system 2’ = 0 at time ¢ = 0, giving an event (¢, = 0,z; = 0). As
indicated on this diagram the location of the source O and the detectors A and B remain
fized (i.e., constant 2’ values) as time ¢’ increases, creating vertical world lines for the source
and detectors. A world line is the line traced out by an object in a space-time diagram.
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FIG. 3: A space-time diagram illustrating the simultaneous detection of light from source O by
the detectors A and B. This diagram represents the events as seen in the reference frame of the
rod.

Just as in introductory physics, a straight line represents constant velocity in one dimension,
a positive slope corresponding to positive velocity, and a negative slope corresponding to
negative velocity. However, the slope of the line in a space-time diagram is inversely related
to the velocity, since the time and space axes are reversed from the way they are commonly
done in classical mechanics.

Thus, in the figure, the light pulse which originates at point O at time t{, = 0 propogates
in the plus and minus 2’ directions until it reaches the detectors A and B simultaneously at
time ¢’y = t%3. On this diagram the light line (the world line for light) has a slope of 1 since
the distance scale is typically calibrated in light-seconds while the time scale is calibrated in
seconds. The world line for the source and detectors have a slope of infinity (slope = 1/v)
since they are not moving in this coordinate system.

Now, let’s examine this same set of events as seen in another inertial reference frame.
Although you may have assumed that our experimental apparatus (the rod with light source
and detectors) was originally fized in space, that is not necessarily the case. Remember that
all inertial reference frames are equivalent, so that the rod could be moving at some constant
speed v. We will call the reference frame in which the rod is at rest the S’ frame. Nothing
in our previous discussion would be altered.

We now consider the motion of the rod as seen in another inertial reference frame (the
S frame) in which the rod appears to be moving at constant speed in the +a-direction,
parallel to the z axis as shown in Figure [df We again want to represent the chain of events
using a space-time diagram. In this case the location of the light source (the origin of the S’
frame) and the detectors A and B are all moving in the +z direction with a speed v. We can
represent this on the space-time diagram as shown in Figure [5] The world lines of detectors
A and B and of the source O are drawn as slanted lines, each with the same slope of 1/v.
Again, the space-time diagram is scaled so that one light-second of distance is the same as
one second of time so that a light beam which, according to the special theory of relativity,
must travel at the same speed in all inertial frames still has unit slope. We can see, using
this diagram, that in this frame of reference, light will be received at detector A before it is
received at detector B. Thus, according to the principle of special relativity events which are
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FIG. 5: A space-time diagram illustrating the detection of light from source O by the detectors A
and B. This diagram represents the events as seen in a reference frame where the rod is moving
parallel to the z-direction with a speed j3.

simultaneous in one inertial reference frame are mot necessarily simultaneous in another.
In this particular example, a light flash is emitted from the source at time t =t = 0 as the
origins of the two reference frames coincide. In the frame which is moving with the light
rod (the S frame), the two detectors A and B detect the light at the same time, so that
t'y = tl3. In the S frame, the light is detected first by the trailing detector (detector A)
and then later by the leading detector (detector B), so that ¢/ < t’5. Therefore, if this light
flash were used to synchronize clocks located at points A and B, an observer in the S’ frame
would claim that clocks A and B were simultaneously set to the correct time t' = L/2¢c. An
observer in the S frame, however, would claim that clock A was set earlier than clock B.

2.2. Length Measurements in Different Inertial Frames

The fact that observers in two different inertial reference frames are unable to agree on
whether or not events are simultaneous has some interesting implications on the measure-



ment of the length of an object measured in these two reference frames. To understand how
this occurs, consider a fish swimming in a fish bowl (see Figure @ How can we determine

FIG. 6: Locating the ends of a moving fish in a fish bowl.

the length of the fish without removing the fish from the bowl? We first detemine the loca-
tion of the mouth of the fish z,,0un at time t,,0,, and then determine the location of the
tail of the fish x,,; at some time t;,;. Notice the careful use of the concept of an event-
we must specify both the location and the time to accurately describe the measurement
process. If the fish is moving forward, and you determine the location of the mouth at one
instant of time and determine the location of the tail at a later time, you will measure the
fish to be shorter than it actually is. If, on the other hand, you determine the location of
the tail at one instant of time and determine the location of the mouth at a later time, you
will measure the fish to be longer than it actually is.Thus, the length L of the fish can be
expressed by the equation

L= Tmouth — Ltail (12>

only if the two locations ., and Ty, are measured simultaneously! But, as was demon-
strated above, two events which are simultaneous in one inertial frame of reference may
not be simultaneous in another. This implies that the length of an object measured in one
inertial reference frame may be different from the length of that same object measured in
another inertial frame which is moving relative to the first!

This means that our definition of the length of an object must be re-examined! Since the
length of an object depends upon the reference frame of the observer, we define the proper
length of an object as that length measured in a frame of reference which is at rest relative
to the object. This would be like sitting on the fish and using a tape measure to actually
measure the length of the fish. In the rest frame of the fish, the location of the mouth and
tail does not change in time, so that the location of either end of the fish can be determined
at any time. Thus, when we speak of the length of a table in the laboratory, we are typically
speaking of the proper length of the table.



3. RELATING TIME AND DISTANCE MEASUREMENTS IN DIFFERENT
INERTIAL FRAMES: THE METRIC EQUATION

3.1. Relating Time Measurements in Different Inertial Frames

To determine quantitatively how to relate time measurements made in two inertial refer-
ence frames moving with a speed v relative to one another, we will examine a hypothetical
experiment. In this experiment a light source and detector with a clock mechanism are
attached to a rigid rod. A mirror is attached to this rod a distance L away from the light
source (see Figure @ When the clock reads ¢ = 0, the source sends out a pulse of light

o

FIG. 7: A light-clock apparatus used to measure time intevals in different inertial reference frames.

(event A). This light pulse travels to the mirror, reflects off the mirror and returns to the
detector which stops the clock (event B). Since the distance L can be precisely known (we
are in the rest frame of the clock and mirror and can measure this distance at any time to
any precision we desire), and since the speed of light in all reference frames is known to be
¢, we can determine the time interval At’ exactly. This time interval is given by

At =2L/c (13)

Now, consider a reference frame through which this same light-clock mechanism is ob-
served to move with a constant velocity v in a direction perpendicular to the rod supporting
the mirror as shown in Figure[§] We will call this the HOME frame. In this reference frame
event A (the initial pulse) and event B (the detection of that pulse) do not occur at the
same place. An observer in the HOME frame, however, can still record the events as they
occur, being careful to designate the time and location of each event. The time interval At
between the two events as measured by an observer in the HOME frame is different from
the time interval At measured by an observer at rest with respect to the mechanism. To
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FIG. 8: The light-clock mechanism moving through another reference frame at constant velocity.

determine how the time interval At is related to the time interval At’, consider the diagram
shown in Figure [9] The light-clock moves a distance

Az = vAt (14)

as the light pulse travels from the source, reflects from the mirror, and then travels back to
the detector (i.e., the distance between events A and B as seen in the HOME frame is the
distance Ax). During this same time period, the light pulse moves a total distance of 2d,
where

d = /12 + (Az/2)? (15)

is the diagonal distance from the original position of the light source (event A) to the location
of the mirror when the light reaches that point and is reflected. Thus, the total time period
between events A and B as measured in the HOME frame of reference is given by

200 2\/I2 + (Ax/2)

At === - (16)
_ \/(2L)2C+ (Aa)? )

2L\ ? Az\?
c c
But 2L/c is the time interval At' between events A and B as measured in the reference

frame attached to the moving light-clock mechanism. Thus, the time interval At, measured
in the HOME frame, can be related to the time interval At’ measured in the mowving S’



11

Iy

©

AX

z‘L’

FIG. 9: The light-clock mechanism moves a distance Az = vAt through this reference frame as
the light pulse travels from the source to the detector.

frame by the equation

¢ (g)ZI¢At/Q+(UTN)Q 9)

Now, solving for the time interval At’, we obtain

2 2
At? = A — (ﬁ) = At* — (U—At) (20)

C

We can express the time interval At’ measured in the frame of reference of the moving
clock to the time interval At measured in the HOME frame in two distinct ways. One is a
simplified version of what we will later call the metric equation:

AAL? = AL — Ag? (21)

This equation relates the difference in time intervals measured by clocks in the two different
reference frames to the distance between the two events as measured in one of the two
reference frames. (We will show later that the quantity (cAt)? — Az? = (cAt')*> — Az is an
invariant quantity.)

Another useful way of expressing the relationship between the two time intervals is ob-
tained by factoring out the time interval At on the right-hand side of Equation to
obtain

v

At = Aty/1— (-)2 (22)

C

In this equation the difference in time intervals measured by clocks in the two different
reference frames is related to the relative velocity of the two reference frames.
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Just as the measured length of the fish in the fishbowl depends upon our reference frame,
the time interval between any two events also depends upon our reference frame. And just
as we define the proper length of an object as the length measured in the rest frame of
the object, we define the proper time interval AT, between two events as that time interval
measured between two events which occur at the same place. (This is often stated as the time
interval that can be measured by the same clock.) In the example we have just discussed,
the time interval At’ must be the proper time interval, since events A and B both occur at
the same place in the S’ frame of reference. Thus, the proper time interval for this situation
can be expressed as

AT2 = A2 — <”7At)2 — A2 - (%)2 — AP {1 - (%)2] (23)

You should realize that the proper time interval, as defined in this last equation, is
measured by a single clock in the rest frame of the light-clock mechanism and, therefore,
cannot be a function of the speed of the light-clock mechanism relative to any other reference
frame. You should also realize that in our derivation of the equations relating the proper
time with the time interval measured in the HOME frame we have assumed that the light-
clock mechanism is moving at a constant speed. This means that our light-clock mechanism
is an inertial clock. Thus, the proper time interval that we have defined above is an inertial
proper time interval. Since this inertial proper time interval is an invariant (i.e., it cannot
be a function of the velocity of the reference frame) we give it a special name - the spacetime
interval.

We should point out that it is possible to have a single clock that moves from one point
to another recording the time interval between two separate events which does not move
with constant velocity. The time interval measured by such a single clock would be a proper
time interval, since the time interval is measured by a single clock, but it is not an inertial
proper time interval. For this reason, we us the zero-subscript to distinguish an inertial
proper time interval from a non-inertial proper time interval.

Equation (23)) relates the inertial proper time interval A7, measured between two separate
events A and B by a single clock to the time interval At measured at two different locations
within the HOME frame. If we assume that there is a clock located at each point within the
HOME frame so that a given event can be precisely recorded, we realize that the time interval
between the two events A and B which occur at two different locations must be measured by
two different clocks. Since these two clocks are located at different coordinates within the
HOME frame, the time interval At measured by these two clocks is called a coordinate time
interval. Thus, equation (23)) relates the inertial proper time interval between events A and
B to the coordinate time interval between events A and B. It should be obvious that although
the inertial proper time interval is an invariant, the coordinate time interval does depend
upon the relative speeds of the two different frames of reference, and that the coordinate time
interval depends upon the distance between the two events as measured in the corresponding
frame of reference. Since the distance between any two observed events depends upon the
relative speeds of the different reference frames, the coordinate time interval must necessarily
be different in different frames of reference. Thus, there are a large number of coordinate
time intervals which could be measured for the same two events, but only one spacetime
interval!

Now when v = 0 the distance moved by the light-clock mechanism is zero, so that the
coordinate time interval and the inertial proper time interval are the same. In fact, for
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speeds where v/c << 1 the two time intervals are essentially the same, consistent with
the Galilean velocity transformations of classical physics. As v becomes larger, however,

1—(v/ 0)2 becomes smaller and smaller. Thus, the inertial proper time interval between

two events (the time interval measured by a single clock, moving at constant speed) will
always be shorter than the time interval measured in any other reference frame. This
phenomena is called time dilation. It is interesting to note here that as v/c — 1, A1, — 0
for any At. This means that for a photon, which travels at the speed of light, the time
interval is zero between any two events at which the photon is present, i.e.,a photon’s clock
does not tick!

In our discussion thus far, we have assumed implicitly that the speed of the moving frame
of reference is less than the speed of light. We will come back to this point later and ask if
it is possible for the moving reference frame to move faster than the speed of light.

EXERCISE 3.1 Use MatLab to plot the coordinate time interval as a function of the rela-
tive speed (8 =wv/c) of a moving clock. Take the inertial proper time interval of the moving
clock to be one unit so that you are plotting a relative time interval.

3.1.1. Experimental Verification of the Metric Equation and Time Dilation

The somewhat bizarre concepts of length contraction and time dilation have been forced
upon us by the assumption that the speed of light is constant in all inertial reference systems.
Thus, if we accept Einstein’s theory of special relativity, we would expect to see some
evidence of length contraction and time dilation. This evidence can be found in the study
of high-energy particles that are constantly raining down upon the earth’s surface. When
cosmic rays collide with atmospheric gases in the upper atmosphere muon’s are produced
which stream downwards toward the earth. These muons have a laboratory half-life of 1.52
us (i.e., this is the half-life measured when the muons are at rest in the laboratory). Since
some of the muons created in the upper atmosphere stream toward the earth with speeds of
0.99¢, we should be able to test our ideas of time dilation.

Suppose we construct a muon detector which we carry to the top of a mountain. A similar
detector is located at the foot of the mountain 1907 meters below. If the muon detector
detects 100 counts per second at the top of the mountain, how many counts per second
would we expect according to the classical picture? How many counts would our special
theory of relativity predict? For muons traveling at a speed of 0.994c, the distance down the
mountain would take 6.4 ps which is 4.2 half-lives. Since one-half of all the original muons
decay in one half-life, we expect there to be (0.5)4'2 = (0.054 times the original muons, or
approximately 5 muon counts per second detected at the bottom of the mountain. However,
according to our theory of special relativity, the time interval measured in the frame of
reference of the muon would be different from the time interval measured relative to the
earth frame of reference. Using the metric equation, where A7, is the lifetime of the muon
measured in its own rest frame, and where At is the coordinate time interval in the earth
frame and Az is the distance interval measured in the earth frame, we have

2
AT? = At — <%) (24)

Cc
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or

1907 m 2
AT? = (6.4 ps)® — = (0.704 ps)? 2
7o = (6.4 pus) (2.9979 x 108 m/s) (0.704 s) (25)

This would imply that the muons have not even lived one full half-life as they move from
the top of the mountain to the bottom [in fact, this is only 0.463 half-lives|. The relative
number of muons surviving would, therefore, be (0.5)%1% = 72.5  counts per second at the
bottom of the mountain. Now 72.5 counts per second is quite a lot different from 5 counts
per second, so that this experiment should be fairly definitive.

Experimental evidence supports the theory of special relativity. Far more muons are
detected at ground level than would be predicted by non-relativistic arguments.

3.2. Relating Distance Measurements in Different Inertial Frames

As the light-clock moves through the laboratory frame, the initial light flash (sent out
when the source is triggered) occurs at (t4,74), and a second light flash occurs when the
original light pulse is detected by the light-clock. We designate this event by the point
(tp,zp). This means that the distance traveled by the light-clock as measured in the lab-
oratory frame is given by D = zp — x4 so that the velocity of the light-clock through the

laboratory frame is given by
rg—T
v= B4 (26)
tp—1ta
Now the time interval measured between the emission of the light pulse and its subsequent
detection in the reference frame attached to the light-clock is different from this same time

interval measured in the laboratory frame, according to the equation

(ty — )" = (t —ta)? — (@)2 (27)

so that the distance traveled by the light-clock as measured in the reference frame of the

clock is given by
5 —1a4\°
D = vty —t)) =v](tg —ts)? — (B—A)
c

D = \/vz (ty — ta)° — (%)2 (25 — 24)?

D =D 1—(9)2
&

This means that if there were a meter stick in the laboratory frame, and if the flashes of
the clock/detector were observed at each end of that meter stick, an observer in the light-
clock frame would claim that the distance between the ends of the meter stick was given by
D’ < 1m. Therefore, observers in two inertial reference frames traveling at a speed v relative
to one another will disagree on the measurement of time intervals and length intervals.

EXERCISE 3.2 Use MatLab to calculate and plot the measured length of a meter stick
(i.e., a stick with a proper length of 1 meter) as a function of the relative speed  with which
that meter stick passes through the laboratory.
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To summarize our conclusions concerning the special theory of relativity, we again exam-
ine the relationships between the measured time and length intervals in two inertial reference
frames:

At = Aty /1 — (%)2 (28)
and
Ax' = Axy/1— (%)2 (29)

The first equation points out that time intervals, At’, as measured in a moving reference
frame will always be less than or equal to the corresponding time interval measured in the
laboratory frame. We define the time interval measured by a single clock moving at constant
velocity as the inertial proper time, or the spacetime interval, and we claim that this quantity
will be the same for any inertial reference frame (i.e., it is a constant). The time interval
At, on the other hand, is a coordinate time interval which will depend upon the speed of
the coordinate system and the separation of the two events as measured in that reference
frame.

The second equation points out the distance between two points as measured in a frame
of reference which is moving relative to those two points will always be smaller than the
distance measured in a reference frame at rest relative to those two points. We define the
distance between two points measured in the rest frame of the two points as the proper length
or proper distance between the two points, and claim that this, too is a constant - having
the same value for any inertial reference frame. This equation, therefore, states that the
proper length of an object will always be greater than or equal to the length of the object as
measured in any other inertial reference frame. The fact that objects observed in reference
frames moving relative to an object will always measure the length of that object to be less
than the length measured in the objects rest frame is known a Lorentz contraction.

The two equations taken together immediately show that the relative velocity measured
in each reference frame is the same:

, Ar Azy/1— (v/c)?

V= — = =v (30)
A A1 = (v)e)

EXERCISE 3.3 Work problems 5 and 6 in Tipler.

3.3. The Meaurement of Lengths Perpendicular to the Direction of Motion

[ustrate the necessity of perpendicular lengths being the same in all inertial frames
[Moore pg. 65]

4. RELATING EVENT COORDINATES IN TWO INERTIAL REFERENCE
FRAMES: THE LORENTZ TRANSFORMATION EQUATIONS

4.1. Derivation of the Lorentz Transformation Equations

We have shown that time and length intervals are different in different inertial reference
frames, but that these differences are neglegible when the relative speeds of the reference
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frames are small. In this limit, the classical (Galilean) transformation is valid. It is only
when the relative speeds of the reference frames become comparable to the speed of light
that problems arise. To derive a general transformation equation for distance and time
measurements we, therefore, begin with the equations that are approximately correct for
low speeds (see Figure 1):

r=2a +ut (31)

or
¥=x—vt (32)

where we must determine if the quantity ¢ in these equations is to be expressed as t or t'. If
we treat these two equations as transformation equations, we would generally assume that
the quantities on the right-hand-side should all be expressed in terms of the same coordinate
system, giving

xr = 2 +ot
¥ = x—vt
Since these last two equations are almost correct, but not quite, we assume that the
correct transformations are of the form

z = y(z' + vt') (33)

and
' =~(x —vt) (34)

Our task is to determine ~, which will necessarily be a function of the relative speed of the
reference frames. We further assume that all coordinate clocks in the two reference frames
are synchronized to t = ¢/ = 0 when the origins of the two reference systems coincide and
that a light flash occurs at the origin at this instant of time. Thus, because of the constancy
of the speed of light in all inertial reference frames, we require that

' =ct (35)

and
r=ct (36)
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since x = ct. We can now solve for v to obtain

7= ——— (37)

1—(v/c)

You will notice that v(v) =~ 1 for speeds much less than the speed of light, preserving
Galilean relativity and the Galilean rule for the summation of velocities at these speeds. In
fact, v(v) becomes significantly different from unity only for speeds greater than about 10%
of the speed of light. This equation also seems to imply that it is not possible for the speed
of the reference frame to exceed the speed of light, since v would then become imaginary.
We will examine this cosmic speed limit in more detail later.

Now that we know the form of v, we need to find out how the time coordinate transforms.
To do this we begin with

= y(zr — vt)
= v [y + vt') — vt]
= V2’ + ot — ot
2'(1—~%) = y*ot' — yut

or, solving for the time ¢ we obtain

t = L (Yot — 2/ (1 —4%)]

B , vx!
ERANY

We have, therefore, derived the equations for transforming position and time coordinates
from one frame to another moving with a relative speed of v:

r = (' + ot
y =1y
z =2

, v
t:’}/ t+c—2

You should satisfy yourself that the reverse transformation equations are given by

¥ = y(x —vt)
y =y
Z =z
, VT
C=a(t-)
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4.2. Measurement of Proper Length and Proper Time Intervals using the Lorentz
Transformation Equations

We can use the Lorentz transformation equations to demonstrate the properties of time
dilation and length contraction which we have mentioned previously. For example, we will
consider the determination of the length of a meter stick in two inertial reference frames. In
this particular example, we will assume that the meter stick is moving through the laboratory
at a speed v. In the rest frame of the meter stick (which we will call the primed coordinate
system) the length can be determined by measuring the positions of the ends of the meter
stick at any arbitrary times we choose. We will let one end be located by z/ and the other
by x4, such that the rest length (or proper length) of the meter stick is given by

L,=xy,—x (38)

Now the length of this same meter stick measured in the laboratory frame of reference
can be determined precisely only by assuring that both ends of the meter stick are measured
at the same time. Thus, only if the measurement of positions x, and x;are made at the
same instant in the laboratory frame of reference, can we assign a length to this meter stick,
and that length, L, is given by

L= To — X1 (39)

To examine this from the Lorentz equations, let’s write our the length interval x5 — x1, using
the Lorentz transformation equations. Here

zg = y(wh + vth) (40)
and
7 = (@ + o) (41)
so that
To —T1 = 7[(13/2 - $/1) + U(t/Q - t/l)] (42)

But we know that the times at which we measure the location of the ends of the meter stick
in the moving reference frame is totally irrelevant! So this equation is not too useful - what
we needed was the one which contains ¢ and ¢;! This latter equation gives

rhy — o) = y[(v2 — 21) —v(ta — t1)] (43)

where we must assure that to = ¢y, giving

/

xy — 27 = Y(T2 — 71) (44)

or
L,=~L (45)

where L, is the proper length measured in the rest frame of the meter stick, and L is the
length of the meter stick measured in the laboratory frame of reference. This equation
clearly shows that L is always less than or equal to L, since v > 1!

EXERCISE 4.1 Problems 17, 18, and 19 in Tipler
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4.3. The Lorentz Velocity Transformation Equations and the Constancy of the
Speed of Light

Since we now have a way of relating the measurement of time and distance intervals
in two different reference frames, we can now determine how the velocity of an object
in one reference frame is related to the velocity of that same object as seen in another
reference frame moving with constant velocity relative to the first. We know from our
earlier discussions that the velocity will not be simply additive as in the case of the Galilean
velocity transformation, and that the correct transformation equations must give us the fact
that the speed of light is the same in all inertial reference frames.

We begin by looking again at the Lorentz transformation equations. The z-component of
the velocity of an object in any inertial reference frame must be the distance interval mea-
sured in that reference frame divided by the time interval measured in that same reference
frame. We will use the symbol o to represent the velocity of an object as measured in an
inertial reference frame, since we are using v to represent the velocity of one reference frame
relative to another. Thus,

u Az y(Az' +vAl)
COAL (A 4 YA

(46)
If we divide the top and bottom of the right-hand-side of this last equation by At’, we obtain

Az (&L + ) ul, +v
Ue =Ny = Aqf(Ax’/At’) = ) (47)
v(1+ === 1+ ulv/c

This equation is essentially equivalent to the Galilean transformation equation at low ve-
locities, since the denominator is approximately equal to unity in these cases. However, for
higher velocities, the denominator becomes significant.

Similarly, the velocity of an object moving in the y and z-directions are given by

Ay Ay’ uy /7y
— —J _ = 48
A VAY +82) 14 uhv/c? (48)
and
/ /
“ Az Az ul, /)y (49)

TAL T (A ) T T /e

We see that the velocity of an object measured in a direction perpendicular to the relative
motion of the coordinate systems is dependent upon the velocity measured in the direction
of motion of the coordinate system. The reason for this is that the time interval measured
in one reference frame in not the same time interval measured in another. In the following
exercises, you will see how to apply these velocity transformation equations and that they
preserve the speed of light in all reference frames.

EXERCISE 4.2 Problems 29 and 30 in Tipler.
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5. THE COSMIC SPEED LIMIT: A CONSEQUENCE OF THE CONCEPT OF
CAUSE AND EVENT

5.1. Time Reversals and the Implication of Cause and Effect (Tipler Problem 82)

Consider two events A and B that occur at coordinate locations x4 and zp and at times
ta and tpg, respectively in the laboratory or Home reference frame. Event A is the push of
a button which initiates a light pulse, whereas event B is the reception of that light pulse
which triggers the detonation of a bomb.

|y by v

T —

— g

Xa X

FIG. 10: Cause and effect can be demonstrated effectively by a light-activated explosion.

Clearly in the Home Frame, one event causes the other. If the laws of nature are to hold
true in all inertial frames of reference, we demand that all inertial frames ”see” the same
events occuring in the same order, and not reversed. The reverse of cause and effect would
have profound implications.

We now want to examine the Lorentz transformation equations to see what implications
this requirement might make on our mathematical representation. We let the distance
between the two events as measured in the laboratory frame be D = xg—x4 where x5 > x 4.
We let the time interval between these same two events be T = tg — t,, where we require
that tg > t4. If we calculate the time interval between these same two events as seen in a
reference frame that is moving with speed v along the positive x-axis we obtain

(ts — ) = 7 |(ta — ta) = 5 (e5 —2a)
(t — ) = 7 |(tr — ta) = 5 cltn — L)
(s~ ) = vtz —t2) [1- ()]

Now we know that v > 1, so the time intervals (t’z; — t/;) and (tp —t4) have the same sign,
provided the term in brackets is positive, assuring that events occur in the primed frame in
the same order that they occur in the unprimed frame. This means that

(5) <1 (50)

c
which implies that the speed of any inertial reference frame which will preserve cause and

effect must be less than or equal to the speed of light! If any coordinate system could travel
faster than ¢ the whole framework of cause and effect would be unraveled.
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So what about the case where two events A and B are separated by a distance Axap
which is greater than the distance that can be covered by light in the time interval At g7
If no signal can be sent between these two events with a speed greater than the speed of
light, then the two events cannot be linked by cause and effect - they are just two separate,
independent events in space-time.

5.2. A Second Look at Space-Time Diagrams and World-Lines

We can summarize some of the concepts developed in the last section by examining a
space-time diagram which illustrates how different events can be related to each other. We
let one event A be located at the origin (at © = 0, ¢ = 0). A second event B occurs some time
tp later at a position xp, as seen in Figure [I1] Events A and B might be two points along
the path of a particular object that moves through space-time (this is a cause and effect
relationship). You are familiar with position-time graphs in introductory physics. The slope
of the curve on a position time graph at any instant in time is the instantaneous velocity of
the object whose motion is represented by that curve. The same type thing is true for our
space-time diagrams. Here, however, since the time and position axes have been swapped,
the inverse slope of the line is the velocity of the particle (measured relative to the speed of
light). To see how this works, consider the straight line connecting points A and B in the
diagram. The slope of the line is given by

c(tp —ta) c c

= = = — >
slope (xp—xa) Az/At  u, — L (51)

where u, is the velocity of the particle. You can see that if u, is less than ¢ the slope of the
line will be greater than unity.

Thus, objects moving through space-time at speeds less than the speed of light can be
represented with ”worldlines” which trace out the events along the particles path. These
worldlines cannot have a slope anywhere which is less than unity, since that would imply
that the object was moving faster than the speed of light. Since the two events A and B
can be connected by a single line with slope greater than 1, these two events can indeed be
two points on the worldline of the particle. Another way of saying this is that it is possible
for information to pass from point A to point B so that what occurs at A may influence
what occurs at B (i.e., A and B are related by cause and effect). Now since B occurs later
in time than A, B occurs in A’s future, whereas point C' occurs in A’s past. Now, consider
a point on the positive x axis (which we will call point D, and which does not appear on
the diagram above). This point cannot be connected with the origin with a line whose slope
is greater than unity, thus, the two points A and D cannot be associated with cause and
effect!

Thus, we divide the space-time diagram into regions: a cone-shaped region whose open
end points in the 4+t direction which we call Future, a cone-shaped region whose open end
points in the —t direction which we call Past, and a doughnut-shaped region whose open end
points away from the origin, which we call Present. The Future and Past can be associated
with the origin by cause and effect, but the Present cannot be!

EXERCISE 5.1 In Diagram three different worldlines are indicated which connect
events A and B. Which of these are possible worldlines for a particle? Be sure to jus-
tify your answer.
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ct

Worldline

Light Line

7 C

FIG. 11: Events which may be related to an event at the origin by cause and effect must lie within
the light cone of that event—B being a future event, C a past event. Points which cannot be
related to an event at the origin by cause and effect lie outside this light cone; not in the future or
the past, but in the present.

5.3. Coordinate Transforms and Two Observer Space-Time Diagrams

These Lorentz transformation equations can be put in a more symmetric form by changing
all time intervals to equivalent distance intervals (i.e., by multiplying the time by ¢). In this

form we write
x ="+ pet’) ' =~(x— Pet)

y=1y Yy =y
z=2 2l =2z (52)

ct =y(ct' + px’) ct’ = y(ct — px)

where = v/c.

We would like to see if we can map these transformations on a space-time diagram.
Remember that a space-time diagram in a diagram of the spacial and temporal points of an
event as seen in a given inertial reference frame. The spacial and/or temporal coordinates
are typically scaled so that the light line has a slope of unity. This means that distances are
represented in units of light-seconds, light-minutes, or light-years when time is represented
in second, minutes, or years; or that distances are measured in meters while time is actually
represented in a distance measurement (ct) called c-seconds, c-minutes, or c-years, with
¢~ 3.0 x 108 m/s. In fact, it is often convenient to define a set of units where ¢ = 1, so
that time and distance both have the same units.

The Lorentz transformation equations give us the relationships between times and posi-
tions measured in one inertial reference frame relative to the times and positions measured
in another inertial frame. In particular, we can use the equation 2’ = [z — 3 (ct)] to de-
termine the location of all points on the space-time diagram for which 2’ = 0. The location
of all such points is the ct’ axis. Thus, the ct’ axis is a line such that z — §(ct) = 0, or
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Light Line -

FIG. 12: Which of the three different “world lines” connecting events A and B can be realized in
nature?

ct = (1/5) x, which is the equation of a straight line on the ct vs. x graph (see Fig. with
a slope of 1/ (i.e., where tanf = 1/f3). Likewise, we can use the equation ct’ = v(ct — fx)
to determine the location of all points on the space-time diagram for which ' = 0. The
location of all such points is the 2’ axis. Thus, the z’ axis is a line such that ¢t — Sz = 0,
or ct = Bx, which is the equation of a straight line on the ct vs. x graph with a slope of
(i.e., where tang = 3).

Plotting the ' = 0 and c¢t’ = 0 lines on our space-time diagram result in what we call a
two-observer space-time diagram. An event in space-time is represented by a single point on
this graph. This point is the same for both reference frames, but the coordinates are not the
same. You should recall that points which are equidistant from the origin along the x (or z’)
axis are always parallel to the time axes, and points which are equitime from the origin along
the ct (or ct’) axis are always parallel to the position axes. This means that transformations
from one inertial frame to another are not orthogonal transformations as can be clearly seen
in Figure Rather, the c¢t’ and 2’ axes are symmetrical about the light line, and both
the 2’ and ct’ axes move toward the light line with an increase in the relative speeds of the
two inertial frames. The simplest example of a two-observer, space-time diagram is a plot
of the location of the origin of a moving reference system through the laboratory. As you
can see in Figure , the origin traces out a line whose slope is inversely proportional to
the speed of the reference frame. The origin moves in the positive x direction a distance Ax
in the time cAt. The location of the origin in the moving reference frame, however, never
changes. It remains on the ' = 0 line for all time, but we can trace out the time in the
moving reference frame along the cAt’ axis.

Many of the interesting consequences of special relativity that we have discussed result
from the non-orthogonality of the Lorentz transformations: 1) events simultaneous in one
reference frame are not simultaneous in another, 2) moving clocks seem to run slower, and 3)
the measured length of a moving object is always equal to or shorter than the proper length
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Light Line

FIG. 13: A two-observer space-time diagram. A single event is plotted on this diagram as a single
point. The coordinates of that single event, however, are measured to be different in two different
inertial reference frames. The strange implications of relativity arise from the fact that these two
coordinate systems are not orthogonal.

of the object. We want to see how these different phenomena can be understood based upon
the two-observer space-time diagrams. The first of these aspects, that events simultaneous
in one reference frame are not simultaneous in another, is relatively easy to see.

5.8.1. The Relativity of Simultaneity

As we have already pointed out, events which are simultaneous in one reference frame are
not simultaneous in another. This can be clearly illustrated using the two-observer space-
time diagram. In Figure [15] the two events R; and Ry occur at the same time as observed
in the Home frame (i.e., the ¢t vs. = frame). These two events, however, do not occur
at the same time in the moving reference frame, where event Ry (which is farther from the
origin) appears to occur before event R;. Likewise, the two events ()1 and ()3 which occur
at the same time in the moving reference frame, do not occur at the same time as seen in
the Home frame.

5.8.2.  Calibration of the Two-Observer Space-Time Diagram

Length contraction and time dilation are a bit more difficult to see on these two-observer,
space-time diagrams. To see these effects clearly, we must calibrate the axes. To accomplish
this we need to find some quantity that does not change from one coordinate system to
another. One such quantity is the space-time interval we introduced earlier. The space time
interval is the time interval between two events which is measured by a single clock moving
at constant velocity, i.e., an inertial proper time interval. The defining equation for the
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FIG. 14: The location of the origin of a moving reference frame as a function of time plotted in
the two-observer space-time diagram. Notice that the origin moves a distance Ax in the rest frame
and remain on the 2’ = 0 axis in the moving reference frame.

Light Line

FIG. 15: Two events occurring one after the other in one inertial frame may occur in the reverse
order in another inertial frame.

spacetime interval is

Az? + Ay? + Az? A2

2 A2
AT; = At* — = 2

(53)

and we can show that this space time interval has the same value in all inertial reference
frames.
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EXERCISE 5.2 Show that the space-time interval is indeed an invariant by using the
Lorentz transformation equations to show that (cAt)* — AR? = (cAt')* — AR,

We will assume that we want to calibrate the time and position scale relative to the origin
where x = 2’ = 0 and where t = ' = 0, so that we can write the calibration equation in the
form

(ct)? — 2% = (ct')” — 2 (54)
without the A’s. To calibrate the ct’ axis, we set 2/ = 0 and let ¢t/ = 1. This gives us
the equation for the hyperbola that pass through the ct axis at +1. Likewise, if we wish to
calibrate the z’ axis, we can set ¢t’ = 0 and and let 2’ = 1. This gives us the equation for
the hyperbola that pass through the = axis at £+1, as shown in Figure[16| The points P;and
P, are the points on the 2’ and ct’ axes that are one unit long.

ctz-xzzl

FIG. 16: Calibration of the two-observer space-time diagram using the invariant space-time interval.
The scale is set equal to unity where the hyperbolic lines cross the position and time lines.

5.8.8.  Length Contraction Illustrated with Two-Observer Space-Time Diagrams

We can illustrate the principle of length contraction by using this diagram and examining
the "world lines” for an object which is one unit long (we will assume one meter) in the
moving reference frame. These world lines will be parallel to the ct’ axis since both ends of
the "meter” stick are at rest in the moving reference frame. Since the hyperbolic calibration
lines cross the x and 2’ axes at a point which must be the same length, we see in Figure
that the length of the meter stick is measured to be one meter in the moving frame, but is
measured to be shorter in the Home frame, since both ends must be measured at the same
time. For example consider the measurement of the length of the meter stick at time ¢ = 0.
Notice that as the velocity of the moving frame increases, the apparent length of the meter
stick will get shorter!
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ct

FIG. 17: Two world-lines are drawn for a "meter” stick which is at rest in the moving reference
frame. One end is at ' = 0, while the other is at 2/ = 1. It is obvious that if both ends of this

meter stick are measured at time ¢t = 0 in the Home frame, the stick is less than one meter long!

EXERCISE 5.3 Use a two-observer space-time diagram to illustrate the events which are
discussed in the ”Ladder and Barn” paradox. Let event A be the coinsidence of the front of
the ladder with the front door to the barn. Let event B be the point where the front of the
ladder is coincident with the back of the barn, and let event C' be the point when the back of
the ladder is coincident with the back of the barn. Show the locations and times as seen in
the frame of reference of the barn and in the frame of the runner.

5.8.4. Time Dilation Illustrated with Two-Observer Space-Time Diagrams

Similarly, we can illustrate the concept of time dilation using the two-observer space-time
diagram. Consider the world-line of a clock which is moving through the Home frame of
reference with a speed v. In the Home frame this clock is seen to change its location as
the clock ticks. If the moving clock is set to zero as the clock moves past the origin of the
Home frame, and if the clock at the origin of the Home frame is set to zero as the moving
clock passed the origin, we have the situation which is depicted in Figure [18 Event A is
where the moving clock passes the origin of the Home frame at time ¢ = 0 as recorded in
the Home frame. This same event occurs at time ¢t = 0 in the moving frame. Event B is
when the moving clock has ticked off one unit of time (which may be a second, or a minute,
or ...) Since the coordinates of the moving clock are not changing in the reference frame of
this clock, the time line of the moving clock is just the ¢t’ line drawn in our two-observer
space-time diagram. You will notice that the time of event B as recorded in the Home frame
(notice the dashed line parallel to the z-axis) is later than one unit of time. The time interval
measured between events A and B in the Home frame is measured by two different clocks
located at two different points in the Home frame. This is a coordinate time interval and
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FIG. 18: Time Dilation - Proper Time in the Moving Frame.

is longer than the time interval as measured by the clock moving through the Home frame.
This is consitent with our earlier discussion of time dilation: moving clocks run slower.

But what about a clock which is at rest in the Home frame? Will this clock appear to run
slower in the moving frame? To see how this can be illustrated with the two-observer space-
time diagram, consider Figure Here, two events A and B are observed and recorded in
the Home frame and in the moving frame. These two events occur at the same place (the
origin) in the Home frame, but at different places as seen in the moving frame. The time
interval as measured by a single clock at the origin of the Home frame is measured to be one
unit long (one second, one minute, ...). This same time interval as measured in the moving
frame is recorded by two different clocks at two different locations. This time interval is
marked off by the dashed line in the figure which is parallel to the z’ axis, and is clearly
longer than one unit of time. So again we come up with the same result: time intervals
between two events which are measured by a single clock are smaller than time intervals
between these same two events measured by two different clocks.
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FIG. 19: Time Dilation - Proper Time in the Home Frame.

6. THE THREE TIME INTERVALS OF SPECIAL RELATIVITY
6.1. Time Intevals in Special Relativity Revisited

We have already discussed the fact that the measurement of the time interval between
two events depends upon the reference frame in which the measurement is made. The metric
equation

(cAt)? — Az® = (cAt')? — A" (55)

makes this quite clear, since it shows that the time interval measured between two events
in one frame depends upon the distance between the coordinates of these two events as
measured in that frame. For this reason, we call this time interval a coordinate time inter-
val. Since two events may be seen by many different observers moving in different inertial
reference frames, each with a different speed, the distance between these two events will
be measured to be different in the different reference frames. The coordinate time interval
between these two events, then, must be different in each of the different frames of reference.
Thus, there are a large number of coordinate time intervals which could be measured for the
same two events.

A special case of the coordinate time interval occurs when two events occur at the same
location in a particular inertial frame of reference. We define this time interval as the inertial
proper time interval between the two events. We argued earlier that this time interval is an
invarient, i.e., the measurement of this time interval is seen to be the same for all observers.
As an example consider a motorist passing through an intersection. The motorist has a
dashboard clock which is clearly visible to him and to anyone who might look into his
vehicle through the window. In addition, there are two observers, each with a synchronized
clock, standing at each end of this same intersection. As the motorist passes by the first
observer (event A), that observer notes the time on his clock and the time on the clock in
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the car. As the motorist passes by the second observer (event B), he too notes the time
on his clock and the time on the clock in the car. The coordinate time interval tg — t4
measured by the two observers at the intersection is just the difference between the times
they noted on their individual clocks. The coordinate time interval ¢; — ¢, measured by the
motorist, however, is different because he is in a different reference frame. However, the two
observers will agree that the motorist clock read exactly what the motorist claims, because
they could look through the window of the car and see just what the car clock indicated as it
passed by! Thus, all observers will agree on the time interval measured by the car clock, but
the two observers who are standing at the intersection will measure a different time interval
with their clocks. The time interval between the two events which is measured by the single
clock is the invarient inertial proper time interval. Because it is an invariant, it is called the
space-time interval, and is always the same for all observers.

Looking again at the metric equation, you will notice that the inertial proper time interval
between any two events will always be less than the coordinate time interval between these
same two events. So the inertial proper time interval is a special coordinate time interval,
and in particular is the shortest possible coordinate time interval. This is represented in

Figure [20]

At,

FIG. 20: There are as many different coordinate time intervals between two events as there are
inertial reference frames; but there is only one inertial proper time interval—and it is the shortest
time interval of all.

The fact that time intervals between two events may be measured to be different in
different coordinate systems seems a bit strange at first, but there is a similarity with this
situation and one with which we are a bit more familiar. The difficulty arises from the fact
that distances and times are both inter-related in special relativity, and we don’t normally
connect these two. However, we are quite familiar with changes in spacial coordinate systems
giving rise to changes in the components of vectors. Let’s review these concepts for a moment
and see how they may help us to understand the different time interval measurements
encountered in special relativity.

6.2. A Geometric Analogy

Consider a city which is layed out with streets running primarily North and South, East
and West. We can use an z,y coordinate system to unambiguously designate any point in
the city, as shown in Figure |21|. Here we have defined the z-axis as the axis pointed toward
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FIG. 21: The coordinates (x,y) and the displacement D of City Hall relative to the intersection of
Main and Spruce are displayed on an East-West, North-South reference grid. One possible path
from the intersection to City Hall is also designated by a dashed line.

the East and the y-axis as the axis pointed toward the North, with the origin arbtrarily
chosen to be the center of Main and Spruce streets. The location of City Hall can thus
be given by the point (x,y). If another coordinate system is chosen with the axes tilted
at 45 degrees (see Figure , the location of City Hall will be represented by a new set of

coordinates (z/,.y').
X'
%a]l

FIG. 22: The coordinates (z’,3) and the displacement D of City Hall relative to the intersection
of Main and Spruce are displayed on a reference grid oriented at 45 degrees from true North. One
possible path from the intersection to City Hall is also designated by a dashed line.
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However, the actual location of City Hall - its relationship to the other buildings in town
- does not change, nor does the distance from City Hall to the intersection of Main and
Spruce. In fact this distance can be defined in one of two ways: 1) the direct "as the crow
flies” distance (which we might designate as a location or displacement vector D), or 2)
the ”path-length” distance traced out as you follow specific directions to reach City Hall
along different streets (indicated by a dashed line in the figure). It should be obvious that
the actual distance to City Hall, nor the path-length distance to City Hall change with a
change in coordinate system. But it should also be obvious that the path-length distance
will be different for different chosen paths. Each of the three concepts we use to specify the
location of City Hall (coordinates, distance, and path-length distance) corresponds to a way
of measuring time in relativity.

However, we have not yet seen a time interval in special relativity which corresponds
to the concept of the path-length difference which depends upon the actual path taken to
get to City Hall. Since this path-length difference should be the same no matter what
coordinate system you choose, we might expect that there is some correspondence between
the path-length difference and the proper time interval.

6.3. The Three Time Intervals of Special Relativity

Just as there are three ways to describe the location of City Hall geometrically, there are
three different time intervals which must be distinguished in special relativity. These are:

1. The coordinate time interval measured in special relativity corresponds to the coor-
dinates of City Hall - they change depending upon the particular coordinate system
chosen. The coordinate time is the time which is read on a clock located at the place
where the event occured. This clock must be synchronized to the clock at the origin of
the coordinate system and thus defines a coordinate time interval relative to the ori-
gin clock. Coordinate times and time intervals between events must therefore depend
upon the particular inertial reference frame chosen to represent the events.

2. The actual distance to City Hall, which is the same no matter what coordinate system
we use, corresponds to the inertial proper time interval. It is always measured to be
the same no matter who measures it. It is the time interval between two events as
measured by a single clock which is moved through space-time at constant speed in
such a way that it is at the same location as the two events when these events occur.

3. Like the path-length distance in our geometric analog, the proper time interval between
two events may well depend upon the exact world-line which is chosen to connect
these two events, as seen in Figure 23] (The clock does not have to move at constant
velocity!) The proper time interval, just like the path-length distance, has the same
value for all inertial reference frames, but will depend upon the exact path taken.
Since the clock which measures the proper time interval is at the same location as the
two events being measured, a person standing in the rest frame of the event will ”see”
the face of the moving clock at the instant of the event and will agree with a person
who may be riding along in the coordinate system of the clock as to what that clock
reads, just like the case with the car passing through the intersection. However, the
mowving clock may not be moving at constant velocity in which case the time interval
is not the inertial proper time interval, and is not an invariant! And so we have a
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proper time interval which is different from the inertial proper time interval. We need
to consider how these two time intervals are related.

/
R

FIG. 23: The proper time interval measured by a single clock depends upon the world line traveled
by that single clock. Two events may be measured by two different clocks which are located at
the same two events but which travel between these two different events along very different world
lines. Each clock will measure a proper time interval, but each will measure a different proper time
interval!

6.4. Non-Inertial Proper Time Intervals

In Figure 24] , we have plotted the path of two space craft which move away from Earth
(event A) and after some time return to Earth (event C'). Each of the space craft travel
to some distant star or space station along an inertial path. When they arrive at their
destination, they immediately turn back toward Earth and return at the same speed, along
yet another inertial path.

Let’s first consider path ABC'. This space craft travels to a point B which is two light
years away from Earth and takes 4 years (as measured in the Earth’s frame of reference) to
reach there. The space craft, therefore, travels at a speed of ¢/2, as measured in the Earth’s
frame. He then returns to Earth at the same speed and arrives 8 years from the time he
departed (as measured in the Earth’s frame of reference). On board the space ship, the
clock which rides along with the ship measures the proper time interval between these same
two events, and obtains quite different results. For the trip out to point B we can determine
the time interval on the ship’s clock by using the invariant space-time interval

(cAt)® — Az? = (cAt)” — Az (56)

In the reference frame of the ship, Az’ = 0, and the space-time interval cAt’ (measured in
an inertial reference frame) is given by

At =/ (cAt)® — Az? = /42— 22 = /12 =2V/3 (57)
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The same time interval occurs as the ship returns to Earth, so that the total time ellapsed
on the ship’s clock is 2(2v/3) = 4v/3 = 6.93 years. This means that the people on the ship
aged by only 6.93 years while the people of the earth aged 8 years.

FIG. 24: Two non-inertial world lines taken by two different clocks. Each clock measures a “dif-
ferent” proper time interval.

Now consider path ADC for the second space craft. This space craft travels to a point
D which is three light years away from Earth and takes 4 years (as measured in the Earth’s
frame of reference) to reach there. The space craft, therefore, travels at a speed of 3/4c, as
measured in the Earth’s frame. He then returns to Earth at the same speed and arrives 8
years from the time he departed (as measured in the Earth’s frame of reference). We again
calculate the time interval measured by the on-board clock using the invariant space-time
interval

(cAt)? — Az? = (cAt)” — Az (58)

Again, Az’ = 0, and the space-time interval cAt’ (measured in an inertial reference frame)
is given by

cAt =/ (cAt)® — Aa2 =42 — 32 = /T (59)

The same time interval occurs as the ship returns to Earth, so that the total time ellapsed
on the ship’s clock is 2(\/7 ) = 5.29 years. This means that the people on this ship aged by
only 5.29 years while the people of the earth aged 8 years, and the people of the other ship
aged 6.93 years.

The clocks on Earth which measure the time interval between the departure of the space
craft and their return are inertial clocks, so that the inertial proper time interval between



35

these two events is measured to be longer than the non-inertial proper times measured by
the ship clocks. This means that we can have a number of different possible proper time
intervals between two events, each of which depends upon the worldline of the individual
clocks (path ABC' or ADC'). But each non-inertial proper time interval is shorter than the
inertial proper time interval (the space-time interval). Thus, the relationships between the

different time intervals within special relativity that we have discussed can be summarized
by the following diagram (Figure .

AT,

FIG. 25: A schematic showing how the three different time intervals which arise in special relativity
are related.

Notice that in the second case above, the space craft moves a distance of 6 light years
(three out and three back) in a time of 5.29 years, or 1.13 ¢! This would seem to violate our
assumption that nothing can move faster than the speed of light. However, we have not been
careful in the way we use our numbers. We have used the distance traveled as measured in
the Earth frame of reference and the time as measured in the ship frame of reference. This
is an illegal operation. If you use the Lorentz transformation equations to find the distance
traveled in the ship frame (or the time traveled in the earth frame) you will get the correct
speed for the spacecraft, 3/4c¢ in this case, and it will always be less than c.

Now, we can do this same thing again with another space ship moving even faster, say
with a speed of 0.996¢. Here, the time interval as measured on the ships clock is much much
less than the time interval measured in the Earth’s frame of reference. This will mean that
the "apparent speed” of the ship will be much much greater than the speed of light. If
we carry this scenario further, you will realize that it is possible to go to any point in the
universe within a finite length of time (as measured on the ship’s clock) provided you can
travel at speeds very near the speed of light. This means that if the ship were to move at
the speed of light, then the time interval as measured by the ship’s clocks would become
zero, so that a resident in the space ship would not age any as he moved across the galaxy!
Remember that light travels at the speed of light, so that photons must be able to traverse
the entire galaxy in no time at all!
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6.5. The Twin Paradox

The twin paradox illustrates the differences between proper time and inertial proper time.
The person traveling in the spaceship measures proper time, but the person who remains
on Earth measures the inertial proper time. The inertial proper time is always greater than
or equal to a non-inertial proper time. [For a full discussion, see Moore.|

7. MOMENTUM AND ENERGY CONSERVATION IN SPECIAL RELATIVITY.

7.1. The Failure of Newtonian Momentum Conservation

One of the most fundamental conservation laws in classical physics is the law of conser-
vation of momentum. If the special theory of relativity is valid then the conservations laws
must be valid in all inertial reference frames. Since the Galilean velocity addition rule is
not valid in the special theory of relativity, we might suspect there to be a problem with
momentum conservation. The following exercise demonstrates that the classical Newtonian
momentum is not conserved in all inertial reference frames.

EXERCISE 7.1 Consider a particle of mass m moving in the +x direction with a speed of
vy;/c = +3/4 in the Home Frame. This particlce collides with a particle of mass 2m which
1s at rest, vo; = 0. The lighter particle rebounds from the collision with an x velocity of

vif/c=—1/4.

1. Determine the velocity of the heavier particle assuming the conservation of Newtonian
momentum for this system, and show that it rebounds with an = velocity of voy/c =
+1/2.

2. Now consider another reference frame, the Other Frame, which is moving along the
positive x axis of the Home Frame with a constant velocity, v/c = +3/4. Express
the momentum of each of the particles in the Other Frame both before and after the
collision, using the Lorentz transformation equation for wvelocities. Is the Newtonian
momentum of the system conserved in this reference frame?

The fact that the Newtonian momentum is not conserved in all inertial frames means that
we must look for a new definition for the momentum which is consistent with the Newtonian
momentum at low speeds.

7.2. A New Definition of Momentum

This new, more general, definition of momentum, therefore, must be something slightly
different from the mass of an object times the object’s velocity as measured in a given
reference frame, but must be similar to the Newtonian momentum since we must preserve
Newtonian momentum at low speeds. We will assume that the mass of an object is invariant
(i.e., constant) in all inertial reference frames. This means that we need to redefine the
velocity part of the momentum equation in such a way that the newly defined momentum
is conserved in all reference frames, when we apply the Lorentz transformation.



37

One clue which might help us find the correct form for the momentum is the fact that
the Lorentz transformation equations for position and time are different from the Lorentz
transformation for velocities. The primary difference is that there is no change in the
perpendicular components of the position vector from one inertial frame to another, while
there is a change in the perpendicular components of the velocity. This difference is primarily
due to the fact that time intervals measured in one reference frame are not equal to time
intervals measured in another frame of reference. Thus, when we divide the change in y
and z by the time interval, we introduce a term which makes the velocity equations not
transform like the position coordinates.

If the momentum is to transform like the position, and not like velocity, we must divide
the perpendicular components of the vector position by a quantity that is wnvariant. The
logical quantity to try is the space-time interval. By dividing the components of a position
vector by the space-time interval rather than the coordinate time interval, we obtain a
quantity with the units of velocity whose perpendicular components transform like position
components, but not like velocity components. The space-time interval can be written in
the form

cAT = \/(cAt)* — AR? (60)
2
=cAty /1 — (%) = cAt\/1 — 2 (61)

where [ is the velocity of the object moving through a given coordinate system measured
relative to the speed of light. Since the space-time interval is invariant, we can also write

cAT = \/(cAV)? — AR? (62)
7\ 2
= cAty[1— (?Ai) = AT - 37 (63)

Now, if the displacement of an object measured in a given intertial frame is divided by
the space-time interval, we obtain

Az Az _ ug/c
CAT AT —3 1=

(64)

or
Az Uy

= 65
AT \/1_752 (65)
We see that the quantity Ax/A7 is essentially equivalent to the velocity of a particle mea-
sured in a given frame of reference if the velocity is small (i.e., if 5 is small). Thus, since the
classical definition of momentum mu,, is essentially the same thing as mAz /A7 for small
speeds, we postulate that the correct form of the relativistic momentum is given by

A
T M (66)

AT

Notice that 1/4/1 — /52 looks like our definition of 7. However, in this equation f is not a
measure of the speed of one inertial reference frame relative to another, but a measure of the
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velocity of a particle measured in a single reference frame. We must, therefore, distinguish
between these two different v’s. We will write (v) to represent the v we have used in the
Lorentz transformation equations and which depends upon the relative velocity between two
reference frames. We will write «(u) to represent the « associated with the velocity of a
particle measured in a given reference frame.

Thus, we postulate that the correct expression for the momentum of an object of mass
m is given by

A
T M v (u)mau, (67)

m_
At J1-p32
The fact that the space-time interval between two events is measured to have the same value
in any two reference frames means that we can also write
AV mu,
= u (68)

Similarly, we can write

m—Ay _ My (u)mu
Ar = Jiop T
Az mu,

m— =

Ar T g

It is interesting to note that the ratio of the time interval in a given reference frame to
the invariant time interval A7 is given by:

At 1
Ar —/1_—62 =(u)
At 1 ,

We now need to look at how this proposed definition of momentum will transform, to
see if this will preserve our conservation rules. Beginning with the Lorentz transformation
equations in terms of intervals

Az = ~(v) [Az' + B(cAt)]
Ay = Ay
Az = A7
cAt = v(v) [(cAt') + BAZ]

we divide both sides by the invariant space-time interval to obtain

Y(wu, = y(v) [y(w)u, + By(u')c]
Y(wu, = y(u')u,
Y(wu, = (W),
Y(u)e = () [y(u')e+ By(u')u]
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Multiplying through by m in each of these equations and defining the components of the
momentum vector? to be

pe = y(u)mu,
by = ’y(u)muy
p. = v(wmu,

we obtain

pe = () [P, + By(u)md]
Py = P,
p. = 1l

Y(w)me = y(v) [y(u')me + Bp,]

In addition to the three components of the momentum vector, the application of the
Lorentz transformation equation has introduced a fourth quantity, v(u)mec, which we need
to identify. To do this we look at the classical limit of these four terms. As we have already
mentioned, when the particle velocity is small, u/c is small and y(u) — 1, so that the
relativistic definition of the momentum is equivalent to the classical definition. Likewise, in
the limit as y(u) — 1 (i.e., when 8 = u/c — 0) we see that the term ~(u)mc becomes

_ 1 1
me [1— 7] Y2 e {1+§52+..} :mc+§mu2/c+... (69)

The second term in this expansion is similar in form to the kinetic energy of the particle! To
make the similarity complete, we multiply this last equation by ¢ and define the relativistic
energy E of a particle to be

E = y(u)mc? (70)

Thus, the relativistic energy, in the limit as y(u) — 1, becomes
2 2 L 2 1 5
E = ~(u)me* ~ me 1—1—55 +...| @mc +§mu +... (71)

For this last expression to be valid in the classical limit, a particle must have energy even
when it is at rest (a rest mass energy). If mass in truely invariant, this constant rest mass
would simply introduce a constant offset in the energy scale. This offset creates no problem
since we are usually interested only in changes in the total energy of a system. The kinetic
energy of a particle, then, in special relativity can be written as

K = §mu2 = E —mc® = y(u)ymc®* — mc* = [y(u) — 1] mc? (72)

A more troublesome question arises if we take v(u)mc? as an expression for the total

energy of the system, since there is no potential energy term. In classical physics we normally

write the total mechanical energy as the sum of the kinetic and the potential energy. If this is

truely an expression for the total energy of the system, the potential energy must somehow

be tied up with the inertial mass of the system in a way which has not been obvious in
classical systems.
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Let’s make a wild assumption that a change in potential energy of a system is equal to
the change in the mass of the system. If this were actually correct any change in mass of a
classical system would have to be so small as to be immeasurable, even when a measurable
change in the potential energy occured. The following example illustrates this change in
mass for a typical situation.

Example 7.1 Consider a 1 kg mass which is lifted through a distance of 1 meter. The
gravitational potential energy of this mass has changed by an amount equal to 9.8 Joules.
By how much would the mass of this system change according to our definition of the total
relativistic energy? Since the system is at rest, any change must be in the rest mass energy,
so that

AE = Amc? (73)

or, for the mass change
Am = AE/c* = (9.8 /9.0 x 10'%) kg (74)

which means that we would have to measure mass changes to better than one part in 101¢ to
see this effect!

Thus, typical potential energy changes in classical physics would lead to negligible changes
in the masses of the components of the system - they simply cannot be detected. There are
cases, however, where this mass difference has been measured. This occurs when nuclear
components (e.g., a proton and a neutron) bind together to form a more complex structure.
The mass of the individual components is always larger than the mass of the two components
in the more complex structure, implying that the mass change is what supplies the binding
energy of the more complex structure.

EXERCISE 7.2 (Tipler, Problem 1.43) A free neutron decays into a proton plus an
electron:
n—p+e (75)

Use Table 1-1 in Tipler to calculate the energy released in this reaction.
Having justified our definition of the energy as
E = v (u) mc® (76)
we can now write the momentum transformation equations in the form:

Pz = (V) [p; +5E7]

/

py = py

P = p;

E E

B [— +/ap;]
C C

These equations, taken together, are similar in form to the position-time four-vector in
relativity. This new momentum-energy four-vector is sometimes called the momenergy.
The fact that the momentum and energy are inter-related in special relativity would seem
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to indicate that principles of the conservation of momentum and of energy in Newtonian
physics are actually more fundamental than we might have originally thought.

The following exercises illustrate the use of the conservation of momentum and energy in
relativistic problems.

EXERCISE 7.3 Two equal masses m; = mo = mqg approach each other in the Home
reference frame with equal speeds u, = 0.6¢ (choose my to be moving in the +x direction).
These two masses collide and form a single mass M which is at rest in the Home frame.

1. Use the relativistic expressions for the momentum and energy in the Home frame to
show that the momentum of the system is conserved and that conservation of energy
requires that the final mass M must be greater than 2my.

2. Consider another reference frame S which is attached to my. Show that the momentum
and enerqy of the system are also conserved in this new reference frame and that the
final combined mass M is the same as we obtained in the Home frame.

EXERCISE 7.4 A body of rest mass m,, traveling initially at the speed of 0.6c, makes a
completely inelastic collision with an identical body that is initally at rest.

1. What is the rest mass of the resulting single body?

2. What is its speed?

EXERCISE 7.5 (Eztra Credit) Consider a particle of mass m moving in the +x direction
with a speed of vi;/c = +3/4 in the Home Frame. This particlce collides with a particle of
mass 2m which s at rest, vy; = 0.

1. Using the equations we have developed for the relativistic momentum and energy, de-
termine the velocity of the heavier particle after the collision. Is energy conserved in
this collision?

2. Now consider another reference frame, the Other Frame, which is moving along the
positive x axis of the Home Frame with a constant velocity, v/c = +3/4. Express the
momentum and enerqy of each of the particles in the Other Frame both before and after
the collision, and show that the relativistic momentum is conserved in this collision in
the Other Frame. Is energy conserved in this reference frame?

We have shown that the relativistic momentum is given by

T =~ @wmd = —mﬁ (77)
L — (u/e)’

and that the relativistic total energy is given by

E=~u)mc = ———— (78)
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Note that we can multiply the equation for 7 by ¢ and obtain the relationship

7 =FEd (79)
or _>C
-5 0

The fact that momentum and energy can be combined together as a four-vector, just
like time and space should make you wonder if there is an invariant quantity which arises
from this four-vector just as the invariant space-time interval arises from the space-time
four-vector. In fact, there is!

Just as in the case of the space-time four-vector, we take the square of the fourth vector
and subtract the sum of the squares of the other three vectors to obtain a new invariant
interval. (Note: This can also be thought of as multiplying the fourth component of the
momenergy by i = \/—1, and taking the sum of the squares of all the terms.) This invariant
interval has the same value in all inertial reference frames and is equal to (mc)?, as shown
below.

2

(E/e)* = P2+, + 03] = [y(wmd]” — [(y(u)mug)* + (y(u)muy ) + (y(u)mu.)?]
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Thus, we have the relation (valid in all inertial reference frames)
(E/c)* = p* = m*c* (81)

which can be expressed as
E? = p*? + m2ct (82)

This equation has the form of the Phythagorean theorem applied to a right triangle,
where the total energy E is the hypotinuse, the rest mass energy mc? is the base, and the
term p?c? is the vertical side of the right triangle. Thus, the vertical side corresponds roughly
to the kinetic energy, depending upon the momentum of the particle.

This last equation is extremely significant, since it indicates that an object with no rest
mass can still have a momentum! Thus, for a photon with zero rest mass, the momentum
can be written as

p=E/c (83)

We will show later that photons have energy £ = hv, so that this last expression can be
written

p=hv/c=h/\ (84)

so that the momentum of a photon is directly related to the wavelength of the photon.



	Inertial Reference Frames and The Principle of Relativity
	Newton's Three Laws of Motion
	Intertial Reference Frames and the Principle of Galilean Relativity
	Maxwell's Equations, the Velocity of Light, and the Principle of Special Relativity

	Special Relativity: A New Look at Time and Distance
	Time Intervals in Different Inertial Frames
	Length Measurements in Different Inertial Frames

	Relating Time and Distance Measurements in Different Inertial Frames: The Metric Equation
	Relating Time Measurements in Different Inertial Frames
	Experimental Verification of the Metric Equation and Time Dilation

	Relating Distance Measurements in Different Inertial Frames
	The Meaurement of Lengths Perpendicular to the Direction of Motion

	Relating Event Coordinates in Two Inertial Reference Frames: The Lorentz Transformation Equations
	Derivation of the Lorentz Transformation Equations
	Measurement of Proper Length and Proper Time Intervals using the Lorentz Transformation Equations
	The Lorentz Velocity Transformation Equations and the Constancy of the Speed of Light

	The Cosmic Speed Limit: A Consequence of the Concept of Cause and Event
	Time Reversals and the Implication of Cause and Effect (Tipler Problem 82)
	A Second Look at Space-Time Diagrams and World-Lines
	Coordinate Transforms and Two Observer Space-Time Diagrams
	The Relativity of Simultaneity
	Calibration of the Two-Observer Space-Time Diagram
	Length Contraction Illustrated with Two-Observer Space-Time Diagrams
	Time Dilation Illustrated with Two-Observer Space-Time Diagrams


	The Three Time Intervals of Special Relativity
	Time Intevals in Special Relativity Revisited
	A Geometric Analogy
	The Three Time Intervals of Special Relativity
	Non-Inertial Proper Time Intervals
	The Twin Paradox

	Momentum and Energy Conservation in Special Relativity.
	The Failure of Newtonian Momentum Conservation
	A New Definition of Momentum


