
Journal of Mathematics Research; Vol. 5, No. 1; 2013

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Adjoint n-point Boundary Value Problem for the Linear

Differential Equation and Green’s Function

Kazbek A. Khasseinov1

1 Department of Mathematics, Kazakh National Technical University, Almaty, Kazakhstan

Correspondence: Kazbek A. Khasseinov, Department of Mathematics, Kazakh National Technical University

named after K. I. Satpayev, Satpayev St. 22, P. O. 50013, Almaty, Kazakhstan. E-mail: dorteh77@mail.ru

Received: October 9, 2012 Accepted: November 28, 2012 Online Published: January 21, 2013

doi:10.5539/jmr.v5n1p83 URL: http://dx.doi.org/10.5539/jmr.v5n1p83

Abstract

The n-point problem with linear boundary conditions of general type is studied in this work. We have found

the boundary conditions for the adjoint differential operator. The Green’s function has been constructed where

we have used solutions of the adjoint differential equation and studied its new properties. Through the Green’s

function and saltus of its derivatives, we have solved the nonhomogeneous n-point boundary value problem for the

linear differential equation with variable coefficients.
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1. Introduction

Multipoint Problem have been studied least of all because the interim points included into the boundary conditions

cause a range of such serious hardships as breach of smoothness of the Green’s function, absence of the adjoint

boundary value Problem, etc. Redefined multipoint Problem where boundary conditions in the intermediate nodes

are “unnecessary”, important in the application context, have been turned out to be poorly studied. These tasks

directly relate to the theory of spline (Coddington & Levinson, 1955; Yerugin, 1974; Pokornyi, 1980; Householder,

1956). While some strong developments in the linear two-point problems are determined by the modern analysis

technique, such methods are not effective enough for the multipoint boundary value Problem. Difficulties arising

in the multipoint Problems are overcome due to applying the Green’s function which reflects the entire specificity

of the boundary Problem and is a complicated object studied very poorly. Therefore, construction of the Green’s

function for the multipoint Problem with general type boundary conditions and research of its properties are still

topical (Kiguradze, 1987; Klokov, 1967; Maksimov & Rakhmatullina, 1977; Liu, 2011; Peterson, 1979; Jackson,

1977).

2. Research

Let us consider a linear differential operator

Ly = y(n) +

n∑
v=1

bv−1(x)y(v−1), (1)

with coefficients bv−1(x) ∈ Cv−1[x1, xn], v = 1, 2, ..., n.

Let us introduce an auxiliary linear differentiation operator of the boundary conditions

(Ty)(x) =

n∑
v=1

ρv(x)y(v−1)(x), (2)

where ρv(x) ∈ C[x1, xn], v = 1, 2, ..., n.

Assume that the domain of existence of the operator L consists of functions y ∈ Cn−1[x1, xn], complying with their

boundary conditions

(Ty)(xi) = ρn(xi)y(n−1)(xi) + ... + ρ2(xi)y′(xi) + ρ1(xi)y(xi) = 0, (3)

where x1 < x2 < · · · < xn are known points and coefficients comply with a condition of degeneracy absence in the
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points
n∑

v=1

| ρv(xi) | � 0, i = 1, 2, ..., n.

Let us introduce an adjointed operator

L+z = (−1)nz(n) + (−1)n−1(bn−1(x)z)(n−1) + ... − (b1(x)z)′ + b0(x)z. (4)

Its domain of existence D(L+) is described below.

Let us consider Lagrange identity (Coddington & Levinson, 1955)

zLy − yL+z =
d
dx
Φ (y, z) ,

where a bilinear form is set by the equality

Φ(y, z) =

n∑
v=1

∑
p+q=v−1
p≥0,q≥0

(−1)py(q)(bv(x)z)(p), bn(x) ≡ 1.

Let us put p = v − 1 − q into the internal sum and specify q at p = 0 and present a bilinear form as follows

Φ(y, z) =

n∑
v=1

v−1∑
q=0

(−1)v−1−qy(q)[bv(x)z](v−1−q), bn(x) ≡ 1.

Since p ≥ 0, q ≥ 0, we can produce v ≥ 1 + q from p = v − 1 − q ≥ 0. Let us allocate the sums from the bilinear

form at q = 0, q = v − 1, then, we should take v ≥ 2 + q in the other sums:

Φ(y, z) =

n∑
v=1

y(v−1)[bv(x)z] +

n∑
v=2

(−1)v−1y[bv(x)z](v−1) +

n∑
v=3

v−2∑
q=1

(−1)v−1−qy(q)[bv(x)z](v−1−q), bn(x) ≡ 1.

Having set integral values for q, let us write the bilinear form with the help of derivatives y′(x), y′′(x), ..., y(n−2)(x):

Φ[y(x), z(x)] = z(x)

n∑
v=1

bv(x)y(v−1)(x) + y(x)

n∑
v=2

(−1)v−1[bv(x)z(x)](v−1) + y′(x)

n∑
v=3

(−1)v−2[bv(x)z(x)](v−2)+

y′′(x)

n∑
v=4

(−1)v−3[bv(x)z(x)](v−3) + ... + y(n−3)(x)

n∑
v=n−1

(−1)v−n+2[bv(x)z(x)](v−n+2) + y(n−2)(x)z′(x), bn(x) ≡ 1. (5)

Let us consider a differential equation Φ(y, z) = 0. It connects the adjoint family functions {y(x)}, {z(x)} and their

derivatives to (n − 1) order included. Let us identify dependence of solutions of the adjoint equation L+z = 0 on

the solutions of the equation Ly = 0 and also find the adjoint boundary condition D(L+).

Lemma 1 Let us assume that for the points {xi}n1 and fundamental system of solutions {yi(x)}n
1

of the equation
Ly = 0

Δ = det ‖(Tyi)(xi)‖ =

∣∣∣∣∣∣∣∣∣∣∣∣

(Ty1)(x1) (Ty2)(x1) . . . (Tyn)(x1)

(Ty1)(x2) (Ty2)(x2) . . . (Tyn)(x2)
...

...
...

(Ty1)(xn) (Ty2)(xn) . . . (Tyn)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
� 0, (∗)

then there is a fundamental system of solutions {ϕ j(x)}n
1

of the homogenous equation Ly = 0

(Tϕ j)(xi) = δ ji; i, j = 1, 2, ..., n, (6)

where δ ji is the Kronecker symbol.

Proof. Since bv−1(x), v = 1, 2, ..., n continuous, there is a fundamental system of solutions y1, y2, . . . , yn of the

homogenous equation Ly = 0. Let us find a solution as follows

ϕ j(x) = C j1y1(x) +C j2y2(x) + ... +C jnyn(x). (7)
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To make it clear, we will prove the lemma for �, � = 1, 2, .., n. Let us apply the operator T to the function (7) and

transfer all the members to the right part

C�1(Ty1)(x) +C�2(Ty2)(x) + ... +C�n(Tyn)(x) − (Tϕ�)(x) = 0.

Having written this expression in the points {xi}n1 having taken into account the boundary conditions (6) and having

considered it jointly with (7), we have a system of the homogenous linear algebraic equations with respect to

C�1,C�2, ...,C�n,−1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C�1(Ty1)(x1) +C�2(Ty2)(x1) + ... +C�n(Tyn)(x1) = 0,
......................................................................................
C�1(Ty1)(x�) +C�2(Ty2)(x�) + ... +C�n(Tyn)(x�) − 1 = 0; (Tϕ�)(x�) = 1,
C�1y1(x) +C�2y2(x) + ... +C�nyn(x) − ϕ�(x) = 0,
C�1(Ty1)(x�+1) +C�2(Ty2)(x�+1) + ... +C�n(Tyn)(x�+1) = 0,
........................................................................................
C�1(Ty1)(xn) +C�2(Ty2)(xn) + ... +C�n(Tyn)(xn) = 0.

(∗∗)

A determinant should be equal to zero for the nontrivial solution of the homogenous system, i.e.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Ty1)(x1) (Ty2)(x1) . . . (Tyn)(x1) 0
...

...
...

...
(Ty1)(x�) (Ty2)(x�) . . . (Tyn)(x�) 1

y1(x) y2(x) . . . yn(x) ϕ�(x)

(Ty1)(x�+1) (Ty2)(x�+1) . . . (Tyn)(x�+1) 0
...

...
...

...
(Ty1)(xn) (Ty2)(xn) . . . (Tyn)(xn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,∀x ∈ [x1, xn].

Let us decompose the determinant by the last column elements

ϕ�(x) · det
∥∥∥(Ty j)(xi)

∥∥∥ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Ty1)(x1) (Ty2)(x1) . . . (Tyn)(x1)
...

...
...

(Ty1)(x�−1) (Ty2)(x�−1) . . . (Tyn)(x�−1)

y1(x) y2(x) . . . yn(x)

(Ty1)(x�+1) (Ty2)(x�+1) . . . (Tyn)(x�+1)
...

...
...

(Ty1)(xn) (Ty2)(xn) . . . (Tyn)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since a determinant is different from zero under the lemma condition, the solution exists ϕ�(x) = Δ�(x)
Δ
, Δ � 0.

Thus, we have found solutions of the homogenous equation Ly = 0 complying with the boundary conditions (6),

ϕ j(x) =
Δ j(x)

Δ
, Δ � 0, j = 1, 2, ..., n. (8)

Determinants Δ j(x) are produced from Δ by replacement of elements of the j-line by the fundamental system of

solutions y1, y2, . . . , yn. Let us prove linear independence of the function (8). If we write a system (**) without

proportions (7) for � = 1, 2, ..., n, we then have a system consisting of n2 equations, that can be presented in the

matrix form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Ty1)(x1) (Ty2)(x1) . . . (Tyn)(x1)

(Ty1)(x2) (Ty2)(x2) . . . (Tyn)(x2)
...

...
...

(Ty1)(xn) (Ty2)(xn) . . . (Tyn)(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= E,

where E is an identity matrix.
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Due to the condition at Δ (*), we have det
∥∥∥C ji

∥∥∥ � 0, i, j = 1, 2, ..., n. Let us differentiate (7) by (n−1) times and

write the produced proportions for j = 1, 2, ..., n in the following way

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(x) ϕ2(x) . . . ϕn(x)

ϕ′1(x) ϕ′2(x) . . . ϕ′n(x)
...

...
...

ϕ(n−1)
1

(x) ϕ(n−1)
2

(x) . . . ϕ(n−1)
n (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)
...

...
...

y(n−1)
1

(x) y(n−1)
2

(x) . . . y(n−1)
n (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is obvious that Wronskian for {ϕ j(x)}n
1

is different from zero and it proves their linear independence.

Now, let us identify functions {zi(x)}n
1

as a solution to the system of algebraic equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(x) + ϕ2(x)z2(x) + ... + ϕn(x)zn(x) = 0,
ϕ′1(x)z1(x) + ϕ′2(x)z2(x) + ... + ϕ′n(x)zn(x) = 0,
...............................................................................

ϕ(n−2)
1

(x)z1(x) + ϕ(n−2)
2

(x)z2(x) + ... + ϕ(n−2)
n (x)zn(x) = 0,

ϕ(n−1)
1

(x)z1(x) + ϕ(n−1)
2

(x)z2(x) + ... + ϕ(n−1)
n (x)zn(x) = 1.

(9)

Solving this system by the Cramer method and writing the determinant with the help of elements of the i-column,

we have

zi(x) = (−1)n+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x) . . . ϕi−1(x) ϕi+1(x) . . . ϕn(x)

ϕ′
1
(x) . . . ϕ′i−1

(x) ϕ′i+1
(x) . . . ϕ′n(x)

...
...

...
...

ϕ(n−3)
1

(x) . . . ϕ(n−3)
i−1

(x) ϕ(n−3)
i+1

(x) . . . ϕ(n−3)
n (x)

ϕ(n−2)
1

(x) . . . ϕ(n−2)
i−1

(x) ϕ(n−2)
i+1

(x) . . . ϕ(n−2)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ x

xi
bn−1(t)dt

. (10)

Lemma 2 Let {ϕ j(x)}n
1

be a fundamental system of solutions to the equation Ly = 0 in Lemma 1, and {zi(x)}n
1

be a
system of functions specified by the formula (10). Then:

a) {zi(x)}n
1

is a fundamental system of solutions of the adjoint differential equation L+z = 0 ∀(xμ, xμ+1), μ =
1, 2, ..., n − 1,

b) functions zi(x)comply with the adjoint boundary conditions

(T+k z)(xi) =

k∑
v=0

(−1)k−v[bn−v(s)z(s)]k−v − ρn−k(s)
∣∣∣s=xi = 0, k = 0, 1, ..., n − 1, (11)

c) the following proportions are true

Φ[ϕ j(x), zi(x)] = δ ji ∀x ∈ [x1, xn], i, j = 1, 2, ..., n. (12)

Proof. Let us show that L+zi(s) = 0. Applying the rules of product differentiation and determinant by lines, we can

find from (10).

z′i(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(s) . . . ϕi−1(s) ϕi+1(s) . . . ϕn(s)

ϕ′1(s) . . . ϕ′i−1(s) ϕ′i+1(s) . . . ϕ′n(s)
...

...
...

...

ϕ(n−4)
1

(s) . . . ϕ(n−4)
i−1

(s) ϕ(n−4)
i+1

(s) . . . ϕ(n−4)
n (s)

ϕ(n−3)
1

(s) . . . ϕ(n−3)
i−1

(s) ϕ(n−3)
i+1

(s) . . . ϕ(n−3)
n (s)

ϕ(n−1)
1

(s) . . . ϕ(n−1)
i−1

(s) ϕ(n−1)
i+1

(s) . . . ϕ(n−1)
n (s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

+ bn−1(s)zi(s),

because there will be two similar lines in the other determinants. Let us differentiate again

z′′i (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−2)
1

. . . • • . . . ϕ(n−2)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−3)
1

. . . • • . . . ϕ(n−3)
n

ϕ(n)
1

. . . • • . . . ϕ(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

86



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 1; 2013

+bn−1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−3)
1

. . . • • . . . ϕ(n−3)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

+ [bn−1(s)zi(s)]′.

Let us express the derivatives ϕ(n)
j (s) in the second determinant from Lϕ j(s) = 0:

ϕ(n)
j (s) = −bn−1(s)ϕ(n−1)

j (s) − bn−2(s)ϕ(n−2)
j (s) − ... − b1(s)ϕ′j(s) − b0(s)ϕ j(s). (13)

Decomposing the second determinant for the sum and taking into account (10), we have

z′′i (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−2)
1

. . . • • . . . ϕ(n−2)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt − bn−1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−3)
1

. . . • • . . . ϕ(n−3)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

−bn−2(s)zi(s) + bn−1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 . . . • • . . . ϕn

ϕ′1 . . . • • . . . ϕ′n
...

...
...

...

ϕ(n−4)
1

. . . • • . . . ϕ(n−4)
n

ϕ(n−3)
1

. . . • • . . . ϕ(n−3)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt

+ [bn−1(s)zi(s)]′.

The second derivative is equal to

z′′i (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(s) . . . ϕi−1(s) ϕi+1(s) . . . ϕn(s)

ϕ′1(s) . . . ϕ′i−1(s) ϕ′i+1(s) . . . ϕ′n(s)
...

...
...

...

ϕ(n−4)
1

(s) . . . ϕ(n−4)
i−1

(s) ϕ(n−4)
i+1

(s) . . . ϕ(n−4)
n (s)

ϕ(n−2)
1

(s) . . . ϕ(n−2)
i−1

(s) ϕ(n−2)
i+1

(s) . . . ϕ(n−2)
n (s)

ϕ(n−1)
1

(s) . . . ϕ(n−1)
i−1

(s) ϕ(n−1)
i+1

(s) . . . ϕ(n−1)
n (s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ s

xi
bn−1(t)dt − [bn−2(s)zi(s)] + [bn−1(s)zi(s)]′.

To avoid cumbersome records, let us specify: Wm,n−1(s) is Wronskian for the function ϕ1(s), ..., ϕi−1(s), ϕi+1(s), ..., ϕn(s),

which elements of the last line are (n − 1)-derivatives and there is no line with m-derivative; Wm,n(s) is the same

determinant but elements of the last line are ϕ(n)
1

(s), ..., ϕ(n)
i−1

(s), ϕ(n)
i+1

(s), ..., ϕ(n)
n (s), and there is no line with (n − 1)

and m-derivatives. It is not difficult to determine by direct differentiation of the determinants that

d
ds

Wm,n−1(s) = Wm−1,n−1(s) +Wm,n(s), m = 1, 2, ..., n − 2. (a)

In the last line Wm,n(s), expressing elements ϕ(n)
j (s) from (13) and decomposing it for the sum of determinants, due

to absence of the lines with m- and (n-1)-derivatives, we have

Wm,n(s) = −bn−1(s)Wm,n−1(s) − bm(s)Wm,m(s), m = 0, 1, ..., n − 2. (b)

Let us displace the elements ϕ(m)
j (s) to the (m+1)-line by (n-2-m) changing of the adjoining lines, then taking into

account the proportion (10), we have

Wm,m(s)e
∫ s

xi
bn−1(t)dt

= (−1)n−2−mzi(s), m = 0, 1, ..., n − 2. (c)

These derivatives can be represented through the introduced indications as follows

z′i(s) = Wn−2,n−1(s)e
∫ s

xi
bn−1(t)dt

+ [bn−1zi],
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z′′i (s) = Wn−3,n−1(s)e
∫ s

xi
bn−1(t)dt − [bn−2zi] + [bn−1zi]

′.

Let us differentiate the last expression, and, taking into account (a), we have

z′′′i (s) = Wn−4,n−1(s)e
∫ s

xi
bn−1(t)dt

+Wn−3,n(s)e
∫ s

xi
bn−1(t)dt

+ bn−1(s)Wn−3,n−1(s)e
∫ s

xi
bn−1(t)dt − [bn−2zi]

′ + [bn−1zi]
′′.

Let us express the second determinant from (b)

z′′′i (s) = Wn−4,n−1(s)e
∫ s

xi
bn−1(t)dt − bn−1(s)Wn−3,n−1(s)e

∫ s
xi

bn−1(t)dt − [bn−2zi]
′ −

−bn−3(s)Wn−3,n−3(s)e
∫ s

xi
bn−1(t)dt

+ bn−1(s)Wn−3,n−1(s)e
∫ s

xi
bn−1(t)dt

+ [bn−1zi]
′′.

Annihilating the second and the fifth terms and taking into account (c), we obtain

z′′′i (s) = Wn−4,n−1(s)e
∫ s

xi
bn−1(t)dt

+ [bn−3zi] − [bn−2zi]
′ + [bn−1zi]

′′.

Finding zIV
i and so on, let us suppose that the k-derivative is defined by the formula

z(k)
i (s) = Wn−k−1,n−1(s)e

∫ s
xi

bn−1(t)dt
+ (−1)k−1[bn−kzi] + (−1)k−2[bn−k+1zi]

′+

+... − [bn−2zi]
(k−2) + [bn−1zi]

(k−1), k = 1, 2, ..., n − 1. (14)

Let us show that the formula is true for the (k+1)-derivative. Differentiating (14) and taking into account (a), we

have

z(k+1)
i (s) = Wn−k−2,n−1(s)e

∫ s
xi

bn−1(t)dt
+Wn−k−1,n(s)e

∫ s
xi

bn−1(t)dt
+ bn−1(s)Wn−k−1,n−1(s)e

∫ s
xi

bn−1(t)dt

+(−1)k−1[bn−kzi]
′ + (−1)k−2[bn−k+1zi]

′′ + +... − [bn−2zi]
(k−1) + [bn−1zi]

(k).

Let us express the second determinant from (b)

z(k+1)
i (s) = Wn−k−2,n−1(s)e

∫ s
xi

bn−1(t)dt − bn−1(s)Wn−k−1,n−1(s)e
∫ s

xi
bn−1(t)dt − bn−k+1(s)Wn−k−1,n−k−1(s)e

∫ s
xi

bn−1(t)dt
+

bn−1(s)Wn−k−1,n−1(s)e
∫ s

xi
bn−1(t)dt

+ (−1)k−1[bn−kzi]
′ + (−1)k−2[bn−k+1zi]

′′ + ... − [bn−2zi]
(k−1) + [bn−1zi]

(k).

Annihilating the second and the fourth terms and taking into account (c), we obtain that

z(k+1)
i (s) = Wn−k−2,n−1(s)e

∫ s
xi

bn−1(t)dt
+(−1)k[bn−k−1zi]+(−1)k−1[bn−kzi]

′+(−1)k−2[bn−k+1zi]
′′+...−[bn−2zi]

(k−1)+[bn−1zi]
(k).

It is easy to notice that this derivative has the same form as the k-derivative. Therefore, we have proved that the

formula of the k-derivative is true (14).

Let us write the formula (14) at k = n − 1:

z(n−1)
i (s) = W0,n−1(s)e

∫ s
xi

bn−1(t)dt
+ (−1)n−2[b1zi] + (−1)n−3[b2zi]

′ + ... − [bn−2zi]
(n−3) + [bn−1zi]

(n−2)

or

z(n−1)
i (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′1(s) . . . ϕ′i−1(s) ϕ′i+1(s) . . . ϕ′n(s)

ϕ′′1 (s) . . . ϕ′′i−1(s) ϕ′′i+1(s) . . . ϕ′′n (s)
...

...
...

...

ϕ(n−2)
1

(s) . . . ϕ(n−2)
i−1

(s) ϕ(n−2)
i+1

(s) . . . ϕ(n−2)
n (s)

ϕ(n−1)
1

(s) . . . ϕ(n−1)
i−1

(s) ϕ(n−1)
i+1

(s) . . . ϕ(n−1)
n (s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ s

xi
bn−1(t)dt

+(−1)n−2[b1zi] + (−1)n−3[b2zi]
′ + ... − [bn−2zi]

(n−3) + [bn−1zi]
(n−2). (15)

Let us differentiate the expression, so,

z(n)
i (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′1 . . . • • . . . ϕ′n
ϕ′′1 . . . • • . . . ϕ′′n
...

...
...

...

ϕ(n−2)
1

. . . • • . . . ϕ(n−2)
n

ϕ(n)
1

. . . • • . . . ϕ(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ s

xi
bn−1(t)dt

+ bn−1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′1 . . . • • . . . ϕ′n
ϕ′′1 . . . • • . . . ϕ′′n
...

...
...

...

ϕ(n−2)
1

. . . • • . . . ϕ(n−2)
n

ϕ(n−1)
1

. . . • • . . . ϕ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ s

xi
bn−1(t)dt
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+(−1)n−2[b1zi]
′ + (−1)n−3[b2zi]

′′ + ... − [bn−2zi]
(n−2) + [bn−1zi]

(n−1).

Expressing elements ϕ(n)
j (s) from the homogenous equation (13) and decomposing the first determinant for the

sum, due to absence of the lines with elements ϕ(n−1)
j (s) and ϕ j(s), we have

z(n)
i (s) = −b0(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′1(s) . . . ϕ′i−1(s) ϕ′i+1(s) . . . ϕ′n(s)

ϕ′′1 (s) . . . ϕ′′i−1(s) ϕ′′i+1(s) . . . ϕ′′n (s)
...

...
...

...

ϕ(n−2)
1

(s) . . . ϕ(n−2)
i−1

(s) ϕ(n−2)
i+1

(s) . . . ϕ(n−2)
n (s)

ϕ
1
(s) . . . ϕi−1

(s) ϕi+1
(s) . . . ϕn(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ s

xi
bn−1(t)dt

+

+(−1)n−2[b1zi]
′ + (−1)n−3[b2zi]

′′ + ... − [bn−2zi]
(n−2) + [bn−1zi]

(n−1).

The first and the third determinants had the opposite observations. Moving the adjoining lines (n−2) times, let us

put the last line to the place of the first line and, taking into account (10), we finally find that

z(n)
i (s) = (−1)n−1[b0zi] + (−1)n−2[b1zi]

′ + ... − [bn−2zi]
(n−2) + [bn−1zi]

(n−1).

To prove that zi(s) are solutions of the adjoint equation, let us multiply the derivative z(n)
i

(s) by (-1)n by terms and

transpose terms on the decreasing derivatives, so,

(−1)nz(n)
i (s) = (−1)n[bn−1zi]

(n−1) + (−1)n−1[bn−2zi]
(n−2) + ... + [b1zi]

′ − [b0zi].

Having set the found expression instead of (−1)nz(n)
i

(s) in the left part of the adjoint operator we see that functions

zi(s) comply with the equation

L+z(s) = 0.

Now, let us identify the expressions regarding the values zi(xi), z′i(xi), ..., z(n−2)
i

(xi) and find the adjoint boundary

conditions for the operatorL+. Let us represent the function (10) in a form of the n-order determinant

zi(xi) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(xi) . . . ϕi−1(xi) ϕi(xi) ϕi+1(xi) . . . ϕn(xi)

ϕ′1(xi) . . . ϕ′i−1(xi) ϕ′i(xi) ϕ′i+1(xi) . . . ϕ′n(xi)
...

...
...

...
...

ϕ(n−2)
1

(xi) . . . ϕ(n−2)
i−1

(xi) ϕ(n−2)
i (xi) ϕ(n−2)

i+1
(xi) . . . ϕ(n−2)

n (xi)

(Tϕ1)(xi) . . . (Tϕi−1)(xi) (Tϕi)(xi) (Tϕi+1)(xi) . . . (Tϕn)(xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ xi

xi
bn−1(t)dt

,

where

(Tϕi)(xi) =

n∑
v=1

ρv(xi)ϕ
(v−1)
i (xi) = 1, i = 1, 2, ..., n,

(Tϕ j)(xi) =

n∑
v=1

ρv(xi)ϕ
(v−1)
j (xi) = 0, i � j, j = 1, 2, ..., n

due to the boundary conditions (6). It is possible because the elements of the last line consist of zeros, except one

that is equal to 1 and located at the intersection the n-line and i-column. Since the form of each element of the last

line is congruent, let us decompose zi(xi) for the sum of n determinants where (n-1) have the proportional lines.

Since the determinant is the Wronskian in point xi, based on the Lioville-Ostrogradsky formula we have

zi(xi) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(xi) . . . ϕn(xi)

ϕ′1(xi) . . . ϕ′n(xi)
...

...

ϕ(n−2)
1

(xi) . . . ϕ(n−2)
n

(xi)

ρn(xi)ϕ
(n−1)
1

(xi) . . . ρn(xi)ϕ
(n−1)
n (xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ xi

xi
bn−1(t)dt

= ρn(xi). (16)

Let us find the derivative z′i(s) at s = xi and represent it in a form of the n-determinant adding the determinant with

elements of the (n-1)-line {(Tϕ j)(xi)}n1 and i-column-{ϕ(χ−1)

i (xi)}n1.
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z′i(xi) = (−1) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(xi) . . . ϕi(xi) . . . ϕn(xi)

ϕ′1(xi) . . . ϕ′i(xi) . . . ϕ′n(xi)
...

...
...

ϕ(n−3)
1

(xi) . . . ϕ(n−3)
i

(xi) . . . ϕ(n−3)
n (xi)

(Tϕ1)(xi) . . . (Tϕi)(xi) . . . (Tϕn)(xi)

ϕ(n−1)
1

(xi) . . . ϕ(n−1)
i (xi) . . . ϕ(n−1)

n (xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
∫ xi

xi
bn−1(t)dt

+ bn−1(xi)zi(xi),

where

(Tϕ j)(xi) = δ ji; i, j = 1, 2, ..., n.

It is possible because elements of the last but one line consist of zero, except one that is equal to 1 and located at

the intersection of the (n-1)-line and i-column. Decomposing the determinant for the sum and taking into account

absence of the line with derivatives ϕ(n−2)
j (xi), we produce the following from the formula (10) taking into account

a sigh at zi

z′i(xi) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(xi) . . . ϕn(xi)

ϕ′1(xi) . . . ϕ′n(xi)
...

...

ρn−1(xi)ϕ
(n−2)
1

(xi) . . . ρn−1(xi)ϕ
(n−2)
n

(xi)

ϕ(n−1)
1

(xi) . . . ϕ(n−1)
n (xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ xi

xi
bn−1(t)dt

+ bn−1(xi)zi(xi).

Factoring out the coefficient ρn−1(xi), we obtain

z′i(s) − [bn−1zi] + ρn−1(s)
∣∣∣s=xi = 0.

Similarly, let us represent z′′i (xi) in a form of the n-determinant adding the i-column and the (n−2)-line which

elements are the boundary conditions (Tϕ j)(xi). Decomposing it for the sum of the determinants and taking into

account absence of the line with ϕ(n−3)
j (xi), we have

z′′i (xi) = (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(xi) . . . ϕn(xi)
...

...

ρn−2(xi)ϕ
(n−3)
1

(xi) . . . ρn−2(xi)ϕ
(n−3)
n (xi)

ϕ(n−2)
1

(xi) . . . ϕ(n−2)
n

(xi)

ϕ(n−1)
1

(xi) . . . ϕ(n−1)
n (xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ xi

xi
bn−1(t)dt − [bn−2zi]

∣∣∣s=xi + [bn−1zi]
′ ∣∣∣s=xi

or

z′′i (s) − [bn−1zi]
′ + [bn−2zi] − (−1)2ρn−2(s)

∣∣∣s=xi = 0.

Let us consider the value of the (n−1)-determinant Wn−k−1,n−1(s) in the point xi, there is no line with derivatives

ϕ(n−k−1)
j (xi). Let us represent the boundary conditions (Tϕ j)(xi) and {ϕ(χ−1)

i (xi)}n1 as the elements of the (n − k)-line

and the i-column correspondingly completing the determinant to the n-degree. Let us decompose this determinant

for the sum of the determinants where all of them except one have the proportional lines. Since there is no line with

elements ϕ(n−k−1)
j (xi), we have the following factoring the coefficient ρn−k(xi) out of the determinant and taking into

account the sign of the formula (10)

Wn−k−1,n−1(xi) = (−1)kρn−k(xi)W(xi), (d)

where W(xi)is the Wronskian value in the point xi.

Let us find z(k)
i (xi) from the formula (14) at s = xi, taking into account the produced proportion (d) and the Lioville-

Ostrogradsky formula:

z(k)
i (s) − [bn−1zi]

(k−1) + [bn−2zi]
(k−2) + ... + (−1)k−1[bn−k+1zi]

′ + (−1)k[bn−kzi] − (−1)kρn−k(s)
∣∣∣s=xi = 0,

k = 1, 2, ..., n − 1.

To find the adjoint boundary conditions (T+z)(xi), let us set s = xi in the formula (15), as the determinant with the

first line and the i-column which elements are (Tϕ j)(xi) and {ϕ(χ−1)

i (xi)}n1 respectively.
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Then we have

z(n−1)
i (xi) = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Tϕ1)(xi) . . . (Tϕi)(xi) . . . (Tϕn)(xi)

ϕ′1(xi) . . . ϕ′i(xi) . . . ϕ′n(xi)
...

...
...

ϕ(n−1)
1

(xi) . . . ϕ(n−1)
i (xi) . . . ϕ(n−1)

n (xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ xi

xi
bn−1(t)dt

+

+
{
(−1)n−2[b1zi] + (−1)n−3[b2zi]

′ + ... − [bn−2zi]
(n−3) + [bn−1zi]

(n−2)
} ∣∣∣s=xi .

Decomposing the determinant for the sum of n determinants, due to absence of the line with elements ϕ j(xi) and

based on the known Lioville-Ostrogradsky formula, we finally obtain

z(n−1)
i (s) − [bn−1zi]

(n−2) + ... + (−1)n−2[b2zi]
′ + (−1)n−1[b1zi] − (−1)n−1ρ1(s)

∣∣∣s=xi = 0.

Let us multiply by terms the derivatives z(k)
i (xi) and z(n−1)

i (xi) by (−1)k and (−1)n−1 respectively. Then considering

evenness and oddness of the degrees, we have

(−1)kz(k)
i (s) + (−1)k−1[bn−1zi]

(k−1) + ... − [bn−k+1zi]
′ + [bn−kzi] − ρn−k(s)

∣∣∣s=xi = 0, (17)

k = 0, 1, . . . , n − 1, or in a form of the sum (11) at z = zi(s)

k∑
v=0

(−1)k−v[bn−v(s)zi(s)](k−v) − ρn−k(s)
∣∣∣

s=xi
= 0, (11∗)

k = 0, 1, .., n − 1; bn(x) ≡ 1, at k = n − 1

(−1)n−1z(n−1)(s) + (−1)n−2[bn−1z](n−2) + ... − [b2z]′ + [b1z] − ρ1(s)
∣∣∣s=xi = 0. (18)

Proportion (11) is the adjoint boundary conditions (T+z)(xi) which the solutions of the differential equation L+z = 0

comply with.

Let us prove the second part of lemma. Being a bilinear form with respect to the derivatives ϕ j(x), ϕ′j(x), ..., ϕ(n−1)
j (x)

and zi(x), z′i(x), ..., z(n−1)
i (x), expression (5) is equal to the constant value

Φ[ϕ j(x), zi(x)] = const ∀x ∈ [x1, xn].

Actually, as we can see from the Lagrange identity, its derivative is equal to zero

d
dx
Φ[ϕ j(x), zi(x)] = zi(x)Lϕ j − ϕ j(x)L+zi = 0,

Because Lϕ j(x) = 0 and L+zi(x) = 0. Therefore, to prove the proportion (12) it is sufficient to show that the

following is true at the point xi ∈ [x1, xn]

Φ[ϕ j(xi), zi(xi)] = δ ji; i, j = 1, 2, ..., n.(12∗)
Let us write the bilinear form (5) for the functions ϕ j(x) and zi(x) at the point x = xi

Φ[ϕ j(xi), zi(xi)] = z(xi)

n∑
v=1

bv(xi)ϕ
(v−1)
j (xi) + ϕ j(xi)

⎛⎜⎜⎜⎜⎜⎝
n∑

v=2

(−1)v−1[bvzi]
(v−1)
∣∣∣x=xi

⎞⎟⎟⎟⎟⎟⎠

+ϕ′j(xi)

⎛⎜⎜⎜⎜⎜⎝
n∑

v=3

(−1)v−2[bvzi]
(v−2)
∣∣∣x=xi

⎞⎟⎟⎟⎟⎟⎠ + ... + ϕ(n−3)
j (xi)

(
z′′i (xi) + [bn−1zi]

′ ∣∣∣x=xi

)
− ϕ(n−2)

j (xi)zi(xi).

Let us substitute the expressions in brackets for ϕ j(xi), ϕ
′
j(xi), ..., ϕ

(n−2)
j (xi) from the adjoint condition (18) and

corresponding point proportions (17) for k = n − 2, n − 3, ..., 2, 1, so,

Φ[ϕ j(xi), zi(xi)] = zi(xi)

n∑
v=1

bv(xi)ϕ
(v−1)
j (xi) + ϕ j(xi)[ρ1(xi) − b1(xi)zi(xi)] + ϕ

′
j(xi)[ρ2(xi) − b2(xi)zi(xi)]

+... + ϕ(n−3)
j (xi)[ρn−2(xi) − bn−2(xi)zi(xi)] + ϕ

(n−2)
j (xi)[ρn−1(xi) − bn−1(xi)zi(xi)].
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Factoring zi(xi) out the bracket, collecting similar terms and taking into account that zi(xi) = ρn(xi), we have

Φ[ϕ j(xi), zi(xi)] = ρn(xi)ϕ
(n−1)
j (xi) + ρn−1(xi)ϕ

(n−2)
j (xi) + ρn−2(xi)ϕ

(n−3)
j (xi) + ... + ρ2(xi)ϕ

′
j(xi) + ρ1(xi)zi(xi).

Or due to the boundary conditions we get

Φ[ϕ j(xi), zi(xi)] = (Tϕ j)(xi) = δ ji,

which demonstrates that (12∗) is true, and thereby, the proportion (12) is true as well. Lemma is completely proved.

It results from execution of the equality

Φ[ϕ j(xi), zi(xi)] = 0 ∀x ∈ [x1, xn] at j � i

that family of functions {ϕ j(x)}n
1

and {zi(x)}n
1

at j � i are adjoint.

Note 1. It is interesting when coefficients of the operator T comply with the proportions

ρv(x) = αv(x)bv(x), bn(x) = 1 ∀x ∈ [x1, xn], αv(x) ∈ C[x1, xn]. (19)

Hence, the boundary conditions (3) are

(Ty)(xi) =

n∑
v=1

αv(xi)bv(xi)y(v−1)(xi) = 0, (4′)

and
n∑

v=1

|αv(xi)| |bv(xi)| � 0.

And the adjoint boundary conditions (11) are specified

(−1)kz(k)(s) + (−1)k−1[bn−1z](k−1) + ... + [bn−kz] − αn−k(s)bn−k(s)
∣∣∣s=xi = 0. (11′)

Let us consider special cases.

A. αv(x) = const, v = 1, 2, ..., n. Then the boundary conditions (3) are

(Ty)(xi) =

n∑
v=1

αvbv(xi)y(v−1)(xi) = 0, (3a)

and
n∑

v=1

|αv| |bv(xi)| � 0, bn(x) ≡ 1.

And the adjoint boundary conditions are specified

k∑
v=0

(−1)k−v[bn−v(s)z(s)](k−v) − αn−kbn−k(s)
∣∣∣s=xi = 0. (11a)

In the boundary conditions (3a), the constants αvcan be represented as equal to zero or to 1.

B. Let ρv(xi) = αvibv(xi). Then the operator T represents the point operator Ti, i.e. the separate operator is set in

each point and they can be congruent in some points. In this case, the boundary conditions (3) are met

(Tiy)(xi) =

n∑
v=1

αvibv(xi)y(v−1)(xi) = 0, (3′)

and
∑n

v=1 |αvi| |bv(xi)| � 0, bn(x) ≡ 1.

It should be noted, that these conditions are similar to the conditions (3) but the difference is that in the first case

the functions αv(x) are set, but here the n × n matrix of the constant numbers ‖αvi‖ is set. So, the adjoint boundary

conditions are specified
k∑

v=0

(−1)k−v[bn−v(s)z(s)](k−v) − αn−k,ibn−k(s)
∣∣∣s=xi = 0. (11′)
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All specified above statements and connections are true for the described cases as well.

Note 2. Let us find the corresponding nonlinear differential equation of the Riccati type for the adjoint differential

equation

L+z =
n∑

i=0

(−1)i[bi(x)z](i) = 0,

where bi(x) ∈ Ci[x1, xn], i = 0, 1, 2, ..., n − 1; bn(x) ≡ 1.

Similarly to the linear differential equation Ly = 0, we represent the solution as follows z(x) = e
∫ x

x0
u(t)dt

.

Let us use a formula of the n-derivative of the exponent and the product function, then we have

L+z =
n∑

i=0

(−1)i pi[z(x)bi(x)] =

n∑
i=0

(−1)i pie
∫ x

x0
u(t)dtbi(x) = e

∫ x
x0

u(t)dt ·
n∑

i=0

(−1)i[p + u(x)]ibi(x).

Therefore, we will produce the adjoint characteristic of the (n − 1)-th order equation of the Riccati type

n∑
i=0

(−1)i[p + u(x)]ibi(x) = 0, (20)

here

(p + u)bi(x) = bi(x)u + b′i(x), (p + u)bn(x) = (p + u)1 = u(x).

If ui(x) are the impaired solutions around points Σ of the adjoint characteristic equation of the Riccati type (20)

and D[u(x)] � 0 ∀x ∈ Ω = [x1, xn]\∑, then the functions

zi(x) = e
∫ x

x0
ui(t)dt
, x0 ∈ Ω

form a fundamental system of solutions of the adjoint differential equation (4), and the inverse statement is true as

well.

Thus, to find a fundamental system of solutions L+z = 0, it is sufficient to find the impaired solutions to the adjoint

characteristic Equation (20). But to avoid cumbersome records, we express solutions of the n-point boundary

problem through the fundamental system of solutions of the linear differential equation {ϕ j(x)}n
1

and {zi(x)}n
1

[13].

3. Solution to the n-point Boundary Value Problem

Let us assume, we need to solve the nonhomogenous boundary value n-point problem

Ly = f (x), (21)

where f (x) ∈ C[x1, xn], bv−1(x) ∈ Cv−1[x1, xn], v = 1, 2, ..., n,

(Ty)(xi) =

n∑
v=1

ρv(xi)y(v−1)(xi) = ai. (22)

Regarding the problem it is true.

Theorem 1 Let {ϕ j(x)}n
1

and {zi(x)}n
1

be the systems of functions specified in Lemmas 1 and 2. Then there is the
only solution to the nonhomogenous problem (21), (22)

y(x) =

n∑
i=1

aiϕi(x) +

n∑
i=1

ϕi(x)

∫ x

xi

f (s)zi(s)ds. (23)

Proof. Let us find the derivative

y′ =
n∑

i=1

aiϕ
′
i(x) +

n∑
i=1

ϕ′i(x)

∫ x

xi

f (s)zi(s)ds + f (x)

n∑
i=1

ϕi(x)zi(x).
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Since functions {zi(x)}n
1

are defined as solutions to the system of the algebraic Equations (9), the last sum is equal

to zero due to the first equation of this system, so

y′ =
n∑

i=1

aiϕ
′
i(x) +

n∑
i=1

ϕ′i(x)

∫ x

xi

f (s)zi(s)ds,

Taking into account the second equation, the second derivative considering the second Equation (9) is equal to

y′′ =
n∑

i=1

aiϕ
′′
i (x) +

n∑
i=1

ϕ′′i (x)

∫ x

xi

f (s)zi(s)ds.

Similarly, at repeated differentiation (n−2) times and considering the last but one Equation (9), we have

y(n−1) =

n∑
i=1

aiϕ
(n−1)
i

(x) +

n∑
i=1

ϕ(n−1)
i

(x)

∫ x

xi

f (s)zi(s)ds.

Let us differentiate again

y(n) =

n∑
i=1

aiϕ
(n)
i

(x) +

n∑
i=1

ϕ(n)
i

(x)

∫ x

xi

f (s)zi(s)ds + f (x)

n∑
i=1

ϕ(n−1)
i (x)zi(x).

Here the third sum is the last equation of the system (9) and is equal to 1, therefore,

y(n) =

n∑
i=1

aiϕ
(n)
i

(x) +

n∑
i=1

ϕ(n)
i

(x)

∫ x

xi

f (s)zi(s)ds + f (x).

Setting the derivatives in the left part of the nonhomogenous Equation (21), we have

Ly = y(n) + bn−1(x)y(n−1) + ...+ b2(x)y′′ + b1(x)y′ + b0(x)y =
n∑

i=1

aiLϕi
(x)+

n∑
i=1

Lϕi (x)

∫ x

xi

f (s)zi(s)ds+ f (x) ≡ f (x),

because {ϕi(x)}n
1

are solutions of the homogenous equation and Lϕi(x) = 0. Therefore, the function y(x) assigned

by the formula (23) is a solution of the nonhomogenous differential equation (21).

Now, let us show that the solution (23) complies with the boundary conditions (22). Let us apply the operator of

the boundary conditions to the function (23)

(Ty)(x) = ρn(x)y(n−1) + ρn−1(x)y(n−2) + ... + ρ2(x)y′ + ρ1(x)y =
n∑

i=1

ai(Tϕi)(x) +

n∑
i=1

(Tϕi )(x)

∫ x

xi

f (s)zi(s)ds.

Let us consider this expression in points x j, j = 1, 2, ..., n:

(Ty)(xi) =

n∑
i=1

ai(Tϕi
)(x j) +

n∑
i=1

(Tϕ
i
)(x j)

∫ x j

xi

f (s)zi(s)ds. (24)

When j � i, (Tϕi)(x j) = 0, under the boundary conditions (6) and consequently the terms of the sum will remain

in the right part only at j = i, i.e.

(Ty)(xi) = ai(Tϕi )(xi) + (Tϕi )(xi)

∫ xi

xi

f (s)zi(s)ds.

Since (Tϕi)(xi) = 1 under (6) and an integral with identical integration limits is equal to zero, the second addend

is transformed to zero as well. So, we have (Ty)(xi) = ai, that is congruent with the boundary conditions (22).

Theorem is proved.

Now, let us produce a formula of the solution to the nonhomogenous n-point problem through the preset funda-

mental system of solutions y1(x), y2(x), ..., yn(x) of the homogenous equation Ly = 0. This formula can be useful

for practical use.

94



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 1; 2013

It is well-known that a partial solution of the nonhomogenous Equation (21) is represented through the Cauchy

kernel (Yerugin, 1974; Beesack, 1962):

y∗(x) =

∫ x

xi

f (s)
Wn(x, s)

W(s)
ds,

where the determinant Wn(x, s) is produced from the Wronskian W(s) by substituting the last line for the functions

y1(x), y2(x), ..., yn(x). Similarly to the Householder method (Householder, 1956), let us take in the last line instead

of solutions {yi(x)}n
1

their linear combination, namely functions {ϕi(x)}n
1
. So, decomposing the determinant by

elements of the n-line, we get

Wn(x, s)

W(s)
=

n∑
i=1

Ani(s)ϕi(x), (25)

where Ani(s) are the algebraic supplements for the i-element of the i-line. Let us apply an operator of the boundary

conditions T to the both parts (25) on the variable x

(TWn)(x, s)

W(s)
=

n∑
i=1

Ani(s)(Tϕi)(x).

As conditions are met

(Tϕi)(x j) = δi j

Let us find values of the Cauchy kernel in the points x j

(TWn)(x j, s)

W(s)
=

n∑
i=1

Ani(s)(Tϕi)(x j) = An j(s).

According to the determinant and linearity of the operator T , substituting the index j for i, gives us

Ani(s) =
Wn[(Tyk)(xi), s]

W(s)
; k, i = 1, 2, ..., n.

Setting the algebraic supplements in (25), we have

Wn(x, s)

W(s)
=

n∑
i=1

ϕi(x)
Wn[(Tyk)(xi), s]

W(s)
.

It means that

y∗(x) =

n∑
i=1

ϕi(x)

∫ x

xi

f (s)
Wn[(Tyk)(xi), s]

W(s)
ds,

which complies with zero boundary conditions (Ty∗)(xi) = 0.

Thus, comparing with the second addend (23), we can find that

zi(s) =
Wn[(Tyk)(xi), s]

W(s)
; k, i = 1, 2, ..., n, (26)

and values of the points (Tyk)(xi) for the fundamental system of solutions y1(x), y2(x), ..., yn(x) are located in the

numerator’s last line instead of {yk(x)}n
1
. It should be noted that these functions zi(s) have properties proved in

Lemma 2. Therefore, the formula of solution (23) of the nonhomogenous problem taking into account (26) can be

represented as follows

y(x) =

n∑
i=1

aiϕi
(x) +

n∑
i=1

ϕ
i
(x)

∫ x

xi

f (s)
Wn[(Tyk)(xi), s]

W(s)
ds. (27)

4. Green’s Function and Its New Properties

There is the following definition of the Green’s function (Yerugin, 1974; Kiguradze, 1987; Peterson, 1979; Jackson,

1977).
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Definition. Green’s function for the operator Ly and nonhomogenous boundary conditions

(Ty)(xi) = ai, i = 1, 2, ..., n

is a function of two variables G(x, s), complying with the following conditions

1) Derivatives
∂rG(x, s)

∂xr , r = 0, 1, 2, ..., n − 2 are continuous on the strength of all the variables x, s for the entire

domain x1 ≤ x, s ≤ xn except the lines s = xμ, μ = 2, 3, ..., n − 1.

2) Derivative
∂n−1G(x, s)

∂xn−1
is continuous on the variables x, s at s � xμ. Besides, function G(x, s) and its derivatives

on x to (n − 2)-order at x = s are continuous , and (n − 1)-derivative has a saltus equal to 1, i.e.

G(s + 0, s) −G(s − 0, s) = 0,

∂G(s + 0, s)

∂x
− ∂G(s − 0, s)

∂x
= 0,

...............................................

∂n−2G(s + 0, s)

∂xn−2
− ∂

n−2G(s − 0, s)

∂xn−2
= 0,

∂n−1G(s + 0, s)

∂xn−1
− ∂

n−1G(s − 0, s)

∂xn−1
= 1, (28)

3) G(x, s) at the variable x complies with the homogenous equation LG(x, s) = 0 at s � xμ, s � x.

4) At s � xμ, G(x, s) complies with the boundary conditions (TG)(xi, s) = 0, i = 1, 2, ..., n.

Let us show that the Green’s function for n-point boundary value problem exists and it can be helpful to solve the

nonhomogenous problem (21), (22).

Let us consider the function on xμ ≤ x ≤ xμ+1, μ = 1, 2, ..., n − 1

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(s), x1 ≤ s < x2,
. . . . . . . . . . . . . . .∑μ−1

l=1
ϕl(x)zl(s), xμ−1 ≤ s < xμ,∑μ

l=1
ϕl(x)zl(s), xμ ≤ s ≤ x,

−∑n
l=μ+1 ϕl(x)zl(s), x ≤ s ≤ xμ+1,

−∑n
l=μ+2 ϕl(x)zl(s), xμ+1 < s ≤ xμ+2,

. . . . . . . . . . . . . . .
−ϕn(x)zn(s), xn−1 < s ≤ xn,

(29)

where the linearly independent functions ϕ j(x) comply with the homogenous equation Ly = 0 and boundary

conditions (Tϕ j)(xi) = δ ji, and zi(s) comply with the adjoint equation L+z(s) = 0 and adjoint boundary conditions

(11). On the issue of the problem, it is true

Theorem 1 Let coefficients of the Equation (21) bv−1(x) ∈ Cv−1[x1, xn], v = 1, 2, ..., n, f (x) be uninterrupted on
[x1, xn] and {ϕ j(x)}n

1
, {zi(x)}n

1
are systems of functions specified in Lemma 1 and 2. Then G(x, s) (29) is a Green’s

function for the n-point problem (21), (22).

Proof. We will try to find the Green’s function for the n-point boundary value problem in a form for xμ ≤ x ≤
xμ+1, μ = 1, 2, ..., n − 1:

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)ψ1(s), x1 ≤ s < x2,
. . . . . . . . . . . . . . .∑μ−1

l=1
ϕl(x)ψl(s), xμ−1 ≤ s < xμ,∑μ

l=1
ϕl(x)ψl(s), xμ ≤ s ≤ x,

−∑n
l=μ+1 ϕl(x)ψl(s), x ≤ s ≤ xμ+1,

−∑n
l=μ+2 ϕl(x)ψl(s), xμ+1 ≤ s ≤ xμ+2,

. . . . . . . . . . . . . . .
−ϕn(x)ψn(s), xn−1 ≤ s ≤ xn,

(30)

where ϕ j(x) are the linearly independent functions complying with the theorem conditions.
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Let us select the unknown functions ψi(s) to fulfill the second requirement of the Green’s function definition. It is

easy to notice that the first proportion for xμ ≤ x ≤ xμ+1 will be as follows

G(s + 0, s) −G(s − 0, s) = ϕ1(s)ψ1(s) + ϕ2(s)ψ2(s) + ... + ϕn(s)ψn(s) = 0.

We have the similar expression for the other vertical stripsxv ≤ x ≤ xv+1. Thus, having written the second

requirement of the Green’s function definition (28) for all strips xμ ≤ x ≤ xμ+1, we have the same system of the

linear equations regarding the unknown functions ψi(s):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(s)ψ1(s) + ϕ2(s)ψ2(s) + ... + ϕn(s)ψn(s) = 0,
ϕ′1(s)ψ1(s) + ϕ′2(s)ψ2(s) + ... + ϕ′n(s)ψn(s) = 0,
.........................................................................
ϕ(n−2)

1
(s)ψ1(s) + ϕ(n−2)

2
(s)ψ2(s) + ... + ϕ(n−2)

n
(s)ψn(s) = 0,

ϕ(n−1)
1

(s)ψ1(s) + ϕ(n−1)
2

(s)ψ2(s) + ... + ϕ(n−1)
n

(s)ψn(s) = 1.

By solving a system of the algebraic equations by the Cramer method, we can find that

ψi(s) = (−1)n+i

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(s) . . . ϕi−1(s) ϕi+1(s) . . . ϕn(s)

ϕ′1(s) . . . ϕ′i−1(s) ϕ′i+1(s) . . . ϕ′n(s)
...

...
...

...

ϕ(n−2)
1

(s) . . . ϕ(n−2)
i−1

(s) ϕ(n−2)
i+1

(s) . . . ϕ(n−2)
n (s)

∣∣∣∣∣∣∣∣∣∣∣∣∣
e
∫ s

xi
bn−1(t)dt

.

Comparing these functions with (10), we can see that ψi(s) = zi(s).

Fulfillment of the third requirement of the definition is obvious from the formula (30). Let us show that the function

(30) complies with the fourth requirement as well. Let us apply the operator of the boundary conditions T to the

function G(x, s) and set x = xi(set μ = i in (30). So, the sum at xi < s ≤ xwill disappear in representation of the

function (30) because an interval comes to the point xi < s ≤ xi.

Taking into account the linearity of the operator T , we have

(TG)(xi, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1(s)(Tϕ1)(xi), x1 ≤ s < x2,
......... ......∑i−1

l=1 zl(s)(Tϕl)(xi), xi−1 ≤ s ≤ xi,
−∑n

l=i+1 zl(s)(Tϕl)(xi), xi ≤ s ≤ xi+1,
......... ......
−zn(s)(Tϕn)(xi), xn−1 < s ≤ xn.

Since l � i, all sums in the right part transform to zero based on (6). Thus, (TG)(xi, s) = 0, s � xμ. Therefore, the

function created in a form (29) is a Green’s function for the n-point boundary value problem (21), (22).

Let us note that G(x, s) is congruent on structure with the Green’s function created in (Kiguradze, 1987; Jackson,

1977; Levin, 1961). The difference is that it is represented in the horizontal stripes xμ ≤ s ≤ xμ+1, but we do it in

vertical strips - xμ ≤ x ≤ xμ+1. Solutions to the adjoint problems are used in a form (29) as well.

In our opinion, it is interesting to look at the diagram of the Green’s function assignment.

A picture of the area at n = 3 is provided in (Davidson & Rynne, 2007), we then provide it for n = 5.
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Figure 1. Green’s function area for n = 5

Green’s function on the vertical strips Eμ ≤ E ≤ Eμ+1, μ = 1, 2, 3, 4:

x1 ≤ x ≤ x2,

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(s), x1 ≤ s ≤ x,
−ϕ2(x)z2(s) − ϕ3(x)z3(s) − ϕ4(x)z4(s) − ϕ5(x)z5(s), x ≤ s ≤ x2,
−ϕ3(x)z3(s) − ϕ4(x)z4(s) − ϕ5(x)z5(s), x2 < s ≤ x3,
−ϕ4(x)z4(s) − ϕ5(x)z5(s), x3 < s ≤ x4,
−ϕ5(x)z5(s), x4 < s ≤ x5.

x2 ≤ x ≤ x3,

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(s), x1 ≤ s < x2,
ϕ1(x)z1(s) + ϕ2(x)z2(s), x2 ≤ s ≤ x,
−ϕ3(x)z3(s) − ϕ4(x)z4(s) − ϕ5(x)z5(s), x ≤ s ≤ x3,
−ϕ4(x)z4(s) − ϕ5(x)z5(s), x3 < s ≤ x4,
−ϕ5(x)z5(s), x4 < s ≤ x5.

x3 ≤ x ≤ x4,

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(s), x1 ≤ s < x2,
ϕ1(x)z1(s) + ϕ2(x)z2(s), x2 ≤ s < x3,
ϕ1(x)z1(s) + ϕ2(x)z2(s) + ϕ3(x)z3(s), x3 ≤ s ≤ x,
−ϕ4(x)z4(s) − ϕ5(x)z5(s), x ≤ s ≤ x4,
−ϕ5(x)z5(s), x4 < s ≤ x5.

x4 ≤ x ≤ x5,

G(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)z1(s), x1 ≤ s < x2,
ϕ1(x)z1(s) + ϕ2(x)z2(s), x2 ≤ s < x3,
ϕ1(x)z1(s) + ϕ2(x)z2(s) + ϕ3(x)z3(s), x3 ≤ s < x4,
ϕ1(x)z1(s) + ϕ2(x)z2(s) + ϕ3(x)z3(s) + ϕ4(x)z4(s), x4 ≤ s ≤ x,
−ϕ5(x)z5(s), x ≤ s ≤ x5.
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An issue of the Green’s function attributes for the multipoint boundary task was deeply studied in a range of works

of Beesack, Krall, Peterson, Kiguradze, Levin, Pokorniy and others (Kiguradze, 1987; Maksimov & Rakhmatul-

lina, 1977; Liu, 2011; Peterson, 1979; Jackson, 1977; Levin, 1961; Eloe & Grimm, 1980). As far as we know,

solutions of the adjoint differential equation were not used previously in the course of creating the Green’s function

and the adjoint boundary conditions were not produced. Thereby, some new attributes of the Green’s function can

be determined.

1) Green’s function G(x, s) on variable s in the rectangle x1 ≤ s, x ≤ xn, except lines s = xμ, s = x, complies with

the homogenous adjoint equation L+G(x, s) = 0.

Proof. Function G(x, s) represents the sum of products ∀x ∈ [xμ, xμ+1], μ = 1, 2, ..., n − 1, G(x, s)

= ±∑μ(n)

k=1 (μ+1)
ϕk(x)zk(s) for xμ < s < x (x < s < xμ+1).

Applying to it the adjoint operator L+ on the variable s and considering its linearity, we will have

L+G(x, s) = ±
μ(n)∑

k=1 (μ+1)

ϕk(x)L+zk(s) = 0, xμ < s < x (x < s < xμ+1),

because functions zk(x) are solutions of the adjoint equation due to Lemma 2.

2) Green’s function G(x, s) on the lines s = xμ, μ = 2, 3, ..., n − 1 has a break of the first kind, and the proportion

is fulfilled for ∀x ∈ [x1, xn]

G(x, xμ + 0) −G(x, xμ − 0) = ϕμ(x)zμ(s)
∣∣∣s=xμ = ρn(xμ)ϕμ(x). (31)

Proof. We can see from the structure of the Green’s function assignment (29) that it is sufficient to subtract the

expression of the previous line at s < xμ from the expression G(x, s) at xμ < s for definition of the difference, i.e.

G(x, xμ + 0) −G(x, xμ − 0) =

⎛⎜⎜⎜⎜⎜⎜⎝
μ∑

l=1

ϕl(x)zl(s) −
μ−1∑
l=1

ϕl(x)zl(s)

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣s=xμ = ϕμ(x)zμ(s)

∣∣∣s=xμ = ρn(xμ)ϕμ(x),∀x ∈ [x1, xn],

based on values zi(xi) from (10). Similarly it is also set at s ≥ x.

Function G(x, s) and, correspondingly, its derivatives on x to (n−2) order is uninterrupted on the lines s = xμ, μ =
2, 3, ..., n − 1 where the coefficient ρn(xμ) at the higher derivative in the boundary conditions (22) transforms to

zero. This feature simply results from the proportions (31). The same feature was produced by Levin (1961) under

the other considerations.

Let us specify the Green’s function saltus on the lines s = xμ, μ = 2, 3, ..., n − 1:

δG(x, xμ) = G(x, xμ + 0) −G(x, xμ − 0) = ϕμ(x)zμ(s)
∣∣∣s=xμ .

To make it comfortable, having assumed G(x, x1 − 0) = 0, we find that

δG(x, x1) = G(x, x1 + 0) = G(x, s)
∣∣∣s=x1

= ϕ1(x)z1(s)
∣∣∣s=x1
.

Similarly, if G(x, xn + 0) = 0, so

δG(x, xn) = −G(x, xn − 0) = −G(x, s)
∣∣∣s=xn = ϕn(x)zn(s)

∣∣∣s=xn .

Now, we can take i=1, 2, . . . , n instead of the index μ, i.e.

δG(x, xi) = G(x, xi + 0) −G(x, xi − 0) = ϕi(x)zi(s)
∣∣∣s=xi . (32)

Let us specify the difference of derivatives as well

δG
(k)

(x, xi) =
∂

k
G(x, xi + 0)

∂sk − ∂
k
G(x, xi − 0)

∂sk = ϕi(x)
dkzi(s)

dsk

∣∣∣s=xi . (33)

Assuming in the boundary conditions (22), ρn−ki (xi) are the first different from zero corresponding coefficients at

the higher derivatives. So, it is easy to determine from the adjoint boundary conditions (17) that

dki zi(s)

dski

∣∣∣∣∣∣ s=xi

= (−1)kiρn−ki (xi) � 0, (34)
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where ki is a natural number corresponding to each point xi.

Let us consider a saltus ki of the Green’s function derivatives on the corresponding lines s = xi:

δG(ki)(x, xi) =
∂kiG(x, xi + 0)

∂ski
− ∂

kiG(x, xi − 0)

∂ski
= ϕi(x)

dki zi(s)

dski

∣∣∣s=xi = ϕi(x)(−1)kiρn−ki (xi).

So, we can identify that

ϕi(x) = (−1)ki
1

ρn−ki (xi)
δG(ki)(x, xi). (35)

Using this expression and taking into account (23), we can produce a solution of the homogenous equation Ly = 0

at the boundary conditions (22) for the case (34) as follows:

y(x) =

n∑
i=1

(−1)ki
ai

ρn−ki (xi)
δG(ki)(x, xi), ρn−ki (xi) � 0. (36)

Theorem 2 Let G(x, s) be a Green’s function of the n-point boundary value problem (21), (22). So, the only
solution to the nonhomogenous boundary problem (21), (22) is specified by the formula

y(x) =

n∑
i=1

(−1)ki
ai

ρn−ki (xi)
δG(ki)(x, xi) +

∫ xn

x1

f (s)G(x, s)ds. (37)

Proof. It is obvious from Theorem 1 that the sum is a solution of the homogenous equation Ly = 0 at condition

(22). Therefore, it is sufficient to prove that an integral is a solution of the nonhomogeneous equation (21) at zero

boundary conditions (Ty)(xi) = 0. Let us take a random vertical strip xμ ≤ x ≤ xμ+1 and decompose the integral

for the sum of n integrals taking into account the Green function assignment (29):

∫ xn

x1

f (s)G(x, s)ds =
∫ x2

x1

f (s)ϕ1(x)z1(s)ds+
∫ x3

x2

f (s)
[
ϕ1(x)z1(s) + ϕ2(x)z2(s)

]
ds+ ...+

∫ xμ

xμ−1

f (s)

μ−1∑
l=1

ϕl(x)zl(s)ds

+

∫ x

xμ
f (s)

μ∑
l=1

ϕl(x)zl(s)ds−
∫ xμ+1

x
f (s)

n∑
l=μ+1

ϕl(x)zl(s)ds−
∫ xμ+2

xμ+1

f (s)

n∑
l=μ+2

ϕl(x)zl(s)ds− ...−
∫ xn

xn−1

f (s)ϕn(x)zn(s)ds.

Since the addend ϕ1(x)z1(s) is contained in all the integrals beginning with the first and finishing with the integral

with the variable upper limit, and ϕ2(x)z2(s) is contained there beginning with the second integral and so on, we

have ∫ xn

x1

f (s)G(x, s)ds =
μ∑

i=1

ϕi(x)

∫ x

xi

f (s)zi(s)ds −
∫ xμ+1

x
f (s)

n∑
l=μ+1

ϕl(x)zl(s)ds

−
∫ xμ+2

xμ+1

f (s)

n∑
l=μ+2

ϕl(x)zl(s)ds − ... −
∫ xn

xn−1

f (s)ϕn(x)zn(s)ds.

It is true for the negative integrals as well. Let us use addition of the integrals moving from the last one to the

integral with the variable lower limit. Changing the integration limits, we finally have

∫ xn

x1

f (s)G(x, s)ds =
n∑

i=1

ϕi(x)

∫ x

xi

f (s)zi(s)ds.

This integral is congruent with the second sum of the proportion (23), therefore, theorem 1 proves that the formula

(37) is true.

We note that it is advisable to take functions zi(s) under the established proportion (26) instead of the formula (10)

in the Green function and solutions of the n-point boundary value Problem.
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