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Abstract 
The paper considers whether Big Data, in the form of data-driven 
science, will enable the discovery, or appraisal, of universal scientific 
theories, instrumentalist tools, or inductive inferences. It points out, 
initially, that such aspirations are similar to the now discredited 
inductivist approach to science. On the positive side, Big Data may 
permit larger sample sizes, cheaper and more extensive testing of 
theories, and the continuous assessment of theories. On the negative, 
data-driven science encourages passive data collection, as opposed to 
experimentation and testing, and hornswoggling (‘unsound statistical 
fiddling’). The role of theory and data in inductive algorithms, 
statistical modeling, and scientific discoveries is analyzed, and it is 
argued that theory is needed at every turn. Data-driven science is a 
chimera. 
 
Introduction 
  
There are quantities of recorded data as never before, largely thanks to 
computers, networks, sensors, and how cheap and fast the processing and storage 
now is. In 2013, according to the EMC/IDC Digital Universe Studies, there is 
about 4 zettabytes of stored information, and this amount is doubling every two 
years (Gantz & Reinsel, 2011). A zettabyte is (10 power 20) bytes and the total 
amounts to something like several hundred CD-ROMs for every man, woman, 
and child on Earth. The sources of this data are many and varied. There are data 
intensive sciences such as astronomy, genomics, experimental particle physics, 
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and ocean sciences. For example, in astronomy there are indefinitely many 
celestial bodies; they can be probed across a wide range of the electromagnetic 
spectrum; and there are instruments to collect and record this abundance of data. 
(This can be seen in the Sloan Digital Sky Survey (Sloan Digital Sky Survey, 
2013).) Then there are sensor networks that can produce a sometimes continuous 
data about geographical locations, the ocean, the weather, or atmospheric 
conditions (for example, the Oceans Observatories Initiative 
(Oceans Observatories Initiative, 2013)). Then there is much data about us 
created by our behavior in conjunction with computers, smart phones, electronic 
or digital transactions, location services and the like (do not be alarmed, but 
there are rumors that the National Security Agency NSA Data Center in Utah has 
a memory of, or can process, 5 zettabytes (Skeptics Stack Exchange, 2013)). In 
sum, there is Big Data. 
 
What does this mean for epistemology? Some commentators are giddy. Hans 
Rosling tells us  
 

The data deluge… is leading us to an ever greater understanding of life on Earth and 

the Universe beyond…. 

…[ it may] transform the process of scientific discovery 

The more data there is the more discoveries can be made. (Rosling, 2010) 

 
Luciano Floridi suggest that scientists be alert to the opportunity of detecting the 
‘patterns’ (and ‘absence of patterns’) in the data as a way to advance knowledge 
(Floridi, 2012). He writes 
 

… the pressure … on … genetics or medicine, experimental physics or 

neuroscience, is to be able to spot where the new patterns with real added value lie 

in their immense databases and how they can best be exploited for … the 

advancement of knowledge. (Floridi, 2012) 
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Others point to the ‘fourth paradigm’ for science—new algorithmic, 
computational and analytical tools to produce gold for us from this data resource 
(Bell, Hey, & Szalay, 2009; Hey, Tansley, & Tolle, 2009) In prospect, then, some 
see the advent of data-driven science.  
 
Let us be careful here. Of course, computers are vital today and moving into the 
future of science. They can create, run, and test thousands of hypotheses, models, 
and simulations in the blink of an eye. Shotgun sequencing in genomics, to 
provide an example, definitely needs raw computing power. But most of this 
would be what might be called computer enhanced hypothetico-deductivism—it 
still would be guess-and-test, but guess-and-test on computer steroids. However, 
‘data-driven’ science is not intended to be this, instead 
 

Data-intensive science consists of three basic activities: capture, curation, and 

analysis (Hey et al., 2009). 

 
Somewhat similarly, Michael Schmidt and Hod Lipson’s well known paper is 
entitled ‘Distilling free-form natural laws from experimental data’ (Schmidt & 
Lipson, 2009) (and see also (Hillar & Sommer, 2012) and (Waltz & Buchanan, 
2009) ). It would not be uncommon at this point to cite Chris Anderson’s ‘The 
end of theory: the data deluge makes the scientific method obsolete’ (Anderson, 
2008). (It should be mentioned, though, that apparently Anderson never believed 
or advocated the theses of his own paper but wrote it to provoke response (see 
(Norvig, 2008)), he was merely being a journalist shouting ‘Fire’ in an academic 
theatre.) Even so, there are many commentators who think that it is data that is 
now going to drive much of science. 
 
What is a preliminary view? 
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The very fact that we have more data means that we know more—at the very least 
we know that extra data. And we likely know more besides. Apparently if a young 
man, of a certain kind, comes by a lost or stolen credit card, he fills the tank of his 
own car with gas, fills his friends’ cars with gas, then buys himself a pair of sports 
sneakers. Real time data acquisition and monitoring of credit card transactions 
would identify and reveal the fraud in an instant. Some valuable learning has 
taken place. But that, in a manner of speaking, is uninteresting—it is hardly 
giving us a greater understanding of life on Earth and the Universe beyond. It is 
hardly even a low level nomic or statistical generalization about certain young 
men and lost or stolen credit cards—the behavior may be entirely different 
tomorrow or next week or next year. What about some of the more scientific 
examples? As its title indicates, the Sloan Digital Sky Survey is a survey—that is, 
it is a list of celestial bodies, some newly discovered, and their properties 
(Sloan Digital Sky Survey, 2013). The Ocean Observatories Initiative is looking to 
make observations (Oceans Observatories Initiative, 2013). Surveys are fine, and 
so too are observations, but what they are doing methodologically is gathering 
more data. They are not in themselves offering any explanations or theories or 
solving scientific problems, or aiming to do anything of that nature. The same 
point is true of several other examples of Big Data ventures, such as a good 
portion of biodiversity science or genomics science. They aim to provide lists, 
catalogs, and classifications. 
 
What would be interesting is whether we could make scientific discoveries; 
whether we would or could or might learn something new that went beyond the 
new data and its surface deductive consequences: that new theories, explanations 
and predictions would become available. The standard view in the philosophy of 
science, since Sir Karl Popper and earlier commentators (possibly even back to 
the Scottish philosopher David Hume), is that while there is a ‘logic of scientific 
justification’ (i.e. methods of testing scientific theories once they are available 
and presented for consideration) there is no ‘logic of scientific discovery’ (i.e. no 
routine and semi-mechanical way of producing valuable scientific theories in the 
first instance) 
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The initial stage, the act of conceiving or inventing a theory, seems to me neither to 

call for logical analysis nor to be susceptible of it.(Popper, 1959) 

 
Is Big Data going to produce a logic of scientific discovery? 
 
Equally interesting would be to find out that some of our most cherished theories 
and explanations were mistaken, or some of our favored prediction techniques 
are unreliable, i.e. to find out refutations. In practice, as we know from Pierre 
Duhem, Imre Lakatos, and others, there is more to practical refutation than the 
plain production of a counter-example (Duhem, 1914; Lakatos, 1970, 1974a, 
1974b). Nevertheless, we do have an epistemological interest in actual and 
potential counter-examples. 
 
The present paper now has a problem, or question, to consider: might Big Data 
enable the discovery, appraisal or validation, of universal scientific theories, 
instrumentalist tools, or inductive inferences. And, secondarily, might Big Data 
facilitate refutation? 
 
Data 
 
What is data? We can characterize data as follows. Data is anything recordable in 
a relational database in a semantically and pragmatically sound way. The 
semantics require that the recordings be understood as true or false statements. 
The pragmatics suggest that we favor recording what seem to be concrete facts, 
i.e. singular and relatively weak statements, and that interpreted recordings be 
true statements (Frické, 2009).  Of course, our knowledge of data, or what 
constitutes data, is fallible. Data is therefore conjectural. 
 
Data is also theory-laden in the following sense. Data is typically gathered using 
instruments, measuring instruments, and sensors. Here the notion of instrument 
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is understood to be a very wide one. And those instruments are constructed or 
adopted in the light of what we know, or theories we have, about what we are 
measuring and what the instruments are telling us about some kind of reality 
beyond themselves and their apparent surface indications. (Bogen, 2013) 
 
Big Data is both fallible and tainted by theory. 
 
Inductivism 
 
An immediate concern about the present enchantment with data-driven Big Data 
is just that it might be inductivism, the hoary punching bag from the philosophy 
of science. The philosopher Karl Popper has told us that it is utterly pointless to 
collect observations and to hope that similarities in the observations will 
somehow appear and allow good theories to emerge. 
 

… the belief that we can start with pure observations alone, without anything in the 

nature of a theory, is absurd; as may be illustrated by the story of the man who 

dedicated his life to natural science, wrote down everything he could observe, and 

bequeathed his priceless collection of observations to the Royal Society to be used 

as inductive evidence. This story should show us that though beetles may profitably 

be collected, observations may not. (Popper, 1963) 

	
  

And the novelist Laurence Sterne teased inductivists with his character Tristram 
Shandy who took a year to write up each day in his diary (of course, a modern 
Tristram Shandy, using Big Data techniques, might be able to make some kind of 
attempt at real-time recording)(Sterne, 1759). 
 
That inductivism is a mistaken philosophy of science is not controversial—it is 
received wisdom. 
 
Passive Observation versus Active Experimentation 
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Science made a great leap forward with the advent of the experimental method 
(in the modern era, roughly from Robert Hooke onwards, about 1660). What is so 
special about this? We are looking for lawlike or nomological connections, to 
connect causes with effects. But what we observe can be misleading due to 
confounds. Confounds are other conditions or variables which correlate either 
with the causes, or with the effects, to mask what is really happening at a causal 
level. The experimental method is in part a technique to deliberately manipulate 
Nature so that known possible confounds are controlled for. With the 
experimental method we ask Nature questions which are deliberately framed. 
With a typical scientific problem and a tentative hypothesis offered to solve it, 
there are known confounds and maybe also unknown confounds. The known 
confounds are controlled for. There is a view on experimental technique, the 
standard view from Sir Ronald Fisher, that the problem of unknown confounds 
can be addressed by randomization, for example using Randomized Controlled 
Trials (RCTs). Actually, it seems that randomization via Randomized Controlled 
Trials (RCTs), is not necessary (Urbach, 1985; Worrall, 2007); however attention 
certainly does need to be paid to potential confounds, both known and unknown. 
Doing this typically requires active intervention to produce certain kinds of data. 
Testing theories again typically requires experimentation. Some theories can be 
tested against plain observation; and sometimes Nature performs ‘natural 
experiments’ to produce suitable results without active intervention; but mainly 
testing invites experimentation.  
 
To use an illustration from David Freedman of the growth of scientific knowledge 
(Freedman, 1999 (revised 2002), 2008): More than a few smokers have or get 
lung cancer; more than a few smokers have or get cirrhosis of the liver. The 
reasons are:- smoking causes lung cancer, but smoking does not cause cirrhosis 
of the liver, rather drinking causes cirrhosis of the liver (and many smokers just 
happen also to drink). How we know all this is a complex story. Much of it is 
careful and specific observation in the light of other scientific and medical 
theories which we hold in high regard; some of it is experimentation, also 
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conducted against a backdrop of accepted medicine and epidemiology. One point 
is for sure, though, it would be very hard, if not practically impossible, to read 
knowledge like this directly from ‘patterns’ in observable data. To give slightly 
more detail to part of it: Richard Doll, and Austin Bradford Hill, had the idea or 
theory or guess that smoking caused lung cancer. They then sought and obtained 
extensive data about which doctors smoked, and which did not, and what 
happened to them (and which doctors gave up smoking and what happened to 
them). The data would not have been sought and aggregated without the theory. 
The data would have meant nothing without the theory. Of course, this is just one 
example. But once again it was Karl Popper who made the relevant point years 
ago: everything is similar to everything else in certain respects, and everything is 
different to everything else in certain respects, so the mere looking for similarities 
does not take you very far (Popper, 1963). 
 
Big Data is not itself incompatible with experimentation. But it is the friend of 
passive observation—it encourages passive observation. Conducting surveys and 
making observations amount to passive observation.  
 
The Curve-fitting Problem, Machine Learning and Statistical 
Modeling 
 
It is convenient to remind ourselves of some features of inductive inference and 
statistics using the classical ‘curve-fitting’ problem (Forster, 1995; Freedman, 
1999 (revised 2002)). 
 
Suppose there is an x-y plane, a two-dimensional graphical coordinate system, 
with some data points in it. These points are, or represent, the known data. And it 
is assumed, as a truth of the matter about the world, that there is some nomic or 
causal connection between the points by virtue of their x, and y values. The task 
for science is to draw a curve through those points which will successfully 
anticipate the location of future or unknown data points. This requires an 
inductive inference. The data is singular, the curve is universal, and the inference 
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from one to the other is deductively invalid. Indefinitely many curves might be 
drawn that include the known data, but a requirement is that just one curve be 
chosen. 
 
At the start of the analysis, it is not known what is cause and what effect (is the x 
value producing the y value, or the other way around? does a predisposition to 
own stocks make you rich, or does being rich give you a predisposition to own 
stocks?). But it is assumed that there is a law-like connection. This assumption is 
often reasonable to make. In science, physical science, say, there are many laws; 
we know of many. In social science the assumption might not be so reasonable; 
laws, even robust statistical regularities, have proved elusive (Meehl, 1978). In 
free form data analysis, the assumption would itself require critical scrutiny. 
 
Then if there is another variable, not in the original analysis or model thus far, for 
example, z, that affects x, then the whole analysis can be totally and completely 
wrong (this is the so-called ‘omitted variable’ bias in regression). 
 
That there are indefinitely many curves consistent with the data means that the 
actual choice of curve must be based on considerations other than those offered 
by the data itself. For example, it might be thought that the curve should be a 
straight line, or be quadratic, or be ‘simple’, or… The functional form of the 
connection between the data is not known and is not determined by the data that 
is under consideration. Those extra considerations are inductive bias. Then, with 
the inductive bias that is adopted, the data can be suitable or unsuitable in 
various ways. For example, suppose that the inductive bias is that the curve be a 
straight line; then one data point will not determine a single line; the set of 
hypotheses (straight line curves) would overfit the data; on the other hand, were 
there to be three data points, not in a straight line, the set of hypotheses would 
underfit the data (because the inductive bias was not rich enough to generate 
even a single hypothesis that would fit the data). 
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There might also be the need for an error term. It would be unusual to assume 
that any numerical data to hand is exactly correct and accurate, instead the 
standard practice would be to imagine it composed of a true value summed with 
an error term. This error term feeds into confidence about results of the analysis 
as a whole. How large the error is matters, and so does the distribution of the 
errors (for example, whether they have a normal distribution). Once again, 
information about size and distribution of errors does not itself come from the 
data to hand. 
 
The curve-fitting as described is the counterpart of statistical regression, but it 
can easily be adapted to statistical classification. For this, the y values could be 
categorical or integral. The task is to say whether a particular x value does or does 
not have property Y (and that might be indicated by a y-value of 0 or a 1) or 
which property any individual x has among the properties U,W,Y …(say values 
0,1, 2, 3 …). It may be a slight stretch to call this ‘curve fitting’, because the curves 
may well be a little unusual (for example, being discontinuous). However, the 
process still is that of finding a function of unknown form, it is inductive, it relies 
on an inductive bias to prune the indefinitely many possible functions, it requires 
avoiding omitted variable bias, and it may require care with errors and their 
distribution. 
 
So, the form of the equation sought is 
 

y=F(x) + ε 

 
or, in the multivariate case where y might depend on several variables x, z, w, … 
 

y=F(x,z,w,…) + ε 
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Given all this, it is near miraculous that curve fitting ever works either for 
discovery or for justification. But, as a rational reconstruction of some scientific 
discovery or some scientific justification, it does work, at least some of the time, 
and the successes of statistics in physical science are a testimony to that. It 
cannot, and should not, work all the time simply because for arbitrary x and y, y 
does not have to be connected with x. In fact, most of the time y will not be 
connected with x (and a successful curve fitting analysis should either fail to 
reveal a connection or directly suggest that there is not one).  
 
The central point is: the data itself does not speak. What is required is a huge 
amount of background knowledge, or assumptions, or prior research of one kind 
or another. 
 
There is an acid test or touchstone with curve fitting. It is that of further testing. 
If, somehow or other, curve fitting produces a candidate curve, that candidate 
curve should be tried on new data. Then the new data might fit the curve or not. 
The curve should be tested; attempts should be made to ‘falsify’ it; then passing 
the tests (i.e. failing to falsify the curve) often amounts to a certain kind of 
corroboration (or replication). 
 
Inductive algorithms are a central plank of the Big Data venture. In certain 
circumstances, ‘machines’, that is, computers and algorithms, seemingly can 
learn from data. There is a research area addressing this at the intersection of 
machine learning, artificial intelligence and data processing (see, for example, 
(Dietterich, 2003)).  
 
At the core there are three problems here: supervised regression, supervised 
classification, and unsupervised analysis. The adjective ‘supervised’ in this 
context means that the supplied pre-analysis data is conceived of as being 
governed by a function from inputs to outputs, then the task is to find that 
function or to find some way of predicting what outputs will be produced by new, 
hitherto unseen, inputs of the same kind as those initially observed. 
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‘Unsupervised’ does not make this assumption, and so the input data is just raw 
data that is to be made sense of. Supervision means that there are rewards, the 
right answers are known in at least some cases—they are known with the supplied 
data. Unsupervised learning takes place without rewards. 
 
In essence, supervised regression is the curve-fitting problem, or possibly 
statistical modeling, attacked by algorithm. In supervised learning the observed 
data is the training set, and the training set together with the inductive bias, lack 
of omitted variable bias, a theory of errors, etc., are sufficient for inductive 
algorithms and machine learning. 
 
Unsupervised learning is much more open than supervised learning. Of course, 
there is the data, and that data has statistical properties (often means, standard 
deviations, clustering, distributions etc.). And the data can be guessed to be a 
sample from a wider set of data which itself has a distribution. These are, in a 
manner of speaking, standard statistical inferences and techniques, but in 
ordinary statistics usually more is known about the sample (for example, whether 
it is random) and more can be known about the underlying population (for 
example, its likely distribution). In this paper, we will focus on the supervised 
form of machine learning. 
 
There certainly are some successes with machine learning, such as text parsing, 
image and hand-writing recognition, spam filters, and credit card fraud 
detection. And the apparent inductive nature of these has certainly given rise to 
debate (an example is provided in (Allen, 2001a, 2001b; Gillies, 2001; Kell & 
Oliver, 2004; Kelley & Scott, 2001)). 
 
However, whether there are practically or theoretically successful inductive 
algorithms need not occupy us. Our interest is with some different questions. 
Would these inductive algorithms, or the machine learning approach in general, 
work using only data? Are they driven by data? Would they benefit from more 
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data? Would they be any the better with Big Data? Is something special going to 
happen now that we have Big Data? 
 
Supervised algorithms depend mainly on a training set and an inductive bias. 
Once the inductive bias is set, the algorithm designers know exactly how large 
they would like the training set to be. There is a tradeoff between possible 
underfit and possible overfit. But the theory and the design dictate the data 
requirements. For example, in the curve-fitting illustration above, two different 
data points will fix the straight line. Being provided with a thousand and two data 
points would not improve this. Of course, there is fallibility, the hypothesized 
relationship might not be a straight line and a third observation, or a one 
thousand and second observation, might be the one to kill the straight-line 
hypothesis. But there are diminishing returns to repeat observations or tests of 
the same kind (Howson & Urbach, 2006). The designers know exactly what they 
want in the training set. 
 
In slightly more elaborate examples, which are not different in principle, the 
training set needs to be representative of the underlying data in the sense of 
being a suitable sample of the kinds or types that might be there. In text 
processing, for example, there may be the desire for the training set to be larger 
than the one that is available, say from the extant documents that we actually 
have in our hands, but the desire here is usually not for more of the same stuff 
but more of different stuff should there be different stuff. The point remains 
though: with inductive algorithms there is insight as which data is required and 
the heuristic is not: bigger is better, without limit. 
 
There is a slightly different question concerning more data. In the above curve-
fitting example, the problem was very constrained. There was a variable, x, and a 
variable, y, whatever they might be or designate, and then the inductive 
algorithm was going to look for a relationship between them. But more data 
might provide values for other variables, say, z, u, v, a, b, c… etc. and then the 
inductive algorithms could look for relationships between any of those hitherto 
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unscrutinized variables and some chosen output variable, perhaps y. So, for 
example, with email spam, an inductive algorithm might tell of a relation 
between the presence or absence of the word ‘lottery’ in the subject line and email 
being or not being spam. Now, the designers of the spam filter may have no 
interest in further data about ‘lottery’ in the subject line. But Big Data could 
provide them with different data, for example, the presence or absence of the 
words ‘Nigeria’ and ‘inherited’ in the body of the email (SCAMwatch, 2013); and 
the inductive algorithms could work on possible relationships between the new 
variable or variables and an email being spam. 
 
Fine, but two points. The algorithms would not want to look at all of the other 
possible variables and relationships, for example, a possible relationship between 
Yorkshire’s cricket scores in 1948 and spam in today’s email, for that approach 
would be subject to the strictures of Popper and others against inductivism. A 
simple consideration from rapid growth shows that considering all possible 
relationships is out. Suppose the algorithms considered a thousand variables, 
which is surely not a large number in Big Data terms; there are (2 exp 1000) 
subsets of those variables; this number of subsets, which is a proxy for number of 
possible functional input variable combinations, is considerably larger than the 
number of particles in the Universe (which has been estimated as approximately 
10 exp 80). So, anything like a global search through possible correlations will 
never be a practical computing possibility. And, second, if numerical values for 
variables are conceived of as consisting of a real value plus a systematic or 
random error, then, as we will see later with multiple comparisons, considering 
relationships between pairs of variables from a large possible variable set is 
pretty well guaranteed to find some apparent connections, ‘false positives’, even if 
there are no real connections. So, again, the designers of the inductive algorithms 
need to have prior ideas on possible connections, and once they have those and a 
chosen inductive bias, they know exactly what data they want (and they do not 
want to be drenched by a fire-hose of data). 
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Connectionism, neural nets, random forests etc. in machine learning, are at heart 
a black-box instrumentalist version of inductive algorithms (usually without the 
curve fitting visualization support) (see, for example, (Breiman & Cutler, 2013)). 
There are connected nodes and links, some means of permeating inputs to 
outputs, and then ‘weights’ or parameters that could be adjusted to get the 
specified inputs to produce the desired or observed output. The weights might be 
Bayesian conditional probabilities relating firings of one node to firings of others, 
or parameters in some kind of generalized Markov chain process. With 
supervised learning, once again there is a training set of input data, each with 
known corresponding output data, and the parameters are tuned suitably. Then 
the black box is released on new input data and hopefully acceptable output data 
will be predicted. And often it is. So, for example, with ‘Random Forests’ there 
are a number of yes/no decision trees working on different random subsets of 
components of the input data, and these are tuned to produce collectively the 
requisite output of the training data (Breiman & Cutler, 2013). There is no real 
explanation of why or how the input connects with the output; however, 
predictions are made, and often these predictions are pretty good. In an 
instrumentalist sense, the right answers are forthcoming. 
 
With supervised black-box models, the data requirements for the training data 
set is much the same as it is in the plain inductive algorithm case. Representative 
training data is required, but beyond that there is no special interest in more 
data. 
 
Machine learning is neither theory free, nor in need of fecund data. 
 
One part of statistics is to make predictions, or to say how output variables are 
dependent on input variables. Each of these collections of input and output 
variables can be coalesced together to form a vector, so then the prediction task is 
produce a function that relates the output vector to the input vector. What 
happens in between is a ‘black box’. One typical approach at this point is to make 
a model, which is some statistical conjecture as to what is happening within the 
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black box (and thus remove the blackness from the box). The model starts life as 
a story as what is connected with what and how the variables might be related. 
And then there is the actual statistics, which will usually be a regression analysis 
(i.e. a curve fitting problem) of some kind (what exactly it will likely be depends 
on the number of independent variables, i.e. the input vector components, the 
nature of the values of the output components (for example, whether they are 
continuous or categorical), and so forth…) The upshot hopefully is a statistical 
connection between input and output and an ‘explanation’ or rationale as to what 
is happening in the box. 
 
Intellectually the process as described is not a whole lot different from machine 
learning, apart from the fact that it is not algorithms that are doing the heavy 
lifting; rather it is intelligent human statisticians (who can use algorithms if they 
wish, but can also use any other smarts and insights that they might have). (Of 
course, historically, it is the statistical modeling that comes first, then the 
machine learning, which is basically an algorithmic implementation of some of 
the statistical practices.) 
 
And the role of data is much the same in statistical modeling and machine 
learning. Statistical modelers want data. But they do not want unlimited data. 
Sometimes, maybe even often, larger sample sizes are better, but usually with 
limits. They have theories or tentative models, and from these they know exactly 
what data is required. And at least some of the time, they know that parts of their 
model, or some of their assumptions, are false. For example, they might want to 
assume that some error factor has a normal distribution when they know that it 
does not. More data in these cases is no help at all. More data is not going to 
convert a distribution that is not normal into a distribution that is normal. 
 
There are also pure black-box statistical modelers, just like black-box machine 
learners (Leo Breiman might be an example of both (Breiman, 2001)). These 
want to connect input with output, without any story in the box in between. And 
exactly the same points about data can be made. The input vectors and the output 
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vectors, or rather the components of the input vectors and the components of the 
output vectors, cannot be any variables whatsoever. Too much simply is a non-
starter. The problem has to be tightly circumscribed by outside theories. Then 
once it is, the data requirements are known and not usually extensive. There is no 
need for Big Data. 
 
Independently, and separately from considerations of Big Data, there is an 
obvious objection to black-box modelers and black-box machine learners and it is 
that in science not only do we want theories in the black-box to explain the 
connection between input and output but often there is the desire to penetrate 
deeper and to explain the theories themselves. For example, Boyle’s Law connects 
pressure and volume (for a fixed amount of gas at a fixed temperature), it can 
help predict what the pressure of a gas will be if its volume changes. No doubt a 
simple black box can connect pressure and volume and thus apparently replace 
Boyle’s Law for the purposes of prediction. But in science, Boyle’s law is itself a 
problem to be explained, and, indeed, it has been explained by the Kinetic Theory 
of Gases. Random Forests, to mention one black-box modeling example, would 
simply not open the way to this kind of scientific knowledge. 
 
Evidence, Refutation, and Continuous Assessment 
 
Christine Borgman draws attention to Michael Buckland’s pithy phrasing that 
data is 

“alleged evidence,” (Borgman, 2012; Buckland, 1991) 

Some unpacking might be done here. One aspect of ‘alleged’ is just that the 
evidence or data is fallible. We have that noted already. Another is that someone, 
or something, or some logical relations, want to use the recordings as ‘evidence’. 
 
It is commonly, and correctly, observed that there is no such thing as evidence 
simpliciter, rather something is or is not evidence only in relation to a hypothesis 
(or several hypotheses). Then Bayesianism would tell us that a factual statement 
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is evidence for a hypothesis in so far it is to be expected conditional on the 
hypothesis and not expected conditional on the negation of the hypothesis 
(Howson & Urbach, 2006). 
 
A hypothesis or some hypotheses lead the way. A hypothesis is needed first. Then 
the hypothesis illuminates evidential requirements. Much potential data can play 
the role of evidence with a chosen hypothesis, in the sense of increasing or 
decreasing the posterior probability of that hypothesis. Practical considerations 
enter at this point. The ‘data’ may be already available; it may require passive 
observation to collect; it may even require deliberate experiment to produce. And 
getting the data may cost money, it may involve risk, risk of damage or injury, it 
may involve ethical considerations, and so on. There are practical decision-
theoretic cost-benefit analyses to be made regarding the acquisition of evidence. 
There is a delicate interplay between epistemic and non-epistemic factors. 
 
Big Data has an important role here. Likely collecting data will become 
progressively cheaper. In at least some cases, the techniques will lower risk. On 
the other hand, in some cases, ethical considerations will or may become more 
pronounced (privacy might be an example of this). But, all in all, Big Data should 
be able to give us better evidence for our theories. 
 
Not all evidence is positive evidence. There are refutations. Initially, when 
appraising a theory, the theory will be subject to whatever testing seems 
necessary. Then the theory will be used (to make predictions, constitute 
explanations, and the like). From an epistemological point of view there are 
diminishing returns from repeating the same tests (Howson & Urbach, 2006). 
We might distinguish here test types and test tokens. There are diminishing 
returns from more tokens of the same type. What typically would be sought are 
tests of a different type, when the theory is used in new areas or under new 
conditions. However, going back to the repetition of the same kind of test. There 
is almost always some epistemological virtue, however small, from more data of 
the same kind. It is just that in the past the time, effort, and expense of collecting 
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this routine data suggested that it was not worthwhile bothering. However, Big 
Data techniques change the trade-offs. If the data was essentially close to being 
free and getting it does not require any time or effort, then, of course, it would be 
good to have it. What could happen here is a type of ‘continuous assessment’. The 
instruments, or data collection techniques, could collect data all the time and 
alert us to any ‘exceptions’ to any of our theories. There is no need under this 
scenario to record and store all the data—recording the exceptions, and giving 
notification of them, would probably be enough. And, certainly, some Big Data 
examples pretty well do this. The Large Hadron Collider (LHC), for instance, 
detects many, really many, events, but it does not record all of them, nor anything 
like that, instead it uses ‘triggers’ etc. to record just ‘interesting’ events (and 
theory informs as to what is ‘interesting’). 
 
Post Hoc Hornswoggling 
	
  

Statistics, by its very nature, tends to be post hoc. The numbers are provided in 
advance from elsewhere, then analysis is done on them. This gives rise to special 
difficulties in the case of the statistics of science and hypothesis testing, especially 
if the numbers are both generating the hypotheses and then testing those same 
hypotheses. The relevant objection or concern is well known, David Freedman 
and Michael Babyak phrase it thus: 
 

Generally, replication and prediction of new results provide a harsher and more 

useful validation regime than statistical testing of many models on one data set. 

Fewer assumptions are needed, there is less chance of artifact, more kinds of 

variation can be explored, and alternative explanations can be ruled out. (Freedman, 

1991) 
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If you use a sample to construct a model, or to choose a hypothesis to test, you 

cannot make a rigorous scientific test of the model or the hypothesis using that same 

sample data.(Babyak, 2004) 

 
There are many known possible errors to make in statistical analysis, and many 
books and articles on them (for example, (Faraway, 1992; Huff, 1954; Mills, 
1993)). The kinds of errors will be familiar to real statisticians and they should be 
known to working researchers. But they are systematically ignored in current 
research and publication. This is bad enough, but post hoc analysis, in the form of 
data-driven science, has the potential to make it much worse.	
  
 
Here are a few common errors: null hypothesis significance testing, stepwise 
regression, multiple comparisons, subsetting, overfitting, univariate screening, 
dichotomizing continuous variables, etc. (Bretz & Hsu, 2007; Cohen, 1994; 
Johansson, 2011; Lykken, 1991; Maxwell & Delaney, 1993; Meehl, 1978). 
 
Exhaustive analysis of these is not a practical possibility here (and it would be 
beyond the competence of the present author). But it is useful to mention two of 
them. 
 
The familiar null hypothesis significance testing (NHST), with its ‘the null 
hypothesis was rejected with a p=0.05’, has its origins as a mashup of Fisher’s 
views on trying to refute a Null Hypothesis and Neyman-Pearson’s decision 
theoretic suggestions on choosing between a Null Hypothesis and a Hypothesis 
Under Test. Its use in social and behavioral science research journals has been 
widespread and continues to be widespread. It has always been controversial, but 
the arguments about it have only recently erupted with full force, say from about 
1995 (Cohen, 1994; Johansson, 2011; Lykken, 1991; Meehl, 1978; Rodgers, 2010; 
Wagenmakers, 2007). However, this ongoing dispute has yet to be felt in 
publication practices. How might this work in with Big Data? One way might be 
this. First of all, everything is correlated with everything else (Lykken, 1991; 
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Meehl, 1978). This means that any Null Hypothesis (that there is no correlation) 
is ‘quasi-false’ (it actually is false, but ‘quasi-false’ is more evocative) (Lykken, 
1991; Meehl, 1978). (Cohen, 1994; Maxwell & Delaney, 1993). In turn, most 
samples related to the Hypothesis Under Test will show some correlation. Now 
there is only the p to worry about. But p gets smaller as sample size gets bigger. 
And amplifying sample size is exactly what Big Data is capable of.  So it would be 
trivial for Big Data to produce arbitrarily many hypotheses significant at a p=0.05 
level. 
 
A second example is multiple comparisons. In one setting, multiple comparisons 
can be connected with data correlations and false positives involving hypotheses. 
The result can elevate some of these correlations to conjectured causal or quasi-
causal connections. So, for example, if, in the data, A is observed to be somewhat 
correlated with B; and there is a hypotheses H to the effect that A brings about B; 
A might indeed do this, or the observed correlation might be the result of chance 
i.e. a pure accident; accepting the hypothesis H if the connection is a pure 
accident would be a Type-I error, it would be a ‘false positive’. As a particular 
example, suppose a researcher gathers much data about mothers and fathers and 
birth defects in their children (Mills, 1993), and starts with the hypothesis that 
whether the mother has a job is related to birth defects—that is: there is a ‘test’ 
group of mothers with jobs and a ‘control’ group of mothers without jobs and the 
Null Hypothesis is that the number or rate of birth defects of their children are 
the same. Suppose that the researcher carries out the data analysis and statistics 
correctly and plans to reject the Correlation Hypothesis if it has a p value greater 
than 0.05. If the p value is less than this the hypothesis will be accepted, which 
means that once in a while (in fact 0.05 of the time for a true Null Hypothesis) 
the Correlation Hypothesis will be accepted completely by chance even though 
the alleged connection might be spurious. [Care is needed with the phrasing here. 
A p value of 0.05 means 

Probability(Null Rejected given that Null True)=0.05  

not  
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Probability(Null True given that Null Rejected)=0.05 

so the number of false positives cannot be estimated from the number of 
rejections—a hundred rejections is entirely consistent with no false positives and 
with one hundred false positives. However, if the Null Hypothesis is true in each 
of a hundred independent tests there will be (roughly) 5 false positive rejections 
of it.] To continue, with the first hypothesis there is a small chance of a false 
positive. Suppose the initial hypothesis is rejected and the researcher decides to 
go on to a second comparison, perhaps with whether birth defects are related to 
whether the father has a job. Again there is the 95% 5% or 0.95 0.05 significance 
level for this second hypothesis considered on its own. And again, suppose the 
Null Hypothesis is true. But the chances for at least one of the two false 
hypothesis succeeding by chance is now (1-(0.95)2 ) which is about 0.1. So now, 
getting at least one false positive among the two attempts is more likely. Do this 
for thirteen to fourteen different comparisons (age, weight, education, smoking, 
drinking, etc.) and the odds go past 0.5 and change in the researchers favor. 
Chance is starting to guarantee a ‘successful’ hypothesis; the researcher is likely 
to find a quasi-causal hypothesized correlation whether or not there is one. The 
real problem arises with the publication of the research. If the fifteenth 
hypothesis shows that, say, smoking is apparently connected with birth defects, 
the researcher will likely conveniently forget the other fourteen hypotheses and 
claim a p of 0.05 for the smoking correlation hypothesis. This is just plain wrong 
as statistics and as sound research. (Peter Austin and Meredith Goldwasser give a 
good example of something similar, with dichotomizing, in ‘showing’ that having 
the Pisces star sign is linked to heart failure (Austin & Goldwasser, 2008)).  
 
Donald Berry writes about multiple comparisons 
 

Most scientists are oblivious to the problems of multiplicities. Yet they are 

everywhere. In one or more of its forms, multiplicities are present in every statistical 

application. They may be out in the open or hidden. And even if they are out in the 

open, recognizing them is but the first step in a difficult process of inference. 
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Problems of multiplicities are the most difficult that we statisticians face. They 

threaten the validity of every statistical conclusion. (Berry, 2007) 

 
In the same paper, Berry relates an autobiographical anecdote of how, in the first 
grade, he concluded that redheads were intelligent from having observed two 
redheaded classmates that were the brightest in the class, he continues 
 

The two brightest kids in any class are necessarily similar in some other way – 

perhaps in several other ways. Perhaps they are both girls, both boys, both tall, both 

short, extreme in height (one may be very tall and the other very short), both of the 

same nationality or religion or ethnic group, both overweight, both underweight, 

have similar hair color, have buck teeth, have freckles, speak with a lisp, can run 

fast, cannot run fast, are handsome, are not handsome, etc. So I was doomed. I was 

bound to learn something that was wrong! (Berry, 2007) 

 
Big Data offers an open invitation to the problems of multiplicities. 
 
There seem to be three ways out of some of this fiddling. Educate the researchers 
of the need to tell of unpublished failures as well as of published successes. It is 
doubtful they would do this under their own initiative, but nevertheless the 
advice to do so is good. And it can be imposed by policy. For example, there are 
Clinical Trial Registries, which require the describing of the experiment before it 
is done. The International Committee of Medical Research Editors write 
 

… the ICMJE requires, and recommends that all medical journal editors require, 

registration of clinical trials in a public trials registry at or before the time of first 

patient enrollment as a condition of consideration for publication…. 
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The purpose of clinical trial registration is to prevent selective publication and 

selective reporting of research outcomes [and more purposes are listed] … 

(International Committee of Medical Research Editors, 2013) 

Second, consider, in the light of other independent knowledge, whether the 
published correlation hypothesis might be plausible or sound. For example, given 
what we know, smoking might indeed cause birth defects (while our present 
knowledge would not be so accommodating of the suggestion that the father’s 
astrological sign causes birth defects). And third, seek replication: ask the 
authors, or others, to repeat the data gathering with new data and to show that 
the conjectured correlation still holds. 
 
Multiple comparisons are a problem for ordinary researchers today. But they will 
be a bigger problem for attempted ‘data-driven science’. In the example, data-
driven science will presumably have much data about birth defects and properties 
of the parents, and others, and so be able to run many multiple comparisons. 
Maybe the computational research process will be transparent, maybe it will not. 
Likely, the human researchers will not know in detail what the computer 
algorithms have done. Data-driven science temperamentally wishes to ignore 
outside knowledge and wants to let data patterns speak for themselves. This is a 
mistake. Any analysis would be better with priors, Bayesian prior probabilities, or 
similar, for any hypotheses. And, again in spirit, it is not set up to gather very 
specific new data that would amount to attempted falsification leading to 
replication. 
 
Quite what constitutes replication is an open question (Borgman, 2012; Jasny, 
Chin, Chong, & Vignieri, 2011). Big Data may have past data about two different 
settings, e.g. time periods or geographical regions, and, in certain circumstances, 
one of them could be regarded as a replication of the other. But the best kind of 
replication is when the new data is genuinely new. Gathering replications could 
be automatic, or perhaps the human researchers could be prompted of the needs. 
Christine Borgman has an insightful discussion of replication and Big Data, in 
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particular between such notions as reproducibility, repeatability, validation, and 
verification (Borgman, 2012).  
 
For epistemology, it is testing not ‘replication’ that is the core demand. As a 
perhaps apocryphal example, Galileo dropped two balls of different mass off the 
Leaning Tower of Pisa and refuted the Aristotelian view that heavier bodies fall 
faster and corroborated his own theory that all freely falling bodies, with 
negligible air resistance, fall with the same acceleration, that 
 

…a bird-shot falls as swiftly as a cannon ball  (Galilei, 1638) 

 
There are two tests that might be done here. A seventeenth century scientist 
might seek to test or replicate Galileo’s ‘experiment’, or ‘study’, or ‘clinical trial’, 
or ‘observations’, or ‘data’, and that might involve protocols with leaning towers, 
two small masses, and the like. Or a seventeenth century scientist might go 
directly for an attempted refutation of Galileo’s theory and devise perhaps totally 
new ways of checking how freely falling bodies fall. Let us imagine further for a 
moment here. If we grant Galileo’s Law of Freely Falling Bodies its formulation in 
terms of constant acceleration, a smart enough seventeenth or eighteenth century 
scientist could reason that the Moon was falling towards the Earth also with the 
same constant acceleration as the dropped cannon ball and thus the centripetal 
acceleration of the Moon (available from its period and radial distance) should 
equal the acceleration of the cannon ball (available from the height of the tower 
and the time of fall). [Newton did this reasoning, and more. In fact, the Moon’s 
centripetal acceleration is thousands of times smaller than it should be under 
Galileo’s law (and thus the Moon’s acceleration refutes Galileo’s law).]  Of course, 
the latter testing, testing Galileo’s theory, is better than the former testing, testing 
Galileo’s data, but to do it you need Galileo’s theory, you do not need his data. 
This is theory-driven science not data-driven science, theory-driven testing 
leading, not really to replication, but instead to corroboration. In passing, notice 
how raised-eyebrow unlikely it is to suppose that there is some ‘pattern’ in the 
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data concerning the height of the Leaning Tower of Pisa, the time of fall of a 
cannon ball, the period of the Moon, and the radius of the Moon’s orbit. 
 
Post hoc analysis does not have to be unsound (and research statistics has plenty 
of theoretical and practical answers to multiple comparison problems and similar 
(see, for example, (Benjamini, 2010; Motulsky, 2013)). But, if the object of 
research is to find law-like connections, actually doing some experiments or 
gathering completely new data is a good idea.  
 
At first glance, Big Data might excel at heuristics: at finding or suggesting or 
discovering possible candidate correlations; the problem with that is the 
numbers—every twenty or so comparisons of variables is going to produce a false 
positive, there would be a deluge of false positives. An interesting Big Data 
example is that of genetic association studies which in essence look at whether 
particular genes are associated with specific traits (height, weight, aggression, 
susceptibility to various medical conditions and so on); it seems fair to say that 
there have been problems in that discipline with studies not being able to 
replicate the studies of others. For example, Joel Hirschhorn et al. [2002] point 
out that of 600 genetic associations reported in studies only 6 were able to be 
consistently replicated (i.e just 1 in 100 was replicable) (Hirschhorn, Lohmueller, 
Byrne, & Hirschhorn, 2002). There may be more similar problems with data-
driven science for 
 

…virtually any data-driven decision about modeling will lead to an overly optimistic 

model. (Babyak, 2004) 

 
and 

A regression analysis usually consists of several stages such as variable selection, 

transformation and residual diagnosis. Inference is often made from the selected 

model without regard to the model selection methods that preceeded it. This can 

result in overoptimistic and biased inferences. (Faraway, 1992) 
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John Ioannidis has a paper explaining why most research findings are false 
(Ioannidis, 2005). Most research findings in psychology, medicine, information 
science, behavioral science, and social science may indeed be false, or, at least, 
the evidence offered for them may be unsound or inconclusive (Begley, 2013; 
Naik, 2011; Yong, 2012). There is a good portion of such modern science, or 
modern research in those fields as it is practiced and published, that is in a 
parlous state (Begley, 2013; Begley & Ellis, 2012; Ioannidis, 2005; Ioannidis & 
Khoury, 2011; Nosek, Spies, & Motyl, 2012; Yong, 2012). To amplify 
 

Simulations show that for most study designs and settings, it is more likely for a 

research claim to be false than true. (Ioannidis, 2005) 

and the further argument is that typically the studies are irreproducible, the data 
is irreproducible, the data is unreliable, there is a lack of positive and negative 
controls, there is the inappropriate use of statistics (often leading to results that 
the investigator ‘likes’), there is the investigator’s ignoring of negative results, 
there is a pro-positive-result publication bias, and more… (Begley, 2013; Begley & 
Ellis, 2012; Ioannidis, 2005; Ioannidis & Khoury, 2011; Nosek et al., 2012; Yong, 
2012). [This is worth a pause. The present journal is one of the finest in 
information science, yet it is likely that most of what it publishes, if there is any 
statistics present in the articles in question, is just wrong. This conclusion, which 
is certainly distressing, and perhaps also surprising, follows from the arguments, 
and evidence, provided in the articles cited above. ] 
 
Any research findings produced by data-driven science have the potential to be as 
bad if not worse. For example, data-driven science might envisage separate 
research teams working independently on the same shared data, but, if carried 
out naively, this is very similar to using multiple comparisons (there is some 
chance of the first team producing a false positive, there is an even better chance 
of either the first team or the second team producing a false positive, and so on, 
then, typically, only positive results are published). And some protections, for 
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example, Registration, are inimical to data-driven science (if the plan is to collect, 
curate, analyze why should you want to register, collect, curate, register again, 
analyze?). 
 
In sum, data-driven science is too post hoc. There are reasons, some suggested 
here, to suppose that data-driven science will or would find many spurious 
connections. Data-driven science could easily lead to apophenia and a wild 
outbreak of hornswoggling. 
 
 
Conclusion 
The ability to gather large amounts of data both cheaply and easily does have 
advantages: sample sizes can be larger, testing of theories can be better, there can 
be continuous assessment, etc. But data-driven science, the ‘fourth paradigm’, is 
a chimera. Science needs problems, thoughts, theories, and designed 
experiments. If anything, science needs more theories and less data. 
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