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Abstract

In this paper we propose a novel method for learning a Malohlan
distance measure to be used in the KNN classification alguritThe

algorithm directly maximizes a stochastic variant of thavie-one-out
KNN score on the training set. It can also learn a low-dimemasi lin-

ear embedding of labeled data that can be used for data izisti@h

and fast classification. Unlike other methods, our clasgific model
is non-parametric, making no assumptions about the shaffeaflass
distributions or the boundaries between them. The perfoca®af the
method is demonstrated on several data sets, both for nesriting and
linear dimensionality reduction.

1 Introduction

Nearest neighbor (KNN) is an extremely simple yet surpghirffective method for clas-
sification. Its appeal stems from the fact that its decisioriages are nonlinear, there
is only a single integer parameter (which is easily tunedhwitoss-validation), and the
expected quality of predictions improves automaticallyressamount of training data in-
creases. These advantages, shared by many non-paramettninds, reflect the fact that
although the final classification machine has quite high cigpésince it accesses the entire
reservoir of training data at test time), the trivial leagpprocedure rarely causes overfitting
itself.

However, KNN suffers from two very serious drawbacks. The fi computational, since
it must store and search through the entire training setdardo classify a single test point.
(Storage can potentially be reduced by “editing” or “thimgii the training data; and in low
dimensional input spaces, the search problem can be neitidpgtemploying data structures
such as KD-trees or ball-trees[4].) The second is a mod@&swe: how should the distance
metric used to define the “nearest” neighbours of a test ppamtefined? In this paper, we
attack both of these difficulties by learning a quadratitagise metric which optimizes the
expected leave-one-out classification error on the trgidata when used with a stochastic
neighbour selection rule. Furthermore, we can force theéghdistance metric to be low
rank, thus substantially reducing storage and search absst time.

2 Stochastic Nearest Neighboursfor Distance Metric Learning

We begin with a labeled data set consisting.@éal-valued input vectots, , . . ., z,, in R”
and corresponding class labels..., ¢,,. We want to find a distance metric that maximizes



the performance of nearest neighbour classification. Igeak would like to optimize
performance on future test data, but since we do not knowrtleedata distribution we
instead attempt to optimize leave-one-out (LOO) perforoeaon the training data.

In what follows, we restrict ourselves to learning Mahalisgquadratic) distance metrics,
which can always be represented by symmetric positive siefitite matrices. We esti-
mate such metrics through their inverse square roots, giteaalinear transformation
of the input space such that in the transformed space, KNFfbpas well If we denote
the transformation by a matrit we are effectively learning a metrig = A™ A such that
d(z,y) = (x —y)"Qz — y) = (Az — Ay)" (Az — Ay).

The actual leave-one-out classification error of KNN is@aitliscontinuous function of the
transformationd, since an infinitesimal change i may change the neighbour graph and
thus affect LOO classification performance by a finite amoumdtead, we adopt a more
well behaved measure of nearest neighbour performancetinducing a differentiable
cost function based on stochastic (“soft”) neighbour assignts in the transformed space.
In particular, each pointselects another poiritas its neighbour with some probabiljsy;,
and inherits its class label from the point it selects. Wengetinep;; using a softmax over
Euclidean distances in the transformed space:

oy = (= Az — Azy|)
9T S ep(— A — An?)

Under this stochastic selection rule, we can compute thieginibty p; that pointi will be
correctly classified (denote the set of points in the samesda by C; = {j|c; = ¢;}):

bi = Z Dij 2)

JjeC;

pii =0 1)

The objective we maximize is thexpected number of points correctly classifigdier this
scheme:
FA)=>">"pij=> pi 3)

Differentiating f with respect to the transformation matrixyields a gradient rule which
we can use for learning (denotg; = x; — x;):

of
a_A = —2AZ Z pij(xiszj — Zpikxikx;k) (4)
i jeC; k
Reordering the terms we obtain a more efficiently computgdession:
a_fngZ Z o T_Z o mT (5)
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Our algorithm — which we dub Neighbourhood Components AsialfNCA)—is extremely
simple: maximize the above objective (3) using a gradiesetaptimizer such as delta-
bar-delta or conjugate gradients. Of course, since thefaastion above is not convex,
some care must be taken to avoid local maxima during trainthgwever, unlike many
other objective functions (where good optima are not necégsleep but rather broad) it
has been our experience that the larger we can dridaring training the better our test
performance will be. In other words, we have never observeédeertraining” effect.

Notice that by learning the overall scale 4fas well as the relative directions of its rows
we are also effectively learning a real-valued estimatdefiptimal number of neighbours
(K). This estimate appears as the effective perplexity etistributiong;;. If the learning



procedure wants to reduce the effective perplexity (cdrfeuler neighbours) it can scale
up A uniformly; similarly by scaling down all the entries iit can increase the perplexity
of and effectively average over more neighbours during thehastic selection.

Maximizing the objective functiorf (A4) is equivalent to minimizing thé&; norm between
the true class distribution (having probability one on tleetclass) and the stochastic class
distribution induced by, ; via A. A natural alternative distance is the KL-divergence which
induces the following objective function:

g(A) = Zlog( > piy) = Zlog(l)i) (6)

JjeC;

Maximizing this objective would correspond to maximizifg tprobability of obtaining a
perfect (error free) classification of the entire trainingts The gradient ofy(A) is even
simpler than that of (A):

dg L Djec, PijTi T
A= 2A2i: (Zk: PikTik Ty — — A (7
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We have experimented with optimizing this cost function & vand found both the trans-
formations learned and the performance results on traiaimd testing data to be very
similar to those obtained with the original cost function.

3 Low Rank Distance Metrics and Nonsguar e Projection

Often it is useful to reduce the dimensionality of input da&ither for computational sav-
ings or for regularization of a subsequent learning algarit Linear dimensionality re-
duction techniques (which apply a linear operator to thginal data in order to arrive
at the reduced representation) are popular because theptiréast and themselves rela-
tively immune to overfitting. Because they implement onffiref maps, linear projections
also preserve some essential topology of the original ddémy approaches exist for lin-
ear dimensionality reduction, ranging from purely unsused approaches (such as factor
analysis, principal components analysis and indepena@nponents analysis) to methods
which make use of class labels in addition to input featutesh sas linear discriminant
analysis (LDA)[3] possibly combined with relevant compatsanalysis (RCA)[1].

By restrictingA to be a nonsquare matrix of sidec D, NCA can also do linear dimension-
ality reduction. In this case, the learned metric will be lamk, and the transformed inputs
will lie in R4, (Since the transformation is linear, without loss of gaiigrwe only con-
sider the casé < D. ) By making such a restriction, we can potentially reap nfangher
benefits beyond the already convenient method for learni€igd distance metric. In par-
ticular, by choosing < D we can vastly reduce the storage and search-time requitemen
of KNN. Selectingd = 2 or d = 3 we can also compute useful low dimensional visual-
izations on labeled datasets, using only a linear projectithe algorithm is exactly the
same: optimize the cost function (3) using gradient desaeatnonsquard. Our method
requires no matrix inversions and assumes no parametrieinjGéussian or otherwise)
for the class distributions or the boundaries between theamnow, the dimensionality of
the reduced representation (the number of rowd)imust be set by the user.

By using an highly rectangulat so thatd < D, we can significantly reduce the com-
putational load of KNN at the expense of restricting thewadible metrics to be those of
rank at most. To achieve this, we apply the NCA learning algorithm to fihd bptimal
transformationd, and then we store only the projections of the training majpt= Ax,
(as well as their labels). At test time, we classify a new pojp,; by first computing its
projectiony;.s; = Az and then doing KNN classification ap.s; using they,, and



a simple Euclidean metric. H is relatively small (say less than 10), we can preprocess
the y,, by building a KD-tree or a ball-tree to further increase tpeesl of search at test
time. The storage requirements of this method@(éN) + Dd compared withD(DN)

for KNN in the original input space.

4 Experimentsin Metric Learning and Dimensionality Reduction

We have evaluated the NCA algorithm against standard distaretrics for KNN and other
methods for linear dimensionality reduction. In our expemts, we have used 6 data sets
(5 from the UC Irvine repository). We compared the NCA tramsfation obtained from
optimizing f (for squareA) on the training set with the default Euclidean distarce: I,

the “whitening” transformation4A = I (whereX. is the sample data covariance matrix),

and the RCA [1] transformatiod = Z;% (whereX,, is the average of the within-class
covariance matrices). We also investigated the behavibNIC# when A is restricted to
be diagonal, allowing only axis aligned Mahalanobis measur

Figure 1 shows that the training and (more importantly)ingsperformance of NCA is
consistently the same as or better than that of other Mabbiamlistance measures for
KNN, despite the relative simplicity of the NCA objectivenittion and the fact that the
distance metric being learned is nothing more than a pesikafinite matrixA™A.

We have also investigated the use of linear dimensionadyction using NCA (with non-
squareA) for visualization as well as reduced-complexity clasatiizn on several datasets.
In figure 2 we show 4 examples of 2-D visualization. First, eagrated a synthetic three-
dimensional dataset (shown in top row of figure 2) which cetssdf 5 classes (shown by
different colors). In two dimensions, the classes areibisted in concentric circles, while
the third dimension is just Gaussian noise, uncorrelatéd thie other dimensions or the
class label. If the noise variance is large enough, the gtioje found by PCA is forced
to include the noise (as shown on the top left of figure 2). (Arank Euclidean metric
would also be misled by this dimension.) The classes are omtex and cannot be lin-
early separated, hence the results obtained from LDA wiliha@propriate (as shown in
figure 2). In contrast, NCA adaptively finds the best profattivithout assuming any para-
metric structure in the low dimensional representation. WAkee also applied NCA to the
UCI “wine” dataset, which consists of 178 points labeleaiBtclasses and to a database
of gray-scale images of faces consisting of 18 classes @aeparate individual) and 560
dimensions (image size ) x 28). The face dataset consists of 1800 images (100 for each
person). Finally, we applied our algorithm to a subset ofulsS dataset of handwritten
digit images, consisting of the first five digit classes (“otieough “five”). The grayscale
images were downsampled&ox 8 pixel resolution resulting in 64 dimensions.

As can be seen in figure 2 when a two-dimensional projectiosésl, the classes are con-
sistently much better separated by the NCA transformatian by either PCA (which is
unsupervised) or LDA (which has access to the class lal®fg)ourse, the NCA transfor-
mation is still only a linear projection, just optimized tia cost function which explicitly
encourages local separation. To further quantify the ptime results we can apply a
nearest-neighbor classification in the projected spacingube same projection learned
at training time, we project the training set and all futwesttpoints and perform KNN in
the low-dimensional space using the Euclidean measurereBudts under the PCA, LDA,
LDA followed by RCA and NCA transformations (using K=1) appen figure 1. The
NCA projection consistently gives superior performancehiis highly constrained low-
rank KNN setting. In summary, we have found that when labdiata is available, NCA
performs better both in terms of classification performandbe projected representation
and in terms of visualization of class separation as congpi@r¢he standard methods of
PCA and LDA.
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Figure 1: KNN classification accuracy (left train, righttyesn UCI datasets balance, iono-
sphere, iris, wine and housing and on the USPS handwritgitsdiResults are averages
over 40 realizations of splitting each dataset into trair(in0%) and testing (30%) subsets
(for USPS 200 images for each of the 10 digit classes were fasdrhining and 500 for
testing). Top panels show distance metric learning (sqddrand bottom panels show
linear dimensionality reduction down tb= 2.

5 Extensionsto Continuous L abels and Semi-Supervised Learning

Although we have focused here on discrete classes, lineasformations and fully su-
pervised learning, many extensions of this basic idea assiple. Clearly, a nonlinear
transformation functiond(-) could be learned using any architecture (such as a multilaye
perceptron) trainable by gradient methods. Furthermoig,pgossible to extend the clas-
sification framework presented above to the case of a reatgglcontinuous) supervision
signal by defining the set of “correct match&s;’ for pointi to be those pointg having
similar (continuous) targets. This naturally leads to tieai of “soft matches”, in which
the objective function becomes a sum over all pairs, eacghed by their agreement ac-
cording to the targets. Learning under such an objectivestitiproceed even in settings
where the targets are not explicitly provided as long asrinédion identifying close pairs
is available. Such semi-supervised tasks often arise ira@f@with strong spatial or tem-
poral continuity constraints on the supervision, e.g. indew of a person’s face we may
assume that pose, and expression vary slowly in time evemiifdividual frames are ever
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Figure 2: Dataset visualization results of PCA, LDA and NQ#pked to (from top) the
“concentric rings”, “wine”, “faces” and “digits” dataset3 he data are reduced from their
original dimensionalities (D=3,D=13,D=560,D=256 regpedy) to the d=2 dimensions
show.
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Figure 3:The two dimensional outputs of the neural network on a sedsifdases. On the left, each
point is shown using a line segment that has the same oii@m&t the input face. On the right, the
same points are shown again with the size of the circle reptieg the size of the face.

labeled explicitly with numerical pose or expression value

To illustrate this, we generate pairs of faces in the foltoyuwivay: First we choose two faces
at random from the FERET-B dataset (5000 isolated facedthet a standard orientation
and scale). The first face is rotated by an angle uniformliridiged betweent45° and
scaled to have a height uniformly distributed between 2538 gdixels. The second face
(which is of a different person) is given the same rotatiod scaling but with Gaussian
noise of+1.22° and=+1.5 pixels. The pair is given a weighty,;, which is the probability
density of the added noise divided by its maximum possibligevaNe then trained a neural
network with one hidden layer of 100 logistic units to mapfirthe35 x 35 pixel intensities
of a face to a pointy, in a 2-D output space. Backpropagation was used to minithize
cost function in Eq. 8 which encourages the faces in a paietplaced close together:

exp(—|[ya — wo[|*) ”
Cost = — Wap log (8)
pa%,b) (Zc,d exp(—|lye — yall?) ’

wherec andd are indices over all of the faces, not just the one€s
that form a pair. Four example faces are shown to the right: hq
zontally the pairs agree and vertically they do not. Figuab8ve
shows that the feedforward neural network discovered polar-
dinates without the user having to decide how to represeié sc
and orientation in the output space.

6 Reationshipsto Other M ethods and Conclusions

Several papers recently addressed the problem of learna@Mnobis distance functions
given labeled data or at least side-information of the fofraquivalence constraints. Two
related methods are RCA [1] and a convex optimization basgatithm [7]. RCA is
implicitly assuming a Gaussian distribution for each cl@ssit can be described using
only the first two moments of the class-conditional distiida). Xing et. al attempt to
find a transformation which minimizes all pairwise squaristishces between points in the
same class; this implicitly assumes that classes form desommpact connected set. For
highly multimodal class distributions this cost functioitl\lve severely penalized. Lowe[6]



proposed a method similar to ours but used a more limited fdeéearning a nearest
neighbour distance metric. In his approach, the metric isstained to be diagonal (as
well, it is somewhat redundantly parameterized), and theative function corresponds to
the averagsequared errotbetween the true class distribution and the predictedioligion,
which is not entirely appropriate in a more probabilistittiag.

In parallel there has been work on learning low rank tramsédions for fast classification
and visualization. The classic LDA algorithm[3] is optimfhll class distributions are

Gaussian with a single shared covariance; this assumgtawever is rarely true. LDA

also suffers from a small sample size problem when dealirly ligh-dimensional data
when the within-class scatter matrix is nearly singular[Recent variants of LDA (e.g.

[5], [2]) make the transformation more robust to outlierd &mnumerical instability when

not enough datapoints are available. (This problem doesxisttin our method since there
is no need for a matrix inversion.)

In general, there are two classes of regularization assamgtat are common in linear
methods for classification. The first is a strong paramegscmption about the structure of
the class distributions (typically enforcing connecte@wen convex structure); the second
is an assumption about the decision boundary (typicallprerig a hyperplane). Our
method makes neither of these assumptions, relying ingteatie strong regularization
imposed by restricting ourselves to a linear transfornmatithe original inputs.

Future research on the NCA model will investigate usingllestimates ofK’ as derived
from the entropy of the distributions;; the possible use of a stochastic classification rule
at test time; and more systematic comparisons between jeetivie functionsf andg.

To conclude, we have introduced a novel non-parametriciegmethod — NCA — that
handles the tasks of distance learning and dimensiona&dyation in a unified manner.
Although much recent effort has focused on non-linear nathave feel that linear em-
bedding has still not fully fulfilled its potential for eithgisualization or learning.
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