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Abstract

The system-level design problem spans a large design space. Typically, the designer needs to
explore possible target architectures, experiment with different tools, and work with a range of
constraints and optimization criteria. This design process is quite complex and involves consider-
able bookkeeping and management, in addition to sophisticated design tools. We believe that
managing the design process is an important (albeit often neglected) part of system-level design.
The contribution of this paper is in two parts. First, we present a framework for systematically
managing the design process. Secondly, we illustrate how this framework can be used to manage
a realistic system-level design environment that consists of a suite of sophisticated hardware and
software design tools.

We begin by identifying some of the desirable features of system-level design methodology man-
agement. A candidate framework that manifests these features is presented. Complex design flows
with iterative and conditional behavior can be specified within the framework. The framework
also supports automated scheduling of tools in a well-defined design flow. It has been imple-
mented as the DMM domain in Ptolemy.

In the second part of the paper, we describe a system-level design environment case study that we
have developed within this framework. The environment, called the Design Assistant, is a com-
plete hardware-software codesign environment. It encapsulates various codesign tools for specifi-
cation, partitioning, and synthesis; their interplay can be managed efficiently by the design
methodology management framework.

To appear: Journal of VLSI Signal Processing.
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1.0 Introduction

System-level design encompasses a large design space. Typically, the designer needs to

explore the possible options, tools, and architectures, choosing either automated tools or manually

selecting his/her choices. As shown in Figure 1, a large number of target architectures and imple-

mentation technologies could be used to implement a system. Several optimization objectives and

constraints are possible. The user also has access to a large number of design tools. The user

might experiment with the design parameters, the target architectures, the optimization criteria,

the tools used, or the sequence in which these tools are applied. For example, consider the design

of a real-time MPEG2 encoder. One design possibility is a full hardware solution. For this archi-

tecture, the design choices include the use of standard cells vs. custom design, and in the former

case, the particular synthesis tools to be used. Alternatively, a full software solution can be envi-

sioned. In this case, the type and number of processors, the interprocessor communication fabric,

and the type of scheduler are variables in the design process. A third design option is a mixed

hardware-software implementation, where the hardware/software partition is either determined by
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 Figure 1. The design space.
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the user or by automated tools. In the manual case, the user might try mapping different combina-

tions to hardware, for instance, the motion estimation module, or the DCT, or both. In the auto-

mated case, different partitioning algorithms of varying complexity can be used. Furthermore,

each of these architectures may be optimized with respect to different criteria, such as minimizing

system cost or power consumption.

The design process could get quite unwieldy as the user experiments with the design

methodology. Sophisticated design tools are one aspect of generating a good design. In addition,

there is a need for a mechanism that systematically manages the design methodology and allows

design space exploration. Tools that aid in design space exploration fall into two categories: esti-

mation and management. Estimation tools are primarily used forwhat-if analysis, i.e., they give

quick predictions on the outcome of applying certain synthesis or transformation tools [1][2].

Management tools orchestrate the design process, i.e., systematically control the design data,

tools, and flow. In this paper, we focus on the management aspects of design space exploration;

this is often referred to asdesign methodology management1.

The paper is organized as follows. In the first half, we focus on systematizing the design

methodology and describe a framework for managing the complexity of the design process. In

Section 2.0, we identify the key requirements of a design methodology management framework.

An infrastructure that supports these requirements is proposed in Section 3.0. We have imple-

mented this framework within the Ptolemy [4] environment. Some details of the implementation

are presented in Section 4.0. In the second part, we describe a system-level design environment

case study that we have developed within this framework. In Section 5.0, we describe the Design

Assistant, which is a complete hardware-software codesign environment. It encapsulates various

codesign tools for specification, partitioning, and synthesis; their interplay can be managed effi-

ciently by the design methodology management framework. Finally, in Section 6.0, we put this

work in perspective with respect to other related work in this area.

1.  Design methodology is defined as “the processes, techniques, or approaches employed in the solution of a problem”.
Design methodology management (DMM) is formally defined as “definition, execution, and control of design meth-
odologies in a flexible and configurable way” [3].
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2.0 Design Methodology Management: Desirable Features

Our focus is primarily on design flow specification and management. We do not address

issues of database management, multi-user operation, or distributed tool execution. Our goal is to

develop a framework that simplifies the designer’s tasks by (1) providing mechanisms that allow

the design flow to be specified in an intuitive way, (2) automatically invoking the tools in the

design flow whenever possible, and (3) managing the infrastructure when the user decides the

sequence of tool execution. The key features required for this are discussed next.

Design Flow Specification

There are several important features that the design flow specification mechanism should

support. Since tools involved in the system-level design process are often computationally inten-

sive, it is important to avoid unnecessary invocation of tools. This requires that the design flow be

specified in amodular way so that only the desired tools may be invoked. It should also be possi-

ble to specify the design flowhierarchically, in order to retain design modularity.

The flow specification mechanism should support constructs such asconditionals anditer-

ations. Such constructs enable specification of realistic design flows. Consider an example where

an application (say MPEG2 encode) is to be mapped to a multiprocessor system. Suppose that the

number of processors is not known apriori, but depends on the desired performance. The design

sequence usually is to (1) estimate the number of processors required, (2) schedule the application

onto these processors and compute the resultant throughput, (3) repeat step 1 if the resultant

throughput does not meet the desired throughput, otherwise continue with the remaining parts of

the design such as code generation and netlist generation. To express such a design flow, the flow

specification mechanism should support constructs such as conditionals and iterations.

The design flow should beparameterizeable, i.e., given the availability of a multiplicity of

design tools, the design flow should be able to integrate a particular tool without modifying the

design flow much. Consider hardware-software partitioning, for example. If the application
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involves few components that have obvious mappings, partitioning could be done manually. If the

mappings are not obvious, an automated approach is preferred. One possibility is to use an exact

(but time-consuming) integer-linear programming approach to determine the optimal mappings.

Alternatively, if the application is quite complex and there are several options available for imple-

menting the different components, an efficient heuristic could be used. The selection of the

desired partitioning mechanism can be done by setting the parameters of the partitioning tool; the

user should not have to construct a separate design flow for each possible partitioning mechanism.

The parameters can be set either by the user, or by embedding the design choice within the design

flow itself.

Design Flow Execution

A designer should not have to keep track of the tools that have already run and those that

need to be run. When the parameters or the data associated with a tool change, the entire design

flow need not be re-run; only the affected tools should be run again. Keeping track of the tools

that need to be run is quite cumbersome. A mechanism that automatically determines the

sequence of tool invocations is needed. This calls for a flow execution mechanism much like the

“make” utility [5].

Design Flow Management

Different types of tools, with varying input and output formats, are used in the system-

level design process. In the very least, a mechanism to automatically detect incompatibilities

between tools is required. Data translators could also be invoked automatically. Versions of tools

and design flows also need to be maintained; it is not sufficient to just keep track of versions of

data.

3.0 Infrastructure for Design Methodology Management

We have developed a framework that tries to support most of the requirements discussed
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in the previous section. Details of the infrastructure are discussed in this section. In Section 3.1,

we present the underlying models used to specify the design flow, tools, and data. In Section 3.2,

we identify different types of conditions under which a tool must be invoked for execution. Such

conditions are calleddependencies. The flow execution mechanism analyzes the dependencies

and automatically invokes tools within a design flow. Details of the flow execution mechanism are

presented in Section 3.3.

3.1 Flow, Tool, and Data Model

Figure 2 illustrates the user’s view of the design flow and tools. The designflow is speci-

fied as a dataflow graph2, where nodes represent tools, and arcs specify the ordering between

tools.

Tools encapsulate actual programs. Tool parameters specify the arguments for these pro-

grams. A tool can have multiple input and outputports. Ports are used to transfer filenames

between tools. On execution, a tool sends the filename of the generated data on its output port and

the receiving tool operates on the data from the file specified on its input port. A “source” tool

(such as a signal generator) has no input ports, while a “sink” tool (such as a display tool) has no

output ports.

Ports can be eitherrequired or optional. It is important to understand the difference

2.  Certain restrictions are imposed on the design flow in our implementation so as to avoid possible nondeterminacy.
We defer the details to Section 4.0.

Tool 1

Tool 2 Tool N

Tool J

DESIGN FLOW

 Figure 2. User’s view of the design flow and tools.
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between required and optional ports. A tool cannot run unless it has data (valid filenames) on all

its required input ports. A tool can run even if data is absent on an optional input port. When a tool

is run, it generates data on all its required output ports, but not necessarily on optional output

ports. Thus, optional ports facilitate the use of conditionals and iterations in flows. To understand

this, consider the multiprocessor synthesis example mentioned earlier in Section 2.0. The design

problem is to synthesize a multiprocessor system that meets a desired throughput with a minimum

number of processors. A possible design flow is shown in Figure 3. The toolnum_proc_selector

determines the number of processors required and is described hierarchically as shown in the fig-

ure. Theestimatortool first estimates the number of processors needed. The estimated number of

processorsnum_procs_est is given to ascheduler that computes the actual throughput for this

number of processors. Thecomparator compares the actual throughput to the desired throughput

and sends feedback to theestimator. The estimator has both a required input (portx), and an

optional input (porty). Thefeedback from thecomparatoris fed to the optional port of theestima-

tor. If there is no feedback, theestimator estimates the number of processors based on its own

information. If there is feedback, it updates its earlier estimate. Both output ports of theestimator

are optional. When the estimation loop converges, theestimator generates data on the optional

output porta, otherwise it generates the data for the revised estimate on the other optional output

portb.

application num_procs

source num_proc_selector code generator

netlist generator

feedback
estimator scheduler

num_procs_est

num_procsapplication

desired throughput

comparator

 Figure 3. A design flow for the multiprocessor synthesis example.
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While optional ports permit modeling of a wide variety of applications, their use can

potentially lead to nondeterminate behavior3. In our framework, the flow scheduler flags a poten-

tial nondeterminacy and alerts the user. In most cases, the user knows what he/she had in mind

when designing the design flow and can guide the system accordingly. The details of our imple-

mentation and techniques to identify nondeterminacy are described in Section 4.0.

Figure 4 shows the internal model of the tools, data, and ports. Associated with each tool

is a flag, calledParam_Changed_Flag, which gets set when parameters of a tool are changed.

Data is characterized by a filename and a timestamp. A port has several attributes:File_Namelast,

File_Namenew, Time_Stamplast, Time_Stampnew, and Optional_Flag. File_Namelast and

Time_Stamplast attributes store the filename and the timestamp4 of the data on a port as of the ear-

lier invocation of the tool.File_Namenew and Time_Stampnew represent the filename and the

timestamp of the data updated on a port in thecurrent invocation of the tool.Optional_Flag indi-

3.  By nondeterminacy we mean that the generated data may depend on the sequence used to invoke the tools.
4.  The timestamp indicates when the data associated with the file was last modified.
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 Figure 4. Internal representation of the tools and data.

(a) (c)

(d)

File_Namenew

Time_Stampnew

File_Namenew
Time_Stampnew

DATA MODEL

(b)

filename
timestamp

data



Infrastructure for Design Methodology Management

Complexity Management in System-level Design 9 of 22

cates whether the port is required or optional. The infrastructure stores the internal representation

of the design flow as shown in Figure 4-c.

3.2 Dependencies

TheParam_Changed_Flag and the filename and timestamp attributes are used by the flow

scheduler to determine whether a tool needs to be run. For example, if the parameters of a tool

have changed since its last invocation, the tool needs to be run. Similarly, if the filename associ-

ated with a port in the current invocation of a tool is different from the filename associated with

the same port in its previous invocation, this indicates a change in data, and requires the tool to be

run again. We use the termdependency to qualify this behavior. We define three types of depen-

dencies: temporal, data, and control. A tool needs to be run if any of the dependencies is alive.

A temporal dependency tracks the timestamps associated with the data on the input ports

of a tool. If the timestamp of the data on any input port isnewer than the timestamp of the data on

the corresponding port associated with the previous invocation of the tool, i.e., ifTime_Stampnew

> Time_Stamplast, a temporal dependency is said to be alive. Adata dependency tracks changes in

the filenames associated with the input ports of the tool. If the filename of the data associated with

any input port isdifferent from the filename of the data on the corresponding port associated with

the previous invocation of the tool, or equivalently ifFile_Namelast != File_Namenew, a data

dependency is said to be alive. Aparametricdependency tracks parameter changes; if the param-

eters of a tool change, the parametric dependency is said to be alive.

3.3 Flow Management

Automatic flow invocation is based on analyzing the tool dependencies and executing

tools as required. A tool is said to beenabled when all of its required input ports have data.

Absence of data on the optional input ports does not affect enabling. Once enabled, a tool is

checked for dependencies. A tool isinvoked (run) when at least one of its dependencies is alive.
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On execution, a tool generates data on its required output ports, and possibly on its optional out-

put ports.

Two types of flow invocation mechanisms are desired: data-driven and demand-driven. In

the data-driven approach, the flow scheduler traverses the flow according to precedences. The

process halts when all tools with live dependencies have been exhausted. In the demand-driven

mode, the user selects a tool for execution. The scheduler traverses the predecessors and executes

all tools on the path that have live dependencies. The details of the scheduler are given in the next

section.

4.0 Implementation: DMM Domain within Ptolemy

We have implemented the design methodology management framework as a domain5

(called theDMM domain ) within Ptolemy. Ptolemy is an environment for the simulation and

rapid prototyping of heterogeneous systems. The advantage of implementing the design method-

ology management framework as a domain within Ptolemy is that several other tools which we

have developed (partitioning, synthesis, and simulation tools [6]) in Ptolemy can be accessed

within the DMM framework in an integrated and seamless fashion. Stand-alone tools can also be

integrated into the DMM framework. An additional advantage is that the existing Ptolemy data-

structures, user-interface, database etc. are directly available to us. Note however, that the central

concept of DMM does not assume Ptolemy; the DMM domain in Ptolemy is an implementation

of these concepts. In what follows, we describe some details of the flow specification and execu-

tion mechanisms in this implementation.

Design Flow Specification

The design flow is specified graphically through the Ptolemy user interface, VEM. Figure

5.  A domain in Ptolemy corresponds to a certain model of computation. Other domains include synchronous dataflow
and discrete event.
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5 shows the Ptolemy specification of the design flow for the multiprocessor synthesis example

described earlier. The flow shows the connectivity between tools and is constructed by instantiat-

ing tools from a library of design tools6. The design flow is stored internally in the Oct database

[7] as a netlist.

Figure 5-a shows theNumProcSelector block, which determines the number of processors

required. Note that this block is represented hierarchically in more detail in Figure 5-b. Also, note

the use of optional ports (marked by the shaded rectangles) to express conditional behavior. The

flow operates exactly like that described earlier in Section 3.1.

Tool Encapsulation

Tools are encapsulated within the building blocks of the DMM domain. Tool encapsula-

tion involves writing scripts that call various programs. These programs are either routines that

we have developed (such asProcEstimator or ArchitectureGenerator in Figure 5), or other

Ptolemy functions (such as a code generation routine within Ptolemy), or stand-alone executables

(such as SPICE or MATLAB). The tool writer need not worry about the timestamps or the filena-

mes associated with the tool. Figure 6 shows an example of tool encapsulation. It shows theCode-

6.  We have developed a library of tools. Some of the tools such asProcEstimator andArchitectureGenerator contain
routines that have been developed from scratch, while others such asCodeGenerator andScheduler are calls to exist-
ing routines within Ptolemy.

 Figure 5. (a) The design flow for the multiprocessor synthesis example, specified within the
DMM domain in Ptolemy, (b) hierarchical description of NumProcSelector, (c) the
control panel associated with the DMM domain.

T1

Source

GraphName (G)

T2

NumProcSelector

CodeGenerator

code{1,..N}.asm
Architecture Simulator

iterations

modem.ptcl

Generator
T6

T8 T9

targetArch

throughput

N

N

GraphName N
0/1

optional port ProcEstimator

T3 T4
T5

Scheduler
Comparator

M

T7

fork

(a)

(b)

(c)



Implementation: DMM Domain within Ptolemy

12 of  22 Complexity Management in System-level Design

Generator tool from the multiprocessor synthesis example.CodeGenerator generates a

multiprocessor implementation (multiple programs) for the input application. It uses a code gen-

eration routine within Ptolemy (ptkGenCode) to generate the code.CodeGenerator has two inputs

(both required): the application description (graph) and the number of processors (numProcs).

The tool generates programs for all the processors. The output of the tool is specified as a file

(codeFileNames) containing the names of the generated programs. TheCode Generator has a

parameter (targetArch) that specifies the assumed target architecture,sharedMem in this case. The

function “go()” contains the code that gets executed when the tool is invoked. When invoked, the

tool first reads in the name of the file containing the graph (graphName). The functionsget-

Name(), getDomain() and getHandle() obtain the identifiers for the application pointed to by

graphName. The number of processors is read into the variablenumberProcs by scanning the

input fileprocFileName. The Ptolemy routine that generates the code (ptkGenCode) is then called

with the application identifiers, the target architecture, and the number of processors. The result is

 Figure 6. An example of Tool encapsulation: CodeGenerato r tool.

defstar  {
name  { CodeGenerator }
domain  { DMM }
input  { name { graph } }
input  { name { numProcs } }
output  { name { codeFileNames } }
state  { name { targetArch } default { sharedMemory } }
go  {

graphName = graph.getFileName();
name = getName( graphName );
domain = getDomain( graphName );
handle = getHandle( graphName );

procFileName = numProcs.getFileName();
fp = fopen(procFileName, “r”);
fscanf(fp, “%d”, &numberProcs);

// run tcl command for code generation
Tcl_VarEval(ptkInterp, “ptkGenCode ”, name, domain, handle,

// generate output file names
codeFileNames.putFileName(fout);

}

// get application name and identifiers

// get number of processors

targetArch, numberProcs, fout);

}

fclose(fp);
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written into the filecodeFileNames.

Design Flow Scheduler (DesignMaker)

In Section 3.2, we discussed the various attributes associated with a tool

(Param_Changed_Flag, Time_Stamplast, File_Namelast, Time_Stampnew, File_Namenew, and

Optional_Flag). The flow scheduler, calledDesignMaker, analyzes these attributes to determine

whether a tool has a live dependency and automatically invokes the tools in the appropriate

sequence. The flow scheduler is essentially a dynamic dataflow scheduler. We will not go into the

details of the scheduler, which, along with issues of nondeterminacy, are described in [6]. Figure

5-c shows the control panel ofDesignMaker. There are three possible approaches to executing the

flow: (1) The user opts to run the entire design flow (Run All), or (2) The user selects a certain tool

upto which the flow should be executed (Run Upto), or (3) The user asks for a specific tool to be

invoked (Run This).

In theRun All mode, the flow scheduler traverses the design flow, starting with the source

tool, executing tools as necessary. To do this, it maintains a list of enabled tools. Recall that an

enabled tool is one that has data on all of its required input ports. An enabled tool is checked for

its dependencies and invoked for execution if any of its dependencies is alive. On execution, the

appropriate descendents of the tool are identified, and their corresponding input ports are marked.

If all the required input ports of a descendent tool are marked, the descendent tool is added to the

list of enabled tools.

As mentioned earlier, it is possible that a flow may have a nondeterminate behavior due to

the presence of optional ports. Currently, the flow scheduler does very strict checking and flags

flows that are possibly nondeterminate. Some of these flagged flows may be determinate if the

user has taken appropriate care in designing the flow. In such a case, the user can choose to use

our flow scheduler at his/her risk. Alternatively, the user can schedule the tools manually in the

sequence desired, by using theRun This mode.

In theRun Upto mode, the user selects a certain tool upto and including which the flow
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should be executed. All the predecessors of the selected tool are identified and tagged. The design

flow is then traversed as in theRun Allmode; only the tagged tools are executed. In the current

implementation, we support this mode for acyclic flows only.

TheDesignMaker control panel also shows other options such asanimation, Save Facet,

andReset Design Status. Thegraphical animation mode highlights tools as they are executed and

can be used to view the scheduling sequence. Thetextual animation option prints the sequence in

which the tools are executed. TheSave Facet option allows the user to save the current design

flow to the Oct database. This saves the attributes associated with the most recent execution of

each tool to the Oct database. When the design flow is retrieved in a future design session, the

saved attributes get loaded in. TheReset Design Status option allows the user to override this; the

flow scheduler treats the design flow as a new flow where none of the attributes have been set.

The GUI for theDesignMaker has been implemented in Tcl/Tk.

5.0 System-level Design using DMM — Case Study

The use of the DMM framework in managing the complexity of the system-level design

process is demonstrated next with the help of a case study. We describe an entire codesign envi-

ronment for a mixed hardware-software end solution. The environment is managed entirely

through the DMM framework.

5.1 Design Assistant (A Hardware-Software Codesign Environment)

We have developed an environment calledDesign Assistantfor the system-level codesign

of mixed hardware-software systems. Figure 7 shows a part of the Design Assistant implemented

in the DMM domain. The design flow shown is targeted towards the design of signal processing

applications specified in the synchronous dataflow (SDF) model of computation [8], running on

an architecture consisting of a single programmable processor (in particular, the DSP 56000) and
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custom hardware (in particular, a standard-cell based hardware such as that synthesized by a high-

level synthesis tool like Hyper [9]). Other variants in the architecture and design tools are possible

by changing the appropriate parameters in the flow. We next describe this flow and the associated

tools in some detail.

Source(T1) outputs the SDF graphG specified byGraphName(saysimple.sdf). G is then

partitioned into hardware and software by the partitioning toolT2. The Design Assistant supports

both manual and automated partitioning [6].

Figure 8 shows the behavior ofT2 when configured for manual partitioning. The applica-

tion, which is to be partitioned, is automatically displayed by the partitioning tool (Figure 8-a).

The partitioning tool also brings up a selection panel to aid in manual partitioning (Figure 8-b).

The user can then select parts of the application and assign them to hardware or software. Sup-
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- Synthesis Graph
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 Figure 7. The Design Assistant, as implemented in the DMM domain.
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pose that the nodesIIDGaussian andFIR are mapped to software, and the nodesGain andAdd

are mapped to hardware. The nodesRamp andBlackhole correspond to the stimulus and monitor

nodes.

Once partitioned, the hardware and software components are synthesized byT6 andT5

respectively.T6 calls a high-level synthesis tool Hyper, whileT5 invokes the DSP56000 code

generation routines in Ptolemy. BeforeT6 andT5 can be invoked, the partitioned design has to be

processed to generate data compatible with these synthesis tools. In particular, the hardware syn-

thesis toolT6 synthesizes a separate datapath for each node mapped to hardware (Gain andAdd in

our example). At the input ofT6, the specification of each node needs to be in Silage.T4 gener-

ates this Silage description for each node, starting with a netlist specification of the node. This

netlist description, called the hardware graph, is generated byT3 . T6 uses the Silage code gener-

ated byT4 to generate the final layout for the hardware components by running Hyper.

The software synthesis toolT5 generates a single assembly code file corresponding to all

hardware graphs

software graph software ordering

hw2.pt

hw1.pt

sw.pt

T3

 Figure 9. Hardware and software graphs generated by T3. The actual hardware and
software components can then be synthesized from these graphs.

Gain Add

IIDGaussian1 Send0

Send2FIR1Receive1
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the software-mapped nodes. It receives as its input, a netlist of all the nodes mapped to software.

This netlist, called the software graph, is generated byT3. In order to generate code, T5 also needs

the order in which the software-mapped nodes execute. This schedule is also generated byT3.

The goal ofT3 is to transform the high-level application description into software and

hardware graphs (based on the selected partition) that can then be synthesized into the final imple-

mentations and also to generate a schedule for the execution of the nodes. A separate hardware

graph is generated for each node mapped to hardware. A single software graph is generated for all

the nodes mapped to software. The software graph includes theSend andReceive nodes corre-

sponding to data transfers across the hardware-software interface. Figure 9 shows the outputs

generated byT3 for the graphsimple.sdf shown in Figure 8. The outputs ofT4 andT5 are shown

in Figure 10. More details of the partitioning and hardware and software synthesis tools can be

found in [6].

The Design Assistant thus contains a number of point tools for the various aspects of the

codesign process. We have shown just one possible design flow for codesign. Since the Design

sw.asm

 Figure 10. Silage and assembly code generated by the hardware and software synthesis tools.
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Assistant is implemented in the DMM framework, the design flow can be parameterized, run par-

tially, or entirely. The design methodology management framework takes care of all the book-

keeping, making it easy to efficiently explore the design space.

Suppose that the user wants to experiment with a different partitioning mechanism, say

use an automated partitioning tool. The parameters of thePartition tool (T2) are changed accord-

ingly and theRunAll command is reissued. In this case, all the subsequent tools then get invoked

automatically. Alternatively, the user might just be interested in the estimated throughput of the

new partition. In this case, the user can issue the commandRunUpto Partition, and only that tool

is invoked.

Suppose that the user wants to try out a different software synthesis strategy. The parame-

ters of theSoftware Synthesis tool (T5) can be set accordingly and theRun All command issued. In

this case, onlyT5 is invoked, since none of the other tools have live dependencies. The automated

dependency analysis and scheduling avoids unnecessary invocation of tools, which could other-

wise be time-consuming. The tool encapsulation mechanism also serves the purpose of relieving

the user from remembering mundane details such as where a tool resides or the command-line

arguments of a tool. In summary, our framework makes it possible to easily experiment with the

design methodology, tools, and constraints. The user no longer has to keep track of the logistics of

the design process, but can instead focus on the more creative aspects.

Note that this particular case study does not exhibit conditional flows unlike the multipro-

cessor example discussed in the paper. As mentioned earlier, though, DMM can handle condi-

tional flows. The multiprocessor example has also been implemented as an independent

environment using DMM [10].

6.0 Related Work

Design methodology management (DMM) as such is not new; traditional DMM systems
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are used quite extensively in the physical VLSI design process. The DMM systems used in the

physical VLSI design process focus primarily on data management (i.e., maintaining consistent

versions of data) [7] and tool management (i.e., invoking a user-specified tool after ensuring that

the preconditions for enabling it are satisfied) [11][12][13]. Commercial CAD frameworks such

as the Falcon framework [14] also assist in tool and data management. The NELSIS framework

[12][15] provides a systematic representation and management mechanism for data and tools

within a semantic database. CFI [16] defines standards for tool encapsulation and data models.

Recent efforts address the flow management problem. The MMS framework [17] focuses on dis-

tributed tool execution and multi-user environments. Some efforts approach the flow management

problem from an AI angle [18][19], where the methodology and firing rules are stored in a knowl-

edge-base and an inference engine determines the tool execution sequence. Yoda [20], a filter

design system, has a knowledge-base of predictors (estimators). Predictors are used to determine

the outcome of applying a particular tool and the results from such an exploration are used to con-

struct a design plan (similar to a script), with feedback from the designer. The generated design

plan is then automatically executed, where the actual tools are run. A trace-driven approach is

proposed in [21], where a sample design session (the sequence of tools run by the user) is saved

and future design sessions can be automatically controlled by following this trace.

We have attempted to extend some of these ideas to system-level design, where design

space exploration and automated flow execution become important. We focus on design flow

management. Our work bears some similarity with the CoDES [22] system. CoDES provides an

open architecture for the integration of commercial and proprietary tools. A graphical representa-

tion of a design flow is translated to an internal Petri net representation. This is analyzed to deter-

mine firing rules. A codesign manager invokes the tools based on these firing rules. The strength

in the CoDES system lies in modeling the design flow using well-established formalisms of Petri

nets. We have adopted a simpler and more intuitive mechanism for specifying design flows. Our

scheduler is a variant of a dynamic dataflow scheduler. It does not attempt to resolve nondetermi-
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nacies arising from a dynamic dataflow graph. Assuming the user takes the responsibility of spec-

ifying a well-behaved flow graph, our approach is expected to run faster.

7.0 Summary

The system-level design space is quite large. As the number of tools and design possibili-

ties increases, the design space explodes quite rapidly. Although a number of CAD systems for

system-level design are now emerging [23][24][25], most of them do not provide much support

for managing the complexity of the design process; they contain point tools and leave the man-

agement aspects to the designer. We believe that managing the design process plays as important

a role in system-level design, as do the tools used for different aspects of the design. To this end,

we have developed a framework that supports design methodology management. The design flow

is considered a part of the design itself.

In this paper, we have presented a framework that supports efficient management of the

design process, with emphasis on design flow management. This framework supports representa-

tion of design flows with conditional and iterative behavior and allows automated execution of the

design flows. The framework is implemented as the DMM domain within Ptolemy. Tools within

the DMM domain have easy access to the various simulation and synthesis mechanisms available

within Ptolemy. The scheduler in the DMM domain is called theDesignMaker; it automatically

schedules tools in a well-defined design flow. AlthoughDesignMaker derives its name from being

a “make” utility for designs, it is much more powerful than a “graphical”make utility. Specifica-

tion of iterations, hierarchy, and conditionals in the design flow, allowing optional inputs and out-

puts for tools, ensuring tool compatibility, and detecting parameter changes are some of the

additional features.

We have illustrated the use of this framework for systematizing the methodology in sys-

tem-level design with the help of a case study. In the case study, a complete codesign environment



References

Complexity Management in System-level Design 21 of 22

called Design Assistant, consisting of a number of point tools (such as tools for estimation, hard-

ware-software partitioning, cosynthesis, and cosimulation) can be managed by the DMM frame-

work, making it possible to efficiently explore the system-level design space.
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