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Abstract 

The single-stage scheduling problem to minimize the makespan of identical jobs on uniform parallel machines is 
known to be solvable in polynomial-time. We extend this work to consider multi-stage systems with flowshop config- 
uration. We show that the 2-stage problem may also be solved in polynomial-time and for the number of stages greater 
than two, the problem is shown to be NP-hard. We present a branch and bound procedure which provides an optimal 
solution to the 3-stage problem, and a fast heuristic procedure that is shown to provide good approximate solutions on 
sample problems. This heuristic is a natural extension of the 2-stage polynomial-time procedure. We develop theoretical 
bounds showing that the maximum deviation between the solution derived by the heuristic procedure and the optimal 
solution is bounded by the maximum processing time of a machine at the second stage, independent of the number of 
jobs and the processing times at the first and third stages. We also show that the heuristic provides an approximate 
solution bounded by a ratio of 1.75 to the optimal solution. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

It is common in manufacturing systems for a 
batch to consist of identical jobs that have similar 
processing requirements. We will consider the 
scheduling of multi-stage flowshops with identical 
jobs where each stage may have uniform parallel 
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machines. The objective will be to minimize the 
makespan, the completion time of the last job in 
the batch at the last stage. This configuration 
was motivated by a study of a garment manufac- 
turer. The garment in question was trousers, and 
the manufacturing process consisted of cutting 
the cloth, sewing, and attaching loops and zippers. 
The operations were performed by teams of 
seamstresses, where each team performed one op- 
eration. The operators within each stage differed 
in productivity, but units of trousers in the same 
batch were identical. This configuration is also ap- 
plicable to some capital intensive industries such 
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as semiconductor manufacturing where it is com- 
mon to find newer, more modern machines run- 
ning side by side with older, less efficient 
machines which are kept in operation because 
of high replacement cost. In this case, the different 
machines could be processing identical products. 
The problem is then to determine the schedule 
of each job on the machines to minimize the 
total time to complete the batch of identical 
jobs (makespan). 

Our problem can be formally stated as follows. 
A set of independent jobs J_G = 1, , n) have to 
be scheduled on a set of parallel machines 
Mik(i= l,..., mk) at each operation (stage) k for 
k = 1,. . . , q. The processing time of a job on ma- 
chine A4ik (i = 1, . . . , mk; k = 1,. . . , q) iS pik. Note 
that the processing time is only a function of the 
machine processing the job and we make no as- 
sumptions regarding the relationships among the 
processing times of machines at the same stage 
or across stages. We denote cjk as the completion 
time of job J/ at stage k, j= l,...,n and 
k = 1,. . , q. The makespan C,,, = maxi,1 ,..., nCjq. 
We define C&, as the optimal makespan. We use 
the classification scheme presented by Graham et 
al. (1979) to formally state the problem as 
F,(QI,..., Qq)IPj = 1lCmax. 

Multi-stage flowshops with identical parallel 

2-stage problem is also polynomial. With the num- 
ber of stages greater than two, the problem is 
shown to be NP-hard. For the 3-stage problem, 
an optimal solution procedure is developed based 
on decomposing the problem into three single- 
stage problems where the first and third stage pro- 
blems may be solved in polynomial-time and the 
second stage problem, being NP-hard, is solved 
by a branch and bound procedure. We then theo- 
retically and experimentally compare a fast poly- 
nomial heuristic solution procedure with the 
optimal solution. The heuristic is based on solving 
a series of single-stage problems. We show that the 
maximum deviation between the solution derived 
by the heuristic procedure and the optimal solu- 
tion is bounded by the maximum processing time 
at the second stage, independent of the number 
of jobs and the processing times at the first and 
third stages. We also show that the heuristic pro- 
vides a 1.75approximation to the optimal solu- 
tion, meaning that in the worst case, the ratio of 
the heuristic solution to the optimal solution is 
bounded by 1.15. We conclude the paper by gener- 
alizing the heuristic procedure to any arbitrary 
number of stages. 

2. The single-stage problem 
machines at each stage are often referred to in 
the literature as hybrid j?owshops (Gupta, 1988). 
Whereas our interest is in the identical job and uni- 
form parallel machine environment, the literature 
on hybrid flowshops has focused on non-identical 
jobs and identical parallel machines. The problem 
of scheduling non-identical jobs on identical 
parallel machines to minimize the makespan is 
NP-hard even for a single-stage (Garey and John- 
son, 1979). For an excellent review of the single- 
stage problem the reader is referred to a paper 
by Cheng and Sin (1990). With more than a 
single-stage, the research has focused on develop- 
ing heuristics (see e.g., Guinet and Solomon, 
1996; Gupta Tune, 1994; Lee and Vairaktarakis, 
1994; Gupta, 1988). 

We review the main single-stage results and ex- 
tend these results to introduce additional proper- 
ties of the single-stage problem that will be used 
in solving the multiple-stage problem. Dessouky 
et al. (1990) proposed an O(n log m) priority 
queue procedure for solving the single-stage pro- 
blem Qb, = II&,,. The procedure is based on 
the earliest completion time (ECT) rule. Since the 
jobs are identical, the rule is to pick a job in se- 
quential order and schedule it on the machine that 
completes it the earliest. This procedure returns 
the job completion times in non-decreasing order, 
Next, we state two key properties of this proce- 
dure, the first of which is proven by Dessouky et 
al. (1990) and the second follows directly. 

Lawler et al. (1982) show that the l-stage pro- Property 1: The ECT rule will provide a sche- 
blem to minimize the makespan with identical jobs dule in which the minimality property of comple- 
and uniform parallel machines may be solved in tion times holds. This property asserts that no 
polynomial-time. In this paper, we show that the improvement can be obtained on the completion 
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time of the jth job in the sequence, where 
j= l,...,n. 

Property 2: The difference between the comple- 
tion times of the last jobs on any two machines is 
bounded by the maximum processing time of 
any machine. 

Dessouky et al. (1990) also present an 0( n log n) 
procedure which is analogous to the ECT rule in 
reverse time in order to solve the case of unequal 
release times to minimize the makespan 
(Qlrj,pj = II&,). The procedure is based on the 
latest start time (LST) rule and is summarized as 
follows. Assume an arbitrary due date d by which 
all jobs must be completed. Let the latest start time 
of the jth job to start which allows the completion 
of all jobs by time d, be Sj, j = 1,. . , n. The job to 
machine assignments are determined by picking 
the jobs in sequential order and scheduling the se- 
lected job on the machine that starts processing it 
the latest. Note that this procedure returns the lat- 
est start times (St, . , Sn) as an ordered set. The 
values of rj, j = 1,. . . ,n, are then matched in 
non-decreasing order with the latest start times. 
The jobs are then scheduled forward with consid- 
eration of their release times, rj, and their machine 
assignments to determine their completion times, 
Cj, j = 1,. , n, and C,,,,, = maxj,] _..., ,,Cj. We 
now state three key properties of this procedure, 
where the first two properties make use of the sym- 
metry between the ECT and LST rules and the 
third follows intuitively. 

ofs times. The availability time, ai, is the earliest 
time machine M,, i = 1,. . . , m, can start processing 
any job. Conversely, the off time, f;, is the latest 
time machine M; can finish processing any job, 
that is, machine M, is unavailable for processing 
after time f;. In using the ECT rule to solve 
QIPj = llGmx, initially ai = 0, i = 1~ ~ m, and 
they are updated every time a job is assigned to 
a machine. Similarly, in using the LST rule to solve 
QIci> Pj = llGnax, initially f;=d, i=l,..., m, 
and they are updated every time a job is assigned 
to a machine. 

Since, during the application of the ECT rule, ai 
is the earliest completion time of the last job to fin- 
ish processing on machine Mi, we extend Property 
2 to Property 6 as follows. 

Property 6: During any step of ECT, Ia;- 
ait I < maxlXl ,,.., mp~ for any i and i’. 

Property 7: Under ECT, the machine alloca- 
tions are invariant under the transformation 
a, +- aj + b for all i and for any b. 

The analogous properties for 
following: 

LST are the 

Property 8: During any step 
.fi~I < maxI= ,..., mp/ for any i and i’. 

of LST, Ifi- 

Property 9: Under LST, the machine alloca- 
tions are invariant under the transformation 
f; +- fi - b for all i and for any b. 

Property 3: Given an arbitrary due date, d, the 
LST rule will provide a schedule in which the max- 
imality property of latest start times holds. This 
property asserts that no increase can be obtained 
in the latest start time of the jth job in the se- 
quence, where j = 1,. . . , n. 

Property 4: The difference between the latest 
start times of the first jobs on any two machines 
is bounded by the maximum processing time of 
any machine. 

Property 5: An optimal solution to 
Qlrj,pj = 1lGnax exists for which all the jobs on a 
machine are sequenced in a non-decreasing order 
of their release times. 

We now state two new problems that will 
be used in solving the multiple-stage problem. 
Let problem Qlai,Pj = llc,,,,, be the single-stage 
identical jobs uniform parallel machine problem 
to minimize the makespan where each machine 
is initially available for processing at time cli, 
i = l,...,m and let problem Qlf;,Uj,pj = l\C’,,, 
be the case where the job release times are unequal 
and the machines are unavailable for processing 
aftertimef;, i= l,...,m. 

Lemma 1. Application of the ECT rule to solve 
QIai, PJ = 1lGmx will yield the minimality property 
for the completion times of all jobs. 

In order to state two new single-stage problems Proof. No reduction in the completion time of any 
that will be used in the multiple-stage problem, we job is achieved by a reassignment to another 
introduce the concepts of machine availability and machine. 0 
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Lemma 2. Problem Q[f;, r,,pJ = 1 I&,,, is solved by 
the LST rule. 

Proof. Problem Qlj,, rJ,pj = 1 IC,,, is exactly 
symmetrical to Qlu;,ej,pj = llC,,, where the 
machines are initially available at times a, and 
the jobs have a deadline at times ej, by which they 
must be completed. For simplicity, we will instead 
prove that the ECT rule solves the problem 
QluiI e,i,pj = 1 I&,,. According to Lemma 1, the 
ECT rule provides a solution to the problem 
Qlai,pi = 1 ICmax which satisfies the minimality 
property with respect to the completion times. 
Therefore, problem Qlui,ej,p, = llC,,, has a 
feasible solution if and only if the optimal 
completion times of problem Qlar,pj = 1 I&,, 
are feasible with respect to the deadlines ej. 
Moreover, if problem Qlai, ej.pj = llC,,, is fea- 
sible then the optimal solution to Qla 
P/ = WAnax is also optimal to the former problem 
where the optimal completion times of the 
latter problem are matched to the deadlines in 
non-decreasing order. Cl 

3. The two-stage problem 

We first state two lemmas that form the basis of 
the solution procedure to the 2-stage problem. 

Lemma 3. There exists un optimal solution (C$, 
j= l,..., n and k=l:.. . , q) of the problem 
&(QI 3 . . . , Qy) lpj = 1 /C’,,, such thut CT,, j = 
1, . , n, is optimul to the problem Q1 Ipi = 1 I&,,,. 

Proof. This follows directly from the minimality 
property of solutions derived by the ECT proce- 
dure for the single-stage problem. This property 
asserts that no reduction can be obtained in the 
completion time of the jth job in the sequence, 
wherej= l,...,n. 0 

Lemma 4. In uny optimul solution (CTk, j = 1, ~ n 
and k = 1. . , q) of the problem F4(Ql, . , Q,) 
IP, = 1 IGKIX the schedule of the lust stage <CT’4 for 
j= I,... , n) is an optimul solution to the single- 
stage problem Q4 Irj4,pj = 1 IC,,,,, with release times 
r Iy = C&,. j= l,..., n. 

Proof. Regardless of how all the previous stages 
are scheduled, the schedule of the last stage, q, has 
to meet the minimum C,,,,, criterion. The only 
constraint is the job release times, rjq, which are 
given by the jobs’ completion times at the 
preceding stage, Cj,,_, . ??

The following algorithm, referred to as 2-Stuge, 
may be used to solve Fz(Ql, Q2) Ipi = 1 IC,,,. 

Algorithm 2-stage 

1.0 

2.0 

3.0 

Use the ECT rule to solve the first stage as 
QI IP, = 1 ILax. The procedure returns the 
completion times Ct I, , C,I . 
Use the job completion times of the first stage 
as release times of the jobs for the second stage 
(i.e., rj2 = Cjt ,j = 1, . . . , n). Apply the LST 
rule to solve Q2 Irj2 ,pj = 1 I C,,,,, . The procedure 
returns the job to machine assignments. 
Schedule the jobs forward to compute the 
completion times at the second stage, 
Cj2, j=l,..., n, taken into consideration 
their release times, rj2, and their machine as- 
signments from Step 2. The optimal make- 
span, C$,, , is the largest completion time of 
any job at the second stage. 

Algorithm 2-stage is of complexity O(n log m + 
n log n) since the single-stage problem solved in 
the first step is O(n log m) and the single-stage 
problem solved in the second step is O(n log n) 
(Dessouky et al., 1990). The complexity of 
the 2-stage problem is summarized by the 
following theorem. 

Theorem 1. F2 (Ql , Q2) Ipj = 1 I C,,, may be solved in 
polynomial-time. 

Proof. The validity of Algorithm 2-Stage follows 
from Lemmas 3 and 4. ??

4. The three-stage problem 

We first show that the 3-stage problem is NP- 
hard and then present an algorithm that optimally 
solves F3 (Q1 , Q2, Q3) (pj = 1 I C,,, making use of the 
(partial) optimality conditions stated in Lemmas 3 
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and 4. We then give a specialization of the 3-stage 
problem which may be solved in polynomial-time. 

Theorem 2. ProbEem F3 (Ql , (22, Q3) lpj = 1 IC,,,,, is 
NP-hard. 

Proof. We show that the 3-stage problem is NP- 
hard by showing that it is a generalization of the 
Numerical 3-Dimensional Matching (N3DM) 
Problem which is NP-complete in the strong sense 
(Garey and Johnson, 1979, pp. 224). 

Instance: Disjoint sets W, X, and Y, each con- 
taining m elements, a size s(a) E Z+ for each ele- 
mentaEWuXuY,andaboundBEZ+. 

Question: Can W UX U Y be partitioned into m 
disjoint sets A 1, AZ, . , A, such that each Ai con- 
tains exactly one element from each of W, X, 
and Y and such that for 1 d i d m, CaEA, s(a) = B? 

We will assume that CnEWUXUY$a) = mB. The 
problem is still NP-complete with this assumption. 
Consider the general N3DM problem. We use its 
data to specialize Fs(Ql , Q2, Q3) Ipj = 1 IC,,, in the 
following way. Let the members of the sets W, X, 
and Y represent the machines at stage 1, 2, and 3, 
respectively. Suppose K = CoEWUXUYs(a) $1 and 
n = m. For a E W, let pa.1 := s(u) + K. Similarly 
for a E X, let pa,2 := s(a) + K and for a E Y, let 
pa,3 := s(a) + K. 

We show that the answer to F3(Qt, Q2, Q3)lpj = 
1 I G,x is exactly B + 3K if and only if N3DM has 
an answer in affirmative. With the above data, in 
the optimal schedule, no two jobs will be scheduled 
on the same machine. The proof is by contradic- 
tion. Suppose that in a feasible schedule, jobs k 
and j use the same machine at the first stage and 
k precedes j. The l-stage completion time of job j 
would be at least 2K. Hence, the 3-stage comple- 
tion time of job j cannot be less than 4K. But we 
can easily improve this schedule by not using any 
machine twice. Just schedule job number k on 
the kth machine at each stage. This way the max- 
imum completion time of any job does not exceed 
Cf=, max,,sIp(a) which is strictly less than 4K. We 
can similarly handle the other two cases when 
some machine at stage 2 or 3 is being used more 
than once. Therefore, any optimal schedule to 
the minimum makespan problem gives us a 
3-dimensional matching. 

Since in any optimal schedule all machines are 
used exactly once, the average completion time 
of a job is B + 3K. Hence, the optimal makespan 
is bounded below by B + 3K. Moreover, it is equal 
to B + 3K if and only if the completion time of 
every job in an optimal schedule is exactly 
B + 3K which immediately translates to a 3-di- 
mensional matching with the desired properties. 
This result is equivalent to showing that problem 
fi (Ql , Q2, Q3) IPj = 1 I Cm,, is NP-hard. 0 

Making use of Lemmas 3 and 4, the 3-stage 
problem may be decomposed into four main steps 
with the first three steps each solving a single-stage 
problem. We first state the algorithm and then 
prove that it provides an optimal solution to 
F~(QI,Q~,Q~)IP, = l/Gax. 

Algorithm 3-stage 

1.0 

2.0 

3.0 

Use the ECT rule to solve the first stage as 
Qllpj = 1lGnax. The procedure returns the 
completion times Cr 1, . , Cnt. 
Assume an arbitrary due date d by which all 
jobs must be completed by in stage 3. Apply 
the LST rule at the third stage. The procedure 
returns an ordered set of latest start times, 
63, . . , &3). 

For the second stage, use the job completion 
times of the first stage as release times of the 
jobs for the second stage (i.e., rj2 = Cjr,j = 
1, . . . , n) and the latest start times of the third 
stage as assignable due dates for the second 
stage (i.e., dj2 = Sj3,j = 1, . , a). Assignable 
due dates are a set of designated points in time 
which are arbitrarily assigned by the scheduler 
to the set of jobs rather than given as part of 
each job’s input parameters. Let the assign- 
ment be given by the permutation rr = (X 
(l), . ,x(n)) where n(j) is the position of 
job Jj among the due dates. The due dates 
are assigned to the given release times in such 
a manner as to minimize the maximum 
lateness, L,,,, where 

L max = max (Cj2 - 4j),2) 
J=l.....,l 

We denote the second stage problem as 
&(rj2,PJ = 1, dj2 assknlLmax. 
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4.0 Schedule the jobs forward to compute the 
completion times at the third stage, Cjs, 
j = 1, . . . , n, taken into consideration their re- 
lease times, rj3, from Step 3 and their machine 
assignments from Step 2. The optimal make- 
span, CZ,,, is the largest completion time of 
any job at the third stage. 

Theorem 3. Algorithm j-Stage optimally solves 
fi(Ql, QL Q&, = 1lGnax. 

Proof. Step 1 follows from Lemma 3, as applied to 
stage 1. Step 2 together with Step 4 is an 
application of Lemma 4 to stage 3. In Step 2, the 
latest start times of the jth job to start at the third 
stage, Sjs, j = 1,. , n, are obtained. In Step 4, the 
values Of rj3, i= l,..., n, are matched in non- 
decreasing order with &~),s. The jobs are then 
scheduled forward with consideration of their 
release times, rjs, to determine their completion 
times, C,s, j = 1, . . . , n, and C,,, = maxj,t ,.._, n Cjs. 
TO determine rj3, define Aj = rjs - S,b),s and 
A = maxj,t.,,.,, Aj. Note that C,,, = d + A. There- 
fore, it becomes obvious that the objective for 
stage 2 is to find 

min A = min max (rjs - &b),3) 
j=l,...,n 

= minjzy,Tn(Cj2 - Sdj).3). 
, , 

Since the latest start times at the third stage are ef- 
fectively due dates on the second stage, then 
&b),z = f&b),3 and Cl2 - &(~,3 = Cj2 - hb),z = Lj2, 
the lateness of the job at the second stage. Thus, 
minimizing C,,, at the third stage requires mini- 
mizing I,,,, at the second stage given the release 
times r12,. . , r,,2 which are simply the completion 
times at the first stage Ctt , . . . , Cnt . Therefore, 
the second-stage problem becomes Q21rj2,pj = 1, 
dj2 assignlLm,,. 0 

Since Fs (Qt , Q2, Qs) bj = 1 IC,,, is NP-hard and 
Steps 1, 2, and 4 of Algorithm 3-Stage may 
be solved in polynomial-time, Qlrj,pj = 1, dj 
assignll,,, must also be NP-hard. In Section 6, 
we present a branch and bound procedure to solve 
Qlrj,pj = 1, dj assign)L,,,. 

When the processing times of all the machines 
are equal, Qlrj,pj = 1, dj assignll,,, may be solved 

in polynomial-time by first calculating the comple- 
tion times using the ECT rule with consideration 
of the release times. Then, the jobs are sorted in or- 
der of non-decreasing due dates and matched with 
the non-decreasing completion times. This proce- 
dure is an extension of Jackson’s earliest due date 
rule (Jackson, 1955) for minimizing the maximum 
lateness on a single machine. This result is sum- 
marized in the following corollary. 

Corollary 1. Fj(Ql, Q2, Qs) Ipj = 1 I&,, with the 
processing times of the machines in the second stage 
equal may be solved in polynomial-time. 

5. Heuristic solution of the 3-stage problem 

We define next a polynomial approximation al- 
gorithm to solve the 3-Stage problem. We refer to 
this procedure as ECT-LST since this procedure 
makes use of both the ECT and LST rules. This 
procedure is similar to Algorithm 3-Stage except 
for Step 3, since Steps 1 and 2 guarantee optimal 
solutions to Stages 1 and 3 in polynomial- 
time, as stated in Lemmas 3 and 4. In Procedure 
ECT-LST, Step 3 of the optimal solution to 
Q2lrj2,pj = 1, dj2 assignlL,ax is approximated by 
first solving Q2 1rj2,pj = 1 I&,, and assigning dj2 
according to non-decreasing Cj2. This heuristic is 
similar to solving the first two stages of the 3-stage 
problem as a 2-stage problem and then solving the 
third stage as a single-stage problem with unequal 
release times using the LST rule with the comple- 
tion times at the second stage used as release times 
for the third stage. We now develop theoretical 
bounds on the heuristic solution and in Section 7 
we experimentally compare the effectiveness of 
the heuristic solution on sample problems. We 
show that the maximum difference between the so- 
lution derived by the heuristic procedure and the 
optimal solution is bounded by the maximum pro- 
cessing time at the second stage, independent of 
the number of jobs and the processing times at 
the first and third stages. We also show that the 
heuristic provides 1.75-approximation to the opti- 
mal solution. Before presenting the proofs, we first 
introduce some definitions. 
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Now, let Cik, C2k,. . . , C,& be the completion 
times of the jobs and let tik, tzk, . , tnk be the or- 
dered completion times at stage k, k = l! 2, under 
Procedure ECT-LST applied to a total of n jobs. 
Also, let ?jk be the minimum makespan of the pro- 
blem QklYlk,p[ = IJC,,,,, with a total of j jobs, 
where the release time of a job is its completion 
time at the previous stage. The value of jjk repre- 
sents the minimal possible value of thejth comple- 
tion time at stage k, given the completion times of 
the jobs at stage k - 1. The sequence (tik, ,&k) 
is thus a conditional minimal vector which may 
not be a feasible solution. Note that t,,2 = t,,~. 

From the minimality property at stage 1, 
7jt = tjl, for all j. For stage 2, tj2 < t/2, for all j. 
Let 6k be the maximum deviation of the comple- 
tion time of any job from the conditional minimal- 
ity for k= 1,2. 

6k = F:t(tjk - jjk) for k = 1,2, 

61 is zero because of the minimality property. How- 
ever, 62 can be positive, playing an important role 
in evaluating the performance of heuristic ECT- 
LST as indicated by the following proposition. 

Proposition 1. Suppose that Ck,, is the makespan of 
the schedule provided by Procedure ECT-LST and 
C,#&, is the optimal makespan, then Ci,,- 
c;,, < 82. 

Proof. It is clear that a sufficient condition for the 
optimality of CL,, = t,,3 is that the job Jg with the 
largest L,,, = maxj $ n (tjz - dj2) = tg2 - dg2, as gi- 
ven by Step 3 of procedure ECT-LST, have the 
minimum possible tg2. This is true since the values 
of dj2, j = 1,. . . ,n, are the largest due dates 
possible given by Step 2 of the procedure. A 
stricter condition is that all tj2 are the minimum 
possible, that is, tj2 = tj2, j = 1,. . , n. Thus, the 
maximum departure from optimality of CiaX, 
ch -co max max, is bounded by the maximum devia- 
tion Of tj2 from t/z, j = 1, , n. 0 

We now have an instrument to measure the 
quality of the heuristic solution, i.e., how far it is 
from the optimal solution. If desired, we can com- 
pute the size of this deviation, 62, by solving n 2- 
Stage problems. We next establish a more absolute 

bound on f2 in terms of the processing times. In 
the following theorem we show that this quantity 
is bounded by the processing time of the slowest 
machine of the second stage (call it prax). 

Theorem 4. d2 < py”, independent of the number of 
,jobs. 

Proof. Without loss of generality, suppose that all 
jobs Ji, . ,Jn are indexed in order of their 
completion times at the first stage. For any j < n, 
jobs Jt , . . . , JJ may not necessarily be the firstj jobs 
to complete at stage 2. We show that the maximum 
completion time of the jobs J1, , Jj at stage 2 
(call it t’), does not exceed the quantity tjz by more 
than py . Since tj2 < t’, the result will follow. 

The second stage release times of the first j jobs 
are the same independent of the total number of 
jobs to be scheduled. The only difference arises 
while performing the LST procedure on the second 
stage. When there are only j jobs to schedule, we 
start the LST rule with all the second stage ma- 
chines having the same off time. On the other 
hand, when there are n > j jobs to schedule, the 
off times of all the machines may not be identical 
when we reach the jth job. We show that t’ - ij2 
is no more than the difference between the ma- 
chines’ off times, which is bounded above by fl” 
(Property 8). 

While scheduling job j, suppose the off time of 
machine M, is A!. Note that the number of unas- 
signed jobs left at this iteration is j (recall that in 
the LST rule, jobs are scheduled in reverse order). 
According to Property 9, assuming that mini 
= l,..., mzf;’ = 7j2 does not affect the optimal as- 
signment of these remaining jobs to the machines. 
With j jobs, any feasible solution to the problem 
QlJ;: = tjz, ~/z,pl = 1 I&,,, is also feasible for the 
problem Qlf; = j:, rl2,pI = 1 I&,,, where f! B ij2 
for all i, since theh constraints are more relaxed. 
Since the former problem has a feasible solution, 
there exists a feasible solution to the latter pro- 
blem. Therefore, according to Lemma 2 the latest 
start times provided by the LST rule are optimal 
for the problem Qlf; = f;‘, rj2,pj = 1 I&,,. Hence, 
max/=i,..., j(S2 +p,(r).z) = maxi=i,...,m,V;7y as all 
the machines finish processing by maxi,i,...,mz K!) 
where Mgcl),* is the machine processing the Ith 
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job, and t’ is no greater than max,=i,,..,(&+ 
J+(~),~), as the latter represents the latest completion 
times. Therefore for any j = 1, . , n, tj2 - ij2 < 
t’ - jj2 d mW=l...., j(sj2 + &1),2) - mini=4 ,.... mzCf3 
= mw=l,...,,z (jj/) - mini,, ,.._, ,,,* cr,‘) d pp”“, where 
the last inequality follows from Property 4. 0 

The above results directly imply the following 
corollary. 

Corollary 2. Zf CkaX is the makespan of the schedule 
provided by Procedure ECT-LST, C&, is the 
optimal makespan and py is the processing time 
oj’the slowest machine of the second stage, then: (i) 
C!&X - c;,, <e, and since C,&, + 00 as 
n -9 3;), (ii) CkaX - C&,/C&, -+ 0 as n --f cc. 

One question which remains unanswered is how 
good an approximation does Procedure ECT-LST 
provide, i.e., what is the upper bound on the ratio 
Cl!LJC&. for any n. According to the above cor- 
ollary, this ratio goes to unity for large n. We 
would like to find out how large can this ratio be 
for any n. The following theorem proves that the 
heuristic provides a 1.75approximation. 

Theorem 5. Procedure ECT-LST is a 1.75approx- 
imation algorithm for the 3-stage problem. 

Proof. We wish to find an upper bound on the 
quantity C&JC&,. Suppose that there are a total 
of n jobs. Then, 

We prove that &/t,2 d 314. If t,2 z 4/3fl, then 
the inequality follows because 62 < fl according 
to Theorem 4. Therefore, we assume that 
tn2 < 4/3p;“aX which immediately implies that the 
machine with processing time py is used at most 
once at the second stage. In fact, we can assume 
that it is used exactly once because if it is not used 
at all, then it can be removed from the problem. 
Since the machine with processing time fl is 
used once, 

Proof is by contradiction. Suppose that 
62 > 3/4t,2. Specifically, let t,2 - 7,~ > 3/4&l for 
some j. Therefore, the completion time of the jth 
job is at least 3/4t,2. Consider the second stage 
machine with processing time pi2. The number of 
jobs that this machine processes after tj2 is at most 
[(t,,z - tj2)/pizJ + 1, while the total number of jobs 
that this machine processes is at least Lfl/pi2J. 
The additional one unit represent the job which 
may start before tj2 but finishes after t,2. Define 
n’(i) := max(0, [pt”“lPiZJ - I(&2 - t52)lpi2J - 1). 
At least n’(i) jobs are completed before tj2 on 
the machine with processing time pi2. Since 
Cy!, n’(i) 6 j, some machine with processing time 
pi2 will be used at least max( 1, n’(i)) times when the 
total number of jobs to be scheduled isj instead of 
n. Refer to this machine as Mic. The second stage 
makespan is t,,Z. 

tn2 3 ij2 + S2 + tn2 - t/2 

2 pi’? max( 1, n’(i’)) + 62 + t,2 - tj2 

> pi’2 max( 1, n’(i’)) + 3/4t,2 + pi’2 
tn2 - fj2 

i 1 ~ 
Pi’2 

= 3/4t,2 + pi’2 max ([YJ fl, 

> 3/4t,2 t-pi’2 max (I- [Ej -1) 

> 3/4&Q + 1/3p!J= 

> 3/4tn2 + 1/3(3/4t,2) = tn2. 

The second strict inequality comes from the fact 
that for any real number f >, 1, (l/f) max( 1, 
if] - 1) > l/3. H ence, the above calculations 
conclude that tn2 > t,,2, a contradiction. Hence, 
s2 < 3/4&l. 0 

6. Branch and hound procedure 

The only computationally difficult step of Algo- 
rithm 3-Stage is Step 3 which solves Q(rj,pj = 1, 
dj assignlL,ax. In this section, we present a branch 
and bound procedure to solve Q(rj,pj = 1, dj 
assignll,,,. We note that the single machine se- 
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quencing problem to minimize the maximum late- 
ness with non-identical jobs given release times and 
designated due dates is also NP-hard (Lenstra, 
1977), and there is a significant amount of work 
in solving this problem based on branch and 
bound procedures (e.g., McMahon and Florian, 
1975; Larson et al., 1985). However, we are not 
aware of any prior work on Qlrj,pj = 1,dj 
assign ILmax. Besides the importance of solving 
Qlrj,pj = 1, dj assignlLmax for the 3-stage problem, 
this problem is interesting in its own right as the 
assignable due dates can be viewed as a set of de- 
signated points in time where deliveries must be 
made and the assignment to the jobs must be made 
by the scheduler rather than given as part of each 
job’s input parameters. This freedom of assign- 
ment provides the scheduler with a greater latitude 
in delivering identical products against promised 
due dates to minimize a function of the lateness 
of the jobs. 

minimality property. Thus, Lmax(o) is optimal for 
the problem with rj = rmin, Jj E R. Since this 
problem is a relaxation of the same problem with 
original rj, Jj E R, then Lmax(g) d L&,(a). 0 

We now present a lower bound for 
Qlrj,pj = 1, dj assignlL,ax. Let CJ be a partial sche- 
dule of jobs on the machines, R be the set of jobs 
not in g, and r,i, = minJ,ER rj. Define the lower 
bound given the partial schedule CJ as L_,,,(a). 
Set the availability time aj of machine 
A4i(i = 1,. . , WI) to the completion time of the last 
job scheduled on Mi in 0. Given a partial schedule 
0 of jobs on the machines, the following procedure 
develops a complete schedule. 

The solution method follows a branch and 
bound procedure, with each node in the branching 
tree representing a partial schedule CJ = (ot, . 1 
o,,J, where or (i= l,... ,m) is the partial schedule 
on machine 44,. The root of the tree represents 
g = 0. A node at level I in the branching tree repre- 
sents the allocation of jobs J,, . . . , J/. Different 
nodes at this level represent allocations to different 
machines. Branching from a node represents the al- 
location of job J, E R at the end of some gi, i = 

1 ‘..., m. Property 5 implies that the choice of job 
Ji from R in a non-decreasing order of rj will not 
preclude reaching an optimum solution. Hence, 
we index jobs in R in a non-decreasing order of rj. 
At level Z, R = (J/+1,. . , Jn). Given a node repre- 
senting c at level I with machines availability times 
ai, i = 1, . , m, the following procedure computes 
the lower bound on the branch node of machine AI,. 

1.0 Set$=rl,j=I+l,..., n. 
2.0 Set aY = gir y # i, and oi = oi U J/+1. Update 

ai to the completion time of Job J/+1. Refer 
to this allocation as oi. 

3.0 Compute the lower bound &,,ax(~i) by solving 
Qlui,rj = rl,pj = llC,,, optimally using the 
ECT rule. 

1.0 Set rj = rmin,Jj E R. 
2.0 Solve the scheduling problem of jobs in R 

as the equal release time problem of Qlui, 
rj = rmin,pj = 1 I&,, using the ECT rule. 

3.0 Assign dj to Jj, j = 1, . . . , n, according to a 
non-decreasing order of Cj in the complete 
sequence, and compute Lj = Cj - d,, j = 
1 >“‘> n, and &,(c) = maxj=l,...,, Lj. 

A list of open nodes is maintained and a node is 
closed if all its branches have been generated or its 
lower bound exceeds an existing feasible solution. 
Note that the maximum number of nodes that 
the branch and bound procedure will evaluate 
is O(m”). 

Let L&,,(o) be th e value of L,,, given by the opti- 
mal solution of QlUi, rj,p, = 1, dj assignlL,ax 
given 0. 

Proposition 2. Lmax(a) 6 L&,,(c). 

The initial feasible solution (upper bound) for 
the branch and bound procedure is the solution 
generated by Procedure ECT-LST. We now pre- 
sent a sufficient condition to test whether the exist- 
ing feasible solution is optimal in the branch and 
bound procedure and a pruning strategy to drop 
nodes which cannot lead to optimal solutions. 

Proof. From Lemma 1 the solution of Proposition 3. Given a feasible schedule in which the 
Qlai,pj = 1 I&,, given 0 is optimal and has the third stage job to machine assignments are done 
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according to the LST rule (as per Step 2.0 of 
Algorithm 3-Stage), tf there exists j such that the 
completion time of the job which is jth to finish at the 
second stage equals both the jth second stage 
minimum completion time and the jth third stage 
latest start time, then the schedule is optimal. 

Proof. The optimal third stage job to machine 
assignments are independent of the second stage 
schedule. Therefore, we can determine which third 
stage machine should process the jth job to 
complete at the second stage independent of the 
second stage schedule. Call this machine M(j). 

If tj2 = S/2, it implies that machine M(j) is 
the bottleneck machine and the off-time of M(j) 
is equal to the makespan. The only way to re- 
duce the makespan is to reduce the latest start 
time, Sj2. However, tjz = ij2 according to the as- 
sumption, implying that tj2 cannot be reduced 
any further. Therefore, the current schedule 
is optimal. 0 

The basic pruning strategy is the traditional 
strategy based upon lower bounds used in branch 
and bound procedures. The following self-evident 
proposition provides a basis for another pruning 
strategy to drop offspring nodes before lower 
bounds are computed. 

Proposition 4. There exists an optimal schedule such 
that at any time during the second stage an un- 
scheduled job with the earliest release time is not 
scheduled on any machine which becomes available 
after the job’s completion time on any other machine. 

The above proposition dictates that at every 
node, we need to branch on only those machines 
which become available before the earliest comple- 
tion time of the job being considered. 

7. Numerical experiments 

We experimentally compared the effectiveness 
of solutions generated by Procedure ECT-LST 
(heuristic solution) with the optimal solutions gen- 
erated by Algorithm 3-Stage. Since the number of 
nodes to evaluate in the branch and bound 

procedure is O(m”), we tested the effectiveness of 
the heuristic on different combinations of the num- 
ber of machines at the second stage and the num- 
ber of jobs. The values tested for the number of 
jobs were 5, 10,25,50, and 100 and for the number 
of machines at the second stage were 2, 5, 10, and 
15. The processing time of each machine at each 
stage is sampled from a uniform random number 
from 1 to 100. We set the number of machines at 
the first and third stages equal to the number of 
machines at the second stage because if there is a 
clearly defined bottleneck stage, the 3-stage pro- 
blem essentially reduces to a 2-stage problem. 
Under this situation, the heuristic performs extra- 
ordinarily well. Furthermore, having a clear bottle- 
neck stage is a situation which industry tries to 
avoid. Since it is desirable to test the heuristic on 
reasonably hard problems, we restrict our experi- 
ments to the case where there is no apparent bottle- 
neck stage. This case is when the number of 
machines at each stage are equal. We have earlier 
proved that this special case is also NP-hard. 

A depth-first branching strategy was used for 
the branch and bound procedure with the offspring 
nodes generated in order of the machine’s proces- 
sing time. This branching strategy was used be- 
cause of its minimal storage requirements and it 
consistently outperformed other branching strate- 
gies (e.g., breadth-first and smallest lower bound). 
We stopped the branch and bound procedure after 
100,000 nodes were evaluated so that many experi- 
ments could be performed. The run-time of evalu- 
ating one node in the branch and bound procedure 
on a SUN SPARCsystem 600 was on the average 
0.0107 CPU second. 

For each number of machines at the second 
stage and number of jobs combination 30 random 
samples were generated. Table 1 shows the results 
of the experiments. This table lists the number of 
times an optimal solution was found out of the 
30 experiments, the number of times the heuristic 
procedure gave the optimal solution out of the 
30 experiments, the average number of nodes eval- 
uated in the branch and bound procedure to ob- 
tain an optimal solution, the average ratio of the 
heuristic solution over the optimal solution (i.e., 
Ck,,/C&) if th e a 1 tt er is found, and the average 
ratio of the absolute bound over the heuristic 
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Number of Number Optimal Heuristic Average node C dnmaxlComaxd do,,, + 82 I@&,’ 6”,,, + 621 Pm,,f 
machines of jobs found a optimal b 

2 5 30 21 0.6 1.0074 1.043 1 _ 
10 30 21 2.6 1.0057 1.0358 _ 
25 29 23 3338.8 1.0028 1.0196 1.0029 
50 30 24 12.0 1.0018 1.0117 _ 

100 30 23 13.8 1.0010 1.0069 _ 

5 30 14 30.1 1.0157 1.0719 _ 
10 29 14 3360.2 1.0275 I .0898 1.1340 
25 29 13 3406.3 1.0121 1.0608 1.0586 
50 29 13 3451.9 1.0066 1.0367 1.0417 

100 29 12 3478.0 1.0042 1.0204 1.0258 

5 30 19 17.4 1 .0180 1.0720 
10 30 II 711.7 1.0302 1.0994 _ 
25 27 12 12650.2 I .028 1 1.0938 1.1386 
50 25 7 22395. I 1.0206 I .0741 1.0930 

100 26 9 15876.6 1.0115 I .0487 1.0586 

15 5 30 17 21.7 1.0186 I .0755 
IO 30 11 253.0 I .0330 1.1040 
25 24 6 29202.5 1.0386 1.1022 1.1502 
50 18 3 43438.4 1.0221 1.0899 1.1192 

100 16 4 51392.1 1.0153 1.0550 1.0759 

10 
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Table I 
Experimental results 

a Number of times the branch and bound procedure found an optimal solution. 
b Number of times the heuristic solution procedure obtained an optimal solution. 
C The average number of nodes evaluated in the branch and bound procedure per run. 
d The average ratio of the heuristic solution over the optimal solution. 
e The average ratio of the absolute bound over the heuristic solution for the runs in which an optimal solution was found. 
f The average ratio of the absolute bound over the heuristic solution for the runs in which an optimal solution was not found. 

solution (i.e., (Ck,, + &)/Ciax) for runs in which 
an optimal solution was not obtained and runs 
in which it was obtained. The last two columns re- 
present how far the heuristic deviates from optim- 
ality if the optimal solution is not known. 

An example of an experiment in which optimal 
solutions were not obtained is the experiment with 
2 machines and 25 jobs. The optimal solution was 
not found after evaluating 100,000 nodes in 1 out 
of the 30 runs. The case which shows an average 
number of nodes evaluated less than one indicates 
that the sufficient condition for optimality as sta- 
ted in Proposition 3 was met for some of the initial 
feasible solutions (heuristic solution). As Table 1 
shows, the results of these experiments indicate 
that the heuristic solution provides a good approx- 
imation. The overall average ratio of heuristic so- 
lution over the optimal solution was 1.0156 and 

in 51.4% of the experiments the heuristic solution 
procedure gave the optimal solution. The overall 
average absolute bound (CLaX + 62) over the heur- 
istic solution was 1.0595 which is considerably less 
than the theoretical bound of 1.75. There does not 
appear to be much of a difference in this bound be- 
tween experiments in which optimal solutions were 
found and the experiments in which optimal solu- 
tions were not found. 

8. Conclusions and directions for future research 

We have shown that the 2-stage scheduling pro- 
blem with identical jobs and uniform parallel 
machines may be solved in polynomial-time, 
and the 3-stage problem is NP-hard. For 
fi(Ql, Q2, Q3)bj = l(Cmax~ Algorithm 3-stage 
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optimally solves the problem by solving three sin- 
gle-stage problems. The only computationally dif- 
ficult step is the procedure for the second stage 
which must solve Qlr,,pj = l,dj assignll,,,. A 
polynomial heuristic procedure is presented to ap- 
proximate the 3-stage problem. We showed that 
the maximum deviation between the solution de- 
rived by the heuristic procedure and the optimal 
solution is bounded by the maximum difference be- 
tween the jth completion time at the second stage 
and thejth minimal completion time at the second 
stage for j = 1, . , n which is bounded by the 
maximum processing time at the second stage, in- 
dependent of the number of jobs and the proces- 
sing times at the first and third stage. We also 
showed that the heuristic is a 1.75-approximation 
algorithm for the 3-stage problem. 

The heuristic procedure ECT-LST may be ea- 
sily generalized to consider an arbitrary number 
of stages, q. In this case, the first stage is solved 
using the ECT rule and all other stages are solved 
using the LST rule with the release times at a given 
stage set to the completion times of the previous 
stage. In a similar manner to the 3-stage problem, 
it can be shown that this heuristic applied to q- 
stages will have a maximum deviation from the op- 
timal solution of x41’ y where pmdx k-2 k IS the max- 
imum processing time of any macmne at stage k 
(Dessouky et al., 1996). Future research can focus 
on developing relative bounds for this heuristic 
and an optimal solution procedure for more than 
3 stages. 
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