
Dynamically Reparameterized Light Fields

Aaron Isaksen†∗ Leonard McMillan† Steven J. Gortler‡

†Laboratory for Computer Science
Massachusetts Institute of Technology

‡Division of Engineering and Applied Sciences
Harvard University

Abstract

This research further develops the light field and lumigraph image-
based rendering methods and extends their utility. We present alter-
nate parameterizations that permit 1) interactive rendering of mod-
erately sampled light fields of scenes with significant, unknown
depth variation and 2) low-cost, passive autostereoscopic viewing.
Using a dynamic reparameterization, these techniques can be used
to interactively render photographic effects such as variable focus
and depth-of-field within a light field. The dynamic parameteriza-
tion is independent of scene geometry and does not require actual
or approximate geometry of the scene. We explore the frequency
domain and ray-space aspects of dynamic reparameterization, and
present an interactive rendering technique that takes advantage of
today’s commodity rendering hardware.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms I.3.6 [Computer Graphics]:
Methodology and Techniques—Graphics data structures and data
types

Additional Keywords: Image-based rendering, light field, lumi-
graph, ray space analysis, frequency domain analysis, autostereo-
scopic displays, synthetic aperture, depth of field, multitexturing

1 Introduction

The light field [13] and lumigraph [7] rendering methods synthe-
size novel images from a database of reference images. In these
systems, rays of light are stored, indexed, and queried using a two-
parallel plane parameterization [8]. Novel images exhibiting view-
dependent shading effects are synthesized from this ray database by
querying it for each ray needed to construct a desired view.

Several several shortcomings of the light field and lumigraph
methods are addressed in this paper. At low to moderate sampling
rates, a light field is only suitable for storing scenes with an approx-
imately constant depth. A lumigraph uses depth-correction to re-
construct scenes with greater depth variation. However, it requires
an approximate geometry of the scene which may be hard to ob-
tain. Both systems exhibit static focus because they only produce
a single reconstruction for a given queried ray. Thus, the pose and

∗http://graphics.lcs.mit.edu/∼aisaksen/projects/drlf

focal length of the desired view uniquely determine the image that
is synthesized.

This paper presents solutions to the shortcomings stated above.
Our goal is to represent moderately sampled light fields with wide
variations in depth, without requiring geometry. This requires a
more flexible parameterization of the ray database, based on a gen-
eral mathematical formulation for a planar data camera array. To
render novel views, our parameterization uses a generalized depth-
correction based on focal surfaces. Because of the additional de-
grees of freedom expressed in the focal surfaces, we can interac-
tively render images with dynamic photographic effects, such as
depth-of-field and apparent focus. The presented dynamic repa-
rameterization is as efficient as the static lumigraph and light field
parameterizations, but permits more flexibility at almost no cost. To
enable this additional flexibility, we do not perform aperture filter-
ing as presented in [13]. We present a frequency domain analysis
to explain the trade-offs of this omission.

Furthermore, our reparameterization techniques allow us to cre-
ate directly-viewable light fields which are passively autostereo-
scopic. By using a fly’s-eye lens array attached to a flat display sur-
face, the computation for synthesizing a novel view can be solved
directly by the optics of the display device. This three-dimensional
display, based on integral photography [24, 16], requires no eye-
tracking or special hardware attached to a viewer, and it can be
viewed by multiple viewers simultaneously under variable lighting
conditions.

2 Background

A continuous representation of a ray database would be sufficient
for generating any desired ray. However, continuous databases are
impractical or unattainable for all but the most trivial cases. In
practice, we must work with finite representations in the form of
discretely-sampled ray databases.

As with any sampling of a continuous signal, the issues of 1)
choosing an appropriate initial sampling density and 2) defining a
method for reconstructing the continuous signal are crucial factors
in effectively representing the original signal. In the context of light
fields and lumigraphs, researchers have explored various parame-
terizations and methods to facilitate better or more practical sam-
pling [3, 22, 20, 4]. Other parameterizations have been presented
to decrease the dimensionality of the light field, giving up vertical
parallax and the ability to translate into the scene [21].

The choice of a ray database parameterization also affects the
reconstruction methods that can be used in synthesizing desired
views. Even with properly sampled data, a poor reconstruction filter
can introduce post-aliasing artifacts into the result [15].

The two-parallel-plane parameterization of a ray database has a
substantial impact on the choice of reconstruction filters. In the
original light field system, a ray is parameterized by a predeter-
mined entrance plane and exit plane (also referred to as the st and
uv planes using lumigraph terminology). Figure 1 shows a typical
moderate sampling on the st plane and three possible highly sam-
pled exit planes, uv1, uv2, and uv3. To reconstruct a desired ray

st uv
2

uv
3

uv
1

uv
1
=

uv
2
=

uv
3
=

r

Figure 1: The parameterization of the exit plane, or uv plane, af-
fects the reconstruction of a desired ray r. Here, the light field
would be best parameterized using the uv2 exit plane.

r which intersects the entrance plane at (s, t) and the exit plane at
(u, v), a renderer combines samples with nearby (s, t) and (u, v)
values. However, only the standard light field parameterized using
exit plane uv2 will give a satisfactory reconstruction. This is be-
cause the plane uv2 well approximates the geometry of the scene,

The original light field system addresses this reconstruction
problem by aperture filtering the ray database. Aperture filtering
bandlimits the ray database with a low-pass prefilter. This removes
high-frequency data that can not be reconstructed from a given
sampling without aliasing. In Figure 1, aperture filtering on a ray
database parameterized by either the exit plane uv1 or uv3 would
store only a blurred version of the scene. Thus, any synthesized
view of the scene will appear defocused. No post-processing can
recover information that has been lost by aperture filtering. Be-
cause a particular fixed exit plane must be determined before per-
forming aperture filtering, one can only represent scenes which can
be sufficiently approximated by a single, fixed exit plane. In order
to produce light fields that capture the full depth range of a deep
scene without noticeable defocusing, the original light field system
would require impractically large sampling rates.

The lumigraph system is able to reconstruct deep scenes stored
at practical sampling rates by using depth-correction. In this pro-
cess, the exit plane intersection coordinates (u, v) of each desired
ray r are mapped to new coordinates (u′, v′) to produce an im-
proved ray reconstruction. This mapping requires an approximate
depth per ray, which can be efficiently stored as a polygonal model
of the scene. If the geometry correctly approximates the scene, the
reconstructed images will always appear in focus. The approxi-
mate geometry requirement imposes some constraints on the types
of light fields that can be captured. Geometry is readily avail-
able for synthetic light fields, but acquiring geometry is difficult
for photographically-acquired ray databases.

Both the light field and lumigraph systems are fixed-focus sys-
tems. That is, they will always produce the same result for a given
geometric ray r. This is unlike a physical lens system which ex-
hibits different behaviors depending on the focus setting and aper-
ture size. In addition to proper reconstruction of a novel view, we
would like to produce photographic effects such as variable focus
and depth-of-field at interactive rendering rates. Systems have been
built to render these types of lens effects using light fields, but this
work was designed only for synthetic scenes where an entire light
field is rendered for each desired image [11].

3 Focal Surface Parameterization

Our parameterization of ray databases is analogous to a two-
dimensional array of pinhole cameras treated as a single optical

camera surface C

focal surface F

data cameras

D
s,t

(u,v)

r=(s,t,u,v)=(s,t,f,g)
F

(f,g)
F

Figure 2: Our parameterization uses a camera surface C, a collec-
tion of data cameras Ds,t, and a dynamic focal surface F . Each
ray r with coordinates (s, t, u, v) intersects the focal surface F at
(f, g)F and is therefore also named (s, t, f, g)F .

system with a discrete synthetic aperture. Each constituent pin-
hole camera captures a focused image, and the camera array acts
as a discrete aperture in the image formation process. By using an
arbitrary focal surface, we can establish correspondences between
the rays from different pinhole cameras.

In the two-parallel-plane ray database parameterization there is
an entrance plane, with parameters (s, t) and an exit plane with
parameters (u, v). Each ray r is uniquely determined by the 4-tuple
(s, t, u, v).

Our parameterization is best described in terms of a camera sur-
face, a 2-D array of data cameras and images, and a focal surface
(see Figure 2). The camera surface C, parameterized by coordi-
nates (s, t), is identical in function to the entrance plane of the
standard parameterization. Each data camera Ds,t represents a cap-
tured image taken from a given grid point (s, t) on the camera sur-
face. Each Ds,t can have a unique orientation and internal calibra-
tion, although we typically capture the light field using a common
orientation and intrinsic parameters for the data cameras. We in-
dex each pixel in the data camera images using image coordinates
(u, v), and we can think of each pixel (u, v) in a camera Ds,t as
a ray r = (s, t, u, v). Samples in the ray database exist for values
of (s, t) if there is a data camera Ds,t. The focal surface F is a
dynamic two-dimensional manifold parameterized by coordinates
(f, g)F . Because the focal surface changes dynamically, we sub-
script the coordinates to tell us which focal surface we are using.
Each ray (s, t, u, v) also intersects the focal surface F , and thus
has an alternate naming (s, t, f, g)F .

For each Ds,t we define a mapping MF→D
s,t : (f, g)F → (u, v).

This mapping tells us which data camera ray intersects the focal sur-
face F at (f, g)F . In other words, if (f, g)F was an imageable point
on F , then the image of this point in camera Ds′,t′ would lie at
(u′, v′), as in Figure 3. Given that we know the projection mapping
Ps,t : (X, Y, Z) → (u, v) which describes how three-dimensional
points are mapped to pixels in the data camera Ds,t, and we know
TF : (f, g)F → (X, Y, Z) which maps points (f, g)F on the fo-
cal surface F to three-dimensional points in space, the mapping
MF→D

s,t is easily determined, MF→D
s,t = Ps,t ◦ TF .1 Since the

data cameras do not move or change their calibration, Ps,t is con-

1Since we create the focal surface at run time, we know TF . Likewise,
Ps,t is known for synthetic light fields. For captured light fields, Ps,t can
either be assumed or calibrated using readily available camera calibration
techniques [26, 28].

(s0,t0)

(s',t')

(s'',t'')

(f,g)
F

Ds',t'

Ds'',t''

(u',v')

(u'',v'')

(s',t',u',v')=(s',t',f,g)
F

(s'',t'',u'',v'')=(s'',t'',f,g)
F

C
F

r

Figure 3: Given a ray r = (s0, t0, f, g)F , we find the rays
(s′, t′, u′, v′) and (s′′, t′′, u′′, v′′) in the data cameras Ds′,t′ and
Ds′′,t′′ which intersect F at the same point (f, g)F .

stant for each data camera Ds,t. For a dynamic focal surface, we
will modify the mapping TF , which changes the placement of the
focal surface. A static TF with a focal surface that conforms to the
scene geometry gives us a depth-correction identical to the lumi-
graph [7].

To reconstruct a ray r from the ray database, we use a gener-
alized depth-correction. We first find the intersections of r with
C and F . This gives us the 4-D ray coordinates (s0, t0, f, g)F as
in Figure 3. Using cameras near (s0, t0), say Ds′,t′ and Ds′′,t′′ ,

we apply MF→D
s′,t′ and MF→D

s′′,t′′ to (f, g)F , giving us (u′, v′) and
(u′′, v′′), respectively. This gives us two rays (s′, t′, u′′, v′′) and
(s′′, t′′, u′′, v′′) which are stored as the pixel (u′, v′) in the data
camera Ds′,t′ and (u′′, v′′) in the data camera Ds′′,t′′ . We can
then apply a filter to combine the values for these two rays. In the
diagram, we have used two rays, although in practice, we can use
more rays with appropriate filter weights.

4 Variable Aperture and Focus

We can use our dynamic parameterization to efficiently create im-
ages that simulate variable focus and variable depth-of-field. This
allows us to create focused images of moderately sampled scenes
with large depth variation without requiring geometric information.
In addition, this new parameterization provides the user significant
artistic expression when composing novel images.

4.1 Variable Aperture

In a traditional camera, the aperture controls the amount of light
that can enter the optical system. It also influences the extent of
depth-of-field present in the images. With smaller apertures, more
of the scene appears in focus; larger apertures produce images with
a narrow range of focus. We simulate synthetic apertures not to
affect exposure, but to control the amount of depth-of-field present
in an image.

We can interactively emulate a depth-of-field effect by combin-
ing rays from several cameras. In Figure 4, we are trying to re-
construct two rays, r′ and r′′. In this example, the extent of our
synthetic apertures A′ and A′′ is four data cameras. We center the
synthetic apertures at the intersection of r′ and r′′ with the cam-
era surface C. We then recall ray database samples by applying
MF→D

s,t for all (s, t) such that Ds,t lies within the aperture. These
samples are combined to create a single reconstructed ray.

Note that r′ intersects F near the surface of the virtual object,
whereas r′′ does not. Our synthetic aperture reconstruction will

C F

r'

r''

desired camera

A'

A''

object
virtual

Ds,t

Figure 4: For each desired ray, our synthetic aperture system cen-
ters the aperture at the intersection of the ray with the camera sur-
face. Thus the ray r′ uses the aperture A′ while r′′ uses A′′. The
ray r′ will appear in focus, while r′′ will not.

cause r′ to appear in focus, while r′′ will not. The size of the syn-
thetic aperture affects the amount of depth-of-field.

It is important to note that our model is not necessarily equiva-
lent to an aperture attached to the desired camera. For example, if
one rotates the desired camera, our effective aperture remains par-
allel to the camera surface. Modeling the aperture on the camera
surface and not on the desired camera makes the ray reconstruction
more efficient and still produces the desired depth-of-field effect
(See Figure 5). A more realistic and complete lens model is given
in [11], although this is less efficient to render and impractical for
captured light fields.

We do not weight the queried samples that fall within the syn-
thetic aperture equally. Using a dynamic filter that controls the
weighting, we can improve the frequency response of our recon-
struction. In Figure 6, we attempt to reconstruct the pink dotted ray
r = (s0, t0, f, g)F . We use a two-dimensional function w(x, y) to
describe the point-spread function of the synthetic aperture. Typ-
ically w has a maximum at w(0, 0) and is bounded by a square
of width δ. The filter is defined such that w(x, y) = 0 whenever
x ≤ −δ/2, x ≥ δ/2, y ≤ −δ/2, or y ≥ δ/2. The filters should
also be designed so that the sum of sample weights will add up to 1.
That is,

P∞
i=−∞

P∞
j=−∞ w(x+ i, y + j) = 1 for all (x, y) ∈ �2.

We use the aperture filter on the ray r = (s0, t0, f, g)F as fol-
lows. The center of the aperture filter is translated to the point
(s0, t0). Then, for each camera Ds,t that is inside the aperture,
we will construct a ray (s, t, f, g)F and then calculate (s, t, u, v)
using the appropriate mapping MF→D

s,t . Then each ray (s, t, u, v)
is weighted by w(s − s0, t − t0) and all weighted rays within the
aperture are summed together. 2

Our system can create arbitrarily large synthetic apertures. The
size of the aperture is only limited to the extent to which there are
cameras on the camera surface. With sufficiently large apertures,
we can see through objects, as in Figure 7. One problem with mak-
ing large apertures occurs when the aperture function falls outside
the populated region of the camera surface. When this occurs, the
weighted samples will not add up to one. This creates a vignetting
effect where the image darkens when using samples near the edges
of the camera surface. This can be solved by either adding more
data cameras to the camera surface or by reweighting the samples
on a pixel by pixel basis so the weights always add up to one.

2One could also use the aperture function w(x, y) as a basis function
at each sample to reconstruct the continuous light field, although this is not
computationally efficient.

Figure 5: By changing the shape and width of the dynamic aperture
filter, we can interactively change the amount of depth of field.

4.2 Variable Focus

Photographers using cameras can not only change the depth-of-
field, but they vary what is in focus. Using our dynamic param-
eterization, one can create the same effect at run-time by modifying
the focal surface. As before, a ray r is defined by its intersections
with the camera surface C and focal surface F and can be written
(s0, t0, f, g)F . The mapping MF→D

s,t tells us which ray (s, t, u, v)
in the data camera Ds,t approximates (s0, t0, f, g)F .

When the focal surface is changed to F ′, the same ray r now
intersects a different focal surface at a different point (f′, g′)F ′ .
This gives us a new coordinate (s0, t0, f

′, g′)F ′ for the ray r. The
new mapping MF ′→D

s,t gives us a pixel (u′, v′) for each data camera
Ds,t within the aperture.

In Figure 9, we have three focal surfaces, F1, F2, and F3. Note
that for a single ray r, we reconstruct the sample using different pix-
els, depending on which focal surface we use. For example, if we
are using focal surface Fn, then we will use the rays (s′, t′, u′

n, v′
n)

and (s′′, t′′, u′′
n, v′′

n).
Note that this selection is a dynamic operation. In the light field

and lumigraph systems, the ray r would always return the same
reconstructed sample. As we see in Figure 8, we can effectively
control which part of the scene is in focus by simply moving the
focal surface. If the camera surface is too sparsely sampled, then the

F
C

r

(f,g)F

(s0,t0)

w1 w2 w3

Figure 6: By changing the shape of our aperture filter, we can con-
trol the quality of reconstruction and the amount of depth-of-field.
In this figure, filter w1 will reconstruct r by combining six rays, w2

will combine four rays, and w3 will combine two.

Figure 7: With a very large aperture, we can see through objects.
No one image in the light field sees the entire hillside.

out-of-focus objects can appear aliased. This aliasing is analyzed
in Section 6.

Many scenes can not be brought entirely into focus with a sin-
gle focal plane. As in Figure 9, the focal surfaces do not have to
be planar. One could create a focal surface out of a parameterized
surface patch that passes through key points in a scene, a polygonal
model, or a depth map. Analogous to depth-corrected lumigraphs,
this would insure that all visible surfaces are in focus. But, in re-
ality, these depth maps would be hard and/or expensive to obtain
with captured data sets. However, using a system similar to ours,
a user can dynamically modify a non-planar focal surface until a
satisfactory image is produced.

4.3 Multiple Apertures and Focal Surfaces

In general, we may like to have more than just the points near a
single surface in clear focus. One solution is to use a different focal
surface and aperture for each ray, something not available to real
cameras. In a real lens system, only one continuous plane is in
focus at one time. However, since we are not confined by physical
optics, we can have two or more distinct regions that are in focus.
Using a real camera, this can be done by first taking a set of pictures
with different planes of focus, and then taking the best parts of each
image and compositing them together as a post-process [17]. Using
our parameterization, one can choose an aperture and focal surface
on a per region or per pixel basis. We have previously described
methods for rendering with multiple focal surfaces [12]. Multiple
apertures would be useful to help reduce vignetting near the edges
of the camera surfaces. If the aperture passes near the edge of the
camera surface, then one could reduce its size so that it remains
inside the boundary.

Figure 8: By varying the placement of the focal surface, one can
interactively control what appears in focus.

5 Ray-Space Analysis

It is instructive to consider the effects of dynamic reparameteriza-
tion on light fields when viewed from ray space [13, 7] and, in par-
ticular, within epipolar plane images (EPIs) [2]. It is well-known
that 3-D structures of the observed scene are directly related to
features within these particular light field slices. The two-parallel
plane parameterization is particularly suitable for analysis under
this regime as shown by [8]. Our system can also be analyzed in
ray space, especially when the focal surface is planar. In our anal-
ysis, we consider a 2-D subspace of rays corresponding to fixed
values of t and g on a dynamic focal plane F . When the focal sur-
face is parallel to the camera surface, the sf slice is identical to an
EPI.

A dynamically reparameterized light field with four point fea-
tures is shown in Figure 10a. The dotted point is a point at infin-
ity. A light field parameterized with the focal plane F1 will have a
sf1 ray-space slice similar to Figure 10b. Each point feature cor-
responds to a linear feature in ray space, where the slope of the
line indicates the relative depth of the point. Vertical features in
the slice represent points on the focal plane; features with positive
slopes represent points that are further away and negative slopes
represent points that are closer. Points infinitely far away will have
a slope of 1 (for example, the dashed line) Although not shown in

(s,t)

(s',t')

(s'',t'')

C
F3

r

F2F1

Figure 9: By changing the shape or placement focal surfaces, we
can dynamically control which samples in each data camera will
contribute to the reconstructed ray.

the figure, variation in color along the line in ray space represents
the view-dependent radiance of the point. If the same set of rays is
reparameterized using a new focal plane F2 that is parallel to the
original F1 plane, the sf2 slice shown in Figure 10c results. These
two slices are related by a shear transformation along the dashed
line. If the focal plane is oriented such that it is not parallel with the
camera surface, as with F3, then the sf slice is transformed non-
linearly, as shown in Figure 10d. However, each horizontal line of
constant s in Figure 10d is a linearly transformed (i.e. scaled and
shifted) version of the corresponding horizontal line of constant s in
Figure 10b. In summary, dynamic reparameterization of light fields
amounts to a simple transformation of ray space. When the focal
surface remains perpendicular to the camera surface but its position
is changing, this results in a shear transformation of ray space.

Changing the focal plane position thus affects which ray-space
features will be axis-aligned. Thus, we can use a separable, axis-
aligned reconstruction filter along with the focal plane to select
which features will be axis-aligned, allowing us to dynamically se-
lect which features will be properly reconstructed. Equivalently,
one can interpret focal plane changes as aligning the reconstruc-
tion filter to a particular feature slope, while keeping the ray space
parameterization constant.

Under the interpretation that a focal plane shears ray space and
keeps uses axis-aligned reconstruction filters, our aperture filtering
methods amount to varying the extent of the reconstruction filters
along the s dimension. In Figure 10e, the dashed horizontal lines
depict the s extent of three different aperture filters (we assume
they are infinitely thin in the f1 dimension). When creating a line
image from the ray-space using the three filters, we construct line
images as shown in Figure 10f. Varying the extent of the aperture
filter has the effect of “blurring” features located far from the focal
plane while features located near on the focal plane will be rela-
tively sharp. However, the filter will reduce the amount of view-
dependent radiance for features aligned with the filter. If we shear
ray space to produce the parameterization of Figure 10c and use the
same three filters, we produce the line images of Figure 10g.

6 Frequency Domain Analysis

Ray space transformations have other effects on the reconstruction
process. Since shears can arbitrarily modify the relative sampling
frequencies between dimensions in ray space, they present consid-
erable difficulties when attempting to bandlimit the source signal.
Furthermore, any attempt to bandlimit the sampled function based
on any particular parameterization will severely limit the fidelity of
the reconstructed signals from the light field.

∞
s

s

s

f
2

f
1

f
1

f
2

f
3

s

f
1

(a) (b)

(c)

s

f
3(d)

(e) (f) (g)

Figure 10: (a) A light field of four points, with 3 different focal
planes. (b,c,d) sf slices using the three focal planes. (e) Three
aperture filters drawn on the ray space of (b). (f) Line images con-
structed using the aperture filters of (e); red feature is in focus. (g)
Line images constructed using the aperture filters of (e) but the ray
space diagram of (c); orange and green features are in focus.

In this section, we will analyze the frequency-domain dual of a
dynamically reparameterized light field. Whereas in section 5 we
interpreted dynamic reparameterization as ray space shearing, in
this section we will interpret the ray space as fixed (using dimen-
sions s and u) and instead shear the reconstruction filters.

Consider an ‘ideal’ continuous light field of a single feature lo-
cated slightly off the u plane as shown in the EPI of Figure 11a. In
the frequency domain, this su slice will have the power spectrum
shown in Figure 11b. The blue box represents a bandlimiting pre-
filter. Sampling generates copies of this spectrum as shown in Fig-
ure 11c. Typical light fields have a higher sampling density on the
data camera images than on the camera surface, and our example
reflects this convention. If the data camera images are adequately
sampled, there will be no overlap between the copies in the horizon-
tal direction of the frequency domain. If we attempt to reconstruct
this signal with the separable reconstruction filter under the original
parameterization shown by the red box in Figure 11c, the resulting
image will exhibit considerable post-aliasing, because of the high-
frequency leakage from the other copies. This quality degradation
will show up as ghosting in the reconstructed image, where multi-
ple copies of a feature can be faintly seen. Note that this ghosting
is a form of post-aliasing; the original sampling process has not lost

u

s

(a)

(c)

U

S

SS

S

(b)

(d)

u

s

(e)

(f)

U

U U

Figure 11: (a) su slice of a single feature. (b) Frequency domain
power spectrum of (a). Aperture prefilter drawn in blue. (c) Power
spectrum after typical sampling. Traditional reconstruction filter
shown in red. (d) Power spectrum of sampled data after prefilter
of (b). Traditional reconstruction filter shown in red. (e) In space
domain, the result of (d) is a blurred version of (a). (f) By using
alternative reconstruction function filter, we can accurately recon-
struct (a).

any information.

One method for remedying this problem is to apply an aggres-
sive bandlimiting pre-filter to the continuous signal before sam-
pling. This approach is approximated by the aperture-filtering step
described in [13]. When the resulting bandlimited light field is sam-
pled using the prefilter of Figure 11b, the power spectrum shown in
Figure 11d results. This signal can be reconstructed exactly with
an ideal separable reconstruction filter as indicated by the red box.
However, the resulting EPI, shown in Figure 11e, contains only the
low-frequency portion of the original signal energy, giving a blurry
image.

Dynamic reparameterization allows many equally valid recon-
structions of the light field. The shear transformation of the ray-
space filter effectively allows for the application of reconstruction
filters that would be non-separable in the original parameterization.
Thus, using dynamic reparameterization, the spectrum of the single
point can be recovered exactly without post-aliasing using the filter
indicated by the red box in Figure 11f.

Issues are more complicated in the case when multiple point fea-
tures are represented in the light field, as shown in the su slice in
Figure 12a. The power spectrum of this signal is shown in Figure
12b. After sampling, multiple copies of the original signal’s spec-
trum interact, causing a form of pre-aliasing that cannot be undone
by processing. Dynamic reparameterization allows for a single fea-
ture from the spectrum to be extracted, as shown by the red box
overlaid on Figure 12c. However, some residual energy from the
other points will also be captured, and will appear in the recon-

u

s

U

UU

S

S
S

u

s

(a) (b)

(d)

(e)

(c)
s

(f)

u

Figure 12: (a) su slice of two features. (b) Frequency domain
power spectrum of the features. (c) Frequency domain power spec-
trum, the red box represents a possible reconstruction filter. (d)
Wide aperture reconstruction corresponds to the thinner filters in
frequency domain. (e) Result of small aperture reconstruction. (f)
Result of large aperture reconstruction.

structed image as ghosting (see Figure 12e).
One method for reducing this artifact is to increase the size of

the synthetic aperture. In the frequency domain, this reduces the
width of the reconstruction filters as shown in Figure 12d. Using
this approach, we can, in the limit, reduce the contribution of spu-
rious features to a small fraction of the total extracted signal en-
ergy. The part we cannot extract is the result of the pre-aliasing.
By choosing sufficiently wide reconstruction apertures (or narrow
in the frequency domain), the effect of the pre-aliasing can be made
imperceptible (below our quantization threshold). Figure 12f is re-
constructed by using a wider aperture than that in Figure 12e. Note
that the aliasing in Figure 12f has less energy and is more spread
out than in Figure 12e.

This leads to a general trade-off that must be considered when
working with moderately sampled light fields. We can either 1) ap-
ply prefiltering at the cost of limiting the range of images that can be
synthesized from the light field and endure the blurring and attenua-
tion artifacts that are unavoidable in deep scenes or 2) endure some
aliasing artifacts in exchange for greater flexibility in image gener-
ation. The visibility of aliasing artifacts can be effectively limited
by selecting appropriate apertures for a given desired image.

7 Rendering

As in the lumigraph and light field systems, we can construct a de-
sired image by querying rays from the ray database. Given arbitrary
cameras, camera surfaces, and focal surfaces, one can ray-trace the
desired image. If the desired camera, data cameras, camera surface,
and focal surface are all planar, then a texture mapping approach
can be used similar to that proposed by the lumigraph system. We

extend the texture mapping method using multi-texturing for ren-
dering with arbitrary non-negative aperture filters, including bilin-
ear and higher order filters.

7.1 Memory Coherent Ray Tracing

We first describe a memory coherent ray tracing method with the
following pseudo-code. Instead of rendering pixel by pixel in the
desired image, we can render the contribution of each data camera
sequentially. This causes us to write to each pixel in the desired
image many times.

The intersection techniques are those used in standard ray trac-
ing. In the following description, a ray r = (s, t, u, v) has a color
c(r) = c(s, t, u, v). Likewise, a pixel (x, y) in the desired image
has a color c(x, y). Let K be the desired camera with a center of
projection o and pixels (x, y) on its image plane. Let w(x, y) be the
aperture weighting function, where δ is the width of the aperture.

Initialize the frame buffer to black
For each data camera Ds,t

RC := a polygon on C defined by {(s ± δ/2, t ± δ/2)}
RK := projection of RC onto the desired image plane
For each pixel (x, y) within RK

r := the ray through o and (x, y)
Intersect r with C and F to get (s′, t′) and (f, g)F

(u, v) := MF→D
s,t (f, g)F

weight := w(s′ − s, t′ − t)
c(x, y) := c(x, y) + weight ∗ c(s, t, u, v)

7.2 Texture Mapping

Although the ray tracing method is simple to understand and easy
to implement, there are more efficient methods for rendering when
the camera surface, image surface, and focal surface are planar. We
extend the lumigraph texture mapping approach [7] to support dy-
namic reparameterization. We render the contribution of each data
camera Ds,t using multi-texturing and an accumulation buffer [9].
Our method works with arbitrary non-negative aperture functions.

Multi-texturing, supported by Microsoft Direct3D 7’s texture
stages [14], allows a single polygon to have multiple textures and
multiple projective texture coordinates. At each pixel, two sets of
texture coordinates are calculated, and then two texels are accessed.
The two texels are multiplied, and the result is stored in the frame
buffer. We write to the frame buffer using the Direct3D alpha mode
“source + destination,” which makes the frame buffer act as a 8-bit,
full-color accumulation buffer.

Our rendering technique is illustrated in Figure 13. For each
camera Ds,t, we create a rectangular polygon RC

s,t on the camera
surface with coordinates {(s± δ/2, t± δ/2)}. We then project this
polygon on to the desired camera K’s image plane using a projec-
tion matrix PC→K , giving us a polygon RK

s,t. This polygon RK
s,t

represents the region of the image plane which uses samples from
the data camera Ds,t. That is, only pixels inside polygon RK

s,t will
use texture from data camera Ds,t.

We then project RK
s,t onto the focal plane F using a planar ho-

mography HK→F , a 3x3 matrix which changes one projective 2-D
basis to another. This projection is done from the desired cam-
era K’s point of view. The resulting polygon RF

s,t lies on the fo-
cal plane F . Finally, we use the mapping MF→D

s,t to calculate the
(u, v) pixel values for the polygon. This gives us a polygon RD

s,t,
which represents the (u, v) texture coordinates for polygon RF

s,t.
We can compose many of these operations into a single ma-

trix, which takes us directly from polygon RC
s,t to texture coor-

dinates RD
s,t. This matrix MC→D

s,t can be written as MC→D
s,t =

MF→D
s,t HK→F PC→K .

Rs,t

K

Rs,t

C

Rs,t

D

Rs,t

F

F

1. PC®K

2. HK®F

C

K

3. M
F®D

s,t
Ds,t

Figure 13: Projection matrices and planar homographies allow us
to render the image using texture mapping on standard commodity
PC rasterizing hardware.

This process gives us the correct rays (s, t, u, v), but we still
require the appropriate weights from the aperture filter. Because
we are drawing a polygon with the shape of the aperture filter, we
can simply modulate the texture Ds,t with the aperture filter texture
A. For Ds,t we use the projective texture coordinates RD

s,t; for the
aperture filter A, we use the texture coordinates {(±δ/2,±δ/2)}.

Initialize the frame buffer to black
For each data camera Ds,t

RC
s,t := polygon on C defined by {(s ± δ/2, t ± δ/2)}

RD
s,t := MF→D

s,t HK→F PC→KRC
s,t

Render RC
s,t using...

texture Ds,t

projective texture coordinates RD
s,t

modulated by aperture texture A
Accumulate rendered polygon into frame buffer

Using this method, dynamically reparameterized light fields can
be rendered in real-time on readily available PC graphics cards
that support multi-texturing. Frame rate decreases linearly with the
number of data cameras that fit inside the aperture functions, so nar-
row apertures render faster. Vignetting occurs near the edges of the
camera surface when using wide filters.

7.3 Using the Focal Surface as a User Interface

In typical light field representations, there is no explicit depth infor-
mation making it difficult to navigate about an object using a key-
board or mouse. For example, it can be hard to rotate the camera
about an object when we don’t know where it is located in space.
Head tracking can make navigation simpler, although specialized
tracking hardware is considerably less accessible [19]. We have
found the focal surface can be used to help navigate about an ob-
ject in the light field. When we move the focal surface so that a
particular pixel p belonging to that object is in focus, we can find
the 3-D position P of p using the equation P = HK→F p. Once
we know the effective 3-D position of the object, we can rotate (or
some other transformation) relative to that point.

8 Autostereoscopic Light Fields

Our flexible reparameterization framework allows for other useful
reorganizations of light fields. One interesting reparameterization
permits direct viewing of a light field. The directly-viewed light
field is similar to an integral or lenticular photograph. In integral
photography, a large array of small lenslets, usually packed in a

principal point

image
lenslet

Figure 14: Each lenslet in the lens array acts as a view-dependent
pixel. One can determine which color will be seen by drawing a ray
through the principal point of the lenslet.

hexagonal grid, is used to capture and display an autostereoscopic
image [16, 24]. Traditionally, two identical lens arrays are used
to capture and display the image: this requires difficult calibration
and complicated optical transfer techniques [27]. Furthermore, the
viewing range of the resulting integral photograph mimics the con-
figuration of the capture system. Holographic stereograms [10] also
can present directly-viewed light fields, although the equipment and
precision required to create holographic stereograms can be pro-
hibitive. Using our reparameterizations, we can capture a scene
using light field capture hardware, reparameterize it using our tech-
niques, and thus create novel 3-D views which can be redisplayed
using standard lens arrays with few restrictions. This makes it much
easier to create integral photographs since a light field is much eas-
ier to collect and a variety of different integral photographs can be
created from the same light field.

In an integral photograph, a single lenslet acts as a view-
dependent pixel, as seen in Figure 14. For each lenslet, the focal
length of the lens is equal to the thickness of the lens array. A repa-
rameterized light field image is placed behind the lens array, such
that a subset of the ray database lies behind each lenslet. When
the lenslet is viewed from a particular direction, the entire lenslet
takes on the color of a single point in the image. To predict which
color will be seen from a particular direction, we use a paraxial lens
approximation [23]. We can draw a line parallel to the viewing di-
rection which passes through the principal point of the lenslet. This
line will intersect the image behind the lenslet at some point; this
point determines the view-dependent color. If the viewing direction
is too steep, then the intersection point might fall under a neighbor-
ing lenslet. This causes a repeating “zoning” pattern which can be
eliminated by limiting the viewing range or by embedding blockers
in the lens array.

Since each lenslet acts as a view-dependent pixel, the entire lens
array acts as a view-dependent, autostereoscopic image. The com-
plete lens array system can be seen in Figure 16. Underneath each
lenslet is a view of the object from a virtual camera located at each
lenslet’s principal point.

To create the autostereoscopic image from a dynamically repa-
rameterized light field, we position a model of the lens array into
our light field scene. This is analogous to positioning a desired
camera to take a standard image. We then create an array of tiny
sub-images, each the size of a lenslet. Each sub-image is created
using our dynamically reparameterized light field system, with the
focal surface passing through the object of interest. Each sub-image
is taken from the principal point of a lenslet, with the image plane
parallel to the flat face of the lens array. The sub-images are then
composited together to create a large image, as in the background
of Figure 15, which can be placed under the lens array.

The placement and orientation of the lens array determines if the
viewed light field will appear in front or behind the display. If the

Left Eye

Right Eye

Lens Array

Object

C F

Figure 16: A light field can be reparameterized into a directly viewed light field, which operates on the principals of integral photography.

Figure 15: An autostereoscopic light field is drawn in the back-
ground. The scene is a three-dimensional version of the small inset
picture in the upper left corner. The zoom is 400% magnification.

lens array is placed in front of the object, then the object will appear
behind the display. Because the lens array image is rendered from
a light field and not directly from an integral camera, we can place
the lens array image behind the captured object, and the object will
appear to float in front of the display.

9 Results

The light field data sets shown in this paper were created as follows.
The tree data set was rendered in Povray 3.1. It is composed of 256
(16 x 16) images with resolutions of 320 x 240. The captured data
sets were acquired with an Electrim EDC1000E CCD camera (654
x 496) with a fixed-focal length 16mm lens mounted on an X-Y
motion platform from Arrick Robotics (30” x 30” displacement).
For each set we captured either 256 (16 x 16) or 1024 (32 x 32)
pictures. To calibrate the camera, we originally used a Faro Arm
(a sub-millimeter accurate contact digitizer) to measure the spatial
coordinates of targets on a three-dimensional calibration pattern.
Using an image of the targets, we used the Tsai-Lenz camera cal-
ibration algorithm [26] which reported focal length, CCD sensor
element aspect ratio, principle point, and extrinsic rotational orien-
tation. The radial lens distortion reported for our lens was less than

1 pixel per 1000 pixels, and we decided not to correct for it. Finally,
we resampled the raw 654 x 496 images down to 327 x 248 before
using them as input to the renderer.

Recently, we have experimented with an alternative calibration
method that requires no 3D measurements and uses the actual light
field images rather than images of a special calibration object. This
approach has some similarities with a family of techniques known
as “self-calibration” [5]. However, our light field capture system,
where a non-rotating camera is translated in a plane, is a degener-
ate case for true self-calibration [25]. Instead, we align the epipolar
geometries of the source images rather than compute an actual cal-
ibration. Our method amounts to a two-axis rectification [1]. If
the camera’s optical axis is roughly perpendicular to the plane of
motion and the X-Y platform’s motion is reasonably accurate, then
such a rectification is easily found. We find the epipolar planes in-
duced by the horizontal and vertical camera motion by tracking a
few corresponding image points. This can be done either automat-
ically or by hand. The images are then rectified by a rotating their
epipoles onto the line at infinity. The final rectified images will
have valid horizontal and vertical EPI structures and can be imme-
diately used in our light field viewer. However, when a user navi-
gates within the scene they might notice a projective distortion of
the space. This distortion can be ameliorated by allowing the user
to interactively adjust the focal length of the data cameras. Other-
wise, the focal length can be estimated by measuring a few points
in the scene. In our experiments, it has been easy to create light
fields using this method, and the final results are comparable to our
strictly calibrated data sets.

Our autostereoscopic images were printed at 300dpi on a Tek-
tronics Phaser 440 dye-sublimation printer and use a Fresnel Tech-
nologies #300 Hex Lens Array, with approximately 134 lenses per
square inch [6].

10 Future Work

Light fields contain a large amount of redundancy which we would
like to exploit. We would like to develop an algorithm for opti-
mally selecting a focal plane, perhaps using auto-focus techniques
similar to those used in consumer camcorders. Currently, the fo-
cal plane must be placed manually. In addition, we believe there
is some promise in using our reparameterization techniques for
passive depth-from-focus or depth-from-defocus vision algorithms
[18]. In the left column of Figure 17, we have created two images
with different focal surfaces and a large aperture. We then apply
a gradient magnitude filter to these images, which give us the out-
put to the right. These edge images tell us where in-focus, high-
frequency energy exists. We would also like to experiment with
depth-from-defocus by comparing two images with slightly differ-
ent focal planes or apertures.

Figure 17: We believe our techniques can be used in a depth-from-
focus or depth-from-defocus vision system. By applying a gradient
magnitude filter on an image created with a wide aperture, we can
detect in-focus regions.

Figure 18: Moving the focal plane within a deep scene.

11 Conclusion

Previous implementations have tried to solve focusing problems in
undersampled light fields by 1) using scenes that were roughly pla-
nar, 2) using aperture filtering to bandlimit the input data, or 3)
using approximate geometry for depth-correction. Unfortunately,
most scenes can not be confined to a single plane, aperture filtering
can not be undone or controlled at run time, and proxy surfaces can
be difficult to obtain. We have presented a new parameterization
that enables dynamic, run-time control of the sample reconstruc-
tion. This allows the user to modify focus and depth-of-field dy-
namically. This new parameterization allows light fields to capture
deep scenes at moderate sampling rates. In addition, we have pre-
sented a strategy for creating directly-viewable light fields. These
passive, autostereoscopic light fields can be viewed without head-
mounted hardware by multiple viewers simultaneously under vari-
able lighting conditions.

12 Acknowledgments

This work was supported by NTT, Fresnel Technologies, Hughes
Research, and an NSF fellowship. Thanks to Ramy Sadek and An-
nie Sun Choi for illustrations, assistance, support, and proofread-
ing. Thanks to Robert W. Sumner for his LATEX experience and
to Chris Buehler for many helpful light field discussions and Di-
rectX help. Thanks to Neil Alexander for the “Alexander Bay” tree
scene and to Christopher Carlson for permission to use Bumpé in

our scenes. Finally, thanks to the entire MIT LCS Computer Graph-
ics Group, especially Bryt Bradley for her administrative support.

References
[1] Nicholas Ayache and Charles Hansen. Rectification of images for binocular and

trinocular stereovision. In ICPR88, pages 11–16, 1988.

[2] R.C. Bolles, H.H. Baker, and D.H. Marimont. Epipolar-plane image analysis:
An approach to determining structure from motion. IJCV, 1(1):7–56, 1987.

[3] Emilio Camahort, Apostolos Lerios, and Donald Fussell. Uniformly sampled
light fields. Eurographics Rendering Workshop 1998, pages 117–130, 1998.

[4] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling. In SIG-
GRAPH 2000, 2000.

[5] Olivier D. Faugeras. What can be seen in three dimensions with an uncalibrated
stereo rig? In ECCV92, pages 563–578, 1992.

[6] Fresnel Technologies. #300 Hex Lens Array, 1999. http://www.fresneltech.com.

[7] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. SIGGRAPH 96, pages 43–54, 1996.

[8] Xianfeng Gu, Steven J. Gortler, and Michael F. Cohen. Polyhedral geometry and
the two-plane parameterization. Eurographics Rendering Workshop 1997, pages
1–12, June 1997.

[9] Paul E. Haeberli and Kurt Akeley. The accumulation buffer: Hardware support
for high-quality rendering. SIGGRAPH 90, 24(4):309–318, 1990.

[10] Michael Halle. The generalized holographic stereogram. Master’s thesis, Pro-
gram in Media Arts and Sciences, Massachusetts Institute of Technology, 1991.

[11] Wolfgang Heidrich, Philipp Slusalek, and Hans-Peter Seidel. An image-based
model for realistic lens systems in interactive computer graphics. Graphics In-
terface ’97, pages 68–75, 1997.

[12] Aaron Isaksen, Leonard McMilland, and Steven J. Gortler. Dynamically repa-
rameterized light fields. Technical Report LCS-TR-778, Massachusetts Institute
of Technology, May 1999.

[13] Marc Levoy and Pat Hanrahan. Light field rendering. SIGGRAPH 96, pages
31–42, 1996.

[14] Microsoft Corporation. Microsoft DirectX 7.0, 1999.
http://www.microsoft.com/directx.

[15] Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer graph-
ics. SIGGRAPH 88, 22(4):221–228, 1988.

[16] Takanori Okoshi. Three-Dimensional Imaging Techniques. Academic Press,
Inc., New York, 1976.

[17] Paul Haeberli. A multifocus method for controlling depth of field. Technical
report, SGI, October 1994. http://www.sgi.com/grafica/depth/index.html.

[18] A.P. Pentland. A new sense for depth of field. PAMI, 9(4):523–531, July 1987.

[19] Matthew J.P. Regan, Gavin S.P. Miller, Steven M. Rubin, and Chris Kogelnik.
A real time low-latency hardware light-field renderer. SIGGRAPH 99, pages
287–290, 1999.

[20] Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel. Adaptive
acquisition of lumigraphs from synthetic scenes. Computer Graphics Forum,
18(3):151–160, September 1999. ISSN 1067-7055.

[21] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. SIG-
GRAPH 99, pages 299–306, 1999.

[22] Peter-Pike Sloan, Michael F. Cohen, and Steven J. Gortler. Time critical lumi-
graph rendering. 1997 Symposium on Interactive 3D Graphics, pages 17–24,
April 1997. ISBN 0-89791-884-3.

[23] Warren J. Smith. Practical Optical System Layout. McGraw-Hill, 1997.

[24] R. F. Stevens and N. Davies. Lens arrays and photography. Journal of Photo-
graphic Science, 39(5):199–208, 1991.

[25] Peter Sturm. Critical motion sequences for monocular self-calibration and un-
calibrated euclidean reconstruction. In CVPR97, pages 1100–1105, 1997.

[26] R.Y. Tsai. An efficient and accurate camera calibration technique for 3-d ma-
chine vision. In CVPR, pages 364–374, 1986.

[27] L. Yang, M. McCormick, and N. Davies. Discussion of the optics of a new 3d
imaging system. Applied Optics, 27(21):4529–4534, 1988.

[28] Z.Y. Zhang. Flexible camera calibration by viewing a plane from unknown ori-
entations. In ICCV, pages 666–673, 1999.

