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Abstract. This paper presents a robust camera calibration algorithm
based on contour matching of a known pattern object. The method does
not require a fastidious selection of particular pattern points. We intro-
duce two versions of our algorithm, depending on whether we dispose of
a single or several calibration images. We propose an evaluation proce-
dure which can be applied for all calibration methods for stereo systems
with unlimited number of cameras. We apply this evaluation framework
to 3 camera calibration techniques, our proposed robust algorithm, the
modified Zhang algorithm implemented by J. bouguet and Faugeras-
Toscani method. Experiments show that our proposed robust approach
presents very good results in comparison with the two other methods.
The proposed evaluation procedure gives a simple and interactive tool
to evaluate any camera calibration method.

1 Introduction

Camera calibration aims at estimating the parameters of the relationship binding
the 3D world reference space and the 2D camera coordinates system. Camera
calibration is essential to many computer vision applications such as images
rectification, 3D reconstruction and objects tracking. The camera calibration
consists of estimating the intrinsic and extrinsic parameters representing re-
spectively the internal camera characteristics and the camera pose in the world
reference. Many methods are proposed in the literature. Several states of the art
can be found in [1-7].

The objective of this paper is twofold. We first present an accurate calibration
method based on robust estimation of the Perspective Projection Matriz PPM
which was already presented in [7], but to which we add some improvements.
Second, we propose a new experimental procedure to evaluate camera calibration
methods, which is based on images rectification and on 3D reconstruction.

The paper is organized as follows: in the next section, the pinhole camera
model is presented. Section 3 details our improved robust camera calibration.
Section 4 presents the experimental procedure to evaluate the calibration meth-
ods. Experimental results are discussed in Section 5. Finally, Section 6 concludes
the paper and opens perspectives of future work.
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2 Camera Model

We focus on the pinhole camera model, which is widely used in computer vision.
It assumes that the camera performs a perfect perspective transformation P
from the 3D scene coordinates [X Y Z] to image plane coordinates (u,v):

unun' =P[XY Z1], (1)

where 7 is an homogeneous factor and [.]* is the transpose operator. The PPM
P, a 3 x4 matrix, is defined as the product P = Q [R | t] where Q and [R | t] are
respectively the intrinsic and extrinsic matrices. R is an 3 x 3 orthogonal matrix
representing the camera orientation and t the position vector of the camera in
the 3D space. More details on this model can be found in [8].

Cameras usually exhibit significant lens radial and tangential distortions [9].
Radial distortion is point-symmetric at the optical center of the lens and causes
an inward or outward shift of image points from their initial perspective pro-
jection. Imperfect centering of the lens components and/or other manufacturing
defects leads to decentering effects that can be modeled by tangential distortion.

Our proposed camera calibration algorithm does not include distortion pa-
rameters estimation, which can be a drawback when using high distorted optical
lens of cheap cameras as webcams or short focal length lens.

3 Robust Camera Calibration

Our algorithm for camera calibration is based on robust estimation of the PPM.
The goal is to design a method needing minimal user interaction and using a
simple object as a calibration pattern.

The considered object is a cube of known dimensions with six differently
colored faces. We developed two versions of our algorithm, the first one run-
ning with a single image, and the second one using several images acquired at
different depths and positions in the camera field of view, in order to estimate
the parameters more accurately. In this last case, all the acquired images should
show the same two adjacent faces to the camera. The user will then have to
manually identify these two faces on one or another of the images to initialize
our calibration algorithm.

An image segmentation procedure is applied to detect the 6 vertices of the
two selected adjacent faces. The 6 detected points are used to compute a coarse
estimation of the PPM by applying the Faugeras-Toscani method [10]. We refine
the estimation by minimizing the Chamfer distance between the projection of
the cube edges and the corresponding detected image contours.

In the case of multi-images calibration, the parameters estimation accuracy
is performed by a nonlinear optimization technique (Levenberg-Marquardt) over
all the acquired images.
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3.1 Cube Vertices Detection

The detection of the 6 cube vertices is achieved by first segmenting the calibration
images in order to identify the two adjacent faces. The segmentation is performed
by a meanshift algorithm applied to the color Luv space because of its well-known
nice properties. The user selects, on one image, the both cube faces, whose
corresponding segmented region areas are then identified and whose mean colors
are computed. When several calibration images are used, the identification of the
two faces in the remaining images is performed by determining the segmented
regions whose color is most similar with the previously computed cube face
colors.

In order to locate the cube’s corners on the image, we create for each cube’s
face a binary image null everywhere except for the pixels belonging to the consid-
ered face, and on which we apply a Harris based corner detector. More precisely,
at each pixel, we compute the determinant of the Hessian of a smoothed version
of the binary image. A pixel p is labeled as a corner if the determinant value
at p is a local minimum with absolute value lower than a predefined threshold.
However, because the contours of the segmented face region may be insufficiently
smooth, some false alarms may occur. In order to eliminate such false detections,
we compute the morphological skeleton of the binary face region. As the pro-
jected face is a parallelogram, the morphological skeleton has an ’X’ form, whose
extremities correspond to its corners. All the pixels previously labeled as corner
points located too far from the obtained skeleton are removed. For each image,
we thus detect six corners corresponding to the vertices of the two adjacent faces.
Figure 1 shows two examples of our corner detector corresponding to a simple
and a complex scenes. In the first situation, the cube is the sole object present
in the scene, and in the second, the cube has been placed in more complex envi-
ronment which includes other objects and textures. Note that in both examples,
the corner detection performs quite well, without needing any parameter tuning
neither for the segmentation process nor for the corners detection algorithm.

3.2 PPM Robust Estimation

Using the 6 detected vertices, a first coarse estimation of the PPM is computed
with Faugeras-Toscani algorithm [10]. However, the corner detector does not pro-
vide accurate positions of the cube vertices. A refinement of the PPM estimation
is then achieved by minimizing the Chamfer distance between the projected cube
edges and the image contours. The image contours are obtained using EDISON
system [11-13] (Edge Detection and Image SegmentatiON?). ‘
The cube’s 3D edges are first discretized by sampling them uniformly. Let EY
be the j** 3D point of the i** discrete cube edge and eg = PgEf its projection
onto the image, where Py stands for the PPM and 6 presents the extrinsic and
intrinsic parameters. We aim at minimizing in 6 the following functional:

u@)= Y plfij), (2)
(ir))EE

! http://www.caip.rutgers.edu/riul /research/code/EDISON/

Proceedings of the ICVS Workshop on Camera Calibration Methods for Computer Vision Systems - CCMVS2007 ;’%ﬁ\“
Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany =
This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de N




A I

) Initial images and color-based segmentation.

B - "3

(b) Detected faces.

1 X ox X

(c) Skeletons of the detected regions.

(d) Detected face corners.

Fig. 1. Semi automatic vertex detection of the cube; (a) two different image acquisi-
tions; the original image (left) and the obtained segmentation (right); (b) the binary
images of each cube face; (c) the image skeleton of the cube’s faces regions; (d) detected
corners(white circles).

where £ is the set of visible projected edge points, f; ; = D (ez) is the the value

of the Contour Chamfer map D at the point ez and p is the Tukey function. The
Tukey function thresholds the influence of outliers which corresponds in this
case to badly detected image contours. The minimization of 6 is performed by
an Iterative Reweighted Least Square Algorithm (IRLS) [14] procedure. More
details can be found in [7].

3.3 Camera Parameters Estimation Using Several Images

In order to estimate more accurately the camera parameters, several images can
be acquired with the cube placed at different depths and positions in the camera
field of view. Let us denote by [Ry|ti] the cube orientation and position matrix
expressed in the camera world coordinate system for the image k. Let us also

denote by E; j, the 7% cube’s discretized of edge i seen in image k and in of the
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two selected adjacent faces and eﬁ ; its projection onto the image k. Let K be
the total number of calibration images. The goal is to determine the intrinsic
parameter matrix Q and the position and orientation matrices [Ry|tg]r=1..x
which minimize the following functional:

K
V(Q, [Riltelk=1.6) = > DMQ[Ri|t]ES;), (3)

k=1 (i,j)€Ep

where D¥(.) is the Chamfer distance of the face contour on image k, and & is the
set of the visible edge points of the cube on the image k. The minimization of (3)
is non linear and is performed by applying the Levenberg-Marquardt algorithm.
A first initialization of Q can be obtained by applying the Faugeras-Toscani
method.

4 Evaluation Procedure

This section describes the proposed procedure to evaluate and compare cali-
bration methods. Objective evaluation of such methods is affected by the lack
of criteria to compare the final camera parameters estimation obtained by the
different methods. Only a few authors compare camera calibration methods [4,
2]. Gonzélez et al. [5] present a comparative analysis of eight camera calibration
methods in which they focused on the stability of the camera parameters: (i)
the stability of the intrinsic parameters when the camera setup is constant and
the calibration pattern is relocated (i) the stability of the extrinsic parameters
when the pattern is constant and the configuration of the camera varies. The
conclusion of their study is that the values of the camera parameters estimates
depends on the calibration procedure, i.e the calibration method, the nature of
the calibration pattern and its location in the acquired images. In the case of
a constant camera setup, estimated intrinsic parameters values should theoret-
ically not change. However, in practice, these values vary from one calibration
process to another. In the case of a fixed camera and pattern, with variation of
the camera configuration (focus and/or zoom) the extrinsic parameter estimated
values are not constant as they should be.

To cope with this problem, we propose to evaluate and compare calibration
methods through image pair rectification and 3D reconstruction of a pattern
object. Among all the camera calibration algorithms proposed in the past years,
we decide to compare our method to two well known methods: Faugeras-Toscani
[10] and modified Zhang algorithm [15] proposed by J. Bouguet [16] (which will
be referred as Zhang-Bouguet method) .

In order to compare and evaluate the three methods, we set up a vision
system composed of three fixed -horizontally, mvBlueFOX® cameras?, with
image resolution 1042 x 768.

The 3 left images in Figure 2 show sample patterns used for each method.
Both the Zhang-Bouguet’s and the Faugeras-Toscani’s calibration reference points

2 http://www.matrix-vision.com/products/hardware/mvbluefox.php
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were obtained using the corners detector proposed in the Camera Calibration
Toolbox for Matlab® [16], which, after a rectangular zone delimitation by four
points , automatically detects the corners of the black and white squares on
the patterns. In [17], Kriiger et al. proposed a fully automatic detector of these
points, but it is not used in this work. The cited M atlab® Toolbox is also used
to calibrate the 3 cameras for Zhang-Bouguet method 3. The 3 right images in
Figure 2 show the images of our planar pattern acquired by our three cameras
set up. This known pattern contains 21 x 21 black and white squares. It will be
used to evaluate the different calibration methods through the measure of the
consistency of the obtained image pair rectifications and of the 3D planar patter
reconstruction. Note that these images were not used in the calibration process.
The image rectification is computed for each camera pair (4, j);j]:172,3 using the
Fusiello et al. [18] compact algorithm.

iR AR

o RIS
Fig. 2. The 3 left images: patterns used in Robust, Zhang-Bouguet and Faugeras-
Toscani calibration. The 3 right images: the rectification test images.

We also use the Matlab Toolbox corners detector to detect the intersection
between the black and the white squares of the planar test pattern. The inner
19 x 19 squares produce, for each image acquired by the camera i,—1 23 a set
of N = 400 organized points ¢!, = (xﬁl y;){nzlmN}. In the rectification process

of an image pair (i,j), the points ¢!, and ¢ are respectively mapped on the
rectified images to the points p! = (u; v}l) and pl, = (u{l v{L) which should be
on a line parallel to the u axis, i.e. v}, = v},.

To evaluate the rectification errors, we compute the Rectification Mean Square

N 2
Error (RMSE) €% for each image pair (i, ) as: et = \/Ji, Sy (v}1 — vj> :
In the case of multi-images calibration, we dispose of an estimation of the in-
trinsic parameters matrix @ and of the extrinsic parameters [Ry|tx|r=1..x for
each image k. The RMSE is then computed as a global mean over all the cou-
ples (p,, pJ) obtained from all the estimated (PPM}, PPM])=1.k couples
for cameras ¢ and j. To compare the accuracy of each calibration method, we
compute the global mean error M associated two the three cameras system as:

_ 1 Nve<g @]
M =3 Zi,j:1,2,3 e

3 This Matlab Toolbox is an implementation of the Zhang method with some improve-
ments added by its author J. Bouguet (see [16]).
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5 Experimental Results

In order to compare the performances of the three methods, we realized 5 cali-
brations. Two were performed for the Zhang-Bouguet method using 10 and 30
images. Two calibrations were also achieved using our robust calibration: the
first using a single image with the cube at the center of the acquired image; the
second is performed with 8 additional images of the cube positioned in order
to cover the whole camera field of view. The last calibration is performed us-
ing the Faugeras-Toscani method with a single image, using the implementation
proposed by Gonzalez*. The RMSE errors are shown in Table 1.

Method Number of images e''? &M% €23 M
10 27.30 3.22 19.61 16.71
Zhang-Bouguet 30 5.84 2.52 6.67 5.01
Faugeras-Toscani 1 2.83 3.32 5.8 3.74
1 1.69 2.64 3.75 2.69
Robust 9 530 11.21 7.33 7.94

Table 1. Rectification Mean Square Error (in pixels) of the three calibration methods.

All the experiments of Table 1 show large error values except for the calibra-
tions using one image (our robust method and Faugeras-Toscani), and for the
stereo pair (1,3) with Zhang-Bouguet method. The use of several images in our
robust algorithm is supposed to improve the calibration accuracy, and thus to
minimize the RMSE, ... but it is not what we observed! Accuracy with Zhang-
Bouguet calibration using 30 images is improved in comparison with the use of
only 10 images, but the RMSFE remains unsatisfying as the mean error is about
5 pixels. The most probable cause of this result is the failure of our multi-images
robust method and Zhang-Bouguet’s one (except for the (1,3) camera pair) to
properly estimate PPM for some image pairs. The estimation of the intrinsic
parameters is then biased. It is sometimes due to an inadequate position of the
test pattern out of the camera focus which provides blurred images.

We developed a robust algorithm to detect and remove those image pairs.
For each stereo pair (i,7), for all the m calibration image pairs, we estimate
the baseline (Bi’j)kzl,,m. Theoretically, the baseline is constant. We look for
baseline outlier estimates, e.g values which are more than 1.50 away from the
mean (o is the estimated standard deviation of the baseline). We then suppress
the corresponding calibration image pairs, and reestimate the camera parame-
ters. We reiterate until no image pair is removed. Figure 3 shows the plot of
the baseline values (points), the baseline mean (continue line), and the +1.5¢
deviations (discontinue line) found at the first iteration for the Zhang-Bouguet
method using 30 images for camera pair (1,2).

* http://mozart.dis.ulpgc.es/Gias/josep/source_ code.htm
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Fig. 3. Plot of the baseline values Bj 2 for the 30 image pairs in the case of Zhang-
Bouguet method; points: baseline values; continue line: the baseline mean; discontinue
line: the +1.50 deviations; the two outlier values correspond to the pairs 2 and 6.

Two outlier values are detected for the stereo image pairs 2 and 6. After aber-
rant image pairs removal, Zhang-Bouguet calibration is performed with only 28
images, Zhang-Bouguet calibration with 10 images is performed with 10 images
by replacing the aberrant pairs by other coherent ones, and our robust cali-
bration with 9 images is performed with 7 images (also two aberrant pairs are
removed). The obtained results after outliers removal are shown in Table 2.

Method Number of images e>? &3 %3 M

10 3.33 3.38 1.95 2.88
Zhang-Bouguet 28 3.27 2.93 1.63 2.54
Robust 7 1.59 2.41 3.44 2.48

Table 2. Rectification errors (in pixels) after removal of the aberrant image pairs.

The RMSE values (about 3 pixels for images 768 pixels height) are now more
acceptable. Zhang-Bouguet method using 28 images (M = 2.54), our robust one
using 7 images (M = 2.48) or a single image (M = 2.69) show similar accu-
racy whereas Faugeras-Toscani provides significantly greater error (M = 3.74).
Another remark concern the introduction of distortion parameters estimation in
the case of Zhang-Bouguet calibration.

5.1 3D Reconstruction

In case of multi-images calibration (Zhang-Bouguet and our robust methods), we
have as much as PPM estimations as image pairs. For each calibration method
and each camera pair, we then select the PPM providing the smallest RMSE to
perform the 3D reconstruction of our test pattern grid (Fig.1). Table 3 shows
for each camera pair the observed minimum RMSE among all the calibration
image pairs. Zhang-Bouguet and our robust methods show similar accuracy.
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Calibration el? el 23 M

Zhang-Bouguet 1.53 1.96 1.03 1.50

Robust 1.06 1.88 1.83 1.59

Table 3. Minimum RMSE among all the calibration image pairs for each camera pair.

Methods H (Roust,Zh-Bou) | ‘ (Robust,Faug-Tos) H (Zh-Bou,Faug-Tos)

CoordinatesH T ‘ y ‘ z H T ‘ y ‘ z H x ‘ y ‘ z
Pair (1,2) |3.03|-1.25/-8.29||-33.06|74.61|-85.91||-36.10|75.86| -77.61
Pair (1,3) | 1.23]0.32]-1.94|-32.12|73.55|-84.31 |-33.35|73.22| -82.36

Pair (2,3) [-0.67|0.24]4.1232.91|71.96|-83.12|| 32.24[72.21| -87.25

Table 4. The mean difference of 3D reconstruction obtained from the three different
parameters estimation, for each camera pair. The columns shows respectively the mean
difference of the reconstruction between our method and Zhang-Bouguet (first column),
our method and Faugeras-Toscani (second column) and Zhang-Bouguet and Faugeras-
Toscani (third column).

The 3D reconstruction of the 400 pattern grid points, obtained from the rec-
tification applying Fusiello et al. algorithm [18], is performed with each couple
of camera (7, 7). The world reference has its origin at the middle of the baseline,
the x axis parallel to the baseline and the focal axis given from the mean of the
focal axis of each camera (see [18] for more details). Table 4 shows for each cam-
era pair the mean difference position in millimeter between the 3D reconstruc-
tion of the test pattern grid points obtained from Zhang-Bouguet (calibration
with 28 images), Faugeras-Toscani and our robust method (calibration with 7
images). The columns shows respectively the mean difference of the reconstruc-
tion between our method and Zhang-Bouguet (first column), our method and
Faugeras-Toscani (second column) and Zhang-Bouguet and Faugeras-Toscani
(third column). Faugeras-Toscani reconstruction is far away from the two oth-
ers. Our robust method and Zhang-Bouguet’s reconstruction essentially differ
on the z axis. The weakest difference occurs for pair (1,3) which corresponds to
the most convergent camera pairs.

6 Conclusion

In this paper, we proposed an accurate camera calibration method based on
robust estimation of the perspective projection matrix. In order to evaluate
our method and compare it to others, we also proposed an efficient experimen-
tal procedure based on images rectification and multistereo 3D reconstruction.
This procedure can be applied for all stereo systems with unlimited number of
cameras. Experimental results show the usefulness of our method compared to
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two well known calibration methods: Faugeras-Toscani and modified Zhang al-
gorithm proposed by Bouguet. The proposed experimental procedure offers a
simple and interactive tool to evaluate and compare calibration methods. We
also demonstrate that in the case of multi-images calibration, the existence of
aberrant images considerably affect the accuracy of calibration. We then devel-
oped an efficient technique to detect and exclude those images from the calibra-
tion process. In future work, we will use distortion parameters estimation in the
camera model and we will compare it to photometric camera.
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