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Abstract

We present a simple image-based method of generating novel vi-
sual appearance in which a new image is synthesized by stitching
together small patches of existing images. We call this pracess
age quilting First, we use quilting as a fast and very simple texture
synthesis algorithm which produces surprisingly good results for
a wide range of textures. Second, we extend the algorithm to per-
form texture transfer —rendering an object with a texture taken from
a different object. More generally, we demonstrate how an image
can be re-rendered in the style of a different image. The method
works directly on the images and does not require 3D information.

Keywords: Texture Synthesis, Texture Mapping, Image-based
Rendering

1 Introduction

In the past decade computer graphics experienced a wave of ac-
tivity in the area of image-based rendering as researchers explored :
the idea of capturing samples of the real world as images and us- : : s

ing them to syﬁthesge nO\E)eI views rather than recreatir?g the entire _ nput |mages. » quilting results.
physical world from scratch. This, in turn, fueled interest in image- Figure 1: Demonstration of quilting for texture synthesis and tex-
based texture synthesis algorithms. Such an algorithm should beture transfer. Using the rice texture image (upper left), we can syn-
able to take a sample of texture and generate an unlimited amountthesize more such texture (upper right). We can also transfer the
of image data which, while not exactly like the original, will be per-  ice texture onto another image (lower left) for a strikingly differ-
ceived by humans to the same texture-urthermore, it would be ent result.

useful to be able to transfer texture from one object to anther (e.g.

the ability to cut and paste material properties on arbitrary objects). that two texture images will be perceived by human observers to
In this paper we present an extremely simple algorithm to ad- pe the same if some appropriate statistics of these images match.
dress the texture synthesis problem. The main idea is to synthesizeThis suggests that the two main tasks in statistical texture synthe-
new texture by taking patches of existing texture and stitching them sjs are (1) picking the right set of statistics to match, (2) finding an
together in a consistent way. We then present a simple generaliza-aigorithm that matches them.
tion of the method that can be used for texture transfer. Motivated by psychophysical and computational models of hu-
man texture discrimination [2, 14], Heeger and Bergen [10] pro-
. posed to analyze texture in terms of histograms of filter responses
1.1 Previous Work at multiple scales and orientations. Matching these histograms it-

Texture analysis and synthesis has had a long history in psychol-eratively was sufficient to produce impressive synthesis results for
ogy, statistics and computer vision. In 1950 Gibson pointed out Stochastic textures (see [22] for a theoretical justification). How-
the importance of texture for visual perception [8], but it was the €Vver, since the histograms measure marginal, not joint, statistics
pioneering work of Bela Julesz on texture discrimination [12] that they do not capture important relationships across scales and ori-
paved the way for the development of the field. Julesz suggestedentations, thus the algorithm fails for more structured textures. By
also matching these pairwise statistics, Portilla and Simoncelli [17]
1Computer Science Division, UC Berkeley, Berkeley, CA 94720, USA. were able to substantially improve synthesis results for structured
2MERL, 201 Broadway, Cambridge, MA 02139, USA. textures at the cost of a more complicated optimization procedure.
In the above approaches, texture is synthesized by taking a ran-
dom noise image antbercingit to have the same relevant statistics
as in the input image. An opposite approach is to start with an in-
put image andandomizeit in such a way that only the statistics
to be matched are preserved. De Bonet [3] scrambles the input in
a coarse-to-fine fashion, preserving the conditional distribution of
filter outputs over multiple scales (jets). Xu el.al. [21], inspired by
the Clone Tool in ROTOSHOP, propose a much simpler approach
yielding similar or better results. The idea is to take random square
blocks from the input texture and place them randomly onto the
synthesized texture (with alpha blending to avoid edge artifacts).
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Figure 2: Quilting texture. Square blocks from the input texture are patched together to synthesize a new texture sample: (a) blocks are
chosen randomly (similar to [21, 18]), (b) the blocks overlap and each new block is chosen so as to “agree” with its neighbors in the region of
overlap, (c) to reduce blockiness the boundary between blocks is computed as a minimum cost path through the error surface at the overlap.

The statistics being preserved here are simply the arrangement ofl.2 Motivation
pixels within each block. While this technique will fail for highly . . . . .
structured patterns (e.g. a chess board) due to boundary inconsisOne curious fact about one-pixel-at-a-time synthesis algorithms
tencies, for many stochastic textures it works remarkably well. A SUch as Efros and Leung [6] is that for most complex textures very
related method was successfully used by Praun et.al. [18] for semi-feW pixels actually haye a choice of \_/alues that can be_ assigned
automatic texturing of non-developable objects. to t_hem. That is, during _the synthesis process most p_|xels have
their values totally determined by what has been synthesized so far.
Enforcing statistics globally is a difficult task and none of the As a simple example, let us take a pattern of circles on a plane.
above algorithms provide a completely satisfactory solution. A Once the algorithm has started synthesizing a particular circle, all
easier problem is to enforce statistics locally, one pixel at a time. the remaining pixels of that circle (plus some surrounding ones) are
Efros and Leung [6] developed a simple method of “growing” tex- completely determined! In this extreme case, the circle would be
ture using non-parametric sampling. The conditional distribution called the texture elementege), but this same effect persists to
of each pixel given all its neighbors synthesized so far is estimated a lesser extent even when the texture is more stochastic and there
by searching the sample image and finding all similar neighbor- are no obvious texels. This means that a lot of searching work is
hoods. (We have recently learned that a nearly identical algorithm wajsted on pixels that already “know their fate”. It seems then, that
was proposed in 1981 by Garber [7] but discarded due to its then the unit of synthesis should be something more than a single pixel,
computational intractability.) The algorithm produces good results a “patch” perhaps. Then the process of texture synthesis would
for a wide range of textures, but is excruciatingly slow (a full search be akin to putting together a jigsaw puzzle, quilting together the
of the input image is required to synthesize every pixel!). Several patches, making sure they all fit together. Determining precisely
researchers have proposed optimizations to the basic method inwhat are the patches for a given texture and how they are put to-
cluding Wei and Levoy [20] (based on earlier work by Popat and gether is still an open problem. Here we will present an very naive
Picard [16]), Harrison [9], and Ashikhmin [1]. However, all these version of stitching together patches of texture to form the output
improvements still operate within the greedy single-pixel-at-a-time image. We call this method “image quilting”.
paradigm and as such are susceptible to falling into the wrong part
of the search space and starting to “grow garbage” [6].

2 Quilting

In this section we will develop our patch-based texture synthesis

procedure. Let us define the unit of synthdito be a square block

of user-specified size from the s&tof all such overlapping blocks

in the input texture image. To synthesize a new texture image, as a

first step let us simply tile it with blocks taken randomly frcgn

The result shown on Figure 2(a) already looks somewhat reasonable
A number of papers to be published this year, all developed in- and for some textures will perform no worse than many previous

dependently, are closely related to our work. The idea of texture complicated algorithms as demonstrated by [21, 18]. Still, the result

transfer based on variations of [6] has been proposed by several auis not satisfying, for no matter how much smoothing is done across

thors [9, 1, 11] (in particular, see the elegant paper by Hertzmann the edges, for most structured textures it will be quite obvious that

et.al. [11] in these proceedings). Liang et.al. [13] propose a real- the blocks do not match.

time patch-based texture synthesis method very similar to ours. The As the next step, let us introduce some overlap in the placement

reader is urged to review these works for a more complete picture of blocks onto the new image. Now, instead of picking a random

of the field. block, we will searchSs for such a block that by some measure

Methods have been developed in particular rendering domains
which capture the spirit of our goals in texture transfer. Our goal is
like that of work in non-photorealistic rendering (e.g. [4, 19, 15]).
A key distinction is that we seek to characterize the output render-
ing style by sampling from the real world. This allows for arichness
of rendering styles, characterized by samples from photographs or
drawings.
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the size of the original (left).

agrees with its neighbors along the region of overlap. Figure 2(b) a horizontal overlap, the minimal paths meet in the middle and the
shows a clear improvement in the structure of the resulting texture, overall minimum is chosen for the cut.
however the edges between the blocks are still quite noticeable.
Once again, smoothing across the edges will lessen this problem
but we will attempt to solve it in a more principled way.

Finally, we will let the blocks have ragged edges which will al-  The complete quilting algorithm is as follows:
low them to better approximate the features in the texture. Now, . . ) )
before placing a chosen block into the texture we will look at the ~ ® GO through the image to be synthesized in raster scan order in
error in the overlap region between it and the other blocks. We find steps of one block (minus the overlap).
a minimum cost path through that error surface and declare that to
be the boundary of the new block. Figure 2(c) shows the results of
this simple modification.

2.2 The Image Quilting Algorithm

e For every location, search the input texture for a set of blocks
that satisfy the overlap constraints (above and left) within
some error tolerance. Randomly pick one such block.

2.1 Minimum Error Boundary Cut e Compute the error surface between the newly chosen block
' and the old blocks at the overlap region. Find the minimum
We want to make the cut between two overlapping blocks on the cost path along this surface and make that the boundary of the

pixels where the two textures match best (that is, where the overlap new block. Paste the block onto the texture. Repeat.
error is low). This can easily be done with dynamic programmin ) .
(Dijkstra’s a)lgorithm can als)(; be used [5]). y prog 9 The size of the block is the only parameter controlled by the user

The minimal cost path through the error surface is computed in @nd it depends on the properties of a given texture; the block must
the following manner. 1B, and B, are two blocks that overlap be big enough to capture the relevant structures in the texture, but

along their vertical edge (Figure 2c) with the regions of overlap small enough so that the interaction between these structures is left

B$Y and BYY, respectively, then the error surface is defined as up to the algorithm. _

(B — B9Y?. To find the minimal vertical cut through this surface . In all of our experiments the width of the overlap edge (on ane
we traversee (i = 2..N) and compute the cumulative minimum side) was 1/6 of the size of the block. The error was computed
errorE for all paths: using theL2 norm on pixel values. The error tolerance was set to

be within 0.1 times the error of the best matching block.
Eij=e;+minE_1j_1,E_1j,E_1j+1). (1)
- L 2.3 Synthesis Results
In the end, the minimum value of the last rowkrwill indicate y
the end of the minimal vertical path though the surface and one canThe results of the synthesis process for a wide range of input tex-
trace back and find the path of the best cut. Similar procedure cantures are shown on Figures 3 and 4. While the algorithm is particu-
be applied to horizontal overlaps. When there is both a vertical and larly effective for semi-structured textures (which were always the



Figure 4: More image quilting synthesis results (for each pair, left is original, right is synthesized)
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Figure 5: Texture transfer: here, we take the texture from the orange and the Picasso drawing and transfer it onto different objects. The result
has the texture of the source image and the correspondence map values of the target image.

hardest for statistical texture synthesis), the performance is quiterice texture conforms to this second constraint, yielding a rendered
good on stochastic textures as well. The two most typical problems image where the face image appears to be rendered in rice.
are excessive repetition (e.g. the berries image), and mismatched
or distorted boundaries (e.g. the mutant olives image). Both are
mostly due to the input texture not containing enough variability.
Figure 6 shows a comparison of quilting with other texture synthe-
sis algorithms.

The algorithm is not only trivial to implement but is also quite

For texture transfer, image being synthesized must respect two
independent constraints: (a) the output are legitimate, synthesized
examples of the source texture, and (b) that the correspondence im-
age mapping is respected. We modify the error term of the image

quilting algorithm to be the weighted sum,times the block over-

N lap matching error plus (+ «) times the squared error between
fast: the unoptimized MTLAB code used to generate these results P 9 plus (& o) 9

. ; the correspondence map pixels within the source texture block and
ran for bet‘”‘?e” 15 seco_nds and several minutes per Image dependfhose at the current target image position. The parametiater-
ing on the sizes of the input and output and the block size used.

. S o mines the tradeoff between the texture synthesis and the fidelity to
Because the constraint region is always the same it's very easy to

- ; L : the target image correspondence map.

optimize the search process without compromising the quality of

the results (see also Liang et.al. [13] who report real-time perfor-  Because of the added constraint, sometimes one synthesis pass

mance using a very similar approach). through the image is not enough to produce a visually pleasing re-
sult. In such cases, we iterate over the synthesized image several
times, reducing the block size with each iteration. The only change

3 Texture Transfer from the non-iterative version is that in satisfying the local tex-

ture constraint the blocks are matched not just with their neighbor

Jlocks on the overlap regions, but also with whatever was synthe-

sized at this block in the previous iteration. This iterative scheme

works surprisingly well: it starts out using large blocks to roughly

each patch satisfy a desiredrrespondence maf, as well as sat- assign where everything will go and then uses smaller blocks to
P P ag, make sure the different textures fit well together. In our tests, we

isfy th_e texture synthesis requirem_ents. The_ correspondence map i%sedN = 3toN = 5 iterations, reducing the block size by a third
a spatial map of some corresponding quantity over both the texture ' i—1

. ; L . = i
source image and a controlling target image. That quantity could each time, and settingat theith iteration to bey = 0. 8«=;+0. 1.
include image intensity, blurred image intensity, local image orien-  Our texture transfer method can be applied to render a photo-
tation angles, or other derived quantities. graph using the line drawing texture of a particular source drawing;

An example of texture transfer is shown in Figure 1. Here, the or to transfer material surface texture onto a new image (see Fig-
correspondence map are the (luminance) image intensities of theure 5). For the orange texture the correspondence maps are the
man’s face. That is, bright patches of face and bright patches of rice source and target image luminance values; for Picasso the corre-
are defined to have a low correspondence error. The synthesizedpondence maps are the blurred luminance values.

Because the image quilting algorithm selects output patches base
on local image information, it is particularly well suited ftex-
ture transfer We augment the synthesis algorithm by requiring that



visua Lut L
describing the response of that neuro:
ht & a function of position—is perhap
functional description of that neuron.
seek a single conceptual and mathem;
sscribe the wealth of simple-cell recep
1d neurophysiologically'-* and inferred
especially if such a framework has the
it helps us to understand the functio
leeper way. Whereas no generic mos
ussians (DOG), difference of offset €
rivative of a Gaussian, higher derivati
- function, and so on—can be expects
imple-cell receptive field, we noneth

pape

input texture

e
B I st s

Parp® z#ats s Hop
HUTTERE [RGB o= aifpamy
Ukt ey AUzza B adail Do g

[URINI
i

FITETE v
¥ i -y o
LT B R A TP T I O AL B TR

Portilla & Simoncelli [17]

SIU UE 8 VIBUAL LUK LILAL UEUIUL—LUE 1
h‘j“fdﬁ‘ﬂﬁﬁaﬁ?ﬁ??}‘am;ﬂ;i‘:gd{i“é’{;'
Aple-cell recepsy. d 80 © 0% pnaric
fung gnd fnrnv-rod;"*epti\‘b'ng v ik
«d neurophysiol; les ' functi S€€x @
saspecially if sud USSIANs yq] qpseribe
\d helps us to uiri"’[i"?. s{ngIé‘éffi‘i’,
eteper way, Wi functiom, e
jrissians £Du0(3],5;'ga,‘ffvlla'g
lee?“::;gher derivatiriy gj),'®' neuror
Usslacription of thatiy fi,,,. 42mather
”;’ﬂt‘conceptusl and hin, se‘e!-(!i; cell ree:
P i tun-th
e ;ﬂﬁ:ﬁp:;*fidélﬂbif'—mhat ne

inn af that v is na

Xu et.al. [21]

t neur
1s perh:

=* el m::'i"l e )
- nelolc ewio!
tiarpm, 5

I.;:ulrs nnimnce
CAT g5 pince 8¢y TAPiIS
£50080 go ecrcecd TEP o ims

euogrs e——i-cesime G o ind oo

¥ ajiccismnssenmne Vite dnone

n-

, neisntn- eice e
it in—e1Centig m

ns i nemzeepprege

onwmass ‘8 if emmn.
+» hal dell ®eummDIR finntlymor rd thon

s e i
cingare!TAOCscer m--fwes fitlssi0n

i " pne mo alt
z ewn caysa-155

¢ ﬂrﬁ)ac‘bl 3 i :nuemﬂnlrre .l cas

1 81 aMloges] o Naeize ne wen

orle-

tunning ped €O usingnpim nf |

che nira ;
0l navanmn - _._.{Trenenss ML

Wei & Levoy [20]

sition—is perk a single conceptual and
1 of that neuribe the wealth of simple-
ual and matheurophysiologically'-* anc
simple-cell necially if such a framewor
y*3 and infer:lps us to understand th
imework has perhay. Whereas no ge:
:and the fumeuro:DOG), difference o
3 no generic a single conceptual and m
rence of offse the wealth of simple-ce
, higher deriescribing the response of 1
—can be expes a function of position-
helps us to understand t'ription of thi
per way. Whereas no gonceptual an
sians (DOG), differencealth of simple

Image Quilting

Figure 6: Comparison of various texture synthesis methods on structured textures. Our results are virtually the same as Efros & Leung [6]

(not shown) but at a much smaller computational cost.

4 Conclusion 8]

In this paper we have introducétiage quilting a method of syn- 9]
thesizing a new image by stitching together small patches of exist-
ing images. Despite its simplicity, this method works remarkably
well when applied to texture synthesis, producing results that are [10]
equal or better than the Efros & Leung family of algorithms but with
improved stability (less chance of “growing garbage”) and at a frac- [11]
tion of the computational cost. We have also extended our method
to texture transfer in a general setting with some very promising f12]
results. [13]
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