
Image Quilting for Texture Synthesis and Transfer

Alexei A. Efros1,2 William T. Freeman2

1University of California, Berkeley 2Mitsubishi Electric Research Laboratories

Abstract

We present a simple image-based method of generating novel vi-
sual appearance in which a new image is synthesized by stitching
together small patches of existing images. We call this processim-
age quilting. First, we use quilting as a fast and very simple texture
synthesis algorithm which produces surprisingly good results for
a wide range of textures. Second, we extend the algorithm to per-
form texture transfer – rendering an object with a texture taken from
a different object. More generally, we demonstrate how an image
can be re-rendered in the style of a different image. The method
works directly on the images and does not require 3D information.

Keywords: Texture Synthesis, Texture Mapping, Image-based
Rendering

1 Introduction

In the past decade computer graphics experienced a wave of ac-
tivity in the area of image-based rendering as researchers explored
the idea of capturing samples of the real world as images and us-
ing them to synthesize novel views rather than recreating the entire
physical world from scratch. This, in turn, fueled interest in image-
based texture synthesis algorithms. Such an algorithm should be
able to take a sample of texture and generate an unlimited amount
of image data which, while not exactly like the original, will be per-
ceived by humans to bethe same texture. Furthermore, it would be
useful to be able to transfer texture from one object to anther (e.g.
the ability to cut and paste material properties on arbitrary objects).

In this paper we present an extremely simple algorithm to ad-
dress the texture synthesis problem. The main idea is to synthesize
new texture by taking patches of existing texture and stitching them
together in a consistent way. We then present a simple generaliza-
tion of the method that can be used for texture transfer.

1.1 Previous Work

Texture analysis and synthesis has had a long history in psychol-
ogy, statistics and computer vision. In 1950 Gibson pointed out
the importance of texture for visual perception [8], but it was the
pioneering work of Bela Julesz on texture discrimination [12] that
paved the way for the development of the field. Julesz suggested

1Computer Science Division, UC Berkeley, Berkeley, CA 94720, USA.
2MERL, 201 Broadway, Cambridge, MA 02139, USA.

input images quilting results

Figure 1: Demonstration of quilting for texture synthesis and tex-
ture transfer. Using the rice texture image (upper left), we can syn-
thesize more such texture (upper right). We can also transfer the
rice texture onto another image (lower left) for a strikingly differ-
ent result.

that two texture images will be perceived by human observers to
be the same if some appropriate statistics of these images match.
This suggests that the two main tasks in statistical texture synthe-
sis are (1) picking the right set of statistics to match, (2) finding an
algorithm that matches them.

Motivated by psychophysical and computational models of hu-
man texture discrimination [2, 14], Heeger and Bergen [10] pro-
posed to analyze texture in terms of histograms of filter responses
at multiple scales and orientations. Matching these histograms it-
eratively was sufficient to produce impressive synthesis results for
stochastic textures (see [22] for a theoretical justification). How-
ever, since the histograms measure marginal, not joint, statistics
they do not capture important relationships across scales and ori-
entations, thus the algorithm fails for more structured textures. By
also matching these pairwise statistics, Portilla and Simoncelli [17]
were able to substantially improve synthesis results for structured
textures at the cost of a more complicated optimization procedure.

In the above approaches, texture is synthesized by taking a ran-
dom noise image andcoercingit to have the same relevant statistics
as in the input image. An opposite approach is to start with an in-
put image andrandomizeit in such a way that only the statistics
to be matched are preserved. De Bonet [3] scrambles the input in
a coarse-to-fine fashion, preserving the conditional distribution of
filter outputs over multiple scales (jets). Xu el.al. [21], inspired by
the Clone Tool in PHOTOSHOP, propose a much simpler approach
yielding similar or better results. The idea is to take random square
blocks from the input texture and place them randomly onto the
synthesized texture (with alpha blending to avoid edge artifacts).



block

input
texture

B1 B2 B1 B2 B1 B2

minimum error
constrained by overlap

(b) (c)(a)

random placement
of blocks

neighboring blocks
boundary cut

Figure 2: Quilting texture. Square blocks from the input texture are patched together to synthesize a new texture sample: (a) blocks are
chosen randomly (similar to [21, 18]), (b) the blocks overlap and each new block is chosen so as to “agree” with its neighbors in the region of
overlap, (c) to reduce blockiness the boundary between blocks is computed as a minimum cost path through the error surface at the overlap.

The statistics being preserved here are simply the arrangement of
pixels within each block. While this technique will fail for highly
structured patterns (e.g. a chess board) due to boundary inconsis-
tencies, for many stochastic textures it works remarkably well. A
related method was successfully used by Praun et.al. [18] for semi-
automatic texturing of non-developable objects.

Enforcing statistics globally is a difficult task and none of the
above algorithms provide a completely satisfactory solution. A
easier problem is to enforce statistics locally, one pixel at a time.
Efros and Leung [6] developed a simple method of “growing” tex-
ture using non-parametric sampling. The conditional distribution
of each pixel given all its neighbors synthesized so far is estimated
by searching the sample image and finding all similar neighbor-
hoods. (We have recently learned that a nearly identical algorithm
was proposed in 1981 by Garber [7] but discarded due to its then
computational intractability.) The algorithm produces good results
for a wide range of textures, but is excruciatingly slow (a full search
of the input image is required to synthesize every pixel!). Several
researchers have proposed optimizations to the basic method in-
cluding Wei and Levoy [20] (based on earlier work by Popat and
Picard [16]), Harrison [9], and Ashikhmin [1]. However, all these
improvements still operate within the greedy single-pixel-at-a-time
paradigm and as such are susceptible to falling into the wrong part
of the search space and starting to “grow garbage” [6].

Methods have been developed in particular rendering domains
which capture the spirit of our goals in texture transfer. Our goal is
like that of work in non-photorealistic rendering (e.g. [4, 19, 15]).
A key distinction is that we seek to characterize the output render-
ing style by sampling from the real world. This allows for a richness
of rendering styles, characterized by samples from photographs or
drawings.

A number of papers to be published this year, all developed in-
dependently, are closely related to our work. The idea of texture
transfer based on variations of [6] has been proposed by several au-
thors [9, 1, 11] (in particular, see the elegant paper by Hertzmann
et.al. [11] in these proceedings). Liang et.al. [13] propose a real-
time patch-based texture synthesis method very similar to ours. The
reader is urged to review these works for a more complete picture
of the field.

1.2 Motivation

One curious fact about one-pixel-at-a-time synthesis algorithms
such as Efros and Leung [6] is that for most complex textures very
few pixels actually have a choice of values that can be assigned
to them. That is, during the synthesis process most pixels have
their values totally determined by what has been synthesized so far.
As a simple example, let us take a pattern of circles on a plane.
Once the algorithm has started synthesizing a particular circle, all
the remaining pixels of that circle (plus some surrounding ones) are
completely determined! In this extreme case, the circle would be
called the texture element (texel), but this same effect persists to
a lesser extent even when the texture is more stochastic and there
are no obvious texels. This means that a lot of searching work is
waisted on pixels that already “know their fate”. It seems then, that
the unit of synthesis should be something more than a single pixel,
a “patch” perhaps. Then the process of texture synthesis would
be akin to putting together a jigsaw puzzle, quilting together the
patches, making sure they all fit together. Determining precisely
what are the patches for a given texture and how they are put to-
gether is still an open problem. Here we will present an very naive
version of stitching together patches of texture to form the output
image. We call this method “image quilting”.

2 Quilting

In this section we will develop our patch-based texture synthesis
procedure. Let us define the unit of synthesisBi to be a square block
of user-specified size from the setSB of all such overlapping blocks
in the input texture image. To synthesize a new texture image, as a
first step let us simply tile it with blocks taken randomly fromSB.
The result shown on Figure 2(a) already looks somewhat reasonable
and for some textures will perform no worse than many previous
complicated algorithms as demonstrated by [21, 18]. Still, the result
is not satisfying, for no matter how much smoothing is done across
the edges, for most structured textures it will be quite obvious that
the blocks do not match.

As the next step, let us introduce some overlap in the placement
of blocks onto the new image. Now, instead of picking a random
block, we will searchSB for such a block that by some measure



Figure 3: Image quilting synthesis results for a wide range of textures. The resulting texture (right side of each pair) is synthesized at twice
the size of the original (left).

agrees with its neighbors along the region of overlap. Figure 2(b)
shows a clear improvement in the structure of the resulting texture,
however the edges between the blocks are still quite noticeable.
Once again, smoothing across the edges will lessen this problem
but we will attempt to solve it in a more principled way.

Finally, we will let the blocks have ragged edges which will al-
low them to better approximate the features in the texture. Now,
before placing a chosen block into the texture we will look at the
error in the overlap region between it and the other blocks. We find
a minimum cost path through that error surface and declare that to
be the boundary of the new block. Figure 2(c) shows the results of
this simple modification.

2.1 Minimum Error Boundary Cut

We want to make the cut between two overlapping blocks on the
pixels where the two textures match best (that is, where the overlap
error is low). This can easily be done with dynamic programming
(Dijkstra’s algorithm can also be used [5]).

The minimal cost path through the error surface is computed in
the following manner. IfB1 and B2 are two blocks that overlap
along their vertical edge (Figure 2c) with the regions of overlap
Bov

1 andBov
2 , respectively, then the error surface is defined ase =

(Bov
1 � Bov

2 )2. To find the minimal vertical cut through this surface
we traversee (i = 2. .N) and compute the cumulative minimum
errorE for all paths:

Ei,j = ei,j + min(Ei�1,j�1, Ei�1,j ,Ei�1,j+1). (1)

In the end, the minimum value of the last row inE will indicate
the end of the minimal vertical path though the surface and one can
trace back and find the path of the best cut. Similar procedure can
be applied to horizontal overlaps. When there is both a vertical and

a horizontal overlap, the minimal paths meet in the middle and the
overall minimum is chosen for the cut.

2.2 The Image Quilting Algorithm

The complete quilting algorithm is as follows:

� Go through the image to be synthesized in raster scan order in
steps of one block (minus the overlap).

� For every location, search the input texture for a set of blocks
that satisfy the overlap constraints (above and left) within
some error tolerance. Randomly pick one such block.

� Compute the error surface between the newly chosen block
and the old blocks at the overlap region. Find the minimum
cost path along this surface and make that the boundary of the
new block. Paste the block onto the texture. Repeat.

The size of the block is the only parameter controlled by the user
and it depends on the properties of a given texture; the block must
be big enough to capture the relevant structures in the texture, but
small enough so that the interaction between these structures is left
up to the algorithm.

In all of our experiments the width of the overlap edge (on one
side) was 1/6 of the size of the block. The error was computed
using theL2 norm on pixel values. The error tolerance was set to
be within 0.1 times the error of the best matching block.

2.3 Synthesis Results

The results of the synthesis process for a wide range of input tex-
tures are shown on Figures 3 and 4. While the algorithm is particu-
larly effective for semi-structured textures (which were always the



Figure 4: More image quilting synthesis results (for each pair, left is original, right is synthesized)



source texture

target images texture transfer results

source texture target image

correspondence maps texture transfer result

Figure 5: Texture transfer: here, we take the texture from the orange and the Picasso drawing and transfer it onto different objects. The result
has the texture of the source image and the correspondence map values of the target image.

hardest for statistical texture synthesis), the performance is quite
good on stochastic textures as well. The two most typical problems
are excessive repetition (e.g. the berries image), and mismatched
or distorted boundaries (e.g. the mutant olives image). Both are
mostly due to the input texture not containing enough variability.
Figure 6 shows a comparison of quilting with other texture synthe-
sis algorithms.

The algorithm is not only trivial to implement but is also quite
fast: the unoptimized MATLAB code used to generate these results
ran for between 15 seconds and several minutes per image depend-
ing on the sizes of the input and output and the block size used.
Because the constraint region is always the same it’s very easy to
optimize the search process without compromising the quality of
the results (see also Liang et.al. [13] who report real-time perfor-
mance using a very similar approach).

3 Texture Transfer

Because the image quilting algorithm selects output patches based
on local image information, it is particularly well suited fortex-
ture transfer. We augment the synthesis algorithm by requiring that
each patch satisfy a desiredcorrespondence map, ~C, as well as sat-
isfy the texture synthesis requirements. The correspondence map is
a spatial map of some corresponding quantity over both the texture
source image and a controlling target image. That quantity could
include image intensity, blurred image intensity, local image orien-
tation angles, or other derived quantities.

An example of texture transfer is shown in Figure 1. Here, the
correspondence map are the (luminance) image intensities of the
man’s face. That is, bright patches of face and bright patches of rice
are defined to have a low correspondence error. The synthesized

rice texture conforms to this second constraint, yielding a rendered
image where the face image appears to be rendered in rice.

For texture transfer, image being synthesized must respect two
independent constraints: (a) the output are legitimate, synthesized
examples of the source texture, and (b) that the correspondence im-
age mapping is respected. We modify the error term of the image
quilting algorithm to be the weighted sum,� times the block over-
lap matching error plus (1� �) times the squared error between
the correspondence map pixels within the source texture block and
those at the current target image position. The parameter� deter-
mines the tradeoff between the texture synthesis and the fidelity to
the target image correspondence map.

Because of the added constraint, sometimes one synthesis pass
through the image is not enough to produce a visually pleasing re-
sult. In such cases, we iterate over the synthesized image several
times, reducing the block size with each iteration. The only change
from the non-iterative version is that in satisfying the local tex-
ture constraint the blocks are matched not just with their neighbor
blocks on the overlap regions, but also with whatever was synthe-
sized at this block in the previous iteration. This iterative scheme
works surprisingly well: it starts out using large blocks to roughly
assign where everything will go and then uses smaller blocks to
make sure the different textures fit well together. In our tests, we
usedN = 3 to N = 5 iterations, reducing the block size by a third
each time, and setting� at theith iteration to be�i = 0. 8� i�1

N�1+0. 1.

Our texture transfer method can be applied to render a photo-
graph using the line drawing texture of a particular source drawing;
or to transfer material surface texture onto a new image (see Fig-
ure 5). For the orange texture the correspondence maps are the
source and target image luminance values; for Picasso the corre-
spondence maps are the blurred luminance values.



input texture Portilla & Simoncelli [17] Xu et.al. [21] Wei & Levoy [20] Image Quilting

Figure 6: Comparison of various texture synthesis methods on structured textures. Our results are virtually the same as Efros & Leung [6]
(not shown) but at a much smaller computational cost.

4 Conclusion
In this paper we have introducedimage quilting, a method of syn-
thesizing a new image by stitching together small patches of exist-
ing images. Despite its simplicity, this method works remarkably
well when applied to texture synthesis, producing results that are
equal or better than the Efros & Leung family of algorithms but with
improved stability (less chance of “growing garbage”) and at a frac-
tion of the computational cost. We have also extended our method
to texture transfer in a general setting with some very promising
results.

Acknowledgements:We would like to thank Alex Berg, Rahul
Bhotika and Jitendra Malik for their help and encouragement. This
research was conducted while AE was a summer Research Intern
at MERL. The photograph of Richard Feynman is courtesy of The
Archives, California Institute of Technology. The Picasso drawing
is Copyright 2001 Estate of Pablo Picasso / Artists Rights Society
(ARS), New York.

References
[1] M. Ashikhmin. Synthesizing natural textures. InSymposium on Interactive 3D

Graphics, 2001.
[2] J. Bergen and E. Adelson. Early vision and texture perception.Nature, 333:363–

364, 1988.
[3] J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of

texture images. InSIGGRAPH 97, pages 361–368, 1997.
[4] C. J. Curtis, S. E. Anderson, J. E. Seims, Kurt W. Fleisher, and D. H. Salsin.

Computer-generated watercolor. InSIGGRAPH 97, pages 421–430, 1997.
[5] J. Davis. Mosaics of scenes with moving objects. InProc. IEEE Conf. on Comp.

Vision and Patt. Recog., 1998.
[6] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In

International Conference on Computer Vision, pages 1033–1038, Corfu, Greece,
September 1999.

[7] D. D. Garber.Computational Models for Texture Analysis and Texture Synthesis.
PhD thesis, University of Southern California, Image Processing Institute, 1981.

[8] J. J. Gibson. The Perception of the Visual World. Houghton Mifflin, Boston,
Massachusetts, 1950.

[9] P. Harrison. A non-hierarchical procedure for re-synthesis of complex tex-
tures. InWSCG ’2001 Conference proceedings, pages 190–197, 2001. See also
http://www.csse.monash.edu.au/˜pfh/resynthesizer/.

[10] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.
In SIGGRAPH 95, pages 229–238, 1995.

[11] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image
analogies. InSIGGRAPH 01, 2001.

[12] Bela Julesz. Visual pattern discrimination.IRE Transactions on Information
Theory, 8(2):84–92, 1962.

[13] L. Liang, C. Liu, , Y. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis by
patch-based sampling. Technical Report MSR-TR-2001-40, Microsoft Research,
March 2001.

[14] J. Malik and P. Perona. Preattentive texture discrimination with early vision
mechanism.JOSA-A, 5(5):923–932, May 1990.

[15] V. Ostromoukhov and R. D. Hersch. Multi-color and artistic dithering. InSIG-
GRAPH 99, pages 425–432, 1999.

[16] Kris Popat and Rosalind W. Picard. Novel cluster-based probability model for
texture synthesis, classification, and compression. InProc. SPIE Visual Comm.
and Image Processing, 1993.

[17] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statis-
tics of complex wavelet coefficients.International Journal of Computer Vision,
40(1):49–71, December 2000.

[18] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. InSIG-
GRAPH 00, pages 465–470, 2000.

[19] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin. Orientable textures
for image-based pen-and-ink illustration. InSIGGRAPH 97, 1997.

[20] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector
quantization. InSIGGRAPH 00, pages 479–488, 2000.

[21] Y. Xu, B. Guo, and H.-Y. Shum. Chaos mosaic: Fast and memory efficient tex-
ture synthesis. Technical Report MSR-TR-2000-32, Microsoft Research, April
2000.

[22] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and
maximum entropy (frame).International Journal of Computer Vision, 27(2):1–
20, March/April 1998.


