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The logic obtained by adding the least-fixed-point operator to first-order logic 
was proposed as a query language by Aho and Ullman (in "Proc. 6th ACM Sym- 
pos. on Principles of Programming Languages," 1979, pp. 110-120) and has been 
studied, particularly in connection with finite models, by numerous authors. We 
extend to this logic, and to the logic containing the more powerful iterative-fixed- 
point operator, the zero-one law proved for first-order logic in (Glebskii, Kogan, 
Liogonki, and Talanov (1969), Kibernetika 2, 31-42; Fagin (1976), J. Symbolic 
Logic 41, 50-58). For any sentence q~ of the extended logic, the proportion of 
models of q~ among all structures with universe {1, 2,..., n} approaches 0 or 1 as n 
tends to infinity. We also show that the problem of deciding, for any cp, whether 
this proportion approaches 1 is complete for exponential time, if we consider only 
q)'s with a fixed finite vocabulary (or vocabularies of bounded arity) and complete 
for double-exponential time if ~0 is unrestricted. In addition, we establish some 
r e l a t e d  resu l t s .  © 1985 Academic Press, Inc. 

INTRODUCTION 

M a n y  s t a t emen t s  a b o u t  finite s t ruc tures  satisfy the  fo l lowing  z e r o - o n e  
law. C o n s i d e r  the p r o b a b i l i t y  tha t  the s t a t e m e n t  ho lds  for a s t ruc tu re  wi th  
un iverse  {1, 2 ..... n}  a n d  re la t ions  chosen  at  r a n d o m .  Th i s  p r o b a b i l i t y  
a p p r o a c h e s  e i ther  0 or  1 as n t ends  to infini ty.  F o r  n u m e r o u s  examples ,  see 
(Blass a n d  H a r a r y ,  1979) a n d  the  references ci ted there. 
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Glebskii, Kogan, Liogonki, and Talanov (1969) and independently 
Fagin (1976) showed that every first-order sentence satisfies the zero-one 
law. Grandjean (1982) showed that the problem of deciding which of the 
two limit values is correct for a given first-order sentence is PSPACE com- 
plete. (We state these results precisely and review their proofs in Sect. 1.) 
Kaufmann and Shelah have shown that the zero-one law is violated badly 
within monadic second-order logic. 

We extend the zero-one law to sentences in the logic obtained by adding 
to first-order logic the least-fixed-point operator studied in (Aho and 
Ullman, 1979; Chandra and Harel, 1982; Immerman, 1982a; Kozen, 1982; 
Vardi, 1982) or the more powerful iterative fixed point operator (Gurevich, 
1984; Livchak, 1983). We show that any formula in these extended logics is 
equivalent, in random structures (i.e., with probability approaching 1 as 
the structures get larger), to a first-order formula. This result, which 
immediately implies the zero-one law, contrasts with the well-known fact 
that the least-fixed-point operator greatly increases the expressive power of 
first-order logic. 

Contrary to what one might expect, our equivalence result does not 
allow us to transfer PSPACE completeness of the theory of random struc- 
tures from first-order logic to the fixed-point operators. The difficulty is 
that the translation process, from the extended logics to first-order logic, 
can vastly increase the length of formulas. This difficulty cannot be over- 
come without proving PSPACE=EXPTIME,  for we show that the 
decision problem for the theory of random structures in logic with a fixed- 
point operator is EXPTIME hard. 

1. THE FIRST-ORDER THEORY OF RANDOM STRUCTURES 

In this section, we review for future reference several known theorems, 
due to Gaifman (1964), Glebskii et al. (1969), Fagin (1976), and Grand- 
jean (1982), concerning the first-order theory of random structures with 
infinite or large finite universes. We present the proofs in a form designed 
to simplify the proofs of the new results in later sections. 

By a vocabulary we mean a nonempty finite set of predicate symbols of 
one or more arguments. We work with a fixed vocabulary a; by formulas 
we mean first-order a-formulas, and by structures we mean a-structures. A 
typical example is a = {EDGE}, where EDGE is a binary relation symbol, 
and so structures are directed graphs (possibly with loops). 

Let the set co of natural numbers be made into a a-structure by means of 
the following random process. For each predicate symbol P of a and each 
tuple (of the appropriate length) d of natural numbers, decide whether P 
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holds of ~i by flipping an unbiased coin. To give a more precise definition of 
this process, it is convenient to view a a-structure with universe co as a 
function assigning a truth value (0 or 1) to each sentence of the form P(~) 
(in the vocabulary a augmented by names for the natural numbers). Then 
the process described informally above is defined by the product measure 
on the space of such functions induced by the probability measure on 
{0, 1 } that assigns probability ½ to each element. 

THEOREM 1.1. One isomorphism class contains almost all a-structures 
with universe co. This isomorphism class is the set of countable models of a 
certain first-order theory (explicitly axiomatized below). 

This theorem and an explicit set of axioms for the theory in question 
were given in Gaifman (1964); the first part of the theorem is also in Erd6s 
and Spencer (1974). The theorem remains correct if the coin used to define 
the probabilities is biased. 

The structures in the isomorphism class given by the theorem will 
be called random structures, and their first-order theory will be called 
RANDOM (a). It is easy to see that, if a '  is another vocabulary, then 
RANDOM (a) and RANDOM (a') contain the same sentences of the 
common vocabulary a c~ a', so it makes sense to say that a sentence is in 
RANDOM without specifying a. 

Proof Sketch. To describe Gaifman's axiomatization of RANDOM (a), 
We first introduce some terminology. For a finite list g = vl,..., vt of distinct 
variables, a simple 6-formula is an atomic formula, with variables from the 
list g, and not involving the equality symbol. (Thus, every atomic formula 
is either a simple ~ or an equation between two variables.) A complete 
quantifier-free description for g, or just a ~-description, is a conjunction of 
simple J-formulas and negations of simple ~-formulas such that, for every 
simple ~5-formula ~, exactly one of ~ and --7 ct occurs as a conjunct. If w is a 
variable distinct from the vi's, then a ~, w-description E extends a 15-descrip- 
tion D if every conjunct of D is also a conjunct of E. Every such pair D, E 
(for every 15 and co) gives rise to one of Gaifman's axioms: 

An easy computation shows that every such axiom holds in almost every 
structure with universe co. A back-and-forth argument shows that every 
two countably infinite models of these axioms are isomorphic. These facts 
suffice to establish Theorem 1.1 once we observe that no finite structure can 
satisfy all the Gaifman axioms. (We could avoid this observation by 
adjoining to the Gaifman axioms the sentences which assert the existence of 
at least n objects, for each n.) | 
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We record, for future reference, two corollaries of the proof of 
Theorem 1.1. 

COROLLARY 1.2. The theory RANDOM (a) is No-categorical. (Recall 
that this means that all models of  the theory of  cardinality R o are 
isomorphic.) 

COROLLARY 1.3. The theory RANDOM (a) is complete and recursively 
axiomatized, hence decidable (uniformly in a). 

The decidability result could also be obtained, with a better decision 
procedure, by an effective eliminination of quantifiers. In fact, Grandjean 
has shown that we can do considerably better yet. 

THEOREM 1.4 (Grandjean, 1982). The decision problem for RANDOM 
(a) is PSPACE complete (with respect to PTIME reduction). 

We remark that the degree of the polynomial that bounds the space 
required by the decision algorithm in (Grandjean, 1982) increases with the 
arity of the relation symbols in a. It is thus essential that we are dealing 
with a fixed finite vocabulary a. 

Proof We begin with some preliminary facts. First, the same back-and- 
forth argument as in the proof of Theorem 1.1 shows that, if M is a random 
structure and ~? and y are lists of distinct elements satisfying the same com- 
plete quantifier-free description (for a suitable list ~ of variables), then there 
is an automorphism of M sending £ to f. It follows that, if D(g) is a 
~5-description and ff is a tuple of distinct elements satisfying D in some 
random structure M, then, for any formula 0(~) with free variables among 
~5, ff satisfies ,9 in M if and only if all solutions of D by distinct elements in 
all random models satisfy 0, i.e., if and only if/~ i<j vi¢  vj/x DO7) implies 
0(~) in the theory RANDOM. This implies the following equivalences 
which will be crucial for the correctness of our algorithm; for brevity, we 
write "D(f)--*R 0(~7)" for "V~7(Ai<jvg#v j/x D(~)--.~9(O))is provable in 
RANDOM": 

D(f) 7 -n~9(f) if and only ifD(~7) ~ 0(~7) 

D(f) 7 0105) v 02(~5) if and only if D05) ~ 01(f) or D(f) -~ oa205 ) 

D(O) ~, 3w~9(zT, w) if and only if 

either E(~5, w) ~ 0(~, w) for some extension E o f D  

or D(~5) 7 0(O, v~) for some v~ in the list ~. 

(The two cases in the last equivalence distinguish whether or not w equals 
one of the v's.) 
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The second preliminary fact that we need is a bound on the number of 
g-descriptions in terms of the length l of the list ~, the number m of relation 
symbols in a, and the maximum arity r of these symbols. Each relation 
symbol yields, when we assign it arbitrary tuples from ~ as arguments, at 
most l r simple g-formulas. So there are at most m. l r simple ~-formulas and 
therefore at most p(1)= 2 m" r g-descriptions. 

The last preliminary fact is the result of Chandra, Kozen, and 
Stockmeyer (1981) that PSPACE is equivalent to APTIME, so it suffices 
to give an alternating PTIME Turing machine to decide membership of 
sentences in RANDOM (a). It is convenient to describe first an alternating 
PTIME algorithm which decides, for any g, any 0-description D(~), and 
any formula 0(g) with free variables among g, whether D ~R 0. We may 
assume that disjunction and negation are the only connectives and 3 is the 
only quantifier in 0. The algorithm proceeds recursively as follows. If ~9 is 
--7 ~0, the machine enters a negation state and computes whether D -~R q~. If 
0 is 01 v 02, the machine enters an existential state with two successors ql 
and q2; in qi it computes whether D ---'R ~9i. If 0 is 3w~o(~, w), the machine 
enters an existential state with two successors ql and q2. From ql, it goes 
through a sequence of I- log 2 l-] existential states, guessing an ie {1,...,/}; 
then it computes whether D--*R~0(O, vi). From q2, it goes through a 
sequence of (at most m" ( l+  1) r existential states, guessing an extension 
E(g, w) of D(g); then it checks whether E ~R  ~0. If 0 is a simple ~-formula, 
it accepts or rejects according to whether ~9 or --70 is a conjunct of D(g). 
Finally, an equation between variables is accepted if the variables are the 
same and rejected otherwise. 

To decide whether a sentence ~ is in RANDOM (a), we apply this 
algorithm to decide whether TRUE -*R ~, where TRUE, the empty con- 
junction, is the unique complete quantifier-free description for the empty 
list of variables. 

Our first preliminary fact shows that this alternating algorithm gives 
correct answers. Our second preliminary fact shows that it operates in 
polynomial time, since m and r are fixed (by a) and l is bounded by the 
length of the input. Our third preliminary fact follows us to convert the 
algorithm into a deterministic one that operates in polynomial space. So 
RANDOM (a) ~ PSPACE. 

For the other half of Theorem 1.4, we give a polynomial time com- 
putable reduction of the decision problem QBF for quantified Boolean for- 
mulas to the decision problem for RANDOM (a). Since QBF is known to 
be PSPACE-complete (Stockmeyer, 1974), this will suffice to complete the 
proof. To simplify notation, we assume that a contains a unary predicate 
symbol P; if it contains only non-unary symbols, just replace variables with 
sequences of variables in what follows. 

The idea of the reduction is simply to let elements satisfying (resp. not 
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satisfying) P act as surrogates in R A N D O M  (a) for the truth value 1 
(resp. 0) in QBF. More precisely, define for each quantified Boolean for- 
mula 40 a corresponding a-formula 40' as follows. For a propositional 
variable Pi, let p~ be P(vi). Let (-740)' be ~ (40'), and similarly for the other 
connectives. Let (3p~O)' be 3vi(~O'), and similarly for ¥. Then, for every 
40(Pl ..... Pt) with free propositional variables among Pl ..... Pt, 40 is true 
under the truth assignment f :  {1,..., l} ~ {0, 1 } (i.e., when pi has valuef( i))  
if and only if the sentence 

3U 0 3Ul(-7P(uo) A e ( u l )  A 40'(Uf(1) ..... blf(l))) 

is in RANDOM.  (The proof of this is a straighforward induction on q~.) In 
particular, a sentence 40 (with no free propositional variables) is in QBF if 
and only if 40' is in RANDOM. This is the desired reduction, so the proof 
of Theorem 1.4 is complete, i 

Until now, we have treated only countably infinite structures. However, 
the theory R A N D O M  can also be used to provide information about  large 
finite structures, despite the fact that no finite structure can satisfy all of 
Gaifman's axioms. 

For any sentence 40 and every positive integer n, let FRACTION (40, n) 
be the quotient of the number of models of 40 with universe { 1, 2,..., n } by 
the total number of a-structures with this universe. We shall be interested 
in the behavior of FRACTION (40, n) as n tends to oo (with 40 fixed). This 
behavior indicates the probability that 40 is true in a randomly chosen large 
finite structure. 

THEOREM 1.5. (Fagin, 1976; Glebskii, 1969). I f  the sentence 40 is 
in R A N D O M  (a), then FRACTION (40, n) ~ 1 as n ~ ~ .  I f  40 is not in 
R A N D O M  (a), then FRACTION (40, n) ~ 0 as n ~ ~ .  

COROLLARY 1.6 (Zero-one law). For anyfirst-order sentence 40, limn ~ 
FRACTION (40, n) exists and equals zero or one. 

Notice that this theorem and corollary would be false if we had permit- 
ted zero-place relation symbols in a, for such a symbol would be a 40 with 
FRACTION (40, n) = ½ for all n. Allowing constant symbols would lead to 
similar counterexamples. 

Sketch o f  Proof of  Theorem 1.5. The second sentence follows from 
the first, since if R A N D O M  (a) does not contain 40 it must contain 

40, by completeness (Corollary 1.3). So we need only prove the first asser- 
tion. Let 40 be a sentence in R A N D O M  (a). If 40 is one of Gaifman's 
axioms, then straightforward estimates, which we omit, show that 
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FRACTION (tp, n) ~ 1. In the general case, q~ is a logical consequence of 
finitely many Gaifman axioms, say % ,..., ek. Any structure not satisfying (p 
must also violate at least one of the ~i's. So 

k 

1 - F R A C T I O N  (~0, n)~< ~ (1 - F R A C T I O N  (cq, nj)). 
i = l  

Since each summand on the right side approaches 0, we see that 
FRACTION (~o, n) ~ 1 when n ~ oo, as desired. | 

We note for future reference that the last part of the proof actually 
establishes the general fact that the property "FRACTION (¢p, n ) ~  1 as 
n ~ oo" is preserved by logical consequence. We also note that the 
definition of FRACTION (~o, n) makes sense for any sort of sentence ~o 
(with a well-defined semantics), not just for first-order ~p. The preservation 
of "FRACTION ~ 1" under logical consequence also continues to hold as 
long as the number of premises is finite. 

2. Tim ITERATIVE FIXED POINT 

In this section, we introduce the two extensions of first-order logic that 
we shall study. These extensions admit formulas defining the least fixed 
point of a monotone operator or the iterative fixed point of an inflationary 
operator. Both of these fixed-point constructions have been extensively 
studied in recursion theory under the names of "monotone" and "non- 
monotone" induction, respectively; see, for example, (Moschovakis, 1974a, 
1974b; Spector, 1961). Much work has been done on logics involving the 
least-fixed-point operator, sometimes called #-calculi; see (Aho and 
Ullman, 1979; de Bakker and de Roever, 1972; Chandra and Harel, 1982; 
Hitchcock and Park, 1973; Kozen, 1982; Park, 1970; de Roever, 1974; 
Scott and de Bakker, 1969). The extension of first-order logic by the 
iterative-fixed-point operator was introduced in Gurevich (1984); a similar 
concept occurs in Livchak (1983). 

Given a structure S of vocabulary a and a natural number l, consider an 
operator 7~ which associates with each l-ary predicate P on S a new l-ary 
predicate rt(P) on S. Any formula (p of the vocabulary a w {t5} (where 15 is 
a new /-ary predicate symbol), with free variables among v 1 ..... v~, defines 
such an operator rc in every if-structure S, 

~(P) = {92e Stl ~0 holds of 2 in the structure (S, P)}. 

If (p has additional free variables, they can be viewed as parameters; an 
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operator lr is obtained for any fixed values in S of these parameters. A 
relation P is a f ixed point of rc if ~(P) = P. 

The operator ~ is monotone if, for all/-ary relations P and Q on S, P___ Q 
implies rc(P)~rc(Q). For monotone operators, a classical construction 
(Knaster, 1928; Tarski, 1955) provides a least fixed point, 

0 {P~-S'IIr(P)~P) " 

This least fixed point is also obtained by the transfinite inductive construc- 
tion (Spector, 1961), 

Po = ~, 

P~ + 1 = 7z(P~). 

P~= U{P~[c~<2) for limit ordinals 2. 

It is easy to check that ~ </~ implies P~ _~ P~, so there must be an ordinal 
number c~ (of cardinality at most that of S t) with P~ = P~ + 1. This P~ is the 
least fixed point of z~. 

Deciding whether a given first-order formula defines a monotone 
operator is difficult in general. It is shown in Gurevich (1984) that this 
problem is (recursively) unsolvable, that it remains unsolvable if one 
restricts attention to finite structures, and that there is a formula ~0 such 
that the problem of deciding whether ~0 defines a monotone operator on a 
given finite structure is co-NP-complete. 

There is, however, a simple syntactic condition on ~p that implies 
monotonicity of the associated operator: 15 should occur only positively in 
q~ (i.e., under an even number of negation symbols). This observation 
motivates the 

LEAST FIXED POINT FORMATION RULE. Let ~p be a formula with only 
positive occurrences o f  the i-ary predicate symbol P, let vl,..., v/ be distinct 
variables, and let ul,..., ut be variables. Then 

(Ul  ..... Ul) e (LFP/5, vl,..., vt)~P 

is also a formula. 

The vocabulary of the new formula consists of all symbols except P from 
the vocabulary of q~. The free variables of the new formula are ut ..... u /and  
the variables other than v~,..., vt tffat are free in ¢p. (Thus, LFP  binds 
P, v~,..., vl.) An occurrence of a predicate symbol (other than P) in the new 
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formula is positive (resp. negative) if it is so in ~0. The new formula is true 
(in a structure S with specified values for its free variables) if and only if 
the l-tuple of values of Ul ..... ut belongs to the least fixed point of the 
operator defined by (p (and v~,..., v~, using the specified values for the other 
variables as parameters). It may be worth remarking that, if we had 
allowed vocabularies to contain function symbols, then the u's in the new 
formula would have been allowed to be arbitrary terms and the definitions 
of vocabulary, free variables, and truth of the new formula would have 
been modified accordingly. 

For non-monotone operators, the sequence of predicates P~ need not 
stabilize and may therefore yield no fixed point. There is, however, another 
condition on ~ that suffices to ensure that P~_  P~ for ~ < fl and therefore 
that P~=P~+~ for some e. This condition is that the operator be 
inflationary, which means that P c_ ~(p) for all P. (The terminology is due, 
as far as we know, to Freyd (1972) and was first used in the present con- 
text in Gurevich, 1984.) Although such an operator need not have a least 
fixed point, it has a canonically defined fixed point, namely P~ for any suf- 
ficiently large e; we call this the iterative f ixed point. 

Deciding whether the operator defined by a formula ~0 is inflationary is, 
in general, difficult in the same senses (and by virtually the same proof) as 
for monotonicity. However, any operator rc can be easily transformed into 
an inflationary operator, P~-~ P t~ rc(P), which agrees with rr if ~ happens to 
be inflationary already. This observation motivates the semantics of the 
following rule. 

ITERATIVE FIXED POINT FORMATION RULE. Let ~o be a formula, P an l- 
ary predicate symbol Vl,..., vl distinct variables, and ul ,..., u~ variables. Then 

(u l  ,..., ul)  e ( I F P / 5 ,  vl  ,..., vl) cp 

is also a formula. 

The syntactic properties of this new formula are the same as for LFP. 
The formula is true if and only if the/-tuple of values of u~,..., u/belongs to 
the iterative fixed point of P~--~ P u n(P), where n is the operator defined by 
q~. If ~ is inflationary or monotone, then this is the iterative fixed point of n. 
In particular, if P occurs only positively in cp, then IFP and LFP  agree, so 
the logic FO + IFP obtained by adding the iterative fixed point formation 
rule to the formation rules of first-order logic subsumes the logic 
FO + LFP. 

It will be useful to have a notation for the stages of the iteration leading 
to the iterative fixed point. 
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ITERATION STAGE FORMATION RULE. For q~, P, ~, ~ as in the preceding 
two formation rules and for ~ an ordinal number 

(ul ..... u3~  (~ P, vl ..... v~) ~o 

is a fqrmula. 

The syntactic properties of the new formula are as for the preceding two 
rules; truth is defined as for IFP  but with "the ~th stage P~" in place of "the 
iterative fixed point." We shall need this formation rule only for finite ct, 
and we adopt for complexity-theoretic purposes the convention that the 
new formula should contain ~ written in binary notation. 

For finite ~, ~ steps in the iteration of a first-order definable operator can 
be carried out in first-order logic. Thus, the new formula ~ E (~P, ~)~0 is 
equivalent to a first-order formula if ~0 is, so the iteration stage formation 
rule adds no expressive power to first-order logic unless ~ is infinite. 
Indeed, t~ ~ (O P, ~5) q~ is always false, and ~ ~ (k + 1 P, ~) ~o is equivalent to 
the result of first substituting t~ for ~ in ~o (renaming bound variables if 
necessary), then replacing every subformula of the form P(~)  (for 
arbitrary #)  with ~ ~ (k P, ~)~o, and finally forming the disjunction of the 
result with t~ ~ (k P, ~)~o. Recursive application of this procedure lets us 
reduce any formula in first-order logic with the iteration stage rule for finite 
~, FO + IS, to a first-order formula. It shoul~l, be noted, however, that this 
translation process may result in a formula vastly longer than the initial 
formula. Thus, although the iteration stage rule for finite ~ does not 
increase expressive power, it does affect complexity. 

3. THE ZERO-ONE LAW FOR FIRST-ORDER LOGIC 

WITH ITERATIVE FIXED POINT 

The purpose Of this section is to extend the zero-one law, Corollary 1.6, 
from first-order logic to the stronger logic FO + IFP  introduced in Sec- 
tion 2. 

THEOREM 3.1. Let ~o be a formula of  FO + IFP  with vocabulary ~r. There 
exist a first-order cr-formula ¢p' and a finite subset G of  Gaifman's axiom set 
for R A N D O M  (o-) such that q~ and q~' are equivalent in all models of  G. 

COROLLARY 3.2 (Zero-one law). Let ~o be a sentence of  FO + IFP. Then 
lim,_~ co FRACTION (~o, n) exists and equals zero or one. 1 

1 Immerman has written to us that the zero-one law also follows from his work (Immer- 
man, 1982b) on expressibility with a bounded number of variables. The law isn't there in any 
explicit form. 

643/67/i-3-6 
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Proof of Corollary 3.2. Let q)' and G be as in the theorem. 
Since each sentence in G has F R A C T I O N a l ,  and since either 
FRACTION (q/, n) --+ 1 or FRACTION (-ncp', n) --* 1 by Corollary 1.6, we 
have that either ~0, which is a logical consequence of G u {~o' }, or -7 q~, 
which is a logical consequence of G w { -n ~o' }, has FRACTION ~ 1. | 

Proof of Theorem 3.1. Let a be the vocabulary of ~0. Since the theory 
RANDOM (~) is Ro-categorical, we need only invoke Theorem 1 of 
Appendix 3 of Gurevich (1984). For the sake of completeness, we sketch 
the proof. 

We proceed by induction on the depth of nesting of IFP in ~o. The only 
nontrivial case is that cp is fie (IFP/5, g) 0. We cannot apply the induction 
hypothesis to 0 since 0 involves P (whose interpretation is certainly not 
random here), but we can apply it to any finite stage in the iteration of 0. 
More precisely, define, for each natural number k, a first-order formula 
0k(u) that does not contain P and is equivalent to ~iE (k P, g)0  in all 
models of a certain finite subset Gk of Gaifman's axioms. For k = 0, let 
00(~i) be FALSE. Let Ok+ 1(t~) be obtained from 0 by first substituting ~ for 
f, then replacing every subformula of the form P(#) with 0k(#), then 
applying the induction hypothesis to get an almost equivalent first-order 
formula, and finally forming the disjunction with 0k(~). Here "almost 
equivalent" means "equivalent in all models of enough of the Gaifman 
axioms." Comparison with the discussion at the end of Section 2 shows 
that the 0k's have the desired properties. 

In a countable model M of RANDOM (~), each 0~(t~) is equivalent to 
e (k P, iS) 0, since all of Gaifman's axioms hold. In particular, we have the 

monotonicity property that each 0k implies the next, 0k+l,  in M. Since 
RANDOM (a) is Ro-categorical, a version of Ryll-Nardzewski's theorem 
(Theorem 2.3.12(e) in Chang and Keisler, 1973) asserts that there are only 
finitely many inequivalent (in M) formulas with a fixed finite set of free 
variables; in particular, some 0k and 0~ with k < l must be equivalent in M. 
Then 0k is equivalent to 0k+l in M, because of the monotonicity property. 
This equivalence, being a first-order statement true in M, is deducible from 
finitely many Gaifman axioms. In any model of these finitely many axioms 
plus the finitely many more needed to ensure that 0k(u) and 0k+ 1(~) are 
equivalent to u ~ (k P, ~) 0 and ~i ~ (k + 1 P, ~) 0 respectively, all these 
equivalences together ensure that the iteration defining q~ stops after the 
kth step and that ~0 is equivalent to 0k. This completes the proof of 
Theorem 3.1. | 

We have presented this proof in a form applicable to any Ro-categorical 
theory. For the particular theory RANDOM (or), we can obtain an 
improvement, which will be useful in Section 4, by replacing the use of 
Ryll-Nardzewski's theorem with the more explicit bounds obtained, as the 
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second preliminary fact, in the proof of Theorem 1.4. In that proof, we saw 
that there are at most 2 m'r ~-descriptions, where I is the length of t7 and m 
and r are determined by a (the number of predicate symbols and the 
maximum arity). Since tuples satisfying the same complete quantifier-free 
description are related by an automorphism of M (the first preliminary fact 
in the proof of Theorem 1.4), they satisfy the same formulas of FO + IFP. 
It follows that, as k increases, the sequence of predicates defined by 
t~ ~ (k P, 17) ~b cannot strictly increase more than p(l) = 2 m"/~ times, where l is 
the number of free variables of ~. Thus, in ~ (IFPP, O)~p, we can replace 
IFP  by p(l) (or any larger number). Doing this systematically, we can 
transform any FO + IFP  formula (p into an equivalent (in M) formula of 
FO + IS in which the iteration stage formation rule is applied only with 

= p(l), where l is the number of variables in ~o. As we saw at the end of 
Section 2, this FO + IS formula is equivalent (in all structures) to a first- 
order formula ~o". Since this q~" and the q~' obtained in the proof of 
Theorem 3.1 are equivalent in the countable models of R A N D O M  (a), 
they are also, by compactness, equivalent in all models of a certain finite 
set of Gaifman axioms. Therefore, ~0" has the property asserted of ~p' in 
Theorem 3.1. 

The following proposition summarizes this discussion for future 
reference. 

PROPOSITION 3.3. The ¢p' in Theorem 3.1. can be taken to be the first- 
order translation of  a formula of  FO + IS in which the stages mentioned are 
all 2 m/r, where l is the number of  variables in ~o. 

4. THE COMPLEXITY OF THE F O  + I F P  THEORY OF RANDOM STRUCTURES 

The proofs of the zero-one laws for first-order logic and for FO + IFP  
show that a sentence is true in random (countably infinite) structures 
if and only if it is true in almost all finite structures in the sense that 
FRACTION (q~, n ) ~  1 as n--, ~ .  We say that a sentence with these 
equivalent properties is almost surely true. This section is devoted to deter- 
mining the complexity of the decision problem for almost sure truth of sen- 
tences in FO + LFP  and FO + IFP. Recall that for first-order logic this 
problem is PSPACE complete (Theorem 1.4). 

THEOREM 4.1. The decision problem for almost sure truth of  FO + IFP  
sentences can be solved by an alternating Turing machine in polynomial 
space. 

Proof The machine proceeds according to the following algorithm. 
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Given an FO + IFP sentence q~ with l variables, it replaces every occurrence 
of IFP with p where p = p(l) = 2 "  e and m and r are, as before, the number 
and the maximum arity of predicate symbols in a. By Proposition 3.3, this 
replacement almost surely does not alter the truth value of ~0. Since p is 
written in binary notation, and since l < length of ~0, the space required is 
polynomial in the length of ~0. 

The rest of the algorithm is exactly like that in the proof of Theorem 1.4, 
with the following additional steps to handle the iteration stage formation 
rule. To decide whether D - ~ R z i e ( k +  1P, v)0,  where D is a complete 
quantifier-free description for appropriate variables, decide instead whether 
D ~R ~ where ~ is obtained from 0 by substituting ~ for ~, replacing, every 
P(#) with # e (k P, g) 0, and forming the disjunction with ~ e (k P, ~5) 0. 
(See the end of Sect. 2). Finally, to decide whether D - ' R  ~ e ( o P ,  ~)0, 
reject. The algorithm never needs to deal with complete quantifier-free 
descriptions for more than l variables, so every description it uses is a con- 
junction of at most m.  l r simple formulas and negations of simple formulas. 
Thus, the machine needs only polynomial space to record descriptions and 
iteration stages. Its other storage needs are comparatively minor, so it 
operates in polynomial space, and the theorem is proved, i 

In the following corollary, EXPTIME refers to deterministic Turing 
computation with a time bound 2 s(n), where f is a polynomial (not 
necessarily linear) function of the input length n. 

COROLLARY 4.2. Almost sure truth of  FO + IFP sentences is decidable in 
EXPTIME. 

Proof  EXPTIME is equivalent to alternating PSPACE, by Chandra, 
Kozen, and Stockmeyer (1981). I 

THEOREM 4.3. The decision problem for almost sure truth of  FO + LFP 
sentences is EXPTIME hard. 

Proof  Because of the result of Chandra et al. (1981)just quoted, it suf- 
fices to reduce, to the decision problem for almost sure truth of FO + LFP 
sentences, every language recognized by an alternating Turing machine 
that operates in polynomial space. For simplicity, we assume that our alter- 
nating machines have only universal and existential states, not negation 
states; it is shown in Chandra et al. (1981) this assumption causes no loss 
of generality. Let M be such a machine, and let S(Jwl) be a polynomial in 
the length of its input w that bounds the space used by M. We show how 
to compute, in polynomial time, from any given input w a sentence ~gw in 
FO + LFP such that 0w is almost surely true if and only if M accepts w. 

To construct Ow, we use the well-known fact (Cook, 1971) that the 
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activity of a Turing machine can be described by a string of truth values 
(or bits). In the present situation, the computation of M on input w is too 
large to be useful for our purposes, but each configuration (instantaneous 
description) of M can be coded by a string of length polynomial in ]wl. For 
concreteness, we adopt the convention that, if M has s states and a tape 
symbols, then the bit strings have length s + (a + 1)' S(Iw[) and consist of 
the truth values of the following statements about the configuration: "M is 
in state q" for each of the s states q, "M is scanning square n" for each of 
the S(Iwl) relevant squares, and "the symbol in square n is Z" for each of 
the S(JwJ) relevant squares and each of the e symbols Z. Of course, a string 
corresponds to a configuration only if it satisfies some obvious consistency 
conditions: M is in exactly one state, scanning exactly one square, and each 
square has exactly one symbol in it (when the blank counts as a symbol). 

As in the proof of Theorem 1.4, we may assume for notational 
simplicity that ~ contains a unary predicate symbol Q. For each input 
word w, we can easily construct, in polynomial time, first-order formulas 
INITIALw(~?), UNIVERSALw(2), EXISTENTIALw(g), YESw()? ), and 
SUCCESSORw(2, 35), in which )~ and 35 are sequences of l = s + (a + 1)" 
S([w[) variables, and which assert, respectively, that the string of bits 
Q(~)=Q(xl)'"Q(xl) codes the initial configuration with input w, that 
Q(ff) codes a configuration where M is in a universal state, that Q()?) codes 
a configuration where M is in an existential state, that Q(ff) codes a con- 
figuration where M is in an accepting (terminal) state, and that M can go 
in one computation step from the configuration coded by (~(ff) to that 
coded by ~(js). Of these five formulas, the last four depend on w only 
through the dependence of I on the length of w. 

Recall that ,  by the definition of the way alternating Turing machines 
operate, the set of configurations that M accepts is the smallest set A such 
that (i) A contains every configuration in which M is in an accepting ter- 
minal state, (ii) A contains every universal configuration all of whose suc- 
cessors are in A, and (iii) A contains every existential configuration at least 
one of whose successors is in A. This means that the sets of ff for which 
Q(2) codes an accepting configuration is definable by 

ACCEPTw(~) *-, ~ E (LFP P, 6) ~p 
where q~ is 

YES~(~) v (UNIVERSALw(z5) A V2(SUCCESSORw(~ , 2) ~/5(2)) 

v (EXISTENTIALw(f) A 32(SUCCESSORw(f, 2)/x P(2)). 

This definition works in any structure where at least one element satisfies Q 
and at least one does not, so that every code occurs as Q(2) for some z; no 
other properties of random structures are needed for this proof. 
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Finally, we have that M accepts w if and only if the following sentence 
~gw is almost surely true: 

3~(INITIALw(~) A ACCEPTw(X)). 

Since ,9 w can clearly be written down in polynomial time when w is given, 
Theorem4.3 is proved. | 

COROLLARY 4.4. The decision problems for almost sure truth in 
FO + L F P  and FO + IFP are EXPTIME complete. 

Proof Combine Corollary 4.2, Theorem 4.3, and the fact that IFP sub- 
sumes LFP. | 

5. UNBOUNDED VOCABULARY 

In the preceding sections, we have worked with a fixed finite vocabulary 
¢. The number m of relation symbols in a and the maximum arity r of 
these symbols played an important role in the proof of Theorem 4.1, where 
we constructed an alternating Turing machine that decides in space 
roughly propotional to m . l  r, whether a F O + I F P  sentence ~o with l 
variables is almost surely true. If we remove the restriction to a fixed 
vocabulary a, then m and r are no longer constant. They are, of course, 
majorized by the length of q~, but the space bound so obtained for our 
algorithm is exponential, rather than polynomial, in the length of q~ 
because r occurs as an exponent. (If a is allowed to vary with r bounded, 
then the complexity estimate of Theorem 4.1 remains correct.) Thus, the 
method of Theorem 4.1. gives only the following upper bound for the com- 
plexity of the FO + IFP  theory of random structures, with no restrictions 
on the vocabulary a. 

THEOREM 5.1. The FO + IFP theory of  random structures is decidable in 
alternating exponential space. 

By Chandra et aL (1981), alternating exponential space is equivalent to 
deterministic double-exponential time. 

The purpose of this section is to prove that Theorem 5.1 is optimal, i.e., 
that RANDOM is complete for alternating exponential space. The proof is 
similar to that of Theorem 4.3, the differences being that the space bound S 
is now exponential rather than polynomial and that we can (and must) use 
relations of high arity for the coding of machine configurations. 
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THEOREM 5.2. The decision problem for RANDOM in FO + LFP is 
hard, with respect to polynomial time reductions, for alternating exponential 
space. 

Sketch of Proof As in the proof of Theorem 4.3, let M be an alter- 
nating Turing machine with only universal and existential states, and let 
the space it needs, for input w, be bounded by S(Iwl), where now S(n)=  
2 p(n) and p is a polynomial. To code configurations of M, we use s unary 
relations STATEq, one for each state q of M, a'p(Iwl)-ary relations 
CELL z, one for each tape symbol z of M including the blank symbol O, 
and one additional p(lwl)-ary relation HEAD. We now define what it 
means for a pair of distinct elements x, y in a structure for this vocabulary 
to code a configuration C of M. In the definition, we let t- stand for a tuple 
of length p(iwl) each of whose components is x or y; the 2 p(Iwi)= S(Iw i) 
such tuples are lexicographically ordered (with x preceding y), and the ith 
tuple in this ordering is to be considered a name of the ith tape cell of Mr. 
Then (x, y) codes C if, for all q, z, t- as above, 

(1) STATE q(x) holds if and only if q is the state in C, 

(2) HEAD(t) holds if and only if t- names the square scanned in C, 
and 

(3) CELL z(t) holds if and only if the square named by t- contains 
the symbol z in C. 

Of course, a pair (x, y) codes a configuration only if the truth values in (1), 
(2), and (3) satisfy appropriate consistency conditions. We use randomness 
to ensure (via finitely many Gaifman axioms) that every configuration has 
a code. 

Pairs (x, y) will play the same role in the present proof that tuples 
played in the proof of Theorem4.3. We shall define INITIALw(x, y), 
UNIVERSALw(X, y), EXISTENTIALw(x, y), YESw(x, y), and SUCCES- 
SORw(x, y, x', y ')  with the same meanings as the formulas with the same 
names in the proof of 4.3; once this is done, the construction of ~9 w is 
exactly as before. 

The formulas INITIALw(x, y), etc., can be produced by the well-known 
methods of Cook (1971) once we have formulas describing the way tape 
squares are named. We shall exhibit formulas NAMEw(x, y, ~), 
<w (x, y, tT, tT), NEXTw(x, y, t~, 17), and FIRSTw(x, y, ~) which assert that, 
with respect to x and y, ~ names a tape square, the square named by ~ is to 
the left of that named by t3, the square named by ~ is immediately to the 
left of that named by tS, and ~ names the leftmost square, respectively. In all 
these formulas, ~ and t7 are p(lwl )-tuples of variables. For readability, we 
shall suppress the subscript w and the arguments x, y, we shall write < 
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between its arguments, and we adopt the convention that i and j range 
from 1 to p(Iwl). 

NAME(gt)<--~ Ai(ui= x v ui= y) 

~ < ~<--}V~(u~=x A vi= y /x Ai<iuj=vj)  

NEXT(~i, ~) ~ fi < ~/~ --n3{(NAME(t) A ~ < [ A {< zS) 

FIRST(~) ~-, Aiu i = x. 

Now we are in a position to define INITIAL, UNIVERSAL, EXISTEN- 
TIAL, YES, and SUCCESSOR. Since the ideas involved are quite stan- 
dard, we define INITIAL as an example and leave the rest to the reader. In 
this definition, q ranges over the states of M, qo is the initial state, k ranges 
from 1 to Iwl, wk is the kth letter in the word w, O is the blank symbol, and 
~5, ~i 1 ..... ~twt are p(]w] )-tuples of variables distinct from each other and from 
x and y: 

INITIALw(x, y) ~--~ STATE qo(x)/x Aq~qo--nSTATE q(x) 

Ak < I~i(NAME(~k + 1)/x NEXT(fi k, ilk+ 1))/x A k CELL wk(z? ~) 

/x V~((NAME(g)/x A~-n (g = ~ ) )  ~ CELL O(~)). 

UNIVERSAL, EXISTENTIAL, and YES are much easier to define; they 
refer only to STATE q predicates. SUCCESSOR is more tedious but 
straightforward. Once these definitions are available, we can produce 0,,, as 
in the proof of Theorem 4.3, thereby completing the present proof. | 

The coding technique used in the preceding proof and the technique used 
in the well-known proof (Hopcroft and Ullman, 1979) of Stockmeyer's 
theorem that QBF is PSPACE-complete tan be combined to show that the 
decision problem for the first-order theory RANDOM is EXPTIME-hard. 
This decision problem is solvable in AEXPTIME = EXSPACE by means of 
the algorithm in the proof of Grandjean's Theorem 1.4 above. In response 
to an earlier version of this paper, Immerman informed us that this 
decision problem is complete for alternating exponential time with 
polynomially many alternations. 

6. FIXED-POINTS OF BOUNDED ARITY 

In this section, we reinstate the assumption that we are working with a 
fixed finite vocabulary o-, and, in addition, we restrict the arity of the 



ZERO-ONE LAW FOR LOGIC 87 

predicates that we allow IFP or LFP to define. More precisely, let 
FO + IFPk, where k is a nonnegative integer, be the logic obtained by 
adding to first-order logic the IFP formation rule subject to the constraint 
that IFP can be applied only to formulas with at most k free variables. We 
show that the complexity of the decision problem for almost sure truth in 
this logic is, for each fixed k, the same (modulo PTIME reductions) as in 
first-order logic. 

THEOREM 6.1. The decision problem for almost sure truth of FO + IFP~- 
sentences is, for each fixed k, PSPACE-complete. 

Proof In view of Theorem 1.4, it suffices to give an algorithm for solv- 
ing the decision problem in polynomial space. As in Section 4, we proceed 
by extending the algorithm in the proof of Theorem 1.4 to cover formulas 
involving IFP. This time, however, it will be convenient to work with the 
deterministic polynomial space version of the alternating polynomial time 
algorithm of Theorem 1.4. This deterministic version, as constructed in 
Chandra et al. (1981), is essentially a systematic depth-first search of the 
computation tree of the alternating algorithm; its space requirements are 
only polynomial because it keeps track of only the choices made by the 
alternating machine on the branch leading to the node currently being 
simulated and it re-uses the space previously used for computations from 
other branches. 

To handle IFP, we expand the algorithm as follows. Before beginning its 
actual computation, the machine writes, on a portion of the tape that will 
not be needed otherwise, a list of all complete quantifier-free descriptions 
D(f) for some lists f of variables, one list of each length ~< k. It leaves a lit- 
tle space after each D(f) to allow descriptions to be marked later in the 
algorithm; this marking space after each D(f) is to consist of as many tape 
squares as the maximum depth of nested IFP's in the formula ~p to be 
tested. Since the number of f-descriptions is at most Zt~k 2 m~, indepen- 
dently of ~0, the space used here is linear in I~pl. 

After these preparatory steps, the algorithm begins to operate like the 
deterministic version of the one in Theorem 1.4. When it encounters an IFP 
operator, of depth d (measured from the outside), it proceeds to mark (in 
the dth square of each space provided for this purpose) those 0-descriptions 
D(f) such that the tuples satisfying D(f) also satisfy the predicate defined 
by this IFP. It does this by starting with all f-descriptions unmarked in the 
dth space, erasing, if necessary, any marks already there (corresponding to 
Po = ~b in the definition of iteration stages) and following the definition of 
the stages Pn to mark D(O)'s as the tuples satisfying them enter the 
predicate being inductively defined. At the nth stage, the descriptions of 
tuples in Pn ~ are already marked, and the algorithm evaluates the for- 
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mula ~ to which IFP was applied, for tuples satisfying the remaining 
descriptions, using the currently marked descriptions to interpret P. Any 
tuples found to satisfy qs are marked at the next stage, for they belong to 
P,. The evaluation of 0 may, of course, involve further uses of this mark- 
ing procedure, if ~ involves IFP's. The maximum number of marking 
processes that ever proceed simultaneously during execution of the 
algorithm equals the maximum nesting of IFP's in cp, which is why we 
provided this much space for markings. | 

Note that it was essential to this proof that not only the number of free 
variables in the scope of an IFP be bounded (by k) but also that the 
vocabulary be fixed so that m and r are constants. With unbounded 
vocabulary, replacing IFP with IFP k does not improve the complexity 
estimates. To see this, simply observe that, in the proof of Theorem 5.2, 
IFP was applied only to a formula with just two variables. 

The restriction on the IFP formation rule in FO + IFPk bounds not only 
the number of variables bound by IFP but also the number of additional 
variables (parameters) in the formula to which IFP is applied. We do not 
know the complexity of the decision problem for almost sure truth in a 
logic where only the number of variables quantified by IFP is bounded 
while the number parameters is unrestricted. 

7. ADDITIONAL REMARKS 

We pointed out in the proof of Theorem 4.3 that the coding of alter- 
nating Turing machines used there can be done in any structure where at 
least one element satisfies Q and at least one element does not satisfy Q; no 
further use is made of randomness. In particular, we could take the struc- 
ture to be the two-element Boolean algebra and take Q(x) to be x =  1. 
Thus, if we extend the theory QBF of quantified Boolean formulas by 
adjoining LFP to the logic, the resulting theory is EXPTIME hard, In fact, 
so is the FO + LFP theory of any structure with more than one element, 
since we can use the binary predicate of equality in place of the unary 
predicate Q. It is easy to check that the FO + LFP and FO + IFP theories 
of the two-element Boolean algebra or of any non-trivial set (with only the 
equality predicate) are decidable in EXPTIME and are therefore complete 
for this class. 

The results proved in this paper for general structures also hold for cer- 
tain restricted classes of structures, for example undirected graphs 
(= irreflexive symmetric binary relations). A zero-one law for the first-order 
theory of almost all structures in a first-order definable class can be trans- 
ferred to the FO + IFP theory by our methods provided the almost surely 
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true first-order sentences constitute an Ro-categorical theory. If we have, in 
addition, effective estimates for the number of inequivalent types of/-tuples 
(a number that is finite for each I by Ryll-Nardzewski's theorem) and effec- 
tive ways of describing these types, then our methods also provide upper 
bounds on the complexity of the decision problem for almost sure truth. All 
of these apparently stringent hypotheses are satisfied in the case of undirec- 
ted graphs and in the case of simplicial complexes (of arbitrary but fixed 
dimension). 

Although we worked with finite structures with a fixed universe 
{1,2 ..... n} (labeled structures), our results apply also to isomorphism 
classes (unlabeled structures). Indeed, if FRACTION(o, n) were defined 
using numbers of isomorphism classes in both the numerator and the 
denominator, the new numerator and denominator would be 
asymptotically equal to the old divided by n! and the value of FRACTION 
would thus be asymptotically unchanged, because almost all structures 
have no non-trivial automorphisms. 
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