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Abstract
We discuss an analytical derivation for the tem-
poral dependence of the transverse transport
coefficient of a charged particle in a magnetic
turbulence for times SMALLER than the corre-
lation time of the magnetic turbulence, where
the quasi-linear theory (QLT) is not valid. The
transverse transport is assumed to be domi-
nated by the guiding center motion.

Transverse transport
The diffusion theory [2] relies on the approx-
imation [3] that a characteristic time T exists
much larger than the correlation time tc of the
magnetic field fluctuations (as seen by the par-
ticle) but also much smaller than the time-scale
of variation of these fluctuations and of the av-
erage distribution function. Diffusion coeffi-
cients can then be related to turbulence power
spectrum.
An analytical investigation of the transport
prior to the diffusion phase is presented here.
We compute the instantaneous diffusion co-
efficient [4] along the transverse coordinate x
through:
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where vx is the velocity along the x-direction.

Guiding Center drift
We consider a stochastic inhomogeneous static
magnetic field B(x) = B0 + δB(x), with aver-
age component B0 = B0ez and δB(x) · ez = 0;
thus 〈δB(x)〉 = 0 and δB(x)/B0 � 1. We use
first-order orbit theory [6]: particle gyroradius
rg is much smaller than length-scale of mag-
netic field variation. The most general form
of the guiding center velocity transverse (gra-
dient/curvature) to the local field B(x) is [6, 1]
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The finite-time average square transverse dis-
placement of the particle from the direction of
average B due to drift dD(t) can be written in
this approximation:
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where t′ is an arbitrary initial time, ξ the time
lag and i stands for any transverse coordinate,
X or Y .

Transverse motion decomposed
The average displacement in Eq.(3) contains terms of type

∂lδBj(x) = <
Z ∞
−∞

d3k δBj(k)(ikl)e
ik·x(t) . (4)

The particle position in Eq. (4) along B(x) is computed
as: x(t) = x0(t) + xMFL(z(t)), where x0(t) is the unper-
turbed particle orbit; xMFL(z(t)) = (xMFL, yMFL, 0) is
the offset in the plane orthogonal toB0 due to the Magnetic
Field Line Random Walk (MFLRW) at z = z(t). Ballistic
motion along B0 is assumed, i.e., z = v‖t.
To first order in δB(x)/B0 the MFL contribution is negligi-
ble: eik·x(t) ' eik·x0(t) The turbulence power spectrum is
standard uncorrelated at different wavenumber vectors:

〈δBr(k)δB∗q (k′)〉 = δ(k− k′)Prq(k) . (5)
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Application to slab turbulence
We consider the slab turbulence, i.e., static limit of transverse and parallel-propagating Alfven
waves: δB = δB(z) and δB(x) · ez = 0. The turbulence wave number is aligned to B0, thus we
adopt the following form of the power spectrum: Prq(k) = G(k‖)(δ(k⊥)/k⊥)(δrq − krkq/k2) with
r, q = 1, 2, and P3i(k) = 0 with i = 1, 2, 3. The 1D spectrum is assumed to be of Kolmogorov type.
The power spectrum is assumed to be constant at scales larger than coherence length.
In units of the Bohm coefficient diffusion (κB = (1/3)rgv), from Eqs. (4) and (5), we obtain
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where ymin = kmin‖ v‖t ' kmin‖ rgΩt, Ω is the particle gyrofrequency and I(t; k‖, a) is a combination
of incomplete gamma functions Γ(a, z). dD(t)/κB is depicted in the Fig. on the left. The MFLRW,
in units of coherence length L‖ = (kmin‖ )−1 (see also the comparison with the QLT-limit DMFL(t)
depicted in the Fig. on the right), is given by
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where Si(x) is the Sine integral function.

⇒

1. Time evolution of individual charged particles drift and MFLRW across a static magnetic field
with a first-order fluctuation is analytically described for a general turbulence

2. Motion perpendicular to the average magnetic field is assumed to be dominated by guiding
center motion, i.e. MFL’s meandering and drift

3. No prior diffusive regime is assumed both in perpendicular and parallel direction

4. For slab (Kolmogorov) turbulence drift transverse to the local field is suppressed as t−1/3,
slower than compound diffusion, which, transversally to the average field, is suppressed as
t−1/2. The MFL coefficient diffusion of QLT is recovered

5. 3D-isotropic turbulence, where numerical simulations disagree with theoretical scenarios, will
be discussed in a paper in preparation

Power spectrum dependence
The general term contributing to the first-order transverse
drift dDii

(t) of a particle in a static magnetic field with
first-order perturbation is„

vpc

ZeB2
0

«2

F (µ2)

Z ∞
−∞

d3kPrq(k)klkp

sin[k‖v‖t]

k‖v‖
,

where v, p and Ze are the particle’s velocity, momentum
and charge and F (µ2) is a function of the pitch angle as-
sumed to be isotropically distributed and constant.
If the correlation function of the magnetic fluctuation is ho-
mogeneous in space, the mean square displacement of the
MFL as seen by a low rigidity particle is:
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