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Abstract

These are notes on van den Bergh’s analogue of Poincanéydndtiochschild (co)homo-
logy [VdB98]. They are based on survey talks that | gave in&200506ttingen, Cambridge
and Warsaw and consist of an elementary explanation of tiaf pr terms of Ischebeck’s
spectral sequence [Isch69] and a detailed discussion afdimenutative case, plus some
motivating background material. The reader is assumed farbdiar with standard homo-
logical algebra, but the commutative algebra and algelgmienetry needed to understand
the commutative case is recalled. For more preliminariesesg. [Ei77, Se00] (commuta-
tive algebra and algebraic geometry), [MR0O1] (noncomnixgaings) and [Bou87, CE56,
Wei95] (homological algebra).

| would like to thank Shahn Majid, Andreas Thom and Jan Dé&skiifor the invitations to give
the talks on which this note is based and for discussionssmsuibject. Thanks for discussions
go also to Tomasz Maszczyk and Yorck Sommerhauser.
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1. POINCARE DUALITY IN TERMS OF TORAND EXT

1.1. THE FUNCTORM — M*

Let Rbe a unital, associative ring and consider the functor tads a (left) module to its linear
dual (which is a right module with actiofpx)(m) := @(m)x, € M*x € RRme M),

R-Mod — Mod-R, M+~ M* =Homg(M,R). (1)

Except wherR is quasi-Frobenius (injective &module), this is not an exact functor, and its
derived functors EX{(-,R) define important invariants &fl such as

gradéM) :=inf{n|Ext}(M,R) # 0} € NU {c0}. (2)

As in the case of vector spaces over a field, its propertiealacerelated to the size M. If M

is for example projective, theM* needs not to be projective (elod-Z > [N Z ~ (PN Z)* is
not, see [La99] for a nice proof). ButM is finitely generated projective, then it is not difficult
to see that so iM*, thatM** ~ M, and that for alN € R-Mod the canonical morphism

M*®rN — Homg(M,N), @®&n~— (m— @(m)n) (3)

is bijective. For arbitrarg this is in general neither injective nor surjective.

1.2. THE ISCHEBECK SPECTRAL SEQUENCE

Now we study (3) for moduleldl which are not finitely generated projective but not too faapw
from being so. Viewing (3) as a morphism of functors (ledgN open) and taking derived
functors one obtains the following classical result [ISeh6

Theorem 1..1. Assume that M= R-Mod admits a finite resolution
0—-Py—Py1—... 0 PL—>P —M-—=0 (4)

by finitely generated projective modules. Then for aryRHMod there is a convergent spectral
sequence
E2 pq = Torg (EXtR(M,R),N) = Extz {(M,N), p,q>0. (5)

Proof. Some people would say this is obvious, but we include theildeta see where the
assumptions precisely enter. We fix a projective resolu@piof N and define the bicomplex

Cpq:=HOMR(P_,Qq) ~ P* ;®rQq, P<0,0>0. (6)

The minus sign at thp is just to turn the cochain complex HatP., Qq) (fixed ) into a chain
complex (negatively graded). The isomorphisrfrom (3) holds sincé_, is finitely generated
projective, so here this assumption is used.

Now one computes the homology of the total complex Tet , q—n Cpq Using the two spec-
tral sequences arising from its filtration by rows and by oohs. Here the finite lengtt of

P. becomes crucial. It implies that after a shiftl in degreep our bicomplex is in the first
guadrant and hence both spectral sequences converge aregmito the same object (since
@ p+q=nCpa = Mp+q=nCpq). Convergence alone would be automatic for example WRe&s
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Gorenstein (has finite injective dimension Rsnodule), but even if both spectral sequences
stabilise on the second page the result can be wrong (thts b erratum to [VdB98]).
The first spectral sequence starts with computation of hogies$ ofC,, for fixed p, the bound-

ary loweringg. SinceQ, is a projective resolution dfl, this gives Tof (P~ ,, N). But sinceP_,

and hencé” ; is finitely generated projective, these Tor’s vanishdor 0. Forg= 0 we have
Torg(pr, N) = P*,®rN ~ Homg(P-p,N). Thus the first page of the spectral sequence is

gl _ Homg(P-p,N) q=0
Pq 0 otherwise.

(7)

In the next step of the spectral sequence one continuesheéthdundary ohE? that lowersp.
SinceP, is a projective resolution d¥1, this gives

2 | ExtsP(M,N) qg=0
Spa = { 0 otherwise. ®)

Since all terms of this page vanish exceptdgct 0, the spectral sequence becomes stable and
we obtain the total homology of our bicomplex

Hn(TOt(C)) ~ Extz"(M, N). 9)

The other spectral sequence is the one whose existencedkatireof the theorem. Here one
fixes conversely firsl. SinceP* , andQq are projective and hence flat, the universal coefficient
theorem gives

H_p(Homr(Ps,R) ®rQq) ~ H_p(Homr(P,, R)) ®r Qq, (10)
so the first page of this spectral sequence is

"Epq = ExtzP(M,R) ®r Qq. (11)
In the second step of this spectral sequence one now clestdy g
"ESq = ToR(Extg"(M,R),N) (12)

sinceQ, is a projective resolution d¥l. O

1.3. POINCARE DUALITY

There are two simple cases in which Ischebeck’s spectrakseg stabilises on its second page.
The first one is when aE2-terms are zero foq # 0:

Corollary 1..2. Suppose M is asin Theorem 1..1 and N is flat. Then

ExtR(M,R) @rN ~ Exth(M,N) (13)
for all p > 0. In particular, (3) is an isomorphism.
However, we are even more interested in the orthogonal case:

Definition 1..3. M € R-Mod satisfies Poincaré duality in dimensidrwith dualising module
wv = Ext3(M, R) if it satisfies the assumptions in Theorem 1..1 andy@Mt R) = 0 forn#d.
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In this case th&?-terms of Ischebeck’s spectral sequence are zero fprall and the sequence
again stabilises on its second page. Thus Theorem 1..1syield

Corollary 1..4. A module Me R-Mod satisfies Poinca duality if and only if

TorR(ww, N) ~ Ext2 (M, N) (14)
for all N € R-Mod. In particular, one has
proj.dimg(M) :=sup{n € N|3N € R-Mod : Ext}(M,N) # 0} =d. (15)

This is the algebraic mechanism underlying the phenomeh@&woimcaré duality well-known
in geometry and topology: The homology in degnesay of a compact smooth manifo¥dcan

be identified with its cohomology in degree diX¥) — n. Starting from Corollary 1..4 one can
derive such identifications in all kinds of (co)homologydhes that can be expressed in terms
of Tor and Ext over suitable rings. Our main topic is a pattdy nice one for Hochschild
(co)homology, but before specialising to this, let us mdieefinal general remark that there is
also a dual spectral sequence (described as well in [IsEh69]

ExtR(Exti(M,R),N) = Torg (N, M) (16)

in which the roles of Tor and Ext are exchanged. Taking hete R shows in particular that if
M satisfies Poincaré duality in dimensidnthen so doesyy (with everything now developed
for right modules), and thaibg,, ~ M.

2. APPLICATION TO HOCHSCHILD (CO)HOMOLOGY

2.1. HOCHSCHILD (CO)HOMOLOGY

In [Ho45] Hochschild introduced the (co)homology groupsainital associativi-algebraA
with coefficients in amA-bimoduleN (we assume for simplicity thdt is a field). To define
Hochschild’s theory, let us introduce the opposite alge¥¥a(samek-vector space, opposite
producta-qopb = ba) and the enveloping algebdt := A®x A% of A. Left A-modules are the
same as righA°-modules and vice versa. Sineex b — b®a is an algebra isomorphism
A® — (A®)°P, left and rightA®-modules become identified, and they are also the sarmfe as
bimodules with symmetric action & Thus there are equivalences of categories

A-Mod ~ Mod-A°?,  A°-Mod ~ Mod-A® ~ A-Mod-A. (17)
Definition 2..1. The Hochschild (co)homology groups Afwith coefficients inN are
Hn(AN) := Torﬁe(N,A), H"(A/N) := Extae(A,N). (18)

If the ground ringk is not assumed to be a field, then one should rather consicative Tor
and Ext here, see e.g. [L092, Wei95]. Conversely ther&-aextor space isomorphisms

Torf\(L,M) ~ Hn(A,M @ L), Exta(M’,M") ~ H"(A,Hom(M',M")) (19)
for all L € Mod-A,M,M’,M"” € A-Mod (see e.g. [CE56], Chapter IX). Using this, most of the
standard (co)homology theories (e.g. group and Lie algéwdomology) can be viewed as
special cases of Hochschild (co)homology. We refer to [LL&92i95] for explicit descriptions

of the Hochschild (co)homology groups in low degrees, buttioa only the following one that
will be used below and follows immediately from the defintio

Proposition 2..2. There is a canonical isomorphism of vector spaces
HO(A,N) ~ Z(N) := {ne N|an=naVac A}. (20)
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2.2. SMOOTHNESS ANDDIM (A)

Recall that the (left) global dimension of a riRys
gl.dim(R) := sup{proj.dimg(M) |M € R-Mod }, (21)

and that a ring whose (left) global dimension is finite is @dl(left) regular (the geometric
motivation will be reviewed below). In view of (18) and (19e have:

Proposition 2..3. There are inequalitiegl.dim(A) < proj.dimae(A) < gl.dim(AS).
Following [CE56] we call prafdimae(A) simply the dimension
dim(A) := proj.dimpe(A) = sup{n € N| 3N € A-Mod-A: H"(A/N) £ 0} (22)

of A, although it must not be confused in general with the Kruthension. Unlike the latter or
gl.dim(A) which only see the ring structure Af dim(A) can depend heavily dn For example,
A might be a field in which case it is Noetherian and Krull andoglodimension vanish, but
A® = ARy A can be quite wild ik is sufficiently small and\ is sufficiently big. While gldim is
thus quite ill-behaved on tensor products of algebras, we [@E56], Proposition 1X.7.4:

Proposition 2..4. One hadim(A®y B) < dim(A) +dim(B).
Since obviously dirfA°?) = dim(A), this implies together with Proposition 2..3:

Corollary 2..5. One hagdim(A) < o« if and only ifgl.dim(A®) < . In this case, A is both left
and right regular.

Thus finiteness of difA) is a sharpened form of regularity, and van den Bergh suggiéste
call algebras with this property smooth:

Definition 2..6. Ais called smooth if dirfA) < co.

As we remarked already, the converse of Corollary 2..5 iseinegal not true even for com-
mutativeA. However, as we will discuss below, smoothness and regulactually agree for
coordinate ringA = k[X] of affine varieties over perfect fields and then correspoedipely

to the nonsingularity oX. Therefore, the terminology is in our opinion well motivatel-
though probably slightly nonstandard. We warn the readat ttiere is also a much stronger
notion of smoothness (“quasi-freeness”) which meangdjm< 1 and is studied for example
in [Sch86, CQ95]. Note that evex,y] is not smooth in this sense (but it is of course in ours).
Yet another notion of smoothness especially of commutaiigebras (“geometric regularity”)
means regularity oA @y K for any algebraic field extensidnC K.

2.3. VAN DEN BERGH’'S THEOREM
In the setting of Hochschild (co)homology, Corollary 1.ahde restated as follows:

Corollary 2..7. If an algebra A satisfies Poincarduality as an Amodule, then A is smooth
and there are k-vector space isomorphisms

Hn(A, wa) ~ HI™"(A A), d:=dim(A). (23)

In particular, Hgima) (A, wa) ~ HO(A, A) ~ Z(A) # 0.
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In [VdB98], M. van den Bergh pointed out a nice refinement @f éitbove. To state his result,
we recall that arA-bimoduleN is invertible provided that there exists another bimoduté
such thaN ®aN—1~N-1®aN ~ A as bimodules. Recall also that this means bhata - is an
equivalence fronA®-Mod to A®-Mod itself (cf. Section 9.5 in [Wei95]). The result of van den
Bergh is the following:

Theorem 2..8. Suppose that & A®-Mod satisfies Poincar duality and thatoa € Mod-A® ~
A-Mod-A is invertible. Then A is smooth and

Hn(AN) =~ H (A w1 ©aN), N e A®-Mod,d :=dim(A). (24)

Proof. Look back into the proof of Theorem 1..1 where we compugd=""EJ, (equation
(11) at the very end of the proof). Under our assumptionsishiero except fop = —d where
we haveEEdq = wa ®ae Qq. By plain definition of the tensor product we have

WA ®pe Qq =~ A®ae (WA ®A Q) (25)

and if wp is invertible, the functora ®a - is an equivalencé&®-Mod — A®-Mod, so it sends
the projective resolutio, of N to the projective resolutioma ®a Q. Of wa ®aN. Hence
the homology computed in the second step of the spectraleseqi is also the same as
Torfe(A, wa ®aN) ~ He (A wa ®a N) (here we used the canonical identificatiafrMod ~
Mod-A°®). The claim follows. O

See e.g. [VdB98, Fa05, BZ06, HKO06] for various applicatiofishis theorem. What we will
explain in the remainder of this text is its meaning in theisgtof affine algebraic geometry:
A coordinate ring of an affine variety satisfies duality if aordy if the variety is smooth.

3. THE COMMUTATIVE CASE

3.1. PRELIMINARIES

This text is written both for and by someone who is workingmhaon noncommutative rings,
and therefore | decided to include here a lot of definitiorp)anations and proofs concerning
commutative algebra and algebraic geometry. | apologiseperts for the blow up.

So letR be now commutative. We identify left and right modules anohsyetric bimodules,
but note that there are bimodules which are not symmetric.

Definition 3..1. A regular sequence iRis a sequence of elements. .., Xy € Rsuch that each
Xn IS not a zero divisor oR/ (X, ..., Xn—1)-

Here(xi,...,X,—1) is the ideal generated by tlxe The length of maximal regular sequences
contained in an idedlC Ris equal to deptfi,R) := grad€R/I). In algebraic geometry, regular
sequences play the role of coordinates transversal to thgpageV (1) = {p € SpedR|l C

p} of the prime ideal space SpRc This elucidates the relation gra@/l) < codimV(l))
between the grade and a geometrically defined codimensidi{lof By definition, one has
equality for alll whenRis Cohen-Macaulay, so then the grade serves as a homolggiefihed
codimension. Being Cohen-Macaulay is a weak notion of iagylsince

Rregular = R Gorenstein= R Cohen-Macaulay, (26)
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but the inverse implications do not hold in general.

All the attributes in (26) are local properties, thatRss regular, Gorenstein or Cohen-Macaulay
iff all its localisationsR,, are so. And as in differential geometry, coordinate systamhelpful
often only locally. For example, one has for local rings tbikofving theorem [Va67]:

Theorem 3..2. A proper ideal | in a Noetherian local ring R wihroj.dimg(l) < « is generated
by a regular sequence of length d if and only/f4 € R/I-Mod is free of rank d.

If Ris the Noetherian local ring of a varie}¥/in x € X (to be interpreted as the ring of rational
functions onX that are regular ix), thenR s regular iff X has no singularity ix. Its maximal
idealm consists of the functions vanishingxnthe canonical maR — R/m =: k corresponds
to the evaluation of a function ik, andm/m? is geometrically the cotangent spaceXoin x.
Then the above theorem links regular sequences generat{fagal coordinates oiX around
X) to k-vector space bases nf/m? (formed by the differentials of the coordinates).

3.2. LOCAL POINCAR E DUALITY

In this section we prove a general result that establishes®@ duality for quotients of com-
mutative rings by ideals generated by regular sequenceswilMater apply this to the local
rings of smooth affine varieties, hence the title of this geaph. Throughout, we assume that
R a commutative regular Noetherian ring. In particular, anitély generated module admits a
finite resolution by finitely generated projective modules.

Theorem 3..3. Suppose X...,Xq € R form a regular sequence. Then:M R/(x1,...,Xg) €
R-Mod satisfies Poinca duality in dimension d witboy ~ M.

Proof. This follows from some standard results in commutativelalgeFirst, we need:

Proposition 3..4. Suppose x R is not a zero divisor of R and N R-Mod. Then there are
iIsomorphisms of R-modules

_J N/(X)N n=1
ExXtr(R/(x),N) ~ { 0 otherwise. (27)
Proof. By the assumptions, there is a short exact sequenRenoddules

0 R—~R R/(X) —=0. (28)

This provides a free resolution &/ (x) which one can use to compute RiR/(x),N) as the
cohomology of the complex

0—— Homr(RN)* = * ¥ Homg(R N) — 0. (29)

Finally, Homr(R,N) — N, @+— ¢(1) induces an isomorphism with the complex

0 N—=>N 0. (30)

The claim follows. O

Recall next that the injective envelope (or injective hlillN) of N € R-Mod is the unique
injective leftR-module containingl as an essential submodule (thatNs;M = 0 forM C I(N)
impliesM = 0). See e.g. [Bou87] for more information.
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Proposition 3..5. Let xe R be not a zero divisor of § R-Mod but act trivially on Le R-Mod.
ThenHomg(L,1(N)) = 0.

Proof. If @€ Homg(L,I(N)), then 0= @(0) = @(xy) = x@(y) forally € L, so imgNN = 0 since
xis not a zero divisor oN. ButN is an essential submoduleldiN), so im@= 0. O

As one of its main applications, the concept of injectiveedoge allows to construct a unique
minimal injective resolution of ani{l € R-Mod,

i1=0 g

0 N lo

Proposition 3..6. Let xe R be not a zero divisor of Rl € R-Mod and |, be the minimal injec-
tive resolution of N. Then

Homr(R/(X),l1) — HOMRr(R/(X),12) — ... (32)
is an injective resolution of Nx)N € R/(x)-Mod.

PR ..., In:=I(cokefi,_1), n>0. (31)

Proof. Sincel, is an injective resolution, the cohomology of
0 — Homgr(R/(X),lo) — Homgr(R/(X),11) — Homr(R/(X),12) — ... (33)

is Extr(R/(X),N). But Homr(R/(X),lo) = O by Proposition 3..5. Therefore, the computation
of Extr(R/(x),N) in Proposition 3..4 shows that the terms in degreg form a resolution of
N/(x)N. For the injectivity of Hong(R/(x),In) € R/(X)-Mod see e.g. [Ei77], Lemma A3.8.0]

Since for anyrR-moduleN and anyR/(x)-moduleL we have
HO”h/(X)('—? HomR(R/(X)7 N)) = HomR(L®R/(X) R/(X)a N) = HOWR('—a N)a (34)
the above implies immediately:

Corollary 3..7. Let xe R be not a zero divisor of Rl € R-Mod but act trivially on Le R-Mod.
Then there is an isomorphism of R-moduied (L, N) ~ Exfgy&)(L, N/(X)N).

Assume in particular thaty, ..., xg € R form a regular sequence. Then Theorem 3..3 follows
by repeated application of this corollary with=x1,...,Xg4, L = R/(X1,...,X4), N=R. O

3.3. THE HOCHSCHILD-KOSTANT-ROSENBERG THEOREM

From now on we focus on the setting of affine algebraic gegnatd assume th# is the co-
ordinate ringk[X] of an (irreducible) affine variety over a perfect fi&ldThat is,A is a quotient
of a polynomial ringk[xy, . .., Xn] without zero divisors, and every finite field extensioa K

is separable (this includes of course algebraically cldsddis, but also fields of characteristic
0 and finite fields). One could work in greater generality,watwant to avoid any technicality
(see e.g. [L092], Section 3.4 and Appendix E and [Wei95]fiSes 9.3.1 and 9.312.

Recall first that the formal (Kahler) differentials oveare defined by

Q"A) :=AQYA), QY(A) :=kery/(kerp)?, (35)

wherep: A® = A®yA=: k[X x X] — A denotes the multiplication map. Note ti{&(A))* can
be identified with Dey(A), thek-linear derivations oA.

The fundamental paper on the Hochschild (co)homologk¥f is [HKR62] where amongst
other things the following results were obtained:

1Be aware that there were some serious mistakes in theserseitithe first edition.
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Theorem 3..8. 1. If A=Kk[X],B = K[Y] as above are regular, then so issA B =: kK]X x Y]. In
particular, A is smooth iff it is regular.

2. Ais smooth if2(A) is finitely generated projective.

3. There are isomorphisms of A-modules

QY(A) ~Hi(AA), Der(A) ~HYAA). (36)
4. If A is smooth, then there are isomorphisms of A-modules

Q"(A) ~ Hn(A A), AXDer(A) ~ H'(A,A) ~ (Q"(A))*. (37)

3.4. GLOBAL POINCAR E DUALITY

Now we prove that Poincaré duality as in Theorem 2..8 is moéxotic phenomenon in the
commutative case:

Theorem 3..9. A= K[X] is smooth iff it satisfies the assumptions of Theorem 2..8.

Proof. Poincaré duality implies prajimae(A) < o, So< is obvious.

For the other direction we consider the localisations of rilght A®-modules H(A A®) at

q € Sped®®. SinceA® = k[X x X] is Noetherian, we can use the compatibility of Ext with
localisation (see [Wei95], Proposition 3.3.10):

Proposition 3..10. If R is a commutative Noetherian ring and, M € R-Mod are finitely gen-
erated, then for alp € SpedR one hagEx(R(M,N)), ~ Extg (My,N,).

This implies in particular thatH"(A, A%)), = 0 unless ke C ¢, since otherwisé, = 0 (this
is the localisation of théA®*-module A with module structure induced hy). Geometrically
speaking, this means that"(A,A®)), is supported only oiX, embedded intX x X as the
diagonal, or in terms of prime ideals on the image of the han@phism

W' : SpecdA — V (kerp) C Spedd®, p— u 1(p). (38)

By Theorem 3..8Q1(A) = kerp/(kerp)? is a finitely generated projectivemodule and hence
locally free over SpeA (this is the algebraic version of the Serre-Swan theorermdharac-
terises vector bundles as finitely generated projectiveutes see e.g. [Se00], p. 73, Corol-
lary 2 and Proposition 20). Hence Theorem 3..2 implies fogretvith Theorem 3..3 tha,
satisfies forq O kerp Poincaré duality as aAg-module in dimensior equal to the rank of
Q1(A) which is dimX), and that the dualising moduleds,, ~ A, itself.

In other words, H(A,A®) = 0 for all n exceptn = dim(X) (since a module is zero iff all its
localisations are), and as @amodule,ws = HIMX) (A A®) is locally free of rank 1, that is, it
is the module of sections of an algebraic line bundle o¢er

Finally, Proposition 3..10 applied to%A, wa) implies in view of (20) thatoa is a symmetric
bimodule, so we obtain the identification @ with the sections of our line bundle #§-
module. Hence it is an invertible bimodule wirt.b;;1 ~ Homa(wa,A), the sections of the dual
line bundle (this must not be confused with Hgifwa, A®) = 0 for dim(X) > 0). ]

At the end we merge the above result with the Hochschild-&@sRosenberg theorem. It is not
difficult to extend (37) to coefficients in finitely generajamjectiveN € A-Mod and to identify
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thus Hochschild homology & with algebraic differential forms oX with coefficients in the
vector bundle whose module of sectiondis

Hn(A,N) =~ Q"(A N) := Q"(A) @aN. (39)

Therefore, Theorem 3..9 and Theorem 2..8 (and (20)) allot@ gpecify the line bundle corre-
sponding tawa explicitly and to reformulate Theorem 3..9 as follows:

Theorem 3..11.If A is the coordinate ring K] of a smooth affine variety X over a perfect field
k, then for all Ne A®>-Mod we have

H"(A,N) = Haimx) n(A, (Q4") (A) " @aN). (40)
Proof. Indeed, we have ©a QIMX) (A) ~ HIMX) (A wp) ~ HO(A A) ~ A, and both bimod-
X

ules are symmetric, sop ~ (QIMX)(A))~1 ~ AdIm( >Derk( A). O
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