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CHAPTER I

Introduction

In the arena of operations and logistics, management is faced with problems that

concern the efficient allocation of limited resources to meet desired objectives. The

decisions in these problems are often modeled as discrete decision variables, due to

the indivisibility of activities and resources (equipment, people, etc.). Just a few

prominent examples include vehicle routing, capital budgeting, facility location and

layout, health care management, telecommunications network design, and airline

crew scheduling. The discrete nature of these problems leads to a combinatorial

explosion in the number of possible solutions as problem size grows.

An interest in solving large-scale discrete optimization problems has led to the

development of a variety of combinatorial optimization techniques. Entire texts have

been devoted to various aspects of combinatorial optimization [26, 88, 104, 105, 2].

Hundreds of papers have been published on solution techniques for combinatorial

problems ranging from classical examples (such as the assignment problem, knapsack

problem, set-covering problem, and the traveling salesman problem) to specialized

instances tailored for a particular study.
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Early attempts at solving combinatorial problems focused their attention on op-

timization algorithms that employed sophisticated mathematical constructs. These

“exact” methods often use the principles of linear programming, graph theory, dy-

namic programming, or branch-and-bound to utilize the particular structure of the

problems for which they are designed. In many cases, these exact methods prove to

be very effective. However, there exists a class of “difficult” problems for which opti-

mal solutions for large-scale instances are unattainable within a reasonable amount

of computation time using exact optimization approaches. Indeed, for some types

of combinatorial problems, researchers have discovered that the computational effort

required to obtain an optimal solution increases exponentially with the problem size.

Problems that have a known polynomial-time algorithm are categorized as class

P. Unfortunately, many combinatorial problems do not have polynomial-time al-

gorithms. Most of these “hard” problems cannot be proven to have exponential

complexity, but rather are classified as NP (non-deterministic polynomial). For a

formal discussion on computational complexity, we direct the reader to Garey and

Johnson [44]. To overcome the computational complexity of NP problems, heuristic

methods that effectively explore enormous solution spaces at reasonable computa-

tional costs have entered the mainstream, in both practice and theory. Heuristics

may provide the only usable solutions to very difficult optimization problems for

which the current exact algorithms are incapable of providing an optimal solution in

reasonable times; when heuristics are used within an exact algorithm, they provide

a bound to fix variables and to fathom branches in a search-tree.



The operations research literature is enriched with empirical and theoretical stud-

ies on heuristics, ranging from heuristic methods developed to solve particular in-

stances to general purpose metaheuristic approaches. We omit discussion on the

legion of specialized heuristics, encouraging the reader to explore the literature rel-

evant to her/his area of interest. For a sampling of general purpose heuristic ap-

proaches, we refer the reader to numerous monographs containing discussions on

simulated annealing [1, 85, 103, 6], genetic algorithms [65, 51, 95], tabu search [50],

neural networks [64], and scatter search [86].

While the primary motivation for the application of heuristics is the compu-

tational intractability of large-scale problems, Reeves [114] supplies an additional

argument. Heuristics often allow more flexibility in developing the model since they

are capable of dealing with more complicated “realistic” objective functions and/or

constraints while optimization routines may require simplifying assumptions (such

as linearity). Therefore, the implementation of heuristics often allows more model

accuracy at the price of obtaining approximate, rather than optimal, solutions to the

model. Reeves [114] argue that this tradeoff favors heuristics since the optimization

of a simpler, mathematically tractable model does not guarantee the optimization of

the underlying real-world problem.

1.1 Research Objectives and Overview

The application of this study focuses on large-scale decision-making problems

faced by the trucking industry. Faced by narrowing profit margins due to increased



competition, trucking companies are continually looking for ways to reduce costs. In

particular, we concentrate on the areas of vehicle replacement and routing.

The complexity and scope of the models that we consider motivate the applica-

tion of heuristic solution procedures. Chapter II presents analysis of a metaheuristic

called compressed annealing that we propose as a problem-solving tool. We describe

the dynamics created by the integration of a variable penalty method with a hill-

climbing search method. Through a Markov chain representation, we prove that,

under appropriate assumptions, compressed annealing converges in probability to

the set of global minima. We conclude Chapter II with general details for imple-

menting compressed annealing, including procedures for initializing and calibrating

parameters.

In Chapter III, we consider an asset replacement problem complicated by stochas-

tic asset deterioration and budget constraints. A survey of current replacement

strategies is conducted and maintenance logs for linehaul trucks are analyzed. We

modify a mathematical formulation introduced by Morse [98] to fashion a replace-

ment model that seamlessly assimilates data tracked by information technology to

create a decision support system capturing the critical issues faced by trucking com-

panies. Using a longitudinal sample of maintenance logs and information provided

in interviews with fleet managers, we construct realistic data sets, the first of their

kind in the literature. We employ compressed annealing on these instances of the

stochastic fleet replacement problem with budget constraints (SFRPB), and compare

the results to a trade cycle heuristic that mimics age-based replacement strategies



commonly employed in the trucking industry.

Chapter IV contains a description of the traveling salesman problem with time

windows (TSPTW) and its utility within the field of vehicle routing and beyond.

We introduce a mathematical formulation of the problem and its associated nota-

tion. After describing a penalty method approach, we apply compressed annealing

to the TSPTW and evaluate the results with respect to current benchmarks in the

literature. We provide closing remarks in Chapter V summarizing the contribution

of this thesis. In addition, promising avenues for future research are discussed.

The remainder of Chapter I surveys the three main bodies of literature relevant

to the topics discussed throughout this thesis. In particular, we survey the volumi-

nous body of research on simulated annealing, asset replacement, and the traveling

salesman problem with time windows.

1.2 Literature Review

1.2.1 Simulated Annealing

Simulated annealing is a stochastic search method in which the ability to “climb

hills” is governed by a control parameter called temperature. For high tempera-

tures, simulated annealing is essentially a form of random search, which suffers from

the curse of dimensionality. At the other extreme, as temperature approaches zero,

simulated annealing becomes a descent method and cannot escape local minima.

To capture the benefits of being able to escape local minima and still satisfactorily

explore the basins containing them, temperature is initiated at a high value (corre-



sponding to a high probability of accepting transitions to non-improving solutions)

and reduced gradually over time. Such a “cooling schedule” complies with the anal-

ogy of physical annealing, in which a solid material is heated past its melting point

and cooled slowly back to a solid state to assure a pure crystalline structure.

Simulated annealing can be also viewed as a modification of local neighborhood

search. Rather than simply accepting only transitions to neighbors that offer an

improvement in terms of solution value, simulated annealing’s control parameter,

temperature, triggers a mechanism to also allow “uphill” moves to avoid the con-

vergence to local optima. At each iteration, simulated annealing selects a neighbor

of the current solution. As in local search, if the neighbor solution has a cost less

than the current solution’s cost, it is accepted as the new “current” solution. If

the neighbor solution has a cost greater than the current solution’s cost, it is still

accepted with a certain probability. This probability is dependent on the difference

between the neighbor solution’s cost and the current solution’s cost as well as the

temperature parameter. Acceptance probability decreases both as the temperature

decreases and as the magnitude of the difference between the neighbor solution’s cost

and current solution’s cost increases. Thus, as the algorithm proceeds and tempera-

ture is periodically reduced, the probability that a nonimproving solution is accepted

also decreases.

Inspired by the Metropolis algorithm [94] of statistical mechanics, Cerny [19] and

Kirkpatrick et al. [81] introduced simulated annealing as a discrete optimization tool

in independent efforts. This work sparked a multitude of research on various aspects



of the algorithm. The development of cooling schedules which dictate the rate at

which the temperature parameter is reduced is a topic of both theoretical and em-

pirical interest. Geman and Geman [46], Anily and Federgruen [5], Mitra et al. [96],

and Johnson and Jacobsen [72] determine various sufficient conditions on the cooling

schedule for convergence in probability to a global minimum. Chiang and Chow [23]

and Holley [66] provide additional convergence results. Lundy and Mees [90] suggest

a cooling schedule and stopping condition designed to produce a solution within ǫ

of the global optimum with a given probability. Using results from continuous-time

nonhomogeneous Markov chains, Gidas [49] and Hajek [56] determine necessary and

sufficient conditions on the cooling schedule for the algorithm to converge in prob-

ability to a global minimum. Additionally, Rajasekaran [113] provides a bound on

the time within which the algorithm converges with a high probability.

The collection of theoretical results shows that simulated annealing requires so-

lution times that are exponential in problem size in order to guarantee optimal

convergence. Empirical testing, however, has shown that simulated annealing can

obtain near-optimal solutions within reasonable computation time for many discrete

optimization problems. Theoretical research has guided empirical testing that has

unearthed numerous findings regarding practical cooling schedules [15], neighbor-

hood structures [118], and acceptance probabilities [73, 133].

In this thesis, we examine an approach that integrates variable penalty methods

and simulated annealing. The relaxation of constraints through the use of penalty

functions is a standard mathematical programming technique [8]. For heuristics



with static penalty multipliers, either elaborate procedures must be performed to

determine appropriate multiplier values, or they must be calibrated via extensive

experimentation. As Costa and Oliveira [29] note, this can be a major drawback

as it can be difficult to determine the correct weighting factors for the different

penalty terms. To remedy this problem, Deb [31] develops a penalty term for a

genetic algorithm approach that does not depend on a penalty parameter. Hadj-

Alouane and Bean [55] present an alternate methodology by integrating a dynamic

penalty method within a genetic algorithm approach. Coit et al. [28] and Coit and

Smith [27] present an adaptive penalty method based on feedback from the heuristic

search performed by a genetic algorithm. Gopalakrishnan et al. [52] use self-adjusting

penalties to guide a tabu search heuristic applied to a class of production planning

problems.

Similar constrained annealing approaches have been explored in the literature.

Theodoracatos and Grimsley [131] develop a variable penalty method within an

annealing algorithm to solve a two-dimensional packing problem. In their implemen-

tation, the penalty multiplier is defined as a function of the temperature parameter.

Morse [98] implements an annealing method that treats penalty multipliers as a

control parameter. This approach outperforms genetic algorithms and traditional

simulated annealing for large-scale instances of a vehicle replacement problem.

Theoretical study of constrained annealing includes work by Geman [45], who

provides convergence results for the application of the Gibbs sampler on an appro-

priately conditioned state space. Using Dobrushin’s contraction technique, Yao [137]



extends the work of Geman [45] to provide a sufficient condition on the convergence

of constrained simulated annealing. Robini [116] improves this sufficient condition

by providing a tight upper bound on the second largest eigenvalue in absolute value

of the transition probability matrix associated with the underlying Metropolis chain.

Frigerio and Grillo [42] and Del Moral and Miclo [92] also consider annealing with

time-dependent energy functions, but under assumptions that imply an upper bound

on the penalty multiplier.

1.2.2 Asset Replacement

We delineate the replacement literature along a pair of main identifying aspects:

scope and cost structure. Scope refers to the perspective of the decision-maker, which

in turn is dependent on the relationship between the assets. If the management of

each asset is independent of the other assets, the scope is a single asset; this scenario is

termed serial replacement. On the contrary, if there exists interdependencies between

assets, then the scope consists of multiple assets. In general, there are two types

of multiple asset interactions, parallel and series. If the assets are economically

interdependent (due to economies of scale, resource constraints, etc.) and operate

in parallel, this scenario is termed parallel replacement. Series replacement models

describe assets that possess operational dependencies, i.e., machines that operate in

series.

Cost structure refers to the certainty of the cash flows. If all cash flows are known

with certainty at time zero, the replacement model is classified as deterministic.

Alternatively, if cash flows resulting from purchase, operating, maintenance, and



salvage are uncertain, the replacement model is classified as stochastic.

A vast majority of the replacement literature focuses on serial replacement and

variants thereof. The classical treatment of this defender versus challenger decision

assumes that the deterministic cash-flow series of any current challenger be repeated

identically regardless of when that challenger might be acquired over an infinite hori-

zon. Terborgh [129] and Alchian [3] present infinite-horizon models that relax the

repeatability assumption by considering linear productivity improvement in future

challengers under the restriction of constant replacement intervals for current and

future challengers. Oakford et al. [101] generalizes a finite-horizon dynamic pro-

gramming formulation in Wagner [135] that relaxes the repeatability assumption on

future challengers.

Additional prominent work regarding deterministic serial replacement includes

planning horizon approaches considering improving technology by Sethi and

Chand [122], Chand and Sethi [20], and Bean et al. [10]. Hopp and Nair [70] and

Nair and Hopp [100] present serial replacement models with stochastic technologi-

cal breakthroughs. Cheevaprawatdomrong and Smith [21] investigate the effect of

accelerating technological improvement on the replacement frequency. Under the as-

sumptions of their model, they establish that replacements are made less frequently

as technology improves. Bethuyune [13] analyzes serial replacement with variable

utilization and discovers that the economic life of an asset can be prolonged by

decreasing the utilization over its lifetime.

We are particularly interested in the serial replacement models that consider



stochastic cash flows. Lohmann [89] analyzes uncertain cash flows by considering the

deterministic dynamic program in Bean et al. [9] in conjunction with Monte Carlo

simulation. For replacement models with uncertain cash flows due to stochastic dete-

rioration, Markov decision processes are a common modeling approach. Derman [33]

presents a model in which costs are dependent on the state of the asset, which

deteriorates stochastically according to stationary transition probabilities. Assum-

ing that costs are time-invariant, Derman [33] proves the optimality of a stationary

control limit rule, stating that an asset is replaced if and only if it is in a state

above a calculated threshold. Repair limit replacement rules, stating that a vehicle

is replaced whenever its estimated repair costs exceed a threshold value, are devel-

oped in Drinkwater and Hastings [36], Hastings [63] and Mahon and Bailey [91].

For a replacement model with Markovian deterioration and possible technological

breakthrough, Hopp and Nair [71] extend the results of Derman [33] by proving the

existence of an optimal nonstationary control limit policy. In work related to the

stochastic equipment replacement model, Hartman [59] explores a serial replacement

model with probabilistic asset utilization in which an asset’s state is defined by the

asset’s age and cumulative utilization.

The parallel replacement problem, termed by Vander Veen [93], considers a port-

folio of economically interdependent assets operating in parallel. Research on paral-

lel replacement problems has focused almost exclusively on deterministic cash flows.

Jones et al. [76], Tang and Tang [128], and Hopp et al. [69] establish replacement

rules for a parallel replacement problem in which economic interdependence is in-



duced by a fixed charge for replacing one or more assets. Chen [22] develops efficient

solution algorithms for the parallel replacement problem with economies of scale in

replacement cost in both the finite- and infinite-horizon cases. Karabakal et al. [78]

add capital rationing constraints to convert the serial replacement model in Oakford

et al. [101] into a parallel replacement problem, and they present a branch-and-bound

algorithm for solving moderately-sized instances optimally. In an extension of this

work, Karabakal et al. [79] develop a dual heuristic for solving realistically sized in-

stances of the same problem. Via integer programming, Hartman and Lohmann [60]

model parallel replacement under demand and budget constraints with multiple re-

placement options. Hartman [58] generalizes the replacement rules of Jones et al. [76]

for a parallel replacement problem with fixed and variable replacement costs in the

presence of demand and budget constraints. Jones and Zydiak [74] analyze fleet

design in the presence of time-invariant economic parameters, economies of scale in

replacement costs, and dis-economies of scale in maintenance costs. They show that

optimal steady-state fleet designs are composed of equal-sized replacement groups.

Hartman [61] and Jones and Zydiak [75] continue discussion of the fleet design prob-

lem, focusing on the intricacies of cash-flow modeling.

Recent developments in parallel replacement have involved the unification of re-

lated decision-making processes. Hartman [57] develops an integer programming

formulation to solve a replacement problem in which replacement and utilization

decisions are jointly determined. Hartman [62] extends this work into stochastic

demand environment, resulting in state-dependent stochastic costs, where the state



is defined as a combination of age and utilization. Rajagopalan et al. [112] and Ra-

jagopalan [111] present approaches unifying capacity expansion decisions and parallel

asset replacement.

In this thesis, we analyze a fleet replacement problem considering the real-world

conditions of stochastic vehicle deterioration, annual budget limits, and time-variant

costs. In the context of the replacement literature, this model can be classified

as parallel replacement with stochastic costs. To the author’s knowledge, there is

little research that directly deals with the prominent issues posed by this difficult

combinatorial problem. Prior research involving parallel replacement has focused

on deterministic cash flows, while work published on replacement with stochastic

deterioration has generally concentrated on serial models that do not consider the

effect of expenditure limits across a fleet.

1.2.3 Traveling Salesman Problem with Time Windows

The vehicle routing literature encompasses research on numerous applications

approached with a variety of techniques. We study one of these prominent problems,

the traveling salesman problem with time windows (TSPTW), a problem amenable

to the constraint-handling machinery of the compressed annealing heuristic. Solution

approaches for the TSPTW range from exact mathematical programming techniques

to various heuristic approaches. With respect to the best-known results in the lit-

erature, we evaluate the performance of compressed annealing on instances of the

TSPTW.

Exact approaches to the TSPTW have focused on dynamic programming tech-



niques. Christofides et al. [25] and Baker [7] present branch-and-bound algorithms

that solve problems with up to 50 vertices, but require “moderately tight” time

windows and/or little overlap between them. Langevin et al. [87] introduce a two-

commodity flow formulation well-suited to handling time windows; they solve in-

stances with up to 40 nodes. Dumas et al. [38] extend earlier dynamic programming

approaches by using state space reduction techniques that enable the solution of

problems up to 200 customers. In an alternate approach, Pesant et al. [107, 108]

utilize constraint programming to solve the TSPTW. Similarly, Focacci et al. [41]

embed optimization techniques within a constraint programming approach.

Because of limitations with exact formulations (Savelsburgh [121] proved that

even finding a feasible solution to the TSPTW is an NP-complete problem), partic-

ularly difficulties associated with wide time windows, there exists a facet of research

focusing on heuristic techniques for the TSPTW. Carlton and Barnes [17], solve the

TSPTW with a tabu search approach. Gendreau et al. [48] offer a construction

and post-optimization heuristic based on a near-optimal TSP heuristic presented by

Gendreau et al. [47]. Calvo [16] introduces a heuristic that constructs an initial tour

using a unique relaxation to the assignment problem.

In recent years, heuristics have also been shown to be an effective means of solv-

ing a closely related problem, vehicle routing with time windows (VRPTW). The

VRPTW is concerned with routing a fleet of vehicles when customers have time win-

dow constraints. As shown by Calvo [16] and Gendreau et al. [48], TSPTW heuristics

are potentially more effective at optimizing the individual routes generated by the



VRPTW heuristics. This has led to many “cluster first, route second” approaches

to the VRPTW in which a series of TSPTWs is solved after customers have been

assigned to routes.

For the VRPTW, Solomon [123] adapts construction heuristics to handle time

windows and conducts an extensive study across a wide range of data sets; a sequen-

tial insertion heuristic performed particularly well. To partition the customers in the

VRPTW, Thangiah et al. [130] use a genetic algorithm. Garcia et al. [43] introduce

a parallel implementation of a tabu search heuristic for the VRPTW. Russell [120]

describes a hybrid VRPTW heuristic approach that integrates parallel construction

and interchange improvement that effectively reduces vehicle fleet sizes. Chiang and

Russell [24] embed simulated annealing for route improvement into this parallel con-

struction algorithm for the VRPTW. Potvin et al. [110] and Taillard et al. [125]

present tabu search heuristics, while Potvin and Bengio [109] approach the VRPTW

with a genetic algorithm. For a comprehensive account of the implementation of

simulated annealing, tabu search, and genetic algorithms on the VRPTW, we refer

the reader to Tan et al. [127]. Utilizing constraint programming techniques, Caseau

and Laburthe [18] and Rousseau et al. [119] also construct heuristics for VRPTW.

Although the VRPTW is NP-hard, there is still an active field of research in

exact solution methods. These exact solution methods are applicable for smaller

instances with tight time windows. Although the mathematical programming tech-

niques of exact algorithms are vastly different than the search methods in heuristic

approaches, we provide a brief genealogy. Kolen et al. [84] presented the first op-



timization method for the VRPTW. They apply a branch-and-bound procedure to

solve VRPTW problems with up to 15 customers. Desrochers et al. [34] present

an exact algorithm for the VRPTW based on a column generation approach of a

set partitioning formulation. Kohl and Madsen [83] approach the VRPTW with

a Lagrangian relaxation of the constraint set that all customers must be serviced

to obtain optimal solutions. Fisher et al. [40] describe an algorithm based on the

K-tree relaxation of the VRPTW. Most recently, Kohl et al. [82] apply a branch-and-

bound algorithm that utilizes a method to obtain improved lower bounds to solve to

optimality several previously unsolved problems.



CHAPTER II

Analysis of Compressed Annealing

A combinatorial optimization problem can be formulated as:

CP minimize f(x)

subject to: gi(x) ≥ bi; i = 1, . . . ,m

x ∈ S,

where S is a finite set, and f(·) and gi(·) are real-valued functions on S. We are

particularly interested in instances of CP classified as NP-hard. The intractabil-

ity of these problems suggests the application of metaheuristics to find near-optimal

solutions. A trait common to many metaheuristic approaches is the requirement of

“neighborhood” structures to generate candidate solutions from a current solution

[115]. We consider instances of CP for which the formation of a neighborhood struc-

ture of feasible solutions is impeded by the constraints {gi(x) ≥ bi} for i = 1, . . . ,m.

We recover well-defined neighborhoods by relaxing the complicating constraints into

the objective function with a penalty term.

17



2.1 Penalty Methods and Annealing

For a solution x ∈ S, let ̺(x) be the m-vector whose ith element, ̺i(x), is a real-

valued, nonnegative function indicating violation of the constraint gi(x) ≥ bi, so that

̺i(x) > 0 if and only if bi > gi(x). In [54], Hadj-Alouane identifies one particular

class of such penalty functions, which for s > 0 is given by:

̺(x) =

























|min(0, g1(x) − b1)|
s

|min(0, g2(x) − b2)|
s

...

|min(0, gm(x) − bm)|s

























.

Let θ be an m-vector of nonnegative, scalar penalty multipliers. Taking the dot

product of θ and the penalty function ̺(x), we obtain the penalty term θt̺(x).

Adding this penalty term to the objective function, we obtain PP, a general relax-

ation of CP.

PP minimize f(x) + θt̺(x)

subject to: x ∈ S

In the analysis of the compressed annealing algorithm, we make the restriction

that all the components of θ are equal, i.e. θ1 = . . . = θm, so that all constraints

relaxed into the objective function are multiplied by the same value. Under this

restriction,

θt̺(x) = λ
m
∑

i=1

̺i(x) = λp(x),

where λ = θ1 = . . . = θm, and p(x) =
∑m

i=1 ̺i(x).

Note that p(x) is a real-valued, nonnegative function indicating violation of the



constraints {gi(x) ≥ bi} for i = 1, . . . ,m, so that p(x) > 0 if and only if x is

infeasible. We duly note that the choice of penalty function will have an impact

on the empirical performance of the algorithm, and therefore favor penalty functions

which maintain strong duality. For the nonnegative, scalar λ, we refer to the function

v(x, λ) = f(x) + λp(x) as the auxiliary function. Then we formulate RP(λ), a

relaxation of CP as

RP(λ) minimize v(x, λ) = f(x) + λp(x)

subject to: x ∈ S

We focus on solving CP via an implementation of simulated annealing on RP(λ).

In addition to temperature, we have another parameter, namely the value of the

penalty multiplier λ. Maintaining the physical analogy of simulated annealing, we

call this parameter “pressure” [98]. The set S is finite, so for sufficiently large λ, any

optimal solution to the relaxation RP(λ) is optimal for CP (we call this property

strong duality); see [55]. Unfortunately, for large-scale problems, it is impractical

to determine the exact multiplier value at which strong duality first holds. Fixing

pressure at a “large” value to avoid converging to infeasible solutions might seem

reasonable, but this makes it difficult for the annealing algorithm to move through

the solution space. The high penalties mean that infeasible solutions are excessively

penalized, and so practically speaking, the search is limited to feasible solutions.

Fixing pressure at a “small” value ensures that the annealing algorithm can more

easily move through the solution space, but one could converge to an infeasible

solution.

In view of these observations, and because computational experience has demon-



strated that it is often difficult to determine a “good” value for pressure, we examine

a heuristic called compressed annealing [98]. Compressed annealing simultaneously

adjusts pressure and temperature within the annealing run. Compressed annealing

can be viewed as a hill-climbing algorithm that also alters the height of the “hills” in

the solution topography. In this study, we will confine our attention to temperature

schedules that are decreasing, and pressure schedules that are increasing.

Compressed annealing has exhibited success in obtaining reasonable solutions

to difficult problems that genetic algorithms and traditional simulated annealing

have not [98]. Additionally, Theodoracatos and Grimsley [131] also report empirical

success using a similar variable penalty method and simulated annealing to solve a

two-dimensional packing problem. In both of these applications, parameters are set

after extensive experimentation. Our theoretical results provide insight on the trade-

off between cooling and compression. We identify how the properties of a solution

topology affect the specification of cooling and compression rates. In particular, we

define the dynamic depth of a local minimum. The approximation of dynamic depth

guides the practitioner’s selection of annealing parameters and lessens the degree of

“blind” experimentation.

2.2 Dynamics

In this section, we describe the dynamic behavior induced by the variable multi-

plier approach. For each state x ∈ S, define N(x) ⊆ S as the static neighborhood of

x, and let Γ be a stochastic matrix for generating neighbors.



Assumption 1. For all x, y ∈ S, such that y ∈ N(x), there exists a constant c0 such

that 0 < c0 ≤ Γ(x, y) ≤ 1, and furthermore, Γ(x, y) > 0 if and only if y ∈ N(x).

Every state x ∈ S is described by the ordered pair (f(x), p(x)) consisting of the

state’s cost and degree of infeasibility. We say that a state x with f(x) = f and

p(x) = p is at level (f, p). Levels are ordered such that (f, p) ≻ (f ′, p′) if and only if

either (i) p > p′ or (ii) p = p′ and f > f ′. Furthermore, (f, p) = (f ′, p′) if and only

if p = p′ and f = f ′. In this manner, we lexicographically order the states in S with

respect to p(·) and then f(·).

Define a solution topology, Θ = (S, N, f, p), as the collection of states in a solution

space connected by a neighborhood structure together with the functions f and p.

A solution topology encapsulates all the essential problem parameters. We also

define a solution topography, Θλ = (S, N, v(·, λ)). The topography, Θλ, utilizes

the information contained in the topology, Θ, to describe the relational behavior

between states for a particular value of λ. While the topology is static, observe that

the topography captures the dynamic impact of pressure since a change in λ alters

the value of the auxiliary function, v(x, λ), for every x such that p(x) > 0.

The ordering of states with respect to v(·, λ) may vary with λ. However, since

|S| < ∞, for λ sufficiently large, a constant ordering within the solution topography

can be attained. Lemma 1 articulates this intuition and its corollary motivates the

utilization of RP(λ) to solve CP.

Lemma 1. For a solution topography Θλ with |S| < ∞, the following are true.

(a) There exists λ∗
x,y ≥ 0 such that if λ > λ∗

x,y and (f(x), p(x)) ≻ (f(y), p(y)), then



v(x, λ) > v(y, λ).

(b) There exists λ∗ ≥ 0 such that λ > λ∗ if and only if v(x, λ) > v(y, λ) for every

pair of states x, y with (f(x), p(x)) ≻ (f(y), p(y)).

(c) For λ > λ∗, all states that are local minima for the original problem CP are local

minima for RP(λ). (Note: Local minima for RP(λ) are not necessarily feasible

states.)

Proof. Part (a). Consider x, y ∈ S such that (f(x), p(x)) ≻ (f(y), p(y)). We want

to show that for λ large enough,

v(x, λ) = f(x) + λp(x) > f(y) + λp(y) = v(y, λ). (2.1)

Since (f(x), p(x)) ≻ (f(y), p(y)), either (i) p(x) > p(y) or (ii) p(x) = p(y) and

f(x) > f(y). First, consider the case when p(x) > p(y). For (2.1) to hold true,

λ > max

{

0,
f(y) − f(x)

p(x) − p(y)

}

= λ̂x,y.

Next, consider the case when p(x) = p(y) and f(x) > f(y). It is clearly true that

(2.1) holds true for all values of λ ≥ 0.

Part (b). (⇒) Let S̄ be the set of pairs of states x, y ∈ S such that (f(x), p(x)) ≻

(f(y), p(y)). By Lemma 1(a), for each pair of states x, y ∈ S̄, there exists λ̂xy ≥ 0

such that if λ > λ̂xy then v(x, λ) > v(y, λ). Therefore, if

λ > max
x,y∈S̄

{

λ̂xy

}

= λ∗

observe that v(x, λ) > v(y, λ) for every pair of states x, y with (f(x), p(x)) ≻

(f(y), p(y)).



(⇐) Suppose that v(x, λ) = f(x) + λp(x) > f(y) + λp(y) = v(y, λ) for every pair

of states x, y ∈ S̄. Solving for λ over every pair x, y ∈ S̄ and using the fact that λ is

nonnegative, we obtain

λ > max
x,y∈S̄

[

max

{

0,
f(y) − f(x)

p(x) − p(y)

}]

= λ∗.

Part (c). For ease of exposition, denote the state space of CP as U , i.e.,

U = {y : gi(y) ≥ bi for i = 1, . . . ,m; y ∈ S} .

Observe that U ⊂ S. Consider a state x that is a local minimum of CP. By

definition of a local minimum of CP, f(x) ≤ f(y) for all y ∈ N(x) ∩ U .

Since x is a local minimum of CP, x must be a feasible solution of CP, x ∈ U .

Therefore, x is also feasible for RP(λ) and p(x) = 0.

To show that x is also a local minimum of RP(λ) for λ > λ∗, we must show that

v(x, λ) ≤ v(z, λ) for all z ∈ N(x). First, consider any state y ∈ N(x)∩U . Note that

p(y) = 0 for all such y. Therefore,

v(x, λ) = f(x) + λp(x)

= f(x)

≤ f(y)

= f(y) + λp(y)

= v(y, λ).

Now consider any state w ∈ N(x)∩U c. Since w ∈ U c, gi(w) < bi for at least one i,

and thus p(w) > 0. It follows then that (f(w), p(w)) ≻ (f(x), 0). From Lemma 1(a),

there exists λ∗ such that λ > λ∗ implies that v(x, λ) ≤ v(w, λ) for all such w.



Figure 2.1: The two diagrams illustrate the dynamic nature of a solution topography
for λ = 0 and λ = 5. States d and g are feasible (p(d) = p(g) = 0) and
the other states are infeasible to varying degrees (p(f) > p(a) > p(c) >
p(b) > p(e)). For this example, λ∗ = 4.3̄, so the topography on the left
is “volatile” and the topography on the right is “stable.”

Corollary 1. If x is a global minimum of CP, then x is also a global minimum of

RP(λ) for λ > λ∗.

Proof. The proof is similar to that of Lemma 1(c) and is omitted.

For λ < λ∗, there is a transient period in which the topography is “volatile.”

That is, the ordering of the states’ auxiliary function values relative to each other

is not fixed. For λ > λ∗, the topography stabilizes in the sense that the ordering of

states with respect to v(·, λ) agrees with the relation ≻. Note that while a constant

ordering of states in S is achieved for all λ > λ∗, further compression will increase

the difference in the auxiliary function values between any particular pair of states

x and y if p(x) > p(y). Figure 2.1 illustrates the dynamic solution topography in a

small example.



2.3 Convergence of Compressed Annealing

The augmentation of pressure has a significant impact on the annealing algo-

rithm’s convergence. We demonstrate that continued compression complicates the

convergence of annealing by deepening the “valleys” and therefore making it increas-

ingly difficult for the process to escape local minima.

Ideally, one would perhaps like to construct cooling and compression schedules

that minimize the expected time required to find a global optimum. A first-order

concern related to this goal is whether the time required to find a global minimum is

almost-surely finite or not. In Theorem 3, we show that if the sum of the expected

jump probabilities, denoted
∑∞

k=0 η(dk), is finite, then there is a positive probability

that a global minimum will never be reached (from certain states), i.e., the time to hit

a global minimum, Tglobal, is infinite. We can conclude that if P {Tglobal = ∞} = 0,

then
∑∞

k=0 η(dk) = ∞.

We also prove the converse, i.e., if
∑∞

k=0 η(dk) = ∞, then P {Tglobal = ∞} =

0, by supplying a stronger converse. Specifically, in Theorem 1 we show that if

∑∞
k=0 η(dk) = ∞, then limk→∞ P {Y (k) ∈ G∗} = 1, where G∗ is the set of global

minima.

The main analytic result on the compressed annealing algorithm is a set of neces-

sary and sufficient conditions for compressed annealing to converge in probability to

the set of global minima. This result is a generalization of that in [56], in the sense

that when the penalty multiplier is static or when there are no relaxed constraints,

our results reduce to his. Our proof of this result follows a path hewn by Hajek [56],



although many aspects of the proof involve nontrivial extensions of Hajek’s concepts

and results. We chose to adopt Hajek’s framework as the basis for our approach

because his necessary and sufficient conditions are the strongest in the literature.

Hajek showed that cooling rates that ensure convergence depend on the shape of

the auxiliary function, and in particular, the “depth” of the deepest local, nonglobal

minimum. This observation is of particular prominence in our work, where we alter

the shape of the auxiliary function via compression during the annealing process.

Continued compression deepens the “valleys” and therefore makes it increasingly

more difficult for the process to escape local minima. Nevertheless, we prove that

even if we allow pressure to increase without bound, there still exists a temperature

schedule such that the annealing algorithm converges in probability to the set of

global minima.

In §2.3.4.1, we show that such a temperature schedule must converge to 0 slower

than O([ln k]−1). Therefore, practically speaking, one cannot expect to use com-

pressed annealing to hit the set of global minima with probability 1. One might then

consider the less-lofty goal of minimizing the expected time to hit a set of ǫ-optimal

solutions, E[Tǫ]. But from Theorem 3, one can again conclude for some topologies

and starting states, if
∑∞

k=0 η(dk) < ∞, then P{Tǫ = ∞} > 0. Despite these impli-

cations, we demonstrate compressed annealing’s effectiveness as a heuristic approach

on a pair of constrained combinatorial optimization problems (see Chapters III and

IV).

The rest of this chapter is organized as follows. We describe a Markov chain rep-



resentation of compressed annealing and its associated terminology in § 2.3.1, § 2.3.2,

and § 2.3.3. In §2.3.4, we state our main result, its implications, and the outline of

the proof. The remainder of the chapter is dedicated to the proof of the main result.

In particular, §2.3.5 proves a result quantifying compressed annealing’s ability to

climb out of local, nonglobal minima. Then §2.3.6 lower-bounds the probability of

the process being trapped near a local minima. In §2.3.7, we utilize the results of

§2.3.5 and §2.3.6 to state a sufficient condition for the process to settle onto states

“near” sufficiently deep local minima. Finally, §2.3.8 completes the proof of the main

result.

2.3.1 Markov Chain Model and Vernacular

To begin our analysis, we introduce notation related to the control parameters,

temperature and pressure. Define the cooling schedule to be a deterministic, de-

creasing sequence of strictly positive numbers (τ0, τ1, . . .) such that limt→∞ τt = 0.

Additionally, define the compression schedule as a deterministic, increasing sequence

of nonnegative numbers (λ0, λ1, . . . ) such that limt→∞ λt = ∞.

Using the compression schedule, we parameterize the auxiliary function of RP(λ),

by defining vt(x) = f(x) + λtp(x). By Lemma 1 and our definition of a compression

schedule, there exists t∗ < ∞ such that λt ≤ λ∗ for 0 ≤ t ≤ t∗, and λt > λ∗ for all

t > t∗. That is, t∗ is the point in the compression schedule at which the topography

stabilizes.

We model the compressed annealing algorithm as a time-inhomogeneous, discrete-

time Markov chain (Y (k), T (k) : k ≥ 0) with state space S×{0, 1, . . .}. At step k, the



current solution of the algorithm is Y (k) = x, and T (k) is interpreted as the “clock

time.” At each step of the algorithm, a candidate solution, y, is generated from the

mass function, Γ(x, ·), and y is then accepted with a probability dependent on τT (k)

and the quantity hT (k) = (vT (k)(y) − vT (k)(x))+. If y is accepted, then Y (k + 1) = y,

otherwise Y (k + 1) = x. In §2.3.2, we explain how (T (k) : k ≥ 0) evolves.

Let the acceptance function, (ηt : t ≥ 0), be a function of temperature, τt,

such that 0 < ηt < 1, ηt is nonincreasing in t, and limt→∞ ηt = 0. Typically,

ηt = exp(−1/τt). This function governs the probability of accepting transitions in our

probabilistic hill-climbing algorithm. The term η
hT (k)

T (k) represents the probability of,

at step k, accepting a transition from the current state, x, to a state y ∈ N(x). Note

that the height of the jump between states, hT (k) = {f(y)−f(x)+λT (k)[p(y)−p(x)]}+

is a function of the penalty multiplier, thus exhibiting the acceptance probability’s

relationship with the pressure parameter. For notational simplicity, we henceforth

write ηht

t as η(ht).

2.3.2 Structuring the Solution Space

Motivated by stabilization of the solution topography, Θλ, for λ > λ∗, we partition

S into sets based on each state’s level. Let L(f, p) = {x ∈ S : f(x) = f, p(x) = p} be

the set of states at level (f, p). Note that for any x ∈ L(f, p), vt(x) = f +λtp, i.e., for

any value of λ, all states in the same level have the same auxiliary function value. The

order relation ≻ partitions S into {L(f1, p1), L(f2, p2), . . . , L(fℓ, pℓ)} where (f1, p1) ≺

(f2, p2) ≺ · · · ≺ (fℓ, pℓ), and ℓ is the number of levels in S.

As in [56], we assume that the problem is structured so that the process can only



climb up one level at a time. This concept is formalized below.

Assumption 2. The topology Θ possesses the continuous increase property. That

is, if x ∈ L(fi, pi) and y ∈ L(fj, pj) with j > i + 1, then y /∈ N(x).

If a problem’s topology possesses the continuous increase property, then for x ∈

L(fi, pi), N(x) consists only of states y such that y ∈ L(fj, pj) where j ≤ i + 1. To

interpret this, consider Y (k) = x ∈ L(fi, pi) at iteration k where λT (k) > λ∗. Then

the “distance” of any uphill transition is fi+1 − fi + λT (k)(pi+1 − pi) (since we only

climb one level at a time). Thus, for λ sufficiently large, the probability of accepting

an uphill transition is the same for every state on a given level. Note that this

property only affects uphill transitions and not downhill transitions that are always

accepted.

At first glance, the continuous increase property appears to be quite restrictive.

[56] shows that one can introduce artificial states to recover the continuous increase

property for the case where all states are feasible. A similar augmentation technique

can be applied to our situation.

Suppose that the topology, Θ, does not possess the continuous increase property.

The idea is to augment S with artificial states to recover the continuous increase

property and yet maintain the characteristics of the original solution space. We

denote the augmented solution space Ŝ = S ∪A, where A is a set of artificial states

complementing the set of real states, S, such that A ∩ S = ∅. The appropriate

augmentation scheme involves inserting an appropriate artificial state at each level

skipped between pairs of neighboring states.

If Θ does not possess the continuous increase property, then there exists at least



Figure 2.2: Solution topography (for λ > λ∗) before and after state augmentation.

one pair of states, x ∈ (fi, pi) and w ∈ (fi+l, pi+l), such that w ∈ N(x) and l > 1 (see

Figure 2.2). For every such pair, we insert artificial states (x, i+1, w) ∈ L(fi+1, pi+1),

(x, i + 2, w) ∈ L(fi+2, pi+2), . . . , and (x, i + l − 1, w) ∈ L(fi+l−1, pi+l−1) into the

solution space. The neighborhood structure is altered so that (x, i + 1, w) ∈ N̂(x) is

generated with probability Γ̂(x, (x, i+1, w)) = Γ(x,w) and Γ̂(x,w) = 0. Additionally,

(x, i + 2, w) ∈ N̂(x, i + 1, w) with Γ̂((x, i + 1, w), (x, i + 2, w)) = 1, . . . , and w ∈

N̂(x, i + l − 1, w) with Γ̂((x, i + l − 1, w), w) = 1.

To keep the augmentation of artificial states from altering the behavior of

(Y (k), T (k)), we design a Markov chain such that the artificial states have hold-

ing times of zero time units while the real states have holding times of one time

unit. This is the motivation for the clock time component of our Markov chain. For

example, consider the sample path: Y (k) = x0, Y (k + 1) = x1, Y (k + 2) = x2,

Y (k + 3) = x3. If x0, x1, x2, x3 ∈ S and T (k) = t, then the corresponding sequence

of clock times is: T (k + 1) = t + 1, T (k + 2) = t + 2, T (k + 3) = t + 3. However,

if x0, x1, x3 ∈ S and x2 ∈ A instead, then T (k + 1) = t + 1, T (k + 2) = t + 1,



T (k + 3) = t + 2.

To be precise, the one-step transition probabilities can be defined as follows. For

x ∈ S and y ∈ Ŝ\{x},

P {Y (k + 1) = y, T (k + 1) = s | Y (k) = x, T (k) = t} =

Γ̂(x, y)η([vt(y) − vt(x)]+)I {s − t = I {y ∈ S}} ,

and

P {Y (k + 1) = x, T (k + 1) = t + 1 | Y (k) = x, T (k) = t} =

1 −
∑

z 6=x

Γ̂(x, z)η((vt(z) − vt(x))+).

Now suppose the algorithm is in state (x, i, w) ∈ A at step k. The algorithm

generates a neighbor solution, y, with probability Γ̂((x, i, w), y) and accepts this

state with probability η([vT (k)(y)−vT (k)(x, i, w)]+). If the move to y is rejected, then

the process descends to x. More precisely, for (x, i, w) ∈ A and y ∈ Ŝ\{x},

P {Y (k + 1) = y, T (k + 1) = s | Y (k) = (x, i, w), T (k) = t} =

Γ̂((x, i, w), y)η([vt(y) − vt(x, i, w)]+)I {s − t = I {y ∈ S}} ,

and

P {Y (k + 1) = x, T (k + 1) = t + 1 | Y (k) = (x, i, w), T (k) = t} =

1 −
∑

z

Γ̂((x, i, w), z)η([vt(z) − vt(x, i, w)]+).

In the augmented solution space, Ŝ, there is a positive probability of the process

transitioning from an artificial state (x, i, w) to the state x 6= (x, i, w) at any time



t ≥ 0. That is, x is a “neighbor” of (x, i, w) although Γ̂((x, i, w), x) = 0. To

remedy this contradiction, we define neighborhoods for artificial states differently

than neighborhoods for real states.

Assumption 3. For any state z ∈ A, a state x ∈ N̂(z) ⊂ Ŝ if and only if either

(a) Γ̂(z, x) = 1 (x is the state generated for consideration), or

(b) P {Y (k + 1) = x, T (k + 1) = t + 1 | Y (k) = z, T (k) = t} > 0 (x is the last real

state visited).

The above procedure allows us to recover the continuous-increase property while

maintaining the transition probabilities between real states. So we henceforth as-

sume, without loss of generality, that the continuous-increase property holds.

2.3.3 Definition of Concepts

In this section, we use insight provided by the constant ordering of the topog-

raphy, Θλ, for λ > λ∗ to define structural concepts. In particular, we extend the

Markov chain concepts of accessibility and communication to account for the dy-

namic solution topography. These definitions extend the framework in [56] to allow

for infeasible states.

We say that state y is accessible at level (f, p) from state x if (i) x = y and

(f(x), p(x)) � (f, p), or (ii) there is a sequence of states x = x0, x1, . . . , xs = y for

some s ≥ 1 such that xn+1 ∈ N(xn) for 0 ≤ n < s and (f(xn), p(xn)) � (f, p) for

0 ≤ n ≤ s.

A topology (S, f, p,N) is level irreducible if (S, N) is irreducible and, for any

level (f, p) and any two states x, y ∈ S, x is accessible at level (f, p) from y if and



only if y is accessible at level (f, p) from x. Note that symmetric neighborhoods are

sufficient, but not necessary, for level irreducibility.

We say that a state x is a local minimum if there does not exist a state y acces-

sible at level (f(x), p(x)) from x such that (f(y), p(y)) ≺ (f(x), p(x)). For a local

minimum x, suppose (f ′
x, p

′
x) ≻ (f(x), p(x)) is the lowest level at which a state y with

(f(y), p(y)) ≺ (f(x), p(x)) is accessible. Then, the static depth of local minimum x

is S(x) = f ′
x − f(x), and the penalty depth of local minimum x is P (x) = p′x − p(x).

Therefore, each local minimum x is described by a depth pair (S(x), P (x)).

We compare the depth pairs of local minima x and y via the ≻ operator. If

(S(x), P (x)) ≻ (S(y), P (y)), then we say that the local minimum x is “deeper” than

the local minimum y. We define the dynamic depth of local minimum x at time t as

dt(x) = S(x) + λtP (x). For t ≥ t∗, dt(x) is interpreted as the smallest distance that

the process would have to climb from a local minimum x to reach a local minimum

z such that (f(z), p(z)) ≺ (f(x), p(x)).

For a local minimum x, recall (f ′
x, p

′
x) ≻ (f(x), p(x)), and thus (S(x), P (x)) ≻

(0, 0). For a state y that is not a local minimum, there exists a state z with

(f(z), p(z)) ≺ (f(y), p(y)) that is accessible at level (f(y), p(y)) from y. Thus, any

state y that is not a local minimum has a depth pair (S(y), P (y)) = (0, 0). On the

other hand, if a local minimum x is also a global minimum, then (S(x), P (x)) is

defined to be (+∞, +∞).

A cup C is a set of states such that for some level (f, p) and some x such that

(f(x), p(x)) � (f, p), C = {y : y is accessible at level (f, p) from x}. By level irre-



ducibility, one can take the state “x” in the definition of the cup C to be any element

of C.

To facilitate our analysis of cups, we define some cup-specific quantities. Let the

bottom of a cup C be defined as B = {x ∈ C : (f(x), p(x)) � (f(y), p(y)) ∀ y ∈ C}.

Let the rim of cup C be defined as R = {x ∈ C : (f(x), p(x)) � (f(y), p(y)) ∀ y ∈ C}.

That is, B is the set of states in the lowest level of the cup, and R is the set of states

in the highest level of the cup. Let the froth of a cup C be F = {y : y /∈ C and y ∈

N(x) for some x ∈ C}. Note that F is empty if and only if C = S. We are

particularly interested in the states in R that have neighbors in F . Formally, let this

set of “escape states” be denoted Re = {x ∈ R : N(x) ∩ F 6= ∅}. By the continuous

increase property, the process escapes C by jumping from a state in Re to a state

in F . The sets B,R, and F are cup-specific, i.e., they are more accurately denoted

B(C), R(C), and F (C). We notationally suppress this dependence, unless discussing

more than one cup at a time.

For a cup C 6= S, we define the static depth S = f(y) − f(x) and the penalty

depth P = p(y) − p(x), where y ∈ F and x ∈ B. Note that for any cup C 6= S,

(S, P ) ≻ (0, 0) implying that either (i) P > 0 and S is unrestricted, or (ii) P = 0 and

S > 0. We say that cup C with depth pair (S, P ) is deeper than cup C ′ with depth

pair (S ′, P ′) if (S, P ) ≻ (S ′, P ′). Figure 2.3 illustrates a cup and related concepts.

We define the dynamic depth of cup C at time t as dt = S+λtP . For t ≥ t∗, dt(C)

is the distance that the process would have to climb to reach some state y ∈ F from

some state x ∈ B. In accordance with the above definitions, the deepest cup C such



Figure 2.3: A cup C with depth pair (S, P ) = (S(x), P (x)) = (−9, 5) = [(3, 5) −
(12, 0)]. Note that Re = {y, z}.

that a local minimum x is in the bottom of C has depth pair (S, P ) = (S(x), P (x)).

Let the “rim height” rt(C) be the distance at time t from a state u ∈ R to z ∈ F ,

i.e., rt = f(z)−f(u)+λt(p(z)−p(u)). Similarly, let the “girth,” gt(C), be the distance

at time t from a state x ∈ B to u ∈ R, i.e., gt = f(u) − f(x) + λt(p(u) − p(x)). In

this way, the dynamic depth of cup C at time t can be decomposed into two pieces,

dt = rt + gt = S + λtP .

Note that cups are defined independently of λt, although the depths of cups

depend on λt and only are intuitive for times t ≥ t∗. The deepening of cup C from

time t to time t + 1, given by dt+1 − dt = P (λt+1 − λt), is governed by its penalty

depth and the compression schedule.



2.3.4 Necessary and Sufficient Condition

With the model structure and language in place, we are ready to state our main

result.

Theorem 1. If the topology Θ is level irreducible, then the following statements hold.

(a) For any state x that is not a local minimum, limk→∞ P{Y (k) = x} = 0.

(b) Let B be the bottom of a cup C of static depth S and penalty depth P so that the

states in B are local minima of static depth S and penalty depth P . Then,

lim
k→∞

P{Y (k) ∈ B} = 0 (2.2)

if and only if
∞
∑

k=0

η(d+
k ) =

∞
∑

k=0

η([S + λkP ]+) = +∞. (2.3)

(c) Let (S∗, P ∗) be the maximum depth of all states which are local, nonglobal minima.

Let G∗ denote the set of global minima. Then

lim
k→∞

P{Y (k) ∈ G∗} = 1 (2.4)

if and only if
∞
∑

k=0

η([S∗ + λkP
∗]+) = +∞ (2.5)

Part (a) of Theorem 1 states that the compressed annealing chain is unlikely

to reside in a state that is on a “valley wall” in the solution topography. Part (b)

declares that the compressed annealing algorithm is unlikely to reside in a local

minimum with depth pair less than or equal to (S, P ) if and only if the system is

cooled and compressed slowly enough. We use the “positive part” operator in the

sum of escape probabilities to avoid situations where S + λkP < 0, which can only

occur for small k. This operator does not play a role as k tends to infinity. Part (c)

is a direct consequence of parts (a) and (b).



2.3.4.1 Cooling and Compression Schedules

Suppose the probability of accepting a nonimproving solution is given by the func-

tion ηk = exp(−1/τk). Then the necessary and sufficient condition for convergence

is
∞
∑

k=0

exp(−[S∗ + λkP
∗]+/τk) = ∞. (2.6)

[56] demonstrates that a cooling schedule of the form τk = c/ ln(k + 1) for k ≥ 1

satisfies this condition if c is a constant greater than or equal to the depth of the

deepest local, nonglobal minimum. Thus, if we consider a compression schedule such

that limk→∞ λk = λ̄ ≥ λ∗, where λ∗ is defined in Lemma 1, Hajek’s cooling schedule

still satisfies Equation (2.6) if c ≥ S∗ + λ̄P ∗.

However, if P ∗ > 0 and we allow limk→∞ λk = ∞, the depths of local minima

also grow to infinity and therefore Hajek’s cooling schedule does not satisfy the

necessary and sufficient condition. In this case, one particular set of joint cooling

and compression schedules that satisfy the necessary and sufficient condition is

τk =
(S∗ + φ) + λkP

∗

ln(k + 2)

for k ≥ 0, where λk grows to infinity slower than O(ln k) and φ ≥ 0 is appropriately

defined to ensure that {τk} is decreasing.

While cooling and compression schedules that satisfy the necessary and sufficient

condition are often empirically ineffective on practically sized problems, our theoreti-

cal structure still contributes to the practice of compressed annealing. Equation (2.6)

suggests compression and cooling schedules with rates of change that decrease over



time. In addition, it is clear that the performance of compressed annealing is af-

fected by the dynamic depths of local minima, and in particular, the depth pair of

the deepest local, nonglobal minimum, (S∗, P ∗). This suggests that approximations

of depth pairs and the pressure cap (λ∗) supply insight on the impact of compres-

sion on the solution topography and further guide the practitioner’s specification of

temperature and pressure. These insights have proven valuable in empirical work on

constrained truck fleet replacement and vehicle routing with time windows. See also

the motivation for our results given in the introduction.

2.3.4.2 Outline of Proof

The proof of Theorem 1, given in Section 2.3.8, follows from three theorems we

present in Sections 2.3.5, 2.3.6, and 2.3.7. In this section, we describe the key ideas

behind these three major steps.

In Section 2.3.5, we establish Theorem 2 which states that under appropriately

slow cooling and compression: (a) the sum of jump probabilities over the number

of steps required to escape a cup C is bounded in expectation, and (b) there is a

positive uniform lower bound on the probability of exiting the cup via any particular

state in the cup’s froth. To prove Theorem 2, we begin by partitioning a cup C into

its rim and its underlying cups. Structuring a cup in this manner accommodates

the use of induction. The proof of part (a) rests on the fact that by the induction

hypothesis, Y escapes any underlying cup within cup C by entering a state in the

rim of C, and on these trips to R(C), Y occasionally hits a state in Re(C). Once Y

is in Re(C), the process can escape cup C in a single transition, so if Y visits Re(C)



often enough, the process will eventually escape C, and escape quickly enough to

ensure the expectation is bounded.

To show part (b) of Theorem 2, we consider some state x̄ ∈ Re(C) with

ȳ ∈ N(x̄) ∩ F and recognize that if P{Y escapes C through x̄} > δ > 0, then

P{Y enters ȳ upon exiting C} is also bounded away from zero. We prove that the

P{Y escapes C via x̄} has a positive lower bound by showing that, for some constant

c,

P {Y escapes C via x̄ after hitting x̄ i times } ≥

cP {Y escapes C from another state in Re after hitting x̄ i times } ,

and then summing over i. Since every state y ∈ F is a neighbor of some x ∈ Re,

part (b) follows directly.

Section 2.3.6 develops Theorem 3 which presents a lower bound on the probability

of remaining in a cup over a given number of iterations. To achieve this result, we

partition a cup C into a set D and a collection of cups {C1, . . . , Cn}. The set D

is defined such that for x ∈ D, the bottom of C is accessible at level (f(x), p(x)).

Alternatively, for x ∈ Ci, (f, p) ≻ (f(x), p(x)) is the lowest level such that the

bottom of C is accessible at (f, p) from x. Viewing the structure of C in this way,

we see that Y can escape the cup or hit the bottom only through states in D. We

proceed by utilizing a time-homogeneous birth-and-death process (that stochastically

dominates (Y, T )) to determine an upper bound on the probability that Y escapes C

before hitting the bottom. This upper bound on P{Y escapes C before hitting B}

is then used to develop the lower bound on the probability of remaining in the cup



over n iterations as stated in Theorem 3.

In Section 2.3.7, Theorem 4 provides the capstone to the proof of Theorem 1.

Theorem 4 establishes
∑∞

k=0 η(S + λkP ) = +∞ as the sufficient condition for con-

vergence in probability to the set of states composing the lower portions of cups

deeper than (S, P ). Define ES,P as the set of local minima deeper than (S, P ). To

establish this sufficient condition, we partition the solution space S into a set U and

a collection of cups {C1, . . . , Cl}. The set U is defined such that for any x ∈ U ,

there exists a state in ES,P that is accessible at level (f(x), p(x)). Alternatively, for

x ∈ Cj, (f, p) ≻ (f(x), p(x)) is the lowest level such that a state in ES,P is accessible

at (f, p) from x. Furthermore, the depth of any cup in the collection {C1, . . . , Cl} is

at most (S, P ).

Due to the partitioning of S, the process hits U upon exiting any cup Cj, and from

any state x ∈ U , there exists a path to ES,P that rises no higher than (f(x), p(x)).

Thus, we use Theorem 2 to show that Y escapes any cup Cj, enters a state in U ,

and eventually reaches a local minimum deeper than (S, P ). In particular, we give a

lower bound on the probability of reaching ES,P within a given number of iterations.

Applying Theorem 3, we get a lower bound on the probability of remaining “near”

ES,P over a given number of iterations. Combining these two observations in a

limiting interval argument, we obtain the result of Theorem 4.

2.3.5 Climbing the Increasing Depths

In this section, we analyze the ability of the process to escape deepening cups.

For a given cup C, define the step at which the process first escapes C as W =



inf{k ≥ 0 : Y (k) ∈ F}.

Theorem 2. There exist ǫ > 0 and 0 < ξ ≤ 1 depending only on Θ and C so that

for every time t0 ≥ t∗, every x0 ∈ C where C has depth pair (S, P ), every y0 ∈ F ,

and every (ηt, λt : t ≥ 0) such that η(rt0) ≤ ξ and
∑∞

k=0 η(dt0+k) = +∞,

(a) E

[

W
∑

k=0

η(dT (k)) | (Y (0), T (0)) = (x0, t0)

]

≤
1

ǫ
, and

(b) P {Y (W ) = y0 | (Y (0), T (0)) = (x0, t0)} ≥ ǫ.

In [56], an analogous result is proved for the situation where pressure is constant

over time. We generalize this result to handle deepening cups.

As in Theorem 3 of [56], Theorem 2 is proved by strong induction via a sequence

of lemmas. As shown in Figure 2.4, the states in a cup C can be partitioned into its

rim, R, and a collection of underlying cups, C1, C2, . . . , Cn. Any of the cups nested

within C have a depth pair (S(Ci), P (Ci)) ≺ (S(C), P (C)). Furthermore, by the

continuous increase property, when the process escapes a nested cup Ci, it must visit

a state in R.

Induction Hypothesis : Theorem 2 is true for any cup C ′ with (S(C ′), P (C ′)) ≺

(S(C), P (C)).

Base Case: Cup C consists only of states at a single level, i.e., C = R.

The proof of the base case for Theorem 2 is similar to that of the induction step.

We continue with the exposition of the general case and note that all the arguments

hold in the base case (often trivially). We need some preliminaries before proceeding

to the proof of Theorem 2.

To track the process when it enters the rim of C, we define {Ji} such that J0 = 0



Figure 2.4: Cup C is partitioned into its rim (R(C)) and a collection of shallower
cups (C1 and C2).

and Ji+1 = inf{k > Ji : Y (k) ∈ R} ∧W for i ≥ 0. Observe that Ji is the iteration at

which the process visits R for the ith time or finally escapes the cup.

Since the dynamic depth of any cup Ci at time t ≥ t∗ is no deeper than gt(C)

which is less than dt(C), we can apply the induction hypothesis. Therefore, we get

ǫi and ξi for each cup Ci such that if η(rt0(Ci)) ≤ ξi and x0 ∈ Ci, then

E

[

J1
∑

k=0

η(gT (k))

]

≤
1

ǫi

.

(For notational convenience, we define all probabilities and expectations with respect

to the probability measure induced when (Y (0), T (0)) = (x0, t0) for x0 ∈ Ci and

t0 ≥ t∗.

Furthermore, for every y such that y ∈ R ∩ N(x) for x ∈ Ci,

P {Y (J1) = y} ≥ ǫi.



Therefore, we can set ǫ̂ = mini ǫi and ξ̂ = mini ξi, so that if η(rt0(Ci)) ≤ ξ̂ and

x0 ∈ Ci for some i = 1, . . . , n, then

E

[

J1
∑

k=0

η(gT (k))

]

≤
1

ǫ̂

and for every y such that y ∈ R ∩ N(x) for x ∈ Ci,

P {Y (J1) = y} ≥ ǫ̂.

Let K0 = 0 and define Ki+1 = (inf {k > Ki : Y (k) ∈ Re} ∧ W ) for i ≥ 0. Itera-

tion Ki is the step at which the process visits Re for the ith time or finally escapes

the cup.

We describe the history of the process up to step Jk through the σ-algebra Fk

generated by {(Y (i) : 0 ≤ i ≤ Jk), T (0)}. Note that

Fk = σ {(Y (i) : 0 ≤ i ≤ Jk), T (0)}

= σ {(Y (i), T (i)) : 0 ≤ i ≤ Jk} .

That is, given the sequence of states and the initial clock time, we can compute the

clock time at each step in the entire sequence.

In Lemma 2, we describe a bound on the probability of transitioning between two

states in the rim of the cup, given that they can communicate without visiting other

states in the rim.

Lemma 2. Under the conditions of Theorem 2, there exists ǭ > 0 depending only on

Θ and C so that, for x, y ∈ R that communicate without visiting another state in R,

P {Y (Jk+1) = y | Fk} ≥ ǭ on the event {Y (Jk) = x}.



Proof. For scenarios such that {Y (Jk) = x}, there are two possible ways for

{Y (Jk+1) = y} to occur. The trivial case is when y ∈ N(x), since then

P {Y (Jk+1) = y | Fk} ≥ c1 on the event {Y (Jk) = x}.

The second case is when y /∈ N(x). In this case, we use the fact that Y must

first visit a state in R upon exiting any of the cups nested within C. In order

for {Y (Jk+1) = y, Y (Jk) = x} to occur if y /∈ N(x), the process has to descend

into some cup Ci and hit y upon first jump out. By assumption, the process can

transition from x to y without visiting another state in R, so there must exist a

path x = x0, x1, . . . , xs = y such that x1, . . . , xs−1 ∈ Ci and xn+1 ∈ N(xn) for

0 ≤ n < s. From the induction hypothesis of Theorem 2, the probability of escap-

ing Ci by jumping to y is bounded below, i.e., P {Y (Jk+1) = y} ≥ ǫ̂ on the event

{Y (Jk + 1) = x1 ∈ Ci}. Combining this with P {Y (Jk + 1) = x1 | Fk} = Γ(x, x1) ≥

c1 on the event {Y (Jk) = x}, we obtain P {Y (Jk+1) = y | Fk} ≥ c1ǫ̂ on the event

{Y (Jk) = x}. Setting ǭ ≤ c1ǫ̂, we obtain the desired result.

Lemma 3 states that once in a cup, the expected number of visits to states

in R until reaching a state in Re is bounded above by a constant. Let M =

inf {j > 0 : Y (Jj) ∈ Re ∪ F}. The definition of M includes the set F to account

for the case in which Y (0) = x0 ∈ Re and Y (1) ∈ F .

Lemma 3. Under the conditions of Theorem 2, for any x0 ∈ C, E [M ] ≤ c1 for

some constant c1 depending only on Θ and C.

Proof. Without loss of generality, assume Y (0) = x0 ∈ Ci for some i. Note

that it does not matter how long the process wanders around in the cup C beneath

the rim R as long as we eventually hit a state in R since M is only incremented



by visits to R. From the induction hypothesis of Theorem 2, we know that if the

process is in any state x ∈ Ci at any time t ≥ t∗, then with probability one it will

eventually hit a state in R. To see this, observe that P {Y gets stuck below R} ≤

limn→∞ {(1 − ǫ̂0)(1 − ǫ̂1) · · · (1 − ǫ̂n)} = 0, where ǫ̂n is the lower bound of hitting

some state y ∈ R ∩ N(x) for x ∈ Ci after the nth time we dip into the underlying

cups. Now we show that on one of these “trips” to R, the process will hit a state in

Re.

By definition of a cup C and its rim R, any two states in C are accessible to

each other at (f(R), p(R)). Therefore, there exists a path from any state w ∈ R to

x̄ ∈ Re ⊆ R that visits the set R no more than |R| times and does not climb higher

than level (f(R), p(R)). Denote the sequence of states in R visited on this path by

{w = s0, s1, . . . , sm = x̄}, where m ≤ |R|.

Define Mk(x̄) = inf {j > 0 : Y (Jk+j) ∈ {x̄} ∪ F}. From Lemma 2, we know that

P {Y (Jk+1) = si+1 | Fk} ≥ ǭ on the event {Y (Jk) = si} for 0 ≤ i < m, independent

of k. Therefore, applying Lemma 2 along the entire path from w to x̄, we obtain

P {Mk(x̄) ≤ |R| | Fk} ≥ ǭ|R| > 0. Consequently, P {Mk(x̄) > |R| | Fk} ≤ 1− ǭ|R| < 1.



Through a geometric trials argument, observe that

P {M0(x̄) > (n + 1)|R|}

= P
{

Y (J0) 6= x̄, . . . , Y (J(n+1)|R|) 6= x̄
}

=
∑

w∈R\{x̄}

P
{

Y (J0) 6= x̄, . . . , Y (J(n)|R|) = w, . . . , Y (J(n+1)|R|) 6= x̄
}

=
∑

w∈R\{x̄}

P
{

Y (Jn|R|+1) 6= x̄, . . . , Y (J(n+1)|R|) 6= x̄ | Y (J(n)|R|) = w, . . . , Y (J0) 6= x̄
}

P
{

Y (J(n)|R|) = w, . . . , Y (J0) 6= x̄
}

≤ (1 − ǭ|R|)
∑

w∈R\{x̄}

P
{

Y (J(n)|R|) = w, . . . , Y (J0) 6= x̄
}

= (1 − ǭ|R|)P {M0(x̄) > n|R|} .

Repeating this argument n more times yields

P {M0(x̄) > (n + 1)|R| | F0} ≤ (1 − ǭ|R|)n+1.

By definition, M0(x̄) ≥ M . Hence,

E [M ] ≤ E [M0(x̄)]

=
∞
∑

m=0

P {M0(x̄) > m}

=
∞
∑

k=0

|R|−1
∑

r=0

P {M0(x̄) > k|R| + r}

≤
∞
∑

k=0

|R|−1
∑

r=0

P {M0(x̄) > k|R|}

≤ |R|
∞
∑

k=0

(1 − ǭ|R|)k

=
|R|

ǭ|R|

≡ D3.



Lemma 4 essentially states that the expected jump probabilities accumulated

between entrances into the cup’s rim until hitting an “escape state” is bounded

above by a constant.

Lemma 4. Under the conditions of Theorem 2, there exists a constant c2 depending

only on Θ and C such that

E

[

Jk+1
∑

s=Jk+1

η(gT (s))I {s ≤ K1} | Fk

]

≤ c2.

Proof. Note that Y (Jk +1) is the state to which the system transitions immediately

after visiting R for the kth time, while Y (Jk+1) is the state of the process when in

R ∪ F for the (k + 1)st time. Considering the two scenarios, Y (Jk + 1) /∈ R ∪ F or

Y (Jk + 1) = Y (Jk+1) ∈ R ∪ F , the result follows from the induction hypothesis.

E

[

Jk+1
∑

s=Jk+1

η(gT (s))I{s≤K1} | Fk

]

= E
[

η(gJk+1
)I{Jk+1≤K1}I{Y (Jk+1)∈R∪F} | Fk

]

+

E

[

I{Y (Jk+1)/∈R∪F}

Jk+1
∑

s=Jk+1

η(gT (s))I{s≤K1} | Fk

]

≤ P {Y (Jk + 1) ∈ R ∪ F | Fk} +
1

ǫ
P {Y (Jk + 1) /∈ R ∪ F | Fk}

≤ 1 +
1

ǫ

≡ c2.

Lemma 5 states that the expected jump probabilities accumulated until reaching

a state in the cup’s rim that has a neighbor outside the cup is bounded by a constant

times the probability of accepting a jump from the rim of the cup to the froth at

time t0.



Lemma 5. Under the conditions of Theorem 2, there is a constant c3 depending only

on Θ and C such that for every x0 ∈ C, and every t0 ≥ t∗ with η(rt0) ≤ ξ,

E

[

K1
∑

s=0

η(dT (s))

]

≤ c3η(rt0).

Proof. Consider the stochastic process (Zk : k ≥ 0), where Z0 = 0 and for k > 0

Zk = M ∧ k −
1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1} .

With an application of Lemma 4 for the case when k < M , and the fact that K1 = JM

for k ≥ M , it is straightforward to show that (Zk : k ≥ 0) is a submartingale with

respect to (Fk : k ≥ 0). That is,

E [Zk+1 | Fk]

= E

[

M ∧ (k + 1) −
1

c2

Jk+1
∑

s=0

η(gT (s))I {s ≤ K1} | Fk

]

= E

[

M ∧ (k + 1) −
1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1} −
1

c2

Jk+1
∑

s=Jk+1

η(gT (s))I {s ≤ K1} | Fk

]

=















Zk + 1 − 1
c2

E
[

∑Jk+1

s=Jk+1 η(gT (s))I {s ≤ K1} | Fk

]

on the event {k < M}

Zk −
1
c2

E
[

∑Jk+1

s=Jk+1 η(gT (s))I {s ≤ K1} | Fk

]

on the event {k ≥ M}

≥ Zk for all k.

Therefore, for all k, E [Zk] ≥ E [Z0] = 0, which implies

E

[

1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1}

]

≤ E[M ∧ k] ≤ E[M ] ∀ k.

Note that Xk = 1
c2

∑Jk

s=0 η(gT (s))I {s ≤ K1} for k = 0, 1, 2, . . . is a sequence of

non-negative random variables, non-decreasing in k. Additionally, limk→∞ Xk =



1
c2

∑K1

s=0 η(gT (s)) almost surely. By the monotone convergence theorem,

E

[

1

c2

K1
∑

s=0

η(gT (s))

]

= E

[

lim
k→∞

1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1}

]

= lim
k→∞

E

[

1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1}

]

≤ lim sup
k→∞

E

[

1

c2

Jk
∑

s=0

η(gT (s))I {s ≤ K1}

]

≤ E [M ] .

Applying Lemma 3,

E

[

K1
∑

s=0

η(gT (s))

]

≤ c2c1 ≡ c3. (2.7)

Now observe that since η(rt) is decreasing for all t ≥ t∗, and T (0) = t0 ≥ t∗,

η(dT (s))

η(rt0)
=

η(rT (s))η(gT (s))

η(rt0)
≤ η(gT (s)).

The result now follows from (2.7).

In Lemma 6, we show that the expected jump probabilities accumulated over

several visits to the set Re is bounded above by a constant.

Lemma 6. Under the conditions of Theorem 2, for 1 ≤ i ≤ j < +∞

E





Kj
∑

s=Ki+1

η(dT (s)) | Y (Ki−1), T (Ki−1)



 ≤
c3

c0

.

Proof. The proof is by reverse induction. The result is trivial if i = j. So suppose

it is true for i + 1 with 1 ≤ i + 1 ≤ j. From Lemma 5 we have that

E

[

Ki+1
∑

s=Ki+1

η(dT (s)) | Y (Ki), T (Ki)

]

≤ c3η(rT (Ki))



on the event that {Y (Ki) ∈ C} and is 0 otherwise. The inductive hypothesis gives

that

E





Kj
∑

s=Ki+1+1

η(dT (s)) | Y (Ki), T (Ki)



 ≤
c3

c0

on the event Y (Ki) ∈ C and is 0 otherwise. Thus

E





Kj
∑

s=Ki+1

η(dT (s)) | Y (Ki−1), T (Ki−1)





= E



E





Kj
∑

s=Ki+1

η(dT (s)) | Y (Ki), T (Ki), Y (Ki−1), T (Ki−1)



 | Y (Ki−1), T (Ki−1)





≤ E

[(

c3η(rT (Ki)) +
c3

c0

)

I(Y (Ki) ∈ C) | Y (Ki−1), T (Ki−1)

]

≤ E

[(

c3η(rT (Ki−1)) +
c3

c0

)

I(Y (Ki) ∈ C) | Y (Ki−1), T (Ki−1)

]

≤
c3

c0

P{Y (Ki) ∈ C | Y (Ki−1), T (Ki−1)} + c3η(rT (Ki−1)))

≤
c3

c0

(1 − c0η(rT (Ki−1))) + c3η(rT (Ki−1))).

The final inequality follows since P (Y (Ki) /∈ C | Y (Ki−1), T (Ki−1)) is the probability

of directly jumping out of the cup C from Y (Ki−1), which is bounded below by

c0rT (Ki−1).

Proof of Theorem 2(a). Setting i = 1 in Lemma 6 and letting j tend to infinity,

we apply the monotone convergence theorem to get

E

[

W
∑

s=K1+1

η(dT (s))

]

= E



 lim
j→∞

Kj
∑

s=K1+1

η(dT (s))





= lim
j→∞

E





Kj
∑

s=K1+1

η(dT (s))





≤ lim sup
j→∞

E





Kj
∑

s=K1+1

η(dT (s))





≤
c3

c0

.



Together with Lemma 5, we get

E

[

W
∑

s=0

η(dT (s))

]

= E

[

K1
∑

s=0

η(dT (s))

]

+ E

[

W
∑

s=K1+1

η(dT (s))

]

≤ c3η(rt0) +
c3

c0

≤ c3 +
c3

c0

.

2

Now we proceed to the proof of Theorem 2(b). Let ȳ ∈ F be fixed. Choose a state

x̄ ∈ Re ⊂ R with ȳ ∈ N(x̄) ∩ F . Define L∗ = inf {l ≥ 0 : Y (Jl) ∈ F}. We track the

process entrances into x̄ by letting L0 = 0 and Li+1 = inf {l > Li : Y (Jl) = x̄} ∧ L∗

for i ≥ 0. Note that JLi
is the iteration at which the process enters x̄ for the ith time

or, if Li = L∗, the iteration at which the process hits a state in F . Observe that the

events {JLi
= W} and {Li = L∗} are identical, implying that Y (W ) = Y (JL∗).

Lemma 7 shows that the number of times Y visits states in R\ {x̄} between the

ith and i + 1st visit to {x̄} ∪ F is bounded above by a constant. The proof is similar

to that of Lemma 3 and omitted.

Lemma 7. Under the conditions of Theorem 2, for any x0 ∈ C,

E
[

(Li+1 − Li − 1)+ | FLi

]

≤ c4

for some constant c4 depending only on Θ and C.

Proof. Observe that (Li+1 −Li − 1)+ = MLi
(x̄) = inf {j > 0 : Y (JLi+j) ∈ {x̄} ∪ F}

where Mk(x̄) is defined in Lemma 3. The result follows from logic similar to the

proof of Lemma 3.

Define the events (Hi : i ≥ 0) by H0 = {JL1 = W} and for i ≥ 1, Hi =

{

JLi
+ 1 < W = JLi+1

}

. The event H0 occurs if the process escapes the cup with-



out ever visiting x̄. The event Hi occurs when the process visits x̄ i times before

exiting the cup, but escapes the cup through another state in Re. Define the events

(Gi : i ≥ 0) by Gi = {JLi
+ 1 = W}. The event G0 occurs if Y (0) = x0 = x̄ and

Y (1) ∈ F . For i ≥ 1, the event Gi occurs when the process escapes the cup imme-

diately after visiting x̄ for the ith time. In Lemma 8 below, we give bounds on the

probabilities of these events.

Lemma 8. Under the conditions of Theorem 2, the following inequalities hold for c4

as defined in Lemma 7 and some constant c5 > 0 depending only on Θ and C:

P {H0} ≤ c4η(rt0), (2.8)

and

P {Hi} ≤ c5P {Gi} (2.9)

for i ≥ 1.

Proof. Consider the stochastic process (Υk : k ≥ 0), where Υ0 = 0 and for k ≥ 1,

Υk = I {Y (Jk) ∈ F} −

(k∧L∗)−1
∑

j=0

η(rT (Jj)). (2.10)

Observing that P {Y (Jk+1) ∈ F | Fk} ≤ η(rT (Jk)) on the event {k < L∗} and Y (Jk) ∈

F for all k ≥ L∗, it is straightforward to show that (Υk : k ≥ 0) is a supermartingale



with respect to Fk. That is,

E [Υk+1 | Fk] = E [I {Y (Jk+1) ∈ F} | Fk] − E





(k+1∧L∗)−1
∑

j=0

η(rT (Jj)) | Fk





≤















η(rT (Jk
)) −

∑k
j=0 η(rT (Jj)) on the event {k < L∗}

1 −
∑L∗−1

j=0 η(rT (Jj)) on the event {k ≥ L∗}

=















I {Y (Jk) ∈ F} −
∑(k∧L∗)−1

j=0 η(rT (Jj)) on the event {k < L∗}

I {Y (Jk) ∈ F} −
∑(k∧L∗)−1

j=0 η(rT (Jj)) on the event {k ≥ L∗}

= Υk

Note that since I {Y (Jk) ∈ F} = I {Jk = W}, the event Hi occurs if and only

if I
{

Y (JLi+1
) ∈ F

}

− I {Y (JLi+1) ∈ F} = 1 − 0 = 1. From the optional sampling

theorem for supermartingales,

E
[

ΥLi+1
− ΥLi+1 | FLi

]

= E



I
{

Y (JLi+1
) ∈ F

}

− I {Y (JLi+1) ∈ F} −

(Li+1∧L∗)−1
∑

j=(Li+1∧L∗)

η(rT (Jj
)) | FLi





≤ 0.

Noting that η(rk) is decreasing in k, we get

P {Hi | FLi
} = E

[

I
{

Y (JLi+1
) ∈ F

}

− I {Y (JLi+1) ∈ F} | FLi

]

≤ E





(Li+1∧L∗)−1
∑

j=((Li+1)∧L∗)

η(rT (Jj)) | FLi





≤ c4η(rT (JLi
))

where c4 is defined in Lemma 7. For i = 0, this implies (2.8).



For i ≥ 1, note that

P {Gi | FLi
} = I {Y (JLi

) = x̄}
∑

z∈N(x̄)∩F

Γ(x̄, z)η(rT (JLi
))

≥ c0η(rT (JLi
))I {Y (JLi

) = x̄} .

Combining the bounds on Gi and Hi, we obtain

P {Gi | FLi
} ≥

c0

c4

I {Y (JLi
) = x̄}P {Hi | FLi

} .

Observe that P {Hi|FLi
} = 0 off the event {Y (JLi

) = x̄}. That is, when Y (JLi
) 6= x̄,

then Y (JLi
) ∈ F , and thus JLi

+ 1 > W . Therefore, we can drop the I {Y (JLi
) = x̄}

term and take expectations to obtain (2.9), where c5 = c4
c0

.

Proof of Theorem 2(b). Observe that if Y (JL∗−1) = x̄, then the process es-

capes the cup C by jumping from x̄ ∈ Re. For the event {Y (JL∗−1) = x̄} to occur,

{JLi
+ 1 = W} for some i. Therefore, by Lemma 8, we get

P {Y (JL∗−1) = x̄} =
∞
∑

i=0

P {Gi}

≥
1

c5

∞
∑

i=1

P {Hi}

≥
1

c5

(1 − P {H0} − P {Y (JL∗−1) = x̄})

≥
1

c5

(1 − c4η(rt0) − P {Y (JL∗−1) = x̄}) .

Combining like terms, we obtain

P {Y (JL∗−1) = x̄} ≥
1 − c4η(rt0)

1 + c5

.

The probability of hitting ȳ given we exit the cup via x̄ is given by

P {Y (W ) = ȳ | Y (JL∗−1) = x̄} =
Γ(x̄, ȳ)

∑

w∈N(x̄)∩F Γ(x̄, w)

≥ c0.



We conclude that

P {Y (W ) = ȳ} ≥ P {Y (W ) = ȳ, Y (JL∗−1) = x̄}

= P {Y (W ) = ȳ | Y (JL∗−1) = x̄}P {Y (JL∗−1) = x̄}

≥
c0(1 − c4η(rt0))

(1 + c5)
.

Setting

ǫ = min

{

c0

c3(1 + c0)
,
c0(1 − c4η(rt0))

(1 + c5)

}

with the caveat that η(rt0) ≤ ξ ≤ 1
c4

, we complete the proof of Theorem 2 by the

principle of induction. 2

2.3.6 Sinking to the Bottom

In this section, we analyze the behavior of the process once it has reached a local

minimum. In particular, we are interested in the probability of the process remaining

in a cup C with depth pair (S, P ) for q iterations. The arguments are based on an

analogous result in [56] for the continuous-time case with static cup depths.

Theorem 3. There exist 0 < ξ̄ ≤ 1 and c6 > 0 depending only on Θ such that for

any cup C with bottom B, any x0 ∈ B and any t0 ≥ t∗ with max{ηt0 , η(dt0)} ≤ ξ̄,

P {Y (k) ∈ C for 0 ≤ k ≤ q | (Y (0), T (0)) = (x0, t0)} ≥ exp

(

−c6

q−1
∑

k=0

η(dT (k))

)

.

Since there are only a finite number of cups in S, it suffices to prove Theorem 3

for an arbitrary cup C. Recall that the highest level in a cup C is (f(y), p(y)), for

any y ∈ R, the rim of the cup. For such y, if (f(y), p(y)) = (fℓ, pℓ), then the cup C

is the entire state space S. Theorem 3 is then trivial.



Figure 2.5: Cup C is partitioned into D = ∪4
i=1Πi and a collection of smaller cups

(C1 and C2).

So, assume that the highest level in C is (fr, pr) ≺ (fℓ, pℓ). For notational ease we

further assume, without loss of generality, that (f(x), p(x)) = (f1, p1). The dynamic

depth of the cup C at time t ≥ t∗ is then given by dt = (fr − f1) + λt(pr − p1).

Given a state x ∈ C, let (G(x), Q(x)) be the lowest level at which a state in B

is accessible from x. As shown in Figure 2.5, we can partition the cup C into the

set D and cups C1, . . . , Cm, where D = {x ∈ C : (f(x), p(x)) = (G(x), Q(x))}. That

is, the set D contains the states in C that can reach the bottom of the cup without

“climbing” to a higher level. In fact, if x ∈ C and (f(x), p(x)) ≺ (G(x), Q(x)), then

x ∈ Ci for some i, and Ci is the set of all states that are accessible from x at a level

strictly lower than (G(x), Q(x)).

Define Πr+1 = F , and Πi = {x ∈ D : (f(x), p(x)) = (fi, pi)} for i = 1, . . . , r. The

set Πi exclusively includes states in the set D at level (fi, pi), i.e., Πi = D ∩L(fi, pi)



for i ≤ r. Furthermore, let the distance between adjacent levels (fj+1, pj+1) and

(fj, pj) at iteration k be denoted by ∆j(T (k)) = (fj+1 − fj + λT (k)(pj+1 − pj)) for

1 ≤ j ≤ r.

Define δ = min {m : Y (m) ∈ Π1 ∪ · · · ∪ Πj−1 ∪ Πj+1}. Given Y (0) = x ∈ Πj,

δ denotes the first iteration that the process changes levels within D. Denote the

number of iterations that the process spends in Πj before changing levels in D as

ϑ = | {n : 0 ≤ n ≤ δ and Y (n) ∈ Πj} | . We now present a couple of lemmas dealing

with these new constructs.

Lemma 9. For 2 ≤ j ≤ r, let x̄ ∈ Πj. Under the conditions of Theorem 3, for any

t̄ ≥ t∗, E [ϑ | (Y (0), T (0)) = (x̄, t̄)] ≤ c7 for some constant c7 depending only on Θ

and C.

Proof. The partitioning of the cup C into sets {D,C1, . . . , Cm} instills the property

that Y visits a state in D upon escaping a cup Ci. By definition, for every state in Πj,

there exists a state in Π1 = B that is accessible at level (fj, pj). Therefore, we can

construct a path from any state x̄ ∈ Πj to some state y ∈ (Π1∪· · ·∪Πj−1) that visits

the set Πj no more than |Πj| times and does not climb higher than level (fj, pj). By

construction, each state along the path between x̄ to y must be either in Πj or Ci for

some i = 1, . . . , n. Denote the sequence of states on Πj by {x̄ = s0, s1, . . . , sm−1 = z},

where sm = y ∈ N(z) and m ≤ |Πj|.

To analyze the behavior of the process along the path between x̄ and y, we define

X0 = 0 and Xk+1 = inf{n > Xk : Y (n) ∈ Πj} ∧ δ for k ≥ 0. Observe that Xk is

the iteration upon which the process is in Πj for the kth time until changing levels

within D. Let Hk as the σ-algebra generated by (Y (i) : 0 ≤ i ≤ Xk, T (0)).



Along the sequence {x̄ = s0, s1, . . . , sm−1}, there are two ways that a tran-

sition can be made from si to si+1 for i ≤ m − 2. If si+1 ∈ N(si), then

P {Y (Xk+1) = si+1|Hk} ≥ c1 on the event {Y (Xk) = si}, independent of k. If

si+1 /∈ N(si), then the transition from si to si+1 must be made by descending into

some Ci and climbing out via si+1. Note that upon descending into Ci for some i,

there are two possibilities, either the process gets stuck in cup Ci and never escape,

or it eventually climbs out. Therefore,

P {Y (Xk+1) = si+1, Xk+1 < ∞|Hk} ≥ ǫ (2.11)

on the event {Y (Xk) = si, Xk < ∞} for some ǫ > 0, independent of k. Note that we

can choose ǫ to ensure that ǫ < c1.

Consider a Markov chain on the state space Πj ∪ Ci, where Ci is an absorbing

state for some i. Let P be a transition matrix defined by

P (x, y) =















ǫ if (2.11) holds for x, y ∈ Πj

0 otherwise,

P (x,Ci) = 1 −
∑

y∈Πj

P (x, y), for x ∈ Πj,

P (Ci, Ci) = 1.

By definition, ϑ is not incremented during iterations spent in Ci. Therefore, ϑ is

the time to absorption, known to be finite for such Markov chains [80].

If the process climbs out of every Ci along the path from x̄ to y, we can apply

the bounds on the transition probabilities to determine that P {ϑ > k + |Πj||Hk} ≤

1− ǫ|Πj | < 1. A standard geometric trials argument (similar to Lemma 3) shows that

ϑ has a geometrically decaying tail so that E [ϑ|(Y (0), T (0)) = (x̄, t̄)] ≤ c7.



Lemma 10. For 2 ≤ j ≤ r, let x̄ ∈ Πj. Under the conditions of Theorem 3, for any

t̄ ≥ t∗,

P {δ < ∞, Y (δ) ∈ Πj+1 | (Y (0), T (0)) = (x̄, t̄)} ≤ c7η(∆j(t̄)),

where c7 is defined in Lemma 9.

Proof. Consider the stochastic process (Ψk : k ≥ 0), where Ψ0 = 0 and for k ≥ 1,

Ψk = I {δ ≤ k, Y (k ∧ δ) ∈ Πj+1} −

(k∧δ)−1
∑

s=0

η(∆j(T (s)))I {Y (s) ∈ Πj} .

Note that P {Y (k + 1) ∈ Πj+1 | Ok} ≤ η(∆j(T (k)))I {Y (k) ∈ Πj} on the event {k <

δ}, where Ok = σ(Y (i) : 0 ≤ i ≤ k, T (0)). Using this observation, it is straightfor-

ward to show that (Ψk : k ≥ 0) is a supermartingale with respect to the filtration

{Ok : k ≥ 0}.

As k → ∞, Ψk → I {δ < ∞, Y (δ) ∈ Πj+1} −
∑δ−1

s=0 η(∆j(T (s)))I {Y (s) ∈ Πj}

almost surely. In addition,

| Ψk | = | I {δ ≤ k, Y (k ∧ δ) ∈ Πj+1} −

(k∧δ)−1
∑

s=0

η(∆j(T (s)))I {Y (s) ∈ Πj} |

≤ 1 +

(k∧δ)−1
∑

s=0

I {Y (s) ∈ Πj}

= 1 + ϑ.

Since E [1 + ϑ] ≤ 1+D10 < ∞ by Lemma 9, we can apply the dominated convergence

theorem to get

P {δ < ∞, Y (δ) ∈ Πj+1 | (Y (0), T (0)) = (x̄, t̄)}

≤ E

[

δ−1
∑

s=0

η(∆j(T (s)))I {Y (s) ∈ Πj} | (Y (0), T (0)) = (x̄, t̄)

]

≤ c7η(∆j(t̄)).



We stochastically bound the level process in our setting with a time-homogeneous,

discrete-time Markov chain. A bound on a certain probability will then follow.

We first give the discrete-time Markov chain result, which is essentially identical to

Lemma 4.2 in [56], and so the proof is omitted.

For cup C, define ∆(t) = min {∆i(t) : 0 ≤ i ≤ r} for some fixed clock time t ≥ t∗.

Choose ξ̄ with 0 < ξ̄ < 1 so small that c7ξ̄
∆(t) ≤ 1

2
. That is, ξ̄ ≤ (2c7)

− 1
∆(t) .

Lemma 11. Fix t ≥ t∗ as above, and consider a time-homogeneous discrete time

Markov chain, Z, with state space {1, 2, . . . , r + 1}, and one-step transition probabil-

ities

pij =



















c7ρ
∆i(t) if j = i + 1

1 − c7ρ
∆i(t) if j = i − 1

0 otherwise,

for 2 ≤ i ≤ r, c7 as defined in Lemma 9, and 0 < ρ < 1. Assume that states 1 and

r + 1 are absorbing. Define qi for 2 ≤ i ≤ r by

qi = P {Z hits r + 1 before it hits i − 1 | Z0 = i} .

Then, for any ρ ≤ ξ̄,

q2 ≤ (2c7)
r−1ρ(fr+1−f2+λt(pr+1−p2)).

We can now bound the probability that, starting one level above the bottom, the

(Y, T ) process escapes the cup before hitting the cup bottom.

Lemma 12. Fix t̄ ≥ t∗ so that ηt̄ ≤ ξ̄ and suppose that x̄ ∈ Π2. Then, under the

conditions of Theorem 3,

P { Y visits F before visiting B | (Y (0), T (0)) = (x̄, t̄)}

≤ (2c7)
r−1ηt̄(fr+1 − f2 + λt̄(pr+1 − p2))



Proof. Define V0 = 0 and

Vi+1 = inf {n ≥ Vi : Y (n) ∈ D and (f(Y (n)), p(Y (n))) 6= (f(Y (Vi)), p(Y (Vi)))} ∧ W.

Note that Vi is the iteration that the process changes levels within the set D for the

ith time. We focus on (Vi : i ≥ 0) since the process can only escape the cup or hit

the bottom through a state in D.

Define a function ζ on S such that for x ∈ L(fi, pi), ζ(x) = i. Consider the

process (ζ(Y (Vi)) : i ≥ 0). For example, ζ(Y (V0)) = ζ(x̄) = 2. Using Lemma 10, we

determine that

P {ζ(Y (Vi+1)) = j + 1 | ζ(Y (Vi)) = j, T (Vi) = t̄} ≤ c7η(∆j(t̄)).

Setting ρ ≥ ηt̄ in Lemma 11, we see that (Zk : k ≥ 0) stochastically dominates

(ζ(Y (Vi)) : i ≥ 0). We conclude that (ζ(Y (Vi)) : i ≥ 0) has a smaller chance of

escaping the cup before hitting the bottom than (Zi, i ≥ 0).

Proof of Theorem 3. Assume that Y (0) = x0 ∈ B and T (0) = t0 ≥ t∗. All

probabilities and expectations in this proof are defined with respect to the probability

measure induced by (Y (0), T (0)) = (x0, t0).

Define S0 = 0 and Si+1 = inf {j > Si : Y (j) ∈ B} ∧ W for i ≥ 0. Notice that Si

is the iteration at which the process returns to B for the ith time (until eventually

escaping the cup). Also, let N∗ = inf {i : Y (Si) ∈ F} so that N∗ is the number of

times that Y visits B before escaping the cup. Let Gi denote the σ-algebra generated

by (Y (j) : 0 ≤ j ≤ Si, T (0)).



From Lemma 12, we see that on the event {Y (Sn) ∈ B},

P {N∗ = n + 1 | Gn} ≤ η(∆1(T (Sn)))(2c7)
r−1η((fr+1 − f2 + λT (Sn+1)(pr+1 − p2)))

≤ (2c7)
r−1η(dT (Sn)).

Since the event {N∗ > n} can be determined from the σ-algebra Gn, we have that

P {N∗ > n + 1 | Gn} = (1 − P {N∗ = n + 1 | Gn}) I {N∗ > n}

≥
(

1 − (2c7)
r−1η(dT (Sn))

)

I {N∗ > n}

≥
(

1 − (2c7)
r−1η(dt0+n)

)

I {N∗ > n} ,

where the last inequality holds since the bottom of any cup is composed entirely of

“real” states implying that T (Sn) ≥ T (0) + n. Taking expectations,

P {N∗ > n + 1} ≥
(

1 − (2c7)
r−1η(dt0+n)

)

P {N∗ > n.} (2.12)

Applying (2.12) recursively (and assuming that η(dt0) < (2c7)
−(r−1) so that each

term is positive), we get

P {N∗ > n + 1} ≥
n
∏

l=0

(

1 − (2c7)
r−1η(dt0+l)

)

.

Suppose that ξ̄ is defined sufficiently small so that η(dt0) ≤ ξ̄ implies

(2c7)
r−1η(dt0) ≤ x where x is the minimal positive solution to 1−x = exp(−2x). For

such η(dt0), 1 − (2c7)
r−1η(dt0) ≥ exp (−2(2c7)

r−1η(dt0)). With this assumption on

η(dt0) and the observation that {N∗ > q} ⊂ {Y (k) ∈ C for 0 ≤ k ≤ q}, we obtain



P {Y (k) ∈ C for 0 ≤ k ≤ q} ≥ P {N∗ > q}

≥

q−1
∏

k=0

(

1 − (2c7)
r−1η(dt0+k)

)

≥

q−1
∏

k=0

exp
(

−2(2c7)
r−1η(dt0+k)

)

= exp

(

−2(2c7)
r−1

q−1
∑

k=0

η(dt0+k)

)

≥ exp

(

−2(2c7)
r−1

q−1
∑

k=0

η(dT (k))

)

.

By setting c6 ≥ 2(2c7)
r−1 and ξ̄ ≤ min{(2c7)

− 1
∆(t∗) , (.79681213)(2c7)

−(r−1)}, The-

orem 3 holds for an arbitrary cup C. Repeating for all other cups, we can choose ξ̄

and c6 to depend only on Θ and obtain the desired result. 2

2.3.7 Settling into Deep Cups

In this section, we present a final theorem that helps complete the proof of The-

orem 1. For fixed (S, P ), define ES,P as the set of local minimum with depth pairs

greater than (S, P ). Formally stated, ES,P = {x | x is a local minimum such that

(S(x), P (x)) ≻ (S, P ) }. Additionally, define OS,P = {y | y is accessible from some

x ∈ ES,P at level (f ′ = S + f(x), p′ = P + p(x)).

Theorem 4. Let (S, P ) be given, and consider a cup C with depth pair (S, P ), so that

dT (k) = S+λT (k)P . If
∑∞

k=0 η(S+λT (k)P ) = +∞, then limk→∞ P{Y (k) ∈ OS,P} = 1.

To prove Theorem 4, we partition the state space S into the sets {U,C1, . . . , Cl}

so that U = {z ∈ S : ES,P is accessible at (f(z), p(z)) from z}, and {C1, . . . , Cl} are



Figure 2.6: Let (S, P ) = (−4, 3). This diagram illustrates the partition of S into U
and a set of cups, {C1, . . . , Cl}, such that (S(Ci), P (Ci)) ≺ (−4, 3) for
i = 1, . . . , l. Cups are enclosed with dashed lines, and all other states are
in U . The shaded nodes represent states in the set O(−4,3), and x and y
compose E(−4,3).

cups with (S(Ci), P (Ci)) ≺ (S, P ) for all i = 1, . . . , l. Figure 2.6 illustrates our new

perspective of the solution space.

We will invoke the results of Theorems 2 and 3 to prove Theorem 4. Set ξ equal

to the minimum of ξ̄ as in Theorem 3 and mini=1,...,l{ξi} as in Theorem 2, where l

indexes the (finite number of) cups.

Let A0 = 0 and Ai+1 = inf{k > Ai : Y (k) ∈ U} for i ≥ 0. Then Ai denotes

the iteration when the process is in U for the ith time. Further, define α = inf{i :

Y (Ai) ∈ ES,P} and β = inf{i ≥ α : Y (Ai) /∈ OS,P}. Note that α is the number of

times that Y (k) visits U by the time it visits the set ES,P for the first time. The

related term β is the number of times that Y (k) visits U between first visiting ES,P



and climbing to a state z /∈ OS,P .

We now state three lemmas that are proved using the results of Theorem 2. In

Lemma 13, we bound the expected accumulated jump probabilities until escaping a

cup Ci. Lemma 14 shows that the expected number of times that Y hits the set U

before hitting the bottom of a cup with a depth pair greater than (S, P ) is finite. The

results of Lemmas 13 and 14 are then combined to bound the expected accumulated

jump probabilities until hitting a state in ES,P .

Unless noted otherwise, we define all probabilities and expectations with respect

to the probability measure induced when (Y (0), T (0)) = (x0, t0) for x0 ∈ S and

t0 ≥ t∗.

Lemma 13. Under the conditions of Theorem 2, there exists c8 > 0 depending only

on Θ such that if T (Ai + 1) ≥ t0 and η(rt0) ≤ ξ, then

E

[

Ai+1
∑

k=Ai+1

η(S + λT (k)P ) | Y (Ai + 1), T (Ai + 1)

]

≤ c8.

Proof. There are two cases to consider, Y (Ai +1) = Y (Ai+1) ∈ U or Y (Ai +1) /∈ U .

The result follows directly from Theorem 2(a) and the fact that Y cannot jump

directly from one of the cups to another without visiting a state in U .

Lemma 14. Under the conditions of Theorem 2, there exists a constant c9 > 0

depending only on Θ such that E [α] ≤ c9.

Proof. For each x ∈ U , there exists n = n(x), and a sequence of distinct states, {x =

s0, . . . , sn = z}, such that sj ∈ U for 0 ≤ j ≤ n, (f(s0), p(s0)) � (f(s1), p(s1)) �

· · · (f(sn), p(sn)), and sn ∈ ES,P . Along this path, there are two ways that the process

can move from sj to sj+1, either (i) Y moves from sj to sj+1 by direct transition



or (ii) Y descends into a cup and climbs out via sj+1. By Theorem 2(b), we see

that the probabilities of such (potentially multistep) transitions are bounded below.

Therefore, a standard geometric trials argument shows that α has a geometrically

decaying tail and so E [α] ≤ c9.

Lemma 15. Under the conditions of Theorem 2, there is a constant c10 depending

only on Θ such that for every x0 ∈ S, and every t0 ≥ t∗ with η(rt0) ≤ ξ,

E

[

Aα
∑

k=0

η(dT (k))

]

≤ c10.

Proof. The proof is similar to that of Lemma 5, and uses Lemma 13 and Lemma 14.

We need one more preparatory lemma before proving the main result of this

section.

Lemma 16. For T (0) = t0,
∑∞

k=0 η(dT (k)) = ∞ if and only if
∑∞

k=0 η(dt0+k) = ∞.

Proof. First suppose
∑∞

k=0 η(dT (k)) = ∞. Note that the most consecutive artificial

states that one may visit is ℓ− 1 since any state in (f1, p1) and (fℓ, pℓ) must be real.

Therefore, the clock will be paused for at most ℓ−1 consecutive iterations at a time,

and so

(ℓ − 1)

[

∞
∑

k=0

η(dt0+k)

]

≥
∞
∑

k=0

η(dT (k)) = ∞.

The converse is immediate since T (k) ≤ t0 + k, and so ηT (k) ≥ ηt0+k.

Proof of Theorem 4. Unless specified otherwise, all probabilities and expecta-

tions in this proof are defined with respect to the probability measure induced when



(Y (0), T (0)) = (x0, t0) for x0 ∈ S and t0 ≥ t∗. Notice that

P {Aα > q}

q
∑

l=0

η(dt0+l) = E

[

I {q < Aα}

q
∑

l=0

η(dT (0)+l)

]

≤ E

[

Aα
∑

l=0

η(dT (0)+l)

]

≤ E

[

Aα
∑

l=0

η(dT (l))

]

≤ c10.

Thus,

P {Aα ≤ q} ≥ 1 −
c10

∑q
l=0 η(dt0+l)

.

Recognize that Y (Aα) must be in the bottom of a cup C̄ with

depth pair (S(C̄), P (C̄)) � (S + γS, P + γP ) where (γS, γP ) =

min {(S(C ′) − S, P (C ′) − P ) : C ′ is a cup with depth pair (S(C ′), P (C ′)) ≻ (S, P )}.

We can relate the dynamic depth of C̄ at iteration k to (S, P ) by

d̄T (k) = S(C̄) + λT (k)P (C̄)

≥ S + λT (k)P + γS + λT (k)γP

= dT (k) + γS + λT (k)γP .

Conditioning on Aα and applying Theorem 3, we find that

P {Aβ > q} ≥ exp

(

−c6

q−1
∑

k=0

η(d̄T (k))

)

= exp

(

−c6c11

q−1
∑

k=0

η(d̄t0+k)

)

≥ exp

(

−c6c11η(γS + λt0γP )

q
∑

k=0

η(dt0+k)

)

,



for some constant c11 ≥ 1.

Since Y (q) ∈ OS,P if Aα ≤ q < Aβ, we have

P {Y (q) ∈ OS,P} ≥ P {Aα ≤ q < Aβ}

≥ exp

(

−c6c11η(γS + λt0γP )

q
∑

k=0

η(dt0+k)

)

−
c10

∑q
k=0 η(dt0+k)

where we have used the inequality P{A ∩ B} ≥ P{A} + P{B} − 1.

We now show that this inequality gives limq→∞ P {Y (q) ∈ OS,P} = 1. Let ǫ > 0

be arbitrary except c10
ǫ

> 1. Now choose t3 such that if t0 > t3 then

exp

(

−c6c11η(γS + λt0γP )

(

3c10

ǫ

))

≥ 1 −
ǫ

2
.

Choose q∗(t3) such that
q∗(t3)
∑

k=0

η(dt3+k) ≥
2c10

ǫ
,

which is possible by Lemma 16. Now, for all q > q∗(t3), there exists t1(q), t2(q) such

that (i) t3 ≤ t1(q) < t2(q), (ii) 2c10
ǫ

≤
∑q

k=0 η(dt0+k) ≤ 3c10
ǫ

for all t0 ∈ [t1(q), t2(q)],

and (iii) t2(q) − t1(q) > 1. Then, for t0 ∈ [t1(q), t2(q)],

P {Y (q) ∈ OS,P} ≥ exp

(

−c6c11η(γS + λt0γP )

q
∑

k=0

η(dt0+k)

)

−
c10

∑q
k=0 η(dt0+k)

≥ exp

(

−c6c11η(γS + λt0γP )

(

3c10

ǫ

))

−
c10

∑q
k=0 η(dt0+k)

≥
(

1 −
ǫ

2

)

−
ǫ

2

= 1 − ǫ.

This probability bound is conditioned on (Y (0), T (0)) = (x0, t0) where t0 ∈

[t1(q), t2(q)]. So when T (0) = 0, let ρ = min {k : T (k) ≥ t1(q)}. Since t2(q) −



t1(q) > 1, T (ρ) < t2(q). Now all probabilities and expectations are induced by

(Y (0), T (0)) = (x0, 0). We find that

P {Y (q) ∈ OS,P} = E [P {Y (q) ∈ OS,P | (Y (ρ), T (ρ))}]

≥ E [(1 − ǫ)]

= 1 − ǫ.

Since ǫ was arbitrary, the result follows. 2

2.3.8 Proof of Main Result

In this section, we conclude the proof of Theorem 1 by assembling results from

Theorems 3 and 4. With the help of an additional lemma, we modify the final

argument in [56] to accommodate the concept of levels.

Lemma 17. If
∑∞

k=0 η(S + λT (k)P ) < +∞ and
∑∞

k=0 η(S̄ + λT (k)P̄ ) = +∞, then

(S, P ) ≻ (S̄, P̄ ).

Proof. We prove by contradiction by assuming (S, P ) � (S̄, P̄ ). Then, either (i)

P < P̄ and nothing can be said about the relative sizes of S and S̄, or (ii) P = P̄ and

S ≤ S̄. In either case, by our construction of a compression schedule, there exists

k∗ ≥ 0 such that η(S + λT (k)P ) ≥ η(S̄ + λT (k)P̄ ) for k ≥ k∗. Therefore,

∞
∑

k=0

η(S + λT (k)P ) ≥
∞
∑

k=k∗

η(S + λT (k)P )

≥
∞
∑

k=k∗

η(S̄ + λT (k)P̄ )

= ∞

which is a contradiction.



Proof of Theorem 1. When S = 0 and P = 0, OS,P is the set of all local

minima and the condition of Theorem 4 holds. Thus Theorem 4 implies part (a) of

Theorem 1.

We will next prove the “if” half of part(b) of Theorem 1. Let BS,P denote the

bottom of a cup C with depth pair (S, P ). Suppose that the states in BS,P are

local minima with static depth S and penalty depth P , i.e., C is the largest cup

containing the states in BS,P as local minima. We must show that P {Y (k) ∈ BS,P}

has limit zero as k tends to infinity if
∑∞

k=0 η(S + λT (k)P ) =
∑∞

k η(dT (k)) = ∞. In

view of Theorem 4, it is sufficient to prove that BS,P ∩ OS,P = ∅. For the sake of

contradiction, suppose there exists x ∈ BS,P ∩ OS,P . Then there is a state y ∈ ES,P

so that (i) y is a local minimum with (S(y), P (y)) ≻ (S, P ), (ii) x is accessible from

y at (S + f(y), P + p(y)), and (iii) y is accessible from x at (S + f(y), P + p(y)).

Case 1: (f(x), p(x)) ≻ (f(y), p(y))

Since x ∈ BS,P , (f ′ = S +f(x), p′ = P +p(x)) is the lowest level such that a state

z, with (f(z), p(z)) ≺ (f(x), p(x)), is accessible from x. However, by (iii), we know

that y is accessible from x at (S + f(y), P + p(y)). This contradicts the fact that x

is a local minimum with (S(x), P (x)) = (S, P ), since (f(y), p(y)) ≺ (f(x), p(x)), and

so (S + f(y), P + p(y)) ≺ (S + f(x), P + p(x)).

Case 2: (f(x), p(x)) � (f(y), p(y))

Since x ∈ BS,P , there exists a state z, with (f(z), p(z)) ≺ (f(x), p(x)), accessible

from x at (S + f(x), P + p(x)). Since (f(x), p(x)) � (f(y), p(y)), z is also accessible

from x at (S + f(y), P + p(y)). Combining this observation with (ii), note that z is



accessible from y at (S+f(y), P +p(y)). Furthermore, (i) implies that (f ′′, p′′) ≻ (S+

f(y), P+p(y)) is the lowest level such that a state w, with (f(w), p(w)) ≺ (f(y), p(y)),

is accessible from y. Therefore, we have reached a contradiction of (i) because z is

accessible from y at (S+f(y), P +p(y)) and (f(z), p(z)) ≺ (f(x), p(x)) � (f(y), p(y)).

We obtain a contradiction in both cases, so we have proved that BS,P and OS,P

are disjoint. This completes the proof of the “if” half of part (b) of Theorem 1.

To prove the “only if” half of part (b) of Theorem 1, we will prove the contra-

positive. Again let BS,P denote the bottom of a cup C with depth pair (S, P ), and

suppose that the states in BS,P are local minima of static depth S and penalty depth

P . Assume that ηt and λt are given such that
∑∞

k=0 η(S + λT (k)P ) < +∞. We want

to prove that P{Y (k) ∈ BS,P} does not converge to zero as k tends to infinity.

Since
∑∞

k=0 η(S +λT (k)P ) < +∞, we know from Lemma 17 that (S, P ) ≻ (S̄, P̄ ),

where (S̄, P̄ ) are the largest value pair such that
∑∞

k=0 η(S̄+λT (k)P̄ ) = +∞. Select a

state y ∈ BS,P and let C̄ =
{

x : x is accessible from y at level (S̄ + f(y), P̄ + p(y))
}

.

Let B̄ denote the bottom of cup C̄, and let x0 ∈ B̄.

Observing that
∑∞

k=0 η(dT (k)(C̄)) < +∞ since (S(C̄), P (C̄)) ≻ (S̄, P̄ ), Theorem 3

implies that

lim
k→∞

inf P{Y (k) ∈ C̄} > 0. (2.13)

If z ∈ C̄ − B̄, then z is not a local minimum or z is a local minimum with depth

pair (S(z), P (z)) ≺ (S̄, P̄ ). Using this observation, part (a) of Theorem 1, and the

“if” half of part (b) of Theorem 1,

lim
k→∞

P{Y (k) = z} = 0 for z ∈ C̄ − B̄. (2.14)



From (2.13) and (2.14), we conclude that lim infk→∞ P{Y (k) ∈ B̄} > 0, and since

B̄ ⊂ B, this inequality is true with B̄ replaced by B. This completes the “only if”

half of part (b) of Theorem 1. 2

2.3.9 Summary and Future Theoretical Study

We have developed a necessary and sufficient condition for the convergence

in probability of simulated annealing in the presence of complicating constraints.

Through careful construction of the concept of levels, we are able to maintain the

monotonicity of the long-run transition probabilities and therefore modify the me-

chanics in [56] to achieve the desired result. We have rigorously established that,

to converge to the set of global minima, slower cooling than proposed in [56] is re-

quired. Therefore, it is unlikely that we can view compressed annealing as a global

optimization method, but rather as a heuristic implemented with accelerated cooling

and compression schedules.

Compressed annealing augments the traditional simulated annealing algorithm by

implementing an approach that varies the values of penalty multipliers throughout

the execution of the algorithm. In this manner, compressed annealing can be viewed

as a primal-dual variant of simulated annealing. We assume that the values of each

penalty multiplier are the same, masking the duality of the problem. Future research

is necessary to explore the effect of having distinct values for each penalty multiplier.

The results presented in this chapter shed light on the performance of the algo-

rithm, but more work is needed. One future endeavor is to create a class of problems

for which we can derive analytical results on probability of convergence and rate of



convergence in order to garner further insight on the algorithm’s behavior. Future

research may include the analysis of annealing behavior during the transient period of

compression (λ < λ∗) and its impact on the quality of heuristic solutions in practical

applications.

2.4 Implementation of Compressed Annealing

To implement the compressed annealing algorithm on a particular application,

the practitioner is faced with a number of decisions. Some of these decisions are

application-specific, and must be addressed on a problem-by-problem basis. Other

issues, however, are generic in the sense that there exist general procedures that

guide their resolution. In this section, we describe this generic parameter determi-

nation. We reserve discussion for examples of the application-specific decisions until

Chapters III and IV.

We provide a general procedural description of compressed annealing in Table 2.1.

General issues that must be addressed include the setting of initial temperature and

pressure, the manner and rate of changing temperature and pressure, the number

of iterations at each temperature/pressure setting, and the algorithm termination

criterion.

Cooling and Compression

From our theoretical work on the convergence of compressed annealing, we dis-

cover that joint cooling and compression schedules should have decreasing derivatives

to ensure convergence to the set of global minima. While the theoretical rates of



Table 2.1: Outline of Compressed Annealing

Generate initial solution, x.

Initialize best solution found, xbest, so that f(xbest) = ∞ and p(xbest) = 0

Let k = 0.

Set initial temperature and pressure, τk and λk.

Set iteration limit, i.e., number of iterations at each temperature/pressure.

Repeat:

Let counter = 0.

Repeat:

Increment counter by 1.

Randomly generate y, a neighbor solution of x.

With probability exp
(

−(v(y,λk)−v(x,λk))+

τk

)

, let x = y.

If p(x) = 0 and f(x) < f(xbest), let xbest = x.

Until counter == iteration limit.

Increment k by 1.

Compute τk and λk.

Until termination criterion satisfied.
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Figure 2.7: Demonstration of practical cooling and compression schedules.

cooling and compression are much too slow to be practical, they supply insight on

appropriate ‘shapes” for simultaneous cooling and compression schedules (see Fig-

ure 2.7). Combining this intuition with observations documented in the literature, we

implement a geometric cooling schedule [35, 81, 134] and a limited exponential com-

pression schedule. For parameters 0 ≤ β ≤ 1, γ ≥ 0, and λ̂ ≥ 0 (an approximation

of the pressure cap), these schedules are formally defined by

τk+1 = βτk, and

λk+1 = λ̂

(

1 −
(λ̂ − λ0)

λ̂
e−γk

)

.

Values of the cooling parameter, β, typically range from 0.80 to 0.99 and values of

the compression parameter, γ, usually vary from 0.01 to 0.1.

To apply these schedules, initial values of temperature and pressure still need

to be determined, as well as an approximation for the pressure cap. The limited

exponential form of compression allows the convenience of simply setting λ0 = 0,

but more care must be taken in setting τ0 and λ̂. The initial value of temperature,



τ0, must be selected so that early in the algorithm, the probability of accepting

uphill transitions is close to 1; this allows the algorithm sufficient mobility to search

the solution space. However, setting the temperature prohibitively high results in

long computation times or poor convergence. Setting the initial temperature takes

on increased importance in the presence of pressure, as setting τ0 excessively high

wastes the benefit of searching a “relaxed” topography in the sense that the search

is random rather than guided by a tendency to go downhill.

As an initial step in parameter initialization, we generate R, a sample of 2n

solutions, by randomly generating n pairs of neighbor solutions. We specify an

appropriate initial value of temperature by adapting techniques from Laarhoven and

Aarts [134] and Dowsland [35] to utilize information provided by R . First, we specify

χ0, the percentage of proposed uphill transitions that we require to be accepted at

τ0. Computing |∆v|, the average absolute difference in objective function over the n

sample transitions composing R, we determine the initial temperature as

τ0 =
|∆v|

ln
(

1
χ0

) .

At this value of initial temperature, the actual acceptance ratio over the first loop

of iterations of compressed annealing is monitored. If the actual acceptance ratio is

less than χ0, then τ0 is reset at 1.5 times its current value and re-evaluated over a

loop of iterations. This procedure is continued until the observed acceptance ratio

for a loop of iterations equals or exceeds χ0.

As shown by the theoretical analysis in §2.2, there exists a pressure cap, λ∗,

beyond which further compression serves only to exaggerate the solution topogra-



phy’s features. Therefore, an ideal practical compression schedule would gradually

increase λ from an initial value of zero to λ∗, allowing the algorithm to explore the

solution space via solutions infeasible in terms of the relaxed constraints. Unfortu-

nately, determining a tight upper bound on λ∗ using only the limited information

from the sample R is difficult. Nonetheless, we present an approach that, while not

guaranteeing an upper bound on λ∗, can be experimentally calibrated to determine

an approximation of the pressure cap.

To approximate the pressure cap, we introduce an additional parameter, 0 ≤

κ ≤ 1 to determine our estimate, λ̂. The value of κ represents the percentage of

the objective function value that is composed of the penalty term when λ = λ̂. Our

pressure cap approximation is given by

λ̂ = max
x∈R

{

f(x)

p(x)

κ

1 − κ

}

,

where values of κ ranging from 0.75 to 0.99 have demonstrated computational promise.

Iterations Per Temperature/Pressure Setting

Theoretical research on simulated annealing suggests that the system should be

allowed to converge to its stationary distribution at each temperature setting. Unfor-

tunately, the number of iterations necessary to approach the stationary distribution

is exponential in problem size [35]. In practice, the length of the Markov chain at

each temperature is usually related to the size of the neighborhood structure or even

the solution space. Bonomi and Lutton [15] set the number of iterations at the same

temperature to a value depending polynomially on the size of the problem. An al-

ternate approach determines the length of the kth Markov chain by not allowing a



temperature reduction until a minimum number of transitions have been accepted

or a maximum number of iterations has been eclipsed. In this manner, Kirkpatrick

et al. [81] let the length of the kth Markov chain be dependent on k.

In the applications that we consider in Chapters III and IV, we use the size of

the problem as a general rule-of-thumb in determining the number of iterations per

temperature. We fine-tune this parameter through experimental testing.

Termination Criterion

There have been numerous stopping conditions reported in the literature. Bonomi

and Lutton [15] fix the number of temperature values for which the algorithm is ex-

ecuted. Johnson et al. [73] terminate the algorithm when the percentage of accepted

moves drops below a threshold for a number of iterations. In the applications that

we consider in Chapters III and IV, we implement a hybrid of these two approaches

by monitoring the mobility of the algorithm while also requiring a minimum number

of iterations. We fine-tune this approach through experimental experience.



CHAPTER III

Stochastic Fleet Replacement with Budget

Constraints

In the fiercely competitive trucking industry, a firm gains a strategic advantage

by by implementing a replacement policy that minimizes its fleet management costs

while providing necessary capacity. Fleet managers must balance the operating and

maintenance costs of their current fleet of defenders against purchasing costs of po-

tential challengers when determining a replacement strategy for a fleet of vehicles.

Complicating this decision-making process is the stochastic deterioration of a vehi-

cle’s physical condition and changes in purchasing, operating, and maintenance costs

over time due to the advent of new technologies. Additionally, controls on capital

expenditures may constrain replacement decisions. Budget reductions for capital

expenditures generally increase fleet maintenance expenses as assets are forced to

remain in service for longer periods. Thus, there is heightened emphasis on evaluat-

ing the fleet over the planning horizon and timing replacement decisions to minimize

overall costs.

Feedback from various fleet managers validates these issues. One fleet manager

79



quipped, “Trucks are a lot like children. Across a fleet, trucks’ maintenance behavior

varies as broadly as the temperaments of children on a playground.” Another fleet

manager noted that there are “quantum leaps” in the maintenance condition of trucks

as they age; a truck may be in near-perfect mechanical condition in one year, but

poor condition the very next. As described by a fleet manager, “The key is to replace

these vehicles before the persistent maintenance problems hit.” Fleet managers also

concur that constricting budgets often impede replacement plans [37]. Management

of various companies expresses interest in improving or validating the current fleet

replacement policies, which are dictated by finance and guided by intuition.

By appropriately modifying the mathematical formulation in Morse [98], we study

fleet replacement under the effect of stochastic deterioration, annual budget limits

for capital expenditures, and time-variant costs induced by technological change. We

quantify the interactions of these three real-world issues by utilizing data provided

by a trucking company. In the replacement literature, there is separate treatment of

stochastic deterioration [33], budget constraints [78, 79, 58], and even joint stochas-

tic deterioration and technological breakthrough [71]. We extend the analysis to

simultaneously address the interaction effects of these three conditions. To solve the

complicated model, we employ compressed annealing and evaluate its effectiveness

with respect to a lower bound and common industry practice.

The rest of this chapter is organized as follows. In §3.1, we provide a brief

overview of the typical replacement strategies employed by trucking companies. We

present a mathematical formulation addressing prominent replacement issues facing



fleet managers in §3.2. We study the applicability of this model by analyzing actual

truck maintenance logs in §3.3. In §3.4, we discuss the implementation of compressed

annealing and analyze computational results.

3.1 Replacement Strategies in Practice

We begin with a survey of current fleet management practices. We visited a pair

of less-than-truckload (LTL) trucking companies and gathered information regarding

their fleets. LTL fleets are composed both of linehaul and pick-up and delivery

tractors. Pick-up and delivery is a local operation that is usually confined to an area

the size of a city, or in some cases, to regions of a city [132]. All newly picked-up

loads are brought to a central terminal where loads are consolidated for the linehaul

operation. Linehaul trucking is the high mileage operation (over 60,000 miles/year)

of moving freight to locations around the country. Generally, there are more than

30 miles between stopping and starting in linehaul operations.

Our study focuses solely on the fleet of linehaul tractors, which we will treat as

independent from the fleet of pickup and delivery tractors. This is a simplification,

since linehaul tractors commonly transition into pickup and delivery service upon

retirement from linehaul service. However, by examining a fleet of vehicles, homoge-

neous in service type, we simplify our analysis and hope to build insight for future

research that may include the pickup and delivery operation.

Table 3.1 illustrates a stark contrast in the replacement policies for the two truck-

ing companies we visited. Company A considers only one challenger, new tractors of

a single brand, when deciding to replace the defender. Company B considers many



Table 3.1: Linehaul Fleet Management Summary

Company A Company B

replacement options new (single brand) new, used, leased (multiple brands)

planning horizon 10 years 5 years

life-cycle 10 years 6 years

fleet size 98 164

avg. annual mileage 110,000 120,000

challengers including new, used, and leased tractors across a variety of brands such

as International, Sterling, Freightliner, Volvo White, and Mack.

Company B attempts to maintain a uniform age distribution across its fleet so

that its age-based replacement policy results in a smooth financing requirement.

However, age-based policies may be ineffective in the presence of stochastic deterio-

ration, as age alone is often not an adequate indicator of cost. For example, a scenario

could develop in which a x-year old truck with a poor maintenance record should be

replaced before a (x + 1)-year old truck with an average maintenance record.

Company A adheres to a longer life-cycle based on the premise that its premier

preventive maintenance program is the key to lowering costs over the life of the ve-

hicle. For example, an auto-lube system is installed in every tractor. Additionally, a

tractor is comprehensively repaired whenever it goes in for major work. For instance,

if a tractor is having its brakes replaced and the mechanics notice that the clutch

is substantially worn, they will replace the clutch also to avoid an additional main-

tenance visit. In contrast, there are companies that run extremely short life-cycles

(three years) and cut back on preventive maintenance to curb costs.



The lack of uniformity in the replacement policies of firms in the same competitive

market is intriguing [136]. The disparate approaches may be due to the varied consid-

eration of factors that affect replacement decisions. Fleet managers list a defender’s

age, cumulative utilization, fuel economy, and maintenance history as well as driver

feedback among the factors considered in replacement decisions. Additional factors

include the purchase price, warranty service, and new technology associated with

the challenger(s). However, there is no comprehensive framework that quantifies the

effect of the various factors on replacement policies. Replacement decisions are often

decided by the fleet manager’s “gut feeling.” By encapsulating the key difficulties

facing fleet managers, particularly stochastic deterioration and budget constraints,

we provide a decision support framework for fleet asset management. With it, we

can help determine effective fleet management strategies.

3.2 Model Description

Our fleet replacement model explicitly considers stochastic deterioration, annual

budget limits for capital expenditures, and time-variant costs. Markov decision pro-

cesses (MDPs) are a common technique to model such sequential decision-making

problems under uncertainty. However, if we attempt to model the entire fleet with

a single MDP, we suffer from the curse of dimensionality as the state space grows

exponentially with the number of vehicles. Alternatively, if we model the fleet as a

collection of single vehicle MDPs, we cannot capture the interdependence caused by

the budget constraints.

The stochastic fleet replacement problem with budgets (SFRPB) can be accu-



rately modeled as a nonhomogeneous Markov decision process with side constraints

[99]. Following the framework of Morse [98], we approach the SFRPB by first mod-

eling each individual vehicle with a nonhomogeneous Markov decision process. Then

we transform the dynamic programming formulation for individual vehicles into a

mixed integer program that models the decisions for the entire fleet subject to con-

straints reflecting annual budgets.

3.2.1 Dynamic Programming Formulation

We define a vehicle’s state, i, as the vector containing all the pertinent information

about its behavior. In our formulation, we characterize a vehicle by its age, in, and

its maintenance condition, im. Hence, a vehicle’s state is described by i = (in, im).

At the beginning of each period, the decision-maker evaluates a fleet of vehicles

to determine appropriate replacement actions. We consider a simple binary “keep-

or-replace” decision, but in general the replacement options can include purchasing

used vehicles, leasing etc. In the current model, we do not consider maintenance as a

decision variable. The degree of maintenance cost is induced by the vehicle’s physical

condition. We list the assumptions of our mathematical formulation modeling the

replacement problem below.

Assumptions

• Replacement decisions are evaluated based on a vehicle’s state, i, at the begin-

ning of each period.

• Capital purchases and sales occur at the beginning of the period and are asso-



ciated with the beginning state, i, of a vehicle.

• At the end of each period t, the beginning state, i, of a vehicle stochastically

transitions into the ending state, j.

• Operating and maintenance costs occur at the end of the period and are asso-

ciated with the ending state, j, of a vehicle.

• The ending state of a vehicle in period t is equal to the beginning state of a

vehicle in period t + 1.

• Operating costs are vary with a vehicle’s age (in), but are independent of its

maintenance condition (im).

• Maintenance costs are dependent on a vehicle’s state, i = (in, im).

• Technological advance creates constant increase in purchase price of challengers

and constant decrease in operating cost of challengers.

• Technological change does not affect transition probabilities or maintenance

costs.

• Replacement decisions evaluated across a finite forecast horizon.

Modifying the formulation in Morse [98], we tailor a replacement model to con-

form to data acquired from linehaul tractor fleets. We have the following parameters:

π(p, a, t, i) = Capital expenditure if action a is selected for asset p in

state i at the beginning of period t.



P (p, a, t, i, j) = Probability that asset p will transition to state j at the end

of period t if action a is selected for asset p in state i at

the beginning of period t.

O(p, t, j) = Operating cost for asset p in state j at end of period t .

M(p, t, j) = Maintenance cost for asset p in state j at end of period t .

Z(p, t, j) = O(p, t, j) + M(p, t, j).

S(p, t, i) = Salvage value for asset p in state i at beginning of period t

.

D(p, a, t, i) = net capital acquisition cost if action a is selected for asset

p in state i at beginning of period t.

= max {0, π(p, a, t, i) − S(p, t, i)}.

A(p) = Set of possible actions for asset p.

S(p) = Set of possible states for asset p.

α = Discount factor per period.

B(t) = Budget for capital expenditures in period t.

H = length of planning horizon

P = Number of assets in fleet.

To formally express the formulation, we utilize the following notation:

v(p, t, i) = Minimum expected cost for asset p from actions in pe-

riods t through H if asset p is in state i at beginning of

period t.



y(p, a, t, i) =















1 if action a is performed

0 otherwise

q(p, t, i) = Probability that asset p is in state i at the beginning of

period t.

=
∑

j

∑

a q(p, t − 1, j)y(p, a, t − 1, j)P (p, a, t − 1, j, i).

Y = Matrix of action choices, y(p, a, t, i), for p = 1, . . . , P ,

a ∈ A(p), t = 0, . . . , H − 1, and i ∈ S(p).

E(t, Y ) = Fleet capital expenditures in period t given action

choices Y .

If the initial state of each asset is perfectly observable, then q(p, 0, ·) = ei for some

i, where ei is a vector of zeroes with a one in the ith position. Otherwise, q(p, 0, ·)

is the probability distribution reflecting the fleet manager’s uncertainty about asset

p’s initial state.

The minimum discounted expected cost for a single asset p is determined by

solving the recursive relation in (3.1) for {v(p, 0, i)}i=1,...,S(p).

v(p, t, i) = min
a∈A(p)



D(p, a, t, i) + α
∑

j∈S(p)

P (p, a, t, i, j) (Z(p, t, j) + v(p, t + 1, j))





for all i ∈ S(p), t = 0, . . . H − 1 (3.1)

v(p,H, i) = −S(p,H, i), for all i ∈ S(p).

3.2.2 Fleet Replacement with Budget Constraints

Solving the dynamic program in (3.1) for all p = 1, . . . , P establishes the optimal

replacement policy for a fleet of economically independent assets. However, we con-



sider the presence of budget constraints, which intertwine the replacement decisions

regarding the assets. Therefore, solving the P independent dynamic programs may

result in a fleet replacement policy that violates one or more budget constraint over

the forecast horizon.

In the presence of budget constraints, the economic life-cycles of various assets

will be altered to accommodate the financing situation. Morse [98] discusses various

approaches for modeling the capital rationing effect of the budgets in the presence

of stochastically deteriorating assets. However, beyond time zero, we do not know

the maintenance condition of the defenders with certainty. Constraining capital

expenditure so that budgets will not be violated in any possible combination of

states across the fleet overly constrains the problem so that it may be infeasible or

very costly. In this “fat” formulation [77], the probability of some infeasible scenarios

may be very small.

We adopt the constrained expected expenditure approach of Morse [98]. In this

case, expenditures for any particular scenario in a period may be slightly over or

under budget, but on average, they will be within budget. This approach reflects

the softness of budgets in future periods as management guidelines over a planning

horizon rather than hard constraints.

The set of constraints that force expected expenditure to remain within budget

are formulated as:

E(t, Y ) =
∑P

p=1

∑

i∈S(p)

∑

a∈A(p) q(p, t, i)π(p, a, t, i)y(p, a, t, i) for all t,

B(t) − E(t, Y ) ≥ 0 for all t.



Observe that the budget constraint includes the product q(p, t, i)y(p, a, t, i). By the

recursive definition of q(p, t, i), it is a function of y(p, ·, t, i)’s from earlier periods.

Hence, the budget constraints contain products of decision variables.

With the explicit inclusion of budget constraints, the stochastic fleet replacement

problem is no longer solvable using the recursive structure of dynamic programming.

Borrowing the framework developed by Morse [98] and utilizing the penalty func-

tion described by Hadj-Alouane [55] to relax the budget constraints, we construct

an equivalent nonlinear mixed integer program (MIP) parameterized by penalty

multipliers, where M ≫ 0 and s > 0.



MIP minimize
∑

p

∑

i q(p, 0, i)v(p, 0, i) +
∑H−1

t=0 λt [min(0, B(t) − E(t, Y ))]s

subject to:

v(p, t, i) ≥ D(p, a, t, i) + α
∑

j P (p, a, t, i, j) [Z(p, t, j) + v(p, t + 1, j)]

−M [1 − y(p, a, t, i)]

for all p, a ∈ A(p), i ∈ S(p), t = 0, . . . , H − 2;

v(p, t, i) ≤ D(p, a, t, i) + α
∑

j P (p, a, t, i, j) [Z(p, t, j) + v(p, t + 1, j)]

+M [1 − y(p, a, t, i)]

for all p, a ∈ A(p), i ∈ S(p), t = 0, . . . , H − 2;

v(p,H − 1, i) ≥D(p, a,H − 1, i) + α
∑

j P (p, a,H − 1, i, j) [Z(p,H − 1, j)

−S(p,H, j)] − M [1 − y(p, a,H − 1, i)]

for all p, a ∈ A(p), i ∈ S(p);

v(p,H − 1, i) ≤D(p, a,H − 1, i) + α
∑

j P (p, a,H − 1, i, j) [Z(p,H − 1, j)

−S(p,H, j)] + M [1 − y(p, a,H − 1, i)]

for all p, a ∈ A(p), i ∈ S(p);

∑

a∈A(p) y(p, a, t, i) = 1 for all p, t, i ∈ S(p).

In the remainder of Chapter III, we study the applicability of this replacement

model to the trucking industry. Through an application of compressed annealing,

we solve instances of MIP from the trucking industry and report results in § 3.4.4.

3.3 Data Analysis

In this section, we analyze a longitudinal data sample provided by a trucking

company. We study the aggregation of maintenance costs to form categories of
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Figure 3.1: Regression of cost per mile on age only.

maintenance condition. To quantify the deterioration behavior, we then generate a

set of transition probabilities based on this aggregation scheme.

We use annual maintenance cost per mile (annual maintenance cost / annual

mileage) as our cost metric to implicitly account for any variation in vehicle utiliza-

tion. Since it is commonly assumed in replacement models that maintenance costs

vary deterministically with age, we test an initial regression model with age as the

only predictor of annual maintenance cost per mile (see Figure 3.1). The resulting fit

indicates a weak correlation (R2 = 0.5674), suggesting that age alone is not sufficient

to forecast maintenance costs.



Hartman [59] examines an approach that focuses on the effect of utilization (cu-

mulative and annual) on maintenance costs to model stochastic cash flows. To de-

termine whether such a model is appropriate for our fleet management problem, we

perform some preliminary statistical analysis. From the plots in Figure 3.2, we see

that there is not a strong relationship between total annual maintenance cost and

cumulative, annual, or previous year’s utilization. Furthermore, a regression model

predicting total annual maintenance costs with a combination of age, annual mileage,

cumulative mileage, and previous year’s mileage results in a poor fit (R2 = 0.4775).

Since utilization measures fail to accurately explain the variation in total annual

maintenance costs, we pursue a model that predicts annual maintenance cost per

mile by classifying the physical condition of the assets.

3.3.1 Aggregation of Maintenance Costs

We observe from the data that annual maintenance cost per mile varies randomly

over the life of a tractor. As in Derman [33] and later in Hopp and Nair [71], we

model the stochastic cost structure using a finite state space to aggregate the asset

maintenance costs.

While the number of maintenance indices to describe a vehicle is flexible, we

categorize the annual maintenance cost per mile of operation into three categories:

low (im = 1), medium (im = 2), and high (im = 3). This three-tiered classifica-

tion approach, suggested by fleet managers, is easily implementable and intuitive.

In practice, the best number of categories is determined by balancing aggregation

error [11] and the accuracy of the transition probability structure. We analyze the
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Figure 3.2: Demonstrating the lack of correlation between utilization measures and
annual maintenance cost.



Table 3.4: Maintenance Categorization

Category $/Mile Range

Low (0.00) 0.01 to 0.06

Medium 0.06 to 0.11

High 0.11 to 0.16 (∞)

aggregation error induced by the three-category approach in Appendix B. Further

investigation of the balancing between aggregation error and accuracy of transition

probabilities is a possible area of future research in fleet replacement modeling.

In the sample data, an overwhelming majority of the cost per mile ranged from

$0.01 to $0.16 per mile. We break this range into three equal intervals for the

purposes of aggregation (see Table 3.4). Using this aggregation scheme, Table 3.5

illustrates the evolution of a particular tractor’s maintenance category. Over the life

of the tractor, not only is there deterioration (transition from low to medium from

year 1 to year 2), but also improvement (transition from medium to low from year 5

to year 6). This deterioration and improvement is due to the varying effects of age,

driving conditions, maintenance, etc.

When fleet managers make replacement decisions at the beginning of a period, a

vehicle’s future maintenance costs/category are not known with any certainty. Under

the assumption that the evolution of a vehicle’s maintenance category is Markovian,

we utilize a vehicle’s maintenance category at the beginning of the period to deter-

mine the expected maintenance category at the end of the period. We demonstrate

the validity of the Markov assumption in Appendix A. In the next section, we de-

velop a probability structure that governs the transitional behavior of a vehicle’s



Table 3.5: Example of Vehicle-Year Classification

Tractor #62

Year $ / Mile Category

1 0.03 Low

2 0.07 Medium

3 0.05 Low

4 0.09 Medium

5 0.07 Medium

6 0.06 Low

7 0.19 High

maintenance condition over its lifetime.

3.3.2 Development of Transition Probabilities

Through the construction of transition probabilities, we quantify the probabilistic

dependence of a vehicle’s future maintenance condition on its age and current main-

tenance condition. Data suggests that transition probabilities depend on a tractor’s

age. We assume that transition probabilities are not affected by technological change.

The impact of technological change on asset deterioration is relatively unknown and

could be an area of future research.

We estimate the transition probabilities with smoothed frequency curves (de-

picted in Figure 3.3) developed by categorizing the data as in Table 3.5. The data

and specific functions defining these frequency curves are described in Appendix C.

A tractor’s expected annual maintenance cost per mile is calculated according to



the appropriate probability distribution, e.g.,

E [ maintenance $/mile ] = lpml(6) + mpmm(6) + hpmh(6),

where l, m, and h are $/mile estimates determined according to the appropriate

regression parameters in Table B.1, and pml(6) represents the probability of a six-

year old tractor in medium condition at the beginning of the period shifting to low

condition at the end of the period (see Figure 3.3). Table 3.6 displays the associated

transition matrices across the entire state space.

3.3.3 Generation of Problem Sets

Utilizing data provided by trucking companies, we construct a collection of prob-

lem sets for the SFRPB. In earlier work, Morse [98] generated artificial, time-invariant

data sets based on the maintenance and depreciation structure developed in [124].

However, these artificial data sets do not totally capture conditions faced by fleet

managers. Therefore, we generate data sets with time-variant parameters consid-

ering stochastic deterioration. In addition to the transition probabilities, we need

information regarding possible replacement actions and their associated capital ex-

penditures, operating and maintenance costs, salvage values, discount rate, and the

length of the planning horizon.

Action Space and Associated Capital Expenditures

We define the action space for each asset p as:

A(p) =















1 if “keep”

2 if “replace”
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Figure 3.3: Evolution of transition probabilities with asset age.



Table 3.6: Transition Probabilities

(in, im) Future State (in, im) Future State

Current State (1,1) (1,2) (1,3) Current State (2,1) (2,2) (2,3)

(0,1) 0.99 0.01 0.00 (1,1) 0.76 0.19 0.05

(0,2) 0.93 0.06 0.01 (1,2) 0.69 0.23 0.08

(0,3) 0.88 0.11 0.01 (1,3) 0.61 0.24 0.15

(in, im) Future State (in, im) Future State

Current State (3,1) (3,2) (3,3) Current State (4,1) (4,2) (4,3)

(2,1) 0.58 0.33 0.09 (3,1) 0.44 0.44 0.12

(2,2) 0.51 0.36 0.13 (3,2) 0.39 0.45 0.16

(2,3) 0.44 0.32 0.24 (3,3) 0.31 0.38 0.31

(in, im) Future State (in, im) Future State

Current State (5,1) (5,2) (5,3) Current State (6,1) (6,2) (6,3)

(4,1) 0.34 0.52 0.14 (5,1) 0.26 0.58 0.16

(4,2) 0.29 0.52 0.19 (5,2) 0.22 0.57 0.21

(4,3) 0.23 0.42 0.35 (5,3) 0.16 0.45 0.39

(in, im) Future State (in, im) Future State

Current State (7,1) (7,2) (7,3) Current State (8,1) (8,2) (8,3)

(6,1) 0.20 0.63 0.17 (7,1) 0.15 0.67 0.18

(6,2) 0.16 0.62 0.22 (7,2) 0.12 0.65 0.23

(6,3) 0.11 0.47 0.42 (7,3) 0.07 0.49 0.44



Table 3.6: continued

(in, im) Future State (in, im) Future State

Current State (9,1) (9,2) (9,3) Current State (10,1) (10,2) (10,3)

(8,1) 0.12 0.70 0.18 (9,1) 0.09 0.72 0.19

(8,2) 0.09 0.67 0.24 (9,2) 0.07 0.68 0.25

(8,3) 0.04 0.50 0.46 (9,3) 0.03 0.51 0.46

(in, im) Future State

Current State (11,1) (11,2) (11,3)

(10,1) 0.07 0.73 0.20

(10,2) 0.05 0.70 0.25

(10,3) 0.01 0.51 0.48

Table 3.7: Capital Expenditures (in 1000s of 1992 Dollars)

a π(p, a, t, i)

1 0

2 57.983(1.02t)

The “replace” option implies salvaging the current tractor and purchasing a new

tractor. We assume that technological advance causes a constant annual 2% increase

in purchase cost [59]. Capital expenditure information is summarized in Table 3.7.

Maintenance costs

Maintenance costs per mile vary with age and maintenance condition based on

a regression fit to data (see Table B.1). To obtain the total annual maintenance

cost, we multiply the appropriate maintenance cost per mile by the average annual

utilization (100,000 miles). We assume that the advent of new technology has no

affect on maintenance costs. Results are summarized in Table 3.8.



Table 3.8: Maintenance Costs, M(p, ·, i), in 1000s of 1992 Dollars

im

in 1 2 3

0 3.6262 6.8561 12.0156

1 3.9417 7.1716 12.3311

2 4.2572 7.4871 12.6466

3 4.5727 7.8026 12.9621

4 4.8882 8.1181 13.2776

5 5.2037 8.4336 13.5931

6 5.5192 8.7491 13.9086

7 5.8347 9.0646 14.2241

8 6.1502 9.3801 14.5396

9 6.4657 9.6956 14.8551

10 100 100 100

Operating costs

Operating costs include fuel, oil, and insurance. We focus on fuel expenses, which

compose the major portion of operating costs [37]. We assume a tractor’s fuel effi-

ciency (miles per gallon) varies linearly with age, but is independent of maintenance

condition. Regression analysis on an initial sample of fuel economy data suggests that

maintenance condition does not have a significant influence on fuel efficiency. We es-

timate fuel efficiency with the equation mpg(i) = 7.669− 0.215in, where i = (in, im).

This regression line explains 66% of the variance (R2 = 0.6648). Future research will

investigate other factors affecting fuel economy, such as driver ability.



We calculate baseline operating costs for each state i with the equation

O0(i) =
average annual mileage × fuel price

mpg(i)
,

where the average annual mileage is 100,000 miles and the fuel price is $1.21/gallon.

To model the effect of new technology, we introduce time-variance by assuming an

annual 5% decrease in challenger operating costs [59]. These time-variant costs,

O(p, t, i), are calculated for all t according to the following formula:

O(p, t, i) =
O0(i)

1.05t−in
.

Salvage Values

We modify a formula in Hartman [59] to consider age and condition as well as

improvements in technology to calculate salvage values:

S(p, t, i) = (1 − χ)π(p, 2, 0, i)(1.02t−in)(1 − γin − υ(im − 1)).

where χ is the percent the asset degrades immediately upon purchase, γ is the percent

the asset’s value degrades each year due to age, and υ is the percent the asset’s value

may degrade each year due to deterioration in condition. Based on information on

the used truck market, we set χ = 8.13%, γ = 7.69% and υ = 7.69%, so that a

10-year old tractor in high maintenance condition originally purchased for $57,983

scraps for $3,361.

Discount Rate

Since we are using cost data presented in constant dollars, i.e., we have already

removed the effects of inflation, we use the inflation-free interest rate given by i′ =



i−f
1+f

, where i is the market interest rate and f is the inflation rate [106]. Over the

period of data collection (1992-2000), the national average annual inflation rate is

approximately 3%. We estimate the market interest rate for the trucking companies

under consideration to be approximately 10%. These figures imply an inflation-free

interest rate of 6.796%, which corresponds to an annual discount factor of α = 0.9363.

Planning Horizon

In general, nonhomogeneous Markov decision processes can neither be stated in

finite information nor solved in finite time. In addition, since the model makes choices

using expectations, it biases them with information on scenarios that do not occur.

These issues can be remedied by using a rolling horizon technique [4] commonly used

to solve in nonhomogeneous Markov decision processes. Rolling horizon updating

can be implemented by simply recording a vehicle’s age and tracking its maintenance

condition on a periodic basis. Following this procedure, we determine the decisions

that are to be implemented immediately by modeling their impact on possible future

actions.

For deterministic problems, Bean et al. [9] provide empirical evidence that finite

horizons of approximately twice the length of the maximum physical age of the asset

minimize end-of-the-horizon effects and assure consistent time zero decisions. Hopp

et al. [68] extend these results to stochastic problems, discuss various definitions of

optimality, and demonstrate the multiplicative interaction of weak ergodicity and

the discount factor. This relationship is used [67, 12]to identify appropriate forecast

horizons for nonhomogeneous Markov decision processes.



Due to the compounding, diminishing influence contributed by the coefficient of

weak ergodicity, the forecast horizon for a stochastic problem is typically shorter than

a horizon for a comparable deterministic problem. We leave the explicit computation

of forecast horizons for constrained Markov decision processes as a topic of future

research; stopping rules for this class of problems have not been established and may

not be well defined. Presently, we use the theoretical insight from Bean et al. [9] and

Hopp et al. [68], feedback from fleet managers (see Table 3.1), and the fact that the

maximum asset life in our study is 10 years to set the planning horizon at 15 years,

i.e., H = 15.

3.4 Computational Results

In this section, we describe solution approaches for the mathematical program

MIP described in § 3.2. We describe the general structure of a solution and its in-

terpretation. Armed with this knowledge of the problem, we discuss implementation

details of compressed annealing. Results from the compressed annealing algorithm

are compared to a trade cycle approach that mimics an age-based replacement strat-

egy commonly used in practice. To evaluate the quality of the solutions, we generate

lower bounds on the optimal objective function value using a multiplier adjustment

method developed by Morse [98].

3.4.1 Solution Representation

A fleet replacement plan consists of a collection of P individual replacement

policies. An individual asset’s replacement policy proposes an action for each of the



Table 3.9: Replacement Policy for Asset p in Period t

im

1 2 3

0 a0,1(t) a0,2(t) a0,3(t)

1 a1,1(t) a1,2(t) a1,3(t)

in 2 a2,1(t) a2,2(t) a2,3(t)
...

...
...

...

10 a10,1(t) a10,2(t) a10,3(t)

(N + 1)×M possible states, where N is the maximum life of an asset and M is the

number of maintenance conditions. We depict the replacement policy for a single

asset p in period t with a (N + 1)×M matrix, as displayed in Table 3.9. Each entry

in Table 3.9, ain,im(t), represents the replacement action for a single asset p when in

state i = (in, im) at the beginning of period t. We relate this to the notation of MIP

by noting that for an asset p, y(p, a, t, i) = I {a = ain,im(t)}.

We consider instances with fleets of 100 assets (P = 100), each with a maximum

life of 10 years (N = 10) and categorized into three maintenance conditions (M = 3)

over a horizon of 15 years (H = 15). For the binary “keep” or “replace” decision,

this results in 2(49,500) different possible fleet replacement policies.

3.4.2 Trade Cycle Approach

Current replacement strategies for most trucking firms rely upon trade cycles [97].

Trade cycles give rule-of-thumb replacement rules based on years of service, mileage,

and/or maintenance history. These rules ignore the stochastic nature of maintenance

costs and do not explicitly consider budgets or the variation in costs over time.



Table 3.10: Age-r Trade Cycle for Asset p in Period t

im

1 2 3

0 1 1 1
...

...
...

...

r - 1 1 1 1
in r 2 2 2

...
...

...
...

10 2 2 2

For computational comparison, we implement an age-based trade cycle approach.

To construct an age-r trade cycle, all assets at least r-years old are scheduled for re-

placement during each period in the planning horizon. For every asset in each period

across the planning horizon, an age-r trade cycle implies the individual replacement

policy displayed in Table 3.10.

Depending on the tightness of the budgets, the fleet replacement policy implied

by the age-r trade cycle may not be feasible. To regain feasibility over the planning

horizon, we iteratively modify the trade cycle in a fashion consistent with industrial

practice. The procedure, outlined in Table 3.11, is a crude method designed to

modify an age-r trade cycle so that the youngest and best-maintained vehicles are

kept. Since the distribution of an asset’s state in period t is determined by the

actions selected in periods 0 through t − 1 and this procedure obtains feasibility

systematically from the beginning of the horizon to the end, it is guaranteed to

obtain a feasible solution (if one exists).



Table 3.11: Budget-Feasible Age-r Trade Cycle

Generate age-r trade cycle, Y .

For k = 0 to H − 1:

Let i = 0 and j = 1.

While E(k, Y ) > B(k) :

Modify Y by setting ar+i,j(k) = 1 for p = 1, . . . , P .

Increment j by 1.

Re-calculate E(k, Y ).

If i = 10 − r and j = 4, stop since no feasible policy exists.

If j = 4, increment i by 1 and let j = 1.

3.4.3 Compressed Annealing Approach

To implement compressed annealing, we need to calibrate the annealing param-

eters and develop a neighborhood structure to generate candidate solutions. In

particular, the neighborhood we describe utilizes the structure of the replacement

problem to provide an efficient, yet thorough, search of the solution space.

A primary consideration in selecting a neighbor-generating mechanism is compu-

tational efficiency. Given a current replacement policy, we observe that we only need

to recalculate the costs and expenditures associated with assets for which decisions

have been changed. Therefore, computationally inexpensive neighborhoods will only

change the decisions for a few assets.

We generate neighbors for a current fleet replacement policy by making changes

in the replacement policies of n randomly-selected assets. Once we have selected an

asset p, we randomly select a period, t, and a state, i = (x, y). First, consider the

case where ax,y(t) = 2. For asset p, we set ain,im(t) = 1 for all (in, im) pairs such that



Table 3.12: Neighbor Policy Generation

im im

1 2 3 1 2 3

0 1 2 2 0 1 1 2

1 2 1 1 1 1 1 1

in 2 1 6 2 1 2 ⇒ in 2 1 1 2
...

...
...

...
...

...
...

...

10 1 2 1 10 1 2 1

both in ≤ x and im ≤ y. Similarly, if ax,y(t) = 1, we generate a neighbor policy by

setting ain,im(t) = 2 for all (in, im) pairs such that both in ≥ x and im ≥ y for asset

p. Table 3.12 illustrates the neighborhood scheme where, for asset p in period t, we

select i = (2, 2).

This neighbor-generation scheme is motivated by preliminary results using more

general neighborhoods and the optimal threshold policies established in Derman [33]

for a single stochastically deteriorating asset. While uniform thresholds will not be

optimal for the SFRPB in general, we find that inducing threshold-like policies for

individual vehicle-years results in quality heuristic solutions within the compressed

annealing algorithm. We leave theoretical study of this neighborhood structure as a

topic for future research.

To effectively apply compressed annealing to solve the SFRPB, we utilize the

experimental design approached of Coy et al. [30] to determine appropriate values

for a variety of parameters. While the algorithm performs well over a relatively wide

range of parameters, we suggest a robust set in Table 3.13. Compressed annealing

runs terminate when the best solution found has not been updated within the last 50



Table 3.13: Compressed Annealing Parameters for SFRPB

Parameter Value

cooling coefficient (β) .95

initial acceptance ratio (χ0) .95

compression coefficient (γ) .02

pressure cap ratio (κ) .99

iterations per temperature 5000

neighborhood size (n) 5

temperature/pressure changes; maximum run time allowed is 10,000 CPU seconds.

We use these parameter settings for all the results reported in § 3.4.4.

3.4.4 Computational Comparison

We conduct computational experiments to evaluate the effectiveness of the com-

pressed annealing algorithm versus the trade cycle approach. We vary the budget

level, expressed as the number of new asset purchases allowed (ǫ), to assess the im-

pact of constricting financial constraints on the life-cycle costs and the performance

of the solution approaches.

We consider a fleet of 100 linehaul tractors over a time horizon of 15 years; the

initial age and maintenance condition for each of these tractors is randomly gener-

ated. We test instances for values of ǫ varying from 14 to 35 annual replacements.

Instances with ǫ < 14 are infeasible; the initial condition of the fleet forces the op-

eration of vehicles beyond their retirement age in order to keep expected capital

expenditures within the restrictive annual budgets. Instances with ǫ > 35 are rel-

atively loosely constrained; even trade cycles with rotations as short as three years



can be implemented.

For each value of ǫ, we run the three algorithms (coded in C++) on a PC Pentium

IV 1.9 GHz (256 MB of RAM). Compressed annealing’s performance is the average of

five runs from randomly generated initial solutions; computation time for compressed

annealing ranged from 3000 CPU seconds to 10,000 CPU seconds. The multiplier

adjustment method was allowed to run for 10,000 CPU seconds. The running time

for the trade cycle approach was dependent on the budget level, but all runs for

14 ≤ ǫ ≤ 35 took 57 CPU seconds or less.

Table 3.14: Fleet Replacement, (P = 100, H = 15)

Budget Lower Compressed Annealing Trade Cycle

ǫ Bound Avg. Value % Above LB % Below UB Value Cycle

35 24,268 24,633 1.5 0.1 24,651 3

34 24,572 24,673 0.4 0.9 24,893 4

33 24,572 24,741 0.7 0.6 24,893 4

32 24,572 24,779 0.8 0.8 24,980 4

31 24,572 24,833 1.1 0.6 24,980 4

30 24,572 24,918 1.4 0.3 24,994 4

29 24,572 24,969 1.6 0.1 24,994 4

28 24,946 25,003 0.2 0.1 25,033 5

27 24,946 25,131 0.7 1.0 25,390 5

26 25,012 25,220 0.8 0.8 25,418 5



Table 3.14: continued

Budget Lower Compressed Annealing Trade Cycle

ǫ Bound Avg. Value % Above LB % Below UB Value Cycle

25 25,012 25,303 1.2 0.5 25,418 5

24 25,012 25,398 1.5 0.3 25,484 5

23 25,012 25,500 2.0 0.5 25,632 5

22 25,012 25,610 2.4 0.1 25,632 5

21 25,538 25,777 0.9 0.4 25,870 6

20 25,538 26,018 1.9 0.1 26,045 6

19 25,538 26,275 2.9 1.5 26,672 6

18 25,538 26,378 3.3 1.2 26,713 6

17 25,943 26,534 2.3 0.7 26,723 7

16 26,138 26,677 2.1 0.6 26,836 8

15 26,163 27,064 3.4 1.7 27,523 8

14 26,167 * * * 27,523 8

Table 3.14 illustrates the evolution of solution quality as a function of budget

limits. Except for the most tightly constrained feasible instance (ǫ = 14), compressed

annealing’s hill-climbing search procedure produces replacement policies that obtain

a lower expected discounted cost than the trade cycles. The policies supplied by

compressed annealing offer an average savings ranging from tens of thousands to

hundreds of thousands of dollars in net present value. A budget level of ǫ = 14 results



in a relatively small number of feasible policies since all but the most decrepit tractors

must be kept to stay within limits on capital expenditures. In these restrictive cases,

we suggest an enumerative method to determine an appropriate replacement policy.

In general, policies obtained by compressed annealing have time zero decisions

that differ from time zero decisions in a trade cycle. This policy difference is due to

the nature of the search performed by compressed annealing. As compressed anneal-

ing searches locally for a good replacement policy, it mitigates a budget violation in

period t either by changing fleet replacement decisions in period t, or by altering the

age-condition distribution of the fleet through changes in fleet replacement decisions

for a period t′ < t. In this manner, the search procedure evaluates replacement

policies that consider the future effects of replacement decisions.

3.4.5 Analysis and Conclusions

Our implementation of compressed annealing on the SFRPB exhibits its poten-

tial as a viable solution approach. Using a single set of parameters, compressed

annealing’s average solution is within 4% of a lower bound for the SFRPB instances

considering only a single challenger. While compressed annealing generally offers

an improvement of less than 1% over a trade cycle approach, it is a more general

technique that can be modified to solve more complicated variants of the SFRPB.

Such extensions include the consideration of multiple challengers and time-variant

budget constraints (for which no simple trade cycle policies exist).

The study of solution quality as a function of budget tightness illustrates a useful

aspect of this analysis. This quantitative analysis allows fleet managers to evaluate



the effects of capital budgets. As budgets constrict, fleet managers are forced to ex-

tend the trade cycle of tractors. To mitigate the increase in maintenance costs due to

these extended life-cycles, some trucking companies implement extensive preventive

maintenance programs. Improved maintenance has been cited as the most impor-

tant reason fleets are able to increase vehicle life-cycles [32]. We speculate that an

improved replacement policy over a planning horizon in conjunction with comprehen-

sive maintenance program would provide trucking companies a strategic advantage

necessary to thrive in an industry characterized by narrowing profit margins.

Another critical factor affecting fleet management is the used-truck market [14].

In our model, we determine salvage value based on the age and physical condition of

the asset. In reality, a major component of salvage value is resale potential, which is

affected by external market factors. For instance, glutted used-truck markets force

fleet values to plummet. Future work should quantitatively measure how market fac-

tors affect replacement decisions. Lower used-truck prices may allow the emergence

of used-trucks as an economically-advantageous replacement option. If replacement

options are limited either by choice or availability, the plummeting values of defenders

will alter the timing replacement decisions.

The effect of a trucking company’s existing maintenance philosophy on operat-

ing and maintenance costs should not be overlooked. The trucking company that

donated our sample data implements a thorough preventive maintenance program.

This excellent PM program reduces the variance in costs since major repairs are

usually avoided. We conjecture that cost data from trucking companies with a less



intensive preventive maintenance program would exhibit more cost variance, further

increasing the benefit from detailed modeling of stochastic deterioration and the clas-

sification of vehicle condition. In any regard, changes in a company’s maintenance

program will have a rippling effect throughout the fleet and potentially affect fleet

replacement policy. This suggests an interesting vein of research concerned with

interaction between maintenance and deterioration, and its effect on replacement

strategy.

In particular, there are often maintenance problems that characterize classes of

trucks, i.e., challengers of the same age and/or brand, in conjunction with problems

related only to individual trucks. For example, one fleet manager noted that frame

cracks were a prevalent problem among 1989 trucks of brand X. Through the design

of challenger-dependent transition probabilities, this behavior can be captured and

group replacement strategies could be developed. Furthermore, truck manufacturers

have expressed interest in using the SFRPB with challenger-dependent probability

structures as a marketing tool to demonstrate their particular brand’s strategic ad-

vantage.



CHAPTER IV

Traveling Salesman Problem with Time Windows

As defined by the Council of Logistics Management, logistics is “the process of

planning, implementing, and controlling the efficient, effective flow and storage of

goods, services, and related information from point of origin to point of consump-

tion for the purpose of conforming to customer requirements.” With the production

trends of “lean manufacturing” and “just-in-time” operations, an inflated premium

is placed on the freight industry to provide timely, efficient service. Potential sav-

ings in the form of decreased transportation costs, reduced inventory storage costs,

and elimination of penalties due to untimely pick-ups or deliveries may result from

improved routing assignments.

In general, time windows play a prominent role in routing problems for business

organizations that deal with time-sensitive pick-ups and deliveries. As a gateway

problem to more complex vehicle routing issues, we consider the traveling salesman

problem with time windows (TSPTW). The TSPTW consists of finding a minimum-

cost tour, starting from and returning to the same unique depot, that visits a set of

customers exactly once, each of whom must be visited within a specific time win-
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dow. Practical applications of the TSPTW abound in the industrial and service sec-

tors: bank and postal deliveries, busing logistics, manufacture-and-delivery systems,

and automated guided vehicle systems. In addition, the TSPTW is mathematically

equivalent to time-sensitive production scheduling problems that are prevalent in

manufacturing.

4.1 Model Formulation

To formally define the TSPTW, let G = (C,A) be a finite graph, where C =

{0, 1, . . . , n} is the finite set of nodes or customers and A = C × C is the set of

arcs connecting customers. We assume that there exists an arc (i, j) ∈ A for every

i, j ∈ C. A tour is defined by the order in which the n customers are visited and

denoted by ℑ = {p0, p1, . . . , pn, pn+1}, where pi denotes the index of the customer

in the ith position of the tour. Let customer 0 denote the depot, i.e., the beginning

and end of the route. To formally express the requirement that the route begin and

end at the depot, we append the set C with an additional node, n + 1, which also

represents the depot. Therefore, p0 = 0 and pn+1 = n + 1. Each of the remaining n

customers occupies one position ranging from p1 to pn inclusive.

For j = 0, . . . , n, there is a cost, c(aj), for traversing the arc aj = (pj, pj+1). This

cost of traversing the arc between the jth customer and the (j + 1)st customer in the

route generally consists of the travel time from customer pj to customer pj+1, plus

any service time at customer pj+1. Associated with each customer i is time window,

[ei, li], during which the customer i must be visited. We assume that waiting times

are permitted; a customer i can be reached before the beginning of its time window,



ei, but cannot leave before ei.

The two primary objective functions considered in the literature are: (1) minimize

the sum of the traversal cost along the tour and (2) minimize the time to return to

the depot. We deal with the former in order to make comparisons with the results of

Calvo [16] and Gendreau et al. [48]. To calculate a tour’s cost, we track the arrival

time at ith customer, Api
, and the departure time from ith customer, Dpi

. Using these

variables, we express our problem as

P minimize f(ℑ) =
∑n

i=0 c(ai)

subject to:

Api
= Dpi−1

+ c(ai−1) for i = 1, . . . , n + 1;

Dpi
= max {Api

, epi
} for i = 1, . . . , n + 1;

Dp0 = 0,

Dpi
≤ lpi

for i = 1, . . . , n + 1;

pi ∈ {1, 2, . . . , n} for i = 1, . . . n;

pi 6= pj for i, j = 1, . . . , n, i 6= j;

p0 = 0,

pn+1 = n + 1.

Note that if we were to consider the minimization of tour completion time, we

must track the waiting time of the vehicle at each position of the tour, Wpi
=

Dpi
− Api

, for i = 0, . . . , n + 1. The term
∑n+1

i=0 Wpi
would then be added to the

objective function in P.

The TSPTW is composed of two main components, a traveling salesman problem

and a scheduling problem. The TSP itself is a NP-hard optimization problem, and



the scheduling aspect, with release dates and due dates, presents additional feasibility

difficulties. Using a penalty method approach, we partially decompose these two

components and apply compressed annealing. We consider infeasible solutions by

relaxing the time window constraints {Dpi
≤ lpi

} into the objective function with an

exact penalty function of the form

pλ(ℑ) = λ

n+1
∑

i=1

[max(0, Dpi
− lpi

)]s ,

where s > 0. Hadj-Alouane [54] proves that penalty functions of this form maintain

strong duality between the relaxation and the original formulation.

4.2 Compressed Annealing Approach to the TSPTW

In this section, we tailor an application of compressed annealing for the TSPTW.

We discuss implementation details of compressed annealing and compare results from

this metaheuristic against the best-known results from the literature.

4.2.1 Parameter Calibration

The need for potentially tedious parameter calibration is often a detractor in

metaheuristic approaches. In our implementation, we utilize the statistical design

approach of Coy et al. [30] to systematically determine robust parameter settings.

While the algorithm performs well over a relatively wide range of parameters, we sug-

gest a robust set in Table 4.1. We terminate the compressed annealing runs when the

best tour found has not been updated in the last 75 temperature/pressure changes;

we set a minimum of 100 total temperature changes. We perform computational



Table 4.1: Compressed Annealing Parameters for TSPTW

Parameter Value

cooling coefficient (β) .95

initial acceptance ratio (χ0) .94

compression coefficient (γ) .06

pressure cap ratio (κ) .9999

iterations per temperature 30000

minimum number of temperature changes 100

experiments to establish an effective neighborhood structure. We find that a 1-opt

neighborhood scheme, in which a single customer and its new insertion position are

randomly selected, results in quality solutions.

4.2.2 Computational Comparison

To evaluate the suitability of compressed annealing for the TSPTW, we test the

algorithm on benchmark problems from the literature. We implement the compressed

annealing algorithm in C++ and run the code on a dual AMD 1.8 gigahertz processor

with 1 gigabyte of RAM. For each problem instance, we administer 10 runs from

randomly generated starting solutions and report the average solution value.

Table 4.2 displays RC2 instances proposed by Solomon [123]. The RC2 instances

contain a mix of randomly-spaced and clustered customers. On average, Compressed

annealing outperforms the insertion heuristic of Gendreau et al. [48] on all instances.

In comparison to the assignment heuristic of Calvo [16], the average compressed

annealing solution matches or improves upon the best known result on 26 of the

30 instances. In addition, compressed annealing obtains feasible solutions in all 30



instances, while Calvo reports feasible solutions in only 28 instances.

Table 4.2: Solomon RC2 Instances

Data Set Solution Value / CPU Seconds

Problem n Gendreau et al. 1998 Calvo 2000 Compressed Annealing

rc201.1 19 444.54 / 3.00 444.54 / 0 444.54 / 5.5

rc201.2 25 712.91 / 6.98 711.54 / 0 711.54 / 6.0

rc201.3 31 795.44 / 14.98 790.61 / 3 790.61 / 9.9

rc201.4 25 793.64 / 6.00 793.64 / 0 793.64 / 6.0

rc202.1 32 772.18 / 10.55 772.18 / 8 772.14 / 11.5

rc202.2 13 304.14 / 2.35 304.14 / 0 304.14 / 5.6

rc202.3 28 839.58 / 6.97 839.58 / 0 837.72 / 7.5

rc202.4 27 793.03 / 11.55 793.03 / 2 793.03 / 9.1

rc203.1 18 453.48 / 4.03 453.48 / 0 453.48 / 7.7

rc203.2 32 784.16 / 15.67 784.16 / 4 784.16 / 11.5

rc203.3 36 842.25 / 16.02 819.42 / 14 817.80 / 12.8

rc203.4 14 314.29 / 2.98 314.29 / 0 314.29 / 5.9

rc204.1 44 897.09 / 26.43 868.76 / 35 880.39 / 14.3

rc204.2 32 679.26 / 15.90 665.96 / 8 666.88 / 10.9

rc204.3 33 460.24 / 11.18 455.03 / 4 459.38 / 9.0

rc205.1 13 343.21 / 1.13 343.21 / 0 343.21 / 4.2

rc205.2 26 755.93 / 7.33 755.93 / 0 755.93 / 7.1

rc205.3 34 825.06 / 42.90 825.06 / 21 825.06 / 10.7



Table 4.2: continued

Problem n Gendreau et al. 1998 Calvo 2000 Compressed Annealing

rc205.4 27 762.41 / 6.58 - / 760.47 / 7.6

rc206.1 3 117.85 / 0.01 117.85 / 0 117.85 / 3.1

rc206.2 36 842.17 / 33.47 853.31 / 10 828.16 / 11.3

rc206.3 24 591.2 / 6.75 574.42 / 0 574.42 / 9.1

rc206.4 37 845.04 / 31.48 837.54 / 8 832.54 / 11.5

rc207.1 33 741.53 / 14.76 733.22 / 4 732.68 / 11.0

rc207.2 30 718.09 / 16.28 - / 701.25 / 10.5

rc207.3 32 684.4 / 17.25 687.28 / 10 682.40 / 11.4

rc207.4 5 119.64 / 0.01 119.64 / 0 119.64 / 3.0

rc208.1 37 799.19 / 26.58 789.25 / 10 793.79 / 16

rc208.2 28 543.41 / 20.53 537.33 / 2 534.68 / 10.0

rc208.3 35 660.15 / 25.63 649.11 / 8 640.49 / 11.9

In Table 4.3, we present the TSPTW instances of Langevin [87]. For each

customer-time window combination, we list the average solution value over the ten

different instances of the problem (unless specified otherwise). We compare com-

pressed annealing to known optimal solutions and the solutions obtained by the

heuristic procedure in Calvo [16]. Compressed annealing exhibits promising behav-

ior; it achieves the optimal solution on all the instances with 20 and 40 customers.

Direct comparison to optimal solutions is not possible for the problems with 60 cus-



tomers since the optimal solution is only known in seven of the ten instances with

20-minute time windows, eight of the ten instances with 30-minute time windows,

and seven of the ten instances with 40-minute time windows. In these 60-customer

cases, compressed annealing matches the solutions obtained in Calvo [16].

Table 4.3: Langevin Instances

Data Set Solution Value / CPU Seconds

n Window Width Optimal Calvo 2000 Compressed Annealing

20 30 724.7 / 0.4 724.7 / 0.0 724.7 / 5.2

40 721.5 / 0.7 721.5 / 0.0 721.5 / 5.1

40 20 982.7 / 1.7 982.7 / 0.3 982.7 / 7.0

40 951.8 / 7.3 951.8 / 0.6 951.8 / 7.1

60 20 1196.4 (7) / 10 1215.7 / 5.0 1215.7 / 9.2

30 1180.6 (8) / 32 1183.2 / 5.0 1183.2 / 12.0

40 1153.9 (7) / 43 1160.8 / 10.9 1160.7 / 14.3

We also consider the TSPTW instances of Dumas [38] in Table 4.4. For each

customer-time window combination, we list the average solution value over the five

different instances of the problem (unless specified otherwise). We compare com-

pressed annealing to known optimal solutions and the results of Calvo [16]. For

these data sets, the average compressed annealing solution matches the optimal so-

lution in 9 of the 28 sets of five instances. In the other cases, compressed annealing’s

average solution is within 1% of the average optimal for every set of five instances.



For the case with 80 customers with time windows of 60 minutes, Calvo’s assign-

ment heuristic only finds feasible solutions for four of the five instances; compressed

annealing obtains a feasible solution in all five instances.

Table 4.4: Dumas Instances

Data Set Solution Value / CPU Seconds

n Window Width Optimal Calvo 2000 Compressed Annealing

20 20 361.2 / 0.0 361.2 / 0.0 361.2 / 5.0

40 316.0 / 0.1 361.2 / 0.0 361.2 / 5.0

60 309.8 / 0.1 309.8 / 0.0 309.8 / 5.0

80 311.0 / 0.2 311.0 / 0.0 311.0 / 5.0

100 275.2 / 1.3 275.2 / 0.0 275.2 / 6.2

40 20 486.6 / 0.1 486.6 / 3.0 486.6 / 7.1

40 461.0 / 0.0 461.0 / 3.0 461.0 / 9.7

60 416.4 / 4.4 416.4 / 4.8 416.4 / 11.5

80 399.8 / 7.5 399.8 / 5.2 400.0 / 11.7

100 377.0 / 31.4 377.0 / 5.6 377.4 / 12.3

60 20 581.6 / 0.2 581.6 / 8.4 581.6 / 13.4

40 590.2 / 0.9 590.4 / 17.2 590.9 / 15.9

60 560.0 / 6.8 560.0 / 20.2 560.2 / 16.2

80 508.0 / 46.6 509.0 / 18.0 509.2 / 16.5

100 514.8 / 199.8 516.4 / 26.2 516.5 / 16.4



Table 4.4: continued

n Window Width Optimal Calvo 2000 Compressed Annealing

80 20 676.6 / 0.4 676.6 / 43.4 676.8 / 19.6

40 630.0 / 2.7 630.4 / 69.2 630.1 / 20.7

60 606.4 / 55.3 596.5 (4) / 71.6 607.2 / 21.1

80 593.8 / 220.3 594.4 / 59.6 595.5 / 21.3

100 20 757.6 / 0.6 757.8 / 102.6 757.8 / 23.9

40 701.8 / 7.4 703.6 / 128.6 702.2 / 24.9

60 696.6 / 108.0 696.6 / 148.0 697.8 / 24.9

150 20 868.4 / 2.4 868.6 / 419.8 869.4 / 35.8

40 834.8 / 115.9 837.4 / 529.6 835.7 / 36.4

60 805.0 / 463.0 820.4 / 630.0 821.9 / 36.9

200 20 1009.0 / 6.7 1010.0 / 1456.2 1010.3 / 50.5

40 984.2 / 251.4 985.4 / 2105.8 986.7 / 50.4

No known exact method can solve TSPTW instances with wide time windows,

making heuristic approaches to these instances particularly useful. In Table 4.5,

we consider the TSPTW instances generated in Gendreau et al. [48] by extending

the time windows of the instances in Table 4.4. The average compressed annealing

solution is the best-known result for 14 of the 27 different sets of instances.



Table 4.5: Gendreau Instances

Data Set Solution Value / CPU Seconds

n Window Width Gendreau 1998 Calvo 2000 Compressed Annealing

20 120 269.2 / 4 267.2 / 0 265.6 / 7

140 263.8 / 4 259.6 / 0 232.8 / 8

160 261.2 / 5 260.0 / 0 218.2 / 8

180 259.8 / 6 244.6 / 0 236.6 / 8

200 245.2 / 6 243.0 / 0 241.0 / 8

40 120 372.8 / 18 360.8 / 5 378.5/ 12

140 356.2 / 19 348.4 / 9 364.9 / 12

160 348.0 / 20 337.2 / 10 326.9 / 12

180 328.2 / 17 326.8 / 12 333.9 / 12

200 326.2 / 23 315.2 / 16 314.9 / 12

60 120 492.0 / 52 483.4 / 30 453.3 / 16

140 454.8 / 49 454.4 / 28 454.2 / 16

160 451.6 / 48 448.6 / 34 465.3 / 16

180 439.2 / 52 432.8 / 41 424.8 / 16

200 439.6 / 44 428.0 / 57 430.4 / 16

80 120 581.8 / 121 549.8 / 64 543.7 / 20

140 555.2 / 94 525.6 / 75 512.7 / 20

160 524.8 / 86 502.8 / 82 513.3 / 21



Table 4.5: continued

n Window Width Gendreau 1998 Calvo 2000 Compressed Annealing

180 511.0 / 99 489.0 / 116 505.0 / 21

200 508.6 / 112 484.0 / 158 485.6 / 20

100 80 675.6 / 118 668.0 / 139 668.9 / 25

100 671.2 / 130 644.0 / 119 644.9 / 24

120 624.6 / 204 614.4 / 167 604.0 / 24

140 634.6 / 208 591.4 / 201 581.5 / 24

160 585.2 / 215 570.4 / 214 589.5 / 24

180 585.2 / 225 566.0 / 245 568.1 / 24

200 588.6 / 168 555.6 / 242 562.4 / 24

Comparing computational times is difficult due to differences in computer plat-

forms. Processor comparisons suggest that our algorithm is slower than Calvo’s

assignment heuristic and Gendreau et al.’s insertion heuristic. However, given to-

day’s processor speeds and the general nature of our implementation, our algorithm

is certainly capable of solving reasonably large problems in adequate time. In ad-

dition, as our results show, run-times for compressed annealing are only minimally

affected by increasing numbers of customers and time-window widths. This result

is in contrast to the performance of Calvo’s and Gendreau’s algorithms under the

same conditions. Thus, the result suggests that compressed annealing is particularly

valuable in circumstances involving large numbers of customers or wide time win-



dows. In addition, our computational experience has shown that, by revising the

termination criteria such that the algorithm terminates when the best tour found

has not been updated in 25 temperature/pressure changes, run times can be reduced

by 20% to 30% for almost all problems. This reduction in computation time also

only minimally reduces the quality of the average solution as most average solutions

are still within 1% of the optimal or previously best-known heuristic solution.

4.3 Conclusions and Future Considerations

We have presented a solution approach to the TSPTW, a difficult combinato-

rial problem, utilizing compressed annealing. Using a variable penalty function and

stochastic search, we consider solutions infeasible with respect to time windows dur-

ing our search for good solutions. Computational testing on four series of TSPTW

problems demonstrates the potential of the compressed annealing algorithm. Near-

optimal solutions can be obtained at a reasonable computational cost in most cases,

and feasible solutions are found in every instance.

Future research may include exploring the effect of different penalty functions. In

particular, the implementation of the augmented lagrangian penalty function com-

mon in continuous mathematical programming could provide an interesting extension

to this work. In the current implementation, a single multiplier is used to penalize

time window violations for the n customers. Future work may consider the impact

of customer-specific penalty multipliers on the search procedure.

We consider the objective of minimizing the sum of the travel time along the

TSPTW tour. The performance of compressed annealing with a different objective



function, namely the minimization of tour completion time, should be evaluated.



CHAPTER V

Conclusions

This thesis investigates a variant of simulated annealing appropriately parame-

terized with the penalty multiplier of an integrated penalty function. We research

compressed annealing’s theoretical behavior and analyze its performance on applica-

tions in vehicle replacement and routing. The objectives of this study are to establish

conditions for the convergence of compressed annealing and utilize the insight from

this theoretical study to enhance the practical performance of the algorithm.

5.1 Summary of Contribution

In Chapter II, we provide a theoretical framework to analyze the integration of

an appropriately designed penalty function and the hill-climbing search procedure

of simulated annealing. Introducing the novel concept of levels, we modify the me-

chanics in Hajek [56] to cope with the dynamics induced by the variable penalty

method. We establish necessary and sufficient conditions for this constrained an-

nealing approach that are the strongest in the literature. We conclude Chapter II

with a discussion on the implementation details of the algorithm. In particular, the
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theoretical results suggest the form of joint cooling and compression schedules.

The parameterized penalty multiplier of compressed annealing allows the algo-

rithm to consider variably-penalized infeasible solutions in its search for optimal or

near-optimal solutions. Due to its dynamic search procedure, compressed annealing

generally outperforms simulated annealing with a suitable static penalty method.

For a traditional simulated annealing approach, setting a static penalty multiplier

that allows an adequate search of the solution space often proves to be a difficult

chore.

Incorporating maintenance data from trucking companies, we develop a replace-

ment model in Chapter III considering the combined effects of stochastic deteri-

oration, budget constraints, and time-variance induced by constant technological

change. Using a penalty function to relax nonlinear constraints on expected expen-

diture, we implement compressed annealing to determine near-optimal replacement

policies over a finite planning horizon. Computational results demonstrate the su-

periority of the compressed annealing search over a trade cycle approach commonly

used in practice.

Chapter IV presents the implementation of compressed annealing on the traveling

salesman problem with time windows. Computational experiments on prominent

data sets in the literature demonstrate compressed annealing’s efficacy. Compressed

annealing compares favorably with benchmarks in the literature, obtaining best-

known results in numerous instances.

Our implementation of compressed annealing on the SFRPB and TSPTW re-



veals that nearly identical parameters (see Tables 3.13 and 4.1) result in good so-

lutions. Besides termination criteria, the only significant difference between the

two implementations pertained to the number of iterations per temperature. Since

the objective function for the SFRPB is computationally expensive relative to the

TSPTW objective, fewer iterations are performed at each temperature/pressure set-

ting. Accounting for differences in computational complexity, the similarity between

the parameter values for these two different problems vouches for the robustness of

the compressed annealing algorithm.

5.2 Future Work

There exist many open research issues in each of the three major components

of this study. Throughout this thesis, we noted future research topics which we

summarize here.

In our theoretical analysis of compressed annealing, we assume that the values

of each penalty multiplier are the same, masking the duality of the problem. Future

research is necessary to explore the effect of having distinct values for each penalty

multiplier. In the proof of convergence, we focus on the tail behavior of the algorithm.

More work is required to scrutinize the search performance during the transient

period of compression. One future endeavor is to create a class of problems for

which we can derive analytical results on probability of convergence and rate of

convergence in order to garner further insight on the algorithm’s behavior. A more

general objective is to further explore the variable penalty multiplier approach within

the framework of other heuristics.



While the computational results in this study reflect favorably on compressed

annealing’s potential, implementation on other applications will test its robustness.

For problems where even finding a feasible solution is difficult, we must focus on

techniques to enhance the algorithm’s ability to escape a cup of solutions composed

entirely of infeasible solutions. As the penalty multiplier increases, the solution value

of each infeasible solution increases in an amount proportional to its violation. Thus,

the algorithm can become trapped in a local network of infeasible solutions, i.e., stuck

in the bottom of a flying cup. One possible modification to the compressed annealing

algorithm would be to implement an adaptive approach to cooling and compression.

Feedback from the search progress would intelligently guide the manipulation of

parameters.

For the asset replacement problem, there are a number of interesting extensions

to consider in the presence of stochastic deterioration and budget limits. One in-

triguing possibility is to consider multiple replacement options, i.e., new assets, used

assets, rebuilt assets, leased assets, etc. The action space could also be extended

to include maintenance actions such as the major rebuild of a defender, creating a

more holistic maintenance/replacement model. No simple trade cycle approach ex-

ists in the presence of multiple replacement options, so there is potential for marked

improvement for such replacement strategies.

Possible refinement of the definition of a vehicle’s state should be investigated.

Recall that a vehicle’s maintenance category, im, is determined solely by its mainte-

nance cost per mile. As a future research project, we suggest expanding the definition



of a vehicle’s state to account for possible variance in operating cost as a result in

the deterioration of physical condition.

We exclusively study the replacement of linehaul tractors. A holistic approach

that simultaneously considers linehaul and P&D fleets would allow fleet managers

to incorporate the common conversion of linehaul tractors into pick-up and delivery

service. Economies of scale in purchase costs and dis-economies of scale in mainte-

nance costs may also be appropriate concerns for some asset replacement problems;

fleet managers comment that early replacement is occasionally motivated by special

financing rates and discounts offered by tractor dealers.

Alternate techniques to handle budgets over a planning horizon should also be

explored. Morse [98] suggests a multiple knapsack formulation in conjunction with

rolling horizon procedure. We treat budget constraints equally across the horizon.

However, the budget limits in the first few years of a planning horizon are the most in-

fluential. For periods at the end of the planning horizon, estimating budgets becomes

difficult and distribution of expected expenditure becomes increasingly uninforma-

tive. A time-discounted penalty approach may be appropriate.

Our results on the traveling salesman problem with time windows provide a foun-

dation for extending a compressed annealing approach to other constrained vehicle

routing problems. In particular, we plan on exploring the vehicle routing problem

with time windows. Other interesting applications include the joint vehicle rout-

ing and maintenance problem [126, 53] (prevalent in the aircraft industry) and the

vehicle fleet mix problem [102].
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APPENDIX A

Information Defining Maintenance Condition

In the stochastic fleet replacement model with budget constraints, we assume that

a vehicle’s future maintenance costs are dependent only on its maintenance costs over

the past year, i.e., the stochastic process describing the evolution of maintenance

category over a vehicle’s life possesses the Markov property. Using sample data from

the trucking industry, we test the validity of the Markov assumption. We compare

various methods of considering a tractor’s maintenance history to forecast future

maintenance costs. While this comparison does not exhaustively test the countless

ways to forecast future maintenance costs, it provides insight on the validity of the

Markovian assumption.

Past Year’s Maintenance Cost : This approach assumes that a vehicle’s future

maintenance costs are only dependent on the maintenance costs from the past year.

To implement this assumption, we categorize a vehicle-year by the maintenance costs

over the year.

Lifetime Average Maintenance Cost : This approach assumes that a vehicle’s fu-

ture maintenance costs are dependent on its entire maintenance history. To test the



Table A.1: Various Methods of Defining Maintenance Condition

Criteria MAD ($/Mile)

Past Year’s Maintenance Condition 0.1873

Lifetime Average Maintenance Cost 0.0207

Weighted Maintenance History 0.1890

effectiveness of this assumption, we categorize a vehicle-year by its average mainte-

nance cost per mile over the vehicle’s life up to the present.

Weighted Maintenance History : This approach also assumes that a vehicle’s fu-

ture maintenance costs are dependent on its entire maintenance history. However,

in this case, we weight the maintenance history via an exponential smoothing tech-

nique. Specifically, we weight the previous year’s maintenance cost per mile by 75%

and the rest of the maintenance history by 25%.

As shown in Table A.1, the sample data from trucking industry suggests that

defining maintenance category by the past year’s maintenance category suffices.

In practice, the appraisal of a vehicle’s condition may be based on many factors

including fleet manager’s intuition, maintenance history, driver feedback, and phys-

ical appearance. The model’s flexibility to allow the fleet manager to determine his

own categorization criterion and instill some of his/her own intuition is viewed as a

strategic advantage.



APPENDIX B

Aggregation Error

In the stochastic fleet replacement model with budget constraints, we model

stochastic deterioration by adopting the aggregation scheme in Derman [33] to de-

fine maintenance categories. Aggregation loses some of the information from the

continuous range of maintenance costs, and thus induces modeling error. For a sur-

vey of aggregation techniques, Rogers et al. [117] discuss aggregate modeling and the

level of detail required to model a given problem.

Using data from a trucking company, we measure the aggregation error of the

SFRPB. We predict a vehicle’s future maintenance cost per mile of operation given

the age (a quantitative predictor) and the maintenance condition at the end of the

period (a qualitative predictor). This represents a “perfect information” scenario in

the sense that we are predicting future maintenance cost given its range, i.e., main-

tenance category. Analysis with a mixture of quantitative and qualitative predictors

requires statistical analysis of covariance [39]. The analysis of covariance reveals that

there is no slope interaction between age and maintenance condition, allowing us to

fit the data with three separate regression lines (one for each condition level) that
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Figure B.1: Regression fit based on age and maintenance condition at end of period,

resulting in R2 = 0.865.

share the same slope and differ by their y-intercept. Figure B.1 illustrates the fit and

Table B.1 displays the parameters for the respective linear functions. Age and future

maintenance condition explain 86.5% of the cost variation. The remaining 13.5% of

the variance is the result in the “within-category” variation due to aggregation; even

by correctly identifying a vehicle’s condition, we have only narrowed the range of

values in which the realized cost per mile will occur.

In Table B.2, we benchmark the our stochastic model (implementing the transi-

tion probabilities in Table 3.6) with the “perfect information” regression considering

age and future maintenance condition. Due to aggregation error, the “perfect in-



Table B.1: Regression Parameters

Maintenance Condition Y-Intercept Slope

Low .036262 0.003155

Medium .068561 0.003155

High .120156 0.003155

Table B.2: Accuracy of Probabilistic Model

Model MAD ($/Mile)

Age + Future Maintenance Condition 0.01106

Expected Value Approach 0.01873

formation” model still results an mean absolute deviation of $0.01106/mile. The

probabilistic model results in a mean absolute deviation of $0.01803/mile, implying

that the stochastic deterioration increases error by $0.00697/mile, or an average of

$697 per tractor per year (100,000 miles per year × $0.00692/mile).



APPENDIX C

Construction of Transition Probabilities

After categorizing annual maintenance cost per mile for each tractor across its

lifetime (as in Table 3.5), we develop transition probabilities based on frequency.

For example, if a tractor is six years old and in medium condition at the beginning

of year 6, we estimate the probability the tractor transitions to low, medium, or

high condition by calculating number of times that six-year old tractors beginning in

medium condition were in low, medium, and high condition at the end of a period.

Figure C.1 displays the empirical probabilities induced by the frequency tabulations.

Note that these empirical probabilities fluctuate widely; a larger data sample would

be necessary to smooth these curves.

We investigate smoothing curves with a variety of shapes (convex, linear, and

concave) that dictate the evolution of the transition probabilities over the lifetime of

a tractor. Empirical observation reveals that representing the decay of the probability

of low → low, medium → low, and high → low transitions as a convex function

of tractor age results in a good fit. Specifically, the functions used to smooth the



Figure C.1: Empirical unsmoothed transition probabilities.



frequency data are given by

pxl(in) = cx

(

a−bxin
x

)

for x = l,m, h

pxm(in) = dx

[

1 − cx

(

a−bxin
x

)]

for x = l,m, h

pxh(in) = gx

[

1 − cx

(

a−bxin
x

)]

for x = l,m, h,

where dx + gx = 1 for x = l,m, h to assure the probabilities sum to one. The

parameters ax, bx, cx, dx, and gx are estimated to fit the data in Figure C.1.
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ABSTRACT

THEORY AND APPLICATIONS OF COMPRESSED ANNEALING

by

Jeffrey W. Ohlmann

Co-chairs: James C. Bean & Shane G. Henderson

Operations managers are often faced with large-scale decision-making problems

that are difficult to solve to optimality. We analyze compressed annealing, a heuristic

approach for solving large-scale combinatorial optimization problems. Compressed

annealing is a variant of simulated annealing that integrates a variable penalty

method with heuristic search to address optimization problems with relaxed con-

straints. The concept of pressure is introduced to parameterize the value of the

penalty multiplier.

We present a theoretical framework to study the behavior of compressed anneal-

ing. We provide necessary and sufficient conditions that ensure the metaheuristic’s

convergence in probability to the set of global optima. Guided by theoretical insight,

we develop practical joint cooling and compression schedules.

We employ compressed annealing on an asset replacement problem considering



the issues of stochastic deterioration, budget limits, and time-variant costs due to

technological change. We perform computational experiments on data sets con-

structed from information provided by trucking companies. Empirical results il-

lustrate the effectiveness of compressed annealing; replacement plans obtained via

compressed annealing outperform a trade cycle approach commonly implemented in

the trucking industry.

To test compressed annealing’s robustness, we apply the algorithm to the travel-

ing salesman problem with time windows (TSPTW). The variable penalty approach

of compressed annealing allows a search considering tours infeasible with respect to

the time windows. Compressed annealing obtains best-known results on numerous

data sets from the literature.


