
Just Count the Satisfied Groundings: Scalable Local-Search and Sampling Based
Inference in MLNs

Deepak Venugopal
Department of Computer Science
The University of Texas at Dallas

dxv021000@utdallas.edu

Somdeb Sarkhel
Department of Computer Science
The University of Texas at Dallas

somdeb.sarkhel@utdallas.edu

Vibhav Gogate
Department of Computer Science
The University of Texas at Dallas

vgogate@hlt.utdallas.edu

Abstract

The main computational bottleneck in various sampling
based and local-search based inference algorithms for
Markov logic networks (e.g., Gibbs sampling, MC-SAT,
MaxWalksat, etc.) is computing the number of groundings of
a first-order formula that are true given a truth assignment to
all of its ground atoms. We reduce this problem to the prob-
lem of counting the number of solutions of a constraint satis-
faction problem (CSP) and show that during their execution,
both sampling based and local-search based algorithms re-
peatedly solve dynamic versions of this counting problem.
Deriving from the vast amount of literature on CSPs and
graphical models, we propose an exact junction-tree based
algorithm for computing the number of solutions of the dy-
namic CSP, analyze its properties, and show how it can be
used to improve the computational complexity of Gibbs sam-
pling and MaxWalksat. Empirical tests on a variety of bench-
marks clearly show that our new approach is several orders of
magnitude more scalable than existing approaches.

Introduction
A large number of application domains (e.g. NLP, computer
vision, robotics, etc.) require rich modeling languages that
are capable of handling uncertainty. Markov logic networks
(MLNs) (Domingos and Lowd 2009) combine logical and
probabilistic representations (Getoor and Taskar 2007), and
are therefore ideally suited for such applications. At a high
level, MLNs use weighted first-order formulas to define a
compact template for generating large Markov networks.

Naturally, one can perform inference in MLNs by per-
forming inference over the (ground) Markov network. How-
ever, this approach is not scalable because in large real-
world domains, the ground Markov network can have mil-
lions of variables and features. For example, consider a sim-
ple first-order formula ∀x,∀y,∀z,∀u R(x, y) ∨ S(y, z) ∨
T(z, u) and assume that each logical variable has 100 ob-
jects (constants) in its domain. Grounding this formula gives
rise to 100 million ground formulas and performing any kind
of inference (even approximate inference) on such a large
Markov network is an extremely challenging task.

In this paper, we identify the main computational bottle-
neck in MLN inference, which specifically affects sampling-
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based and local-search based inference algorithms. This bot-
tleneck is counting the true groundings of a first-order for-
mula f given a world ω. We observed that existing MLN
systems such as Alchemy (Kok et al. 2006) and Tuffy (Niu
et al. 2011) solve this counting problem using the follow-
ing naive generate-and-test approach: generate each possi-
ble grounding and test whether it is true in ω. This naive
approach is the chief reason for their poor scalability and is
particularly problematic because algorithms such as Gibbs
sampling (Geman and Geman 1984; Venugopal and Gogate
2012) and MaxWalksat (Kautz, Selman, and Jiang 1997)
perform the above operation in every iteration.

In this paper, we propose a novel, practical approach for
solving the aforementioned counting problem. The key ad-
vantages of our approach are that it never grounds the full
MLN and in most cases is orders of magnitude better than
the “generate-and-test” approach. Specifically, we encode
each formula (f ) as a CSP (C) such that the number of solu-
tions to C can be directly used to count the satisfied ground-
ings of f . The main advantage of this encoding is that we can
now leverage several years of advances in CSPs and graphi-
cal model inference and use virtually any exact/approximate
inference algorithm along with its associated guarantees to
efficiently solve the counting problem.

We demonstrate the power of our approach by showing
that it greatly improves the computational complexity of two
popular approximate inference algorithms: Gibbs Sampling
and MaxWalkSAT. We show that in both these algorithms,
the main computational steps involve solving the encoded
CSP, where the constraints change over time (dynamic CSP).
To solve this dynamic CSP, we compile an exact junction
tree for the CSP and account for the changing constraints
by modifying the junction tree messages. We evaluated both
algorithms on a wide variety of MLN benchmarks and com-
pared them with algorithms implemented in two existing
MLN systems, Alchemy and Tuffy. Our experiments clearly
show that our new algorithms are several orders of magni-
tude more scalable than existing systems.

Background and Preliminaries
First-Order Logic
We assume a strict subset of first-order logic, called finite
Herbrand logic. Thus, we assume that we have no function



constants and finitely many object constants. A first-order
knowledge base (KB) is a set of first-order formulas. A for-
mula in first-order logic is made up of quantifiers (∀ and ∃),
logical variables, constants, predicates and logical connec-
tives (∨, ∧, ¬, ⇒, and ⇔). We denote logical variables by
lower case letters (e.g., x, y, z, etc.) and constants by strings
that begin with an upper case letter (e.g.,A,Ana,Bob, etc.).
Constants model objects in the real-world domain. A pred-
icate is a relation that takes a specific number of arguments
(called its arity) as input and outputs either True (synony-
mous with 1) or False (synonymous with 0). A term is ei-
ther a logical variable or a constant. We denote predicates
by strings in typewriter font (e.g., R, S, Smokes, etc.) fol-
lowed by a parenthesized list of terms.

A first-order formula is recursively defined as fol-
lows:(i) An atomic formula is a predicate; (ii) Negation of
an atomic formula is a formula; (iii) If f and g are formulas
then connecting them by binary connectives such as ∧ and ∨
yields a formula; and (iv) If f is a formula and x is a logical
variable then ∀xf and ∃xf are formulas.

We assume that each argument of each predicate is typed
and can only be assigned to a fixed subset of constants.
By extension, each logical variable in each formula is also
typed. We further assume that all first-order formulas are dis-
junctive (clauses), have no free logical variables (namely,
each logical variable is quantified), have only universally
quantified logical variables (CNF), and have no constants.
Note that all first-order formulas can be easily converted to
this form. A ground atom is an atom that contains no logical
variables. A possible world, denoted by ω, is a truth assign-
ment to all possible ground atoms that can be formed from
the constants and the predicates.

Discrete Graphical Models
Discrete graphical models or Markov networks consist of a
set of variables x = {x1, . . . , xn}, each of which take val-
ues from a finite domain D(x), and a set of positive func-
tions Φ = {φ1, . . . , φm}, each defined over a subset S(φ)
of variables, called its scope. A Markov network represents
the probability distribution Pr(x) = 1

Z

∏m
i=1 φi

(
xS(φi)

)
,

where x is an assignment of values to all variables in x,
xS(φi) is a projection of x on S(φi), and Z is a normal-
ization constant called the partition function which is given
by Z =

∑
x

∏m
i=1 φi

(
xS(φi)

)
1.

Important inference queries over graphical models are
computing the partition function, finding the marginal prob-
ability of a variable given evidence (an assignment to a sub-
set of variables) and finding the most probable assignment
to all variables given evidence (MAP inference).

When the range of all functions is {0, 1}, the graphical
model represents a constraint network. A 0/1 function φ, can
also be thought of as a constraint or a relation in which all
assignments y such that φ(y) = 1 are allowed while the
ones having φ(y) = 0 are not allowed. A constraint satis-
faction problem (CSP) is to find an assignment of values to
all variables such that all constraints are satisfied (namely

1Often, we will abuse notation and use x instead of xS(φi).

a solution). Another important problem over constraint net-
works is computing the number of solutions to a CSP. This
problem is equivalent to computing the partition function.

Markov Logic Networks
Markov logic networks (MLNs) combine Markov networks
and first-order logic. Formally, an MLN is a set of pairs
(fi, wi) where fi is a formula in first-order logic and wi is a
real number. Given a set of constants, an MLN represents a
ground Markov network, defined as follows. We have one bi-
nary random variable in the Markov network for each possi-
ble ground atom. We have one propositional feature for each
possible grounding of each first-order formula. The weight
associated with the feature is the weight attached to the cor-
responding formula. A propositional feature having weight
w represents the following function: φ(y) = exp(w) if y
evaluates the feature to true and φ(y) = 1 otherwise. The
ground Markov network represents the following probabil-
ity distribution:

Pr(ω) =
1

Z
exp

(∑
i

wiNfi(ω)

)
=

1

Z

∏
i

[
φi(ωS(φi))

]Nfi
(ω)

where Nfi(ω) is the number of groundings of fi that eval-
uate to True given ω. The main computational bottleneck in
several inference algorithms for MLNs, in particular Gibbs
sampling and MaxWalksat, is computing Nfi(ω). We call
this the #SATGround problem.

#SATGround as a CSP
We demonstrate our proposed CSP encoding2 on a simple
MLN having just one clause: f = ∀x,∀y,∀z R(x, y) ∨
S(y, z). We will focus on counting the number of false
groundings of f given a world ω because it is easier to com-
pute. Moreover, we can easily compute the number of true
groundings Nf (ω) from it; Nf (ω) is equal to the number
of all possible groundings (which is simply a product of the
domain sizes) minus the number of false groundings.

Let us assume that the domain of each logical variable
in f is {A,B}. Each triple (x, y, z) where each x, y and z
can take values from the domain {A,B} uniquely identifies
each grounding of the formula. Consider a world ω shown
in Fig. 1(a). Let us associate two 0/1 functions φ1(x, y) and
φ2(y, z) with R(x, y) and S(y, z) respectively. The 0/1 func-
tion has a value 1 iff the corresponding grounding is False in
the world and 0 otherwise (see Fig. 1(b)).

Given this set up, notice that if we take a product of
the two functions φ1(x, y) and φ2(y, z), then the resulting
function φ3(x, y, z) will have a 1 associated with an en-
try (x, y, z) iff both R(x, y) and S(y, z) are False. Since the
ground formula (x, y, z) evaluates to False iff both R(x, y)
and S(y, z) are False, by extension φ3(x, y, z) = 1 implies
that the ground formula (x, y, z) is False. Therefore, we can
count the number of groundings of f that evaluate to False,
by simply counting the number of ones in φ3(x, y, z), which
is the same as counting the number of solutions to the CSP
having two functions φ1(x, y) and φ2(y, z).

2The #SATGround problem can also be reduced to the con-
junctive query problem in relational databases (Vardi 1982)



R(A,A) 1
R(A,B) 0
R(B,A) 0
R(B,B) 1

S(A,A) 0
S(A,B) 1
S(B,A) 0
S(B,B) 1

(a) world ω

x y φ1(x, y)
A A 0
A B 1
B A 1
B B 0

y z φ2(y, z)
A A 1
A B 0
B A 1
B B 0

(b) Functions φ1 and φ2

x y z φ3(x, y, z)
A A A 0
A A B 0
A B A 1
A B B 0

x y z φ3(x, y, z)
B A A 1
B A B 0
B B A 0
B B B 0

(c) Function φ3 = φ1 × φ2

Figure 1: (a) A possible world of an MLN having only one formula: f = ∀x,∀y,∀z R(x, y) ∨ S(y, z). The domain of each logical variable
is {A,B}; (b) Functions φ1 and φ2 corresponding to R(x, y) and S(y, z) respectively; and (c) Function φ3 which is equal to the product of
the two functions given in (b). The number of 1s in φ3 equals the number of groundings of f that evaluate to False.

Algorithm Space Complexity Time complexity
Pre-Ground O(

∑M
i=1 d

|Vi|) O(
∑M
i=1 d

|Vi|)

Lazy-Ground O(1) O(
∑M
i=1 d

|Vi|)

And-OR Tree O(M) O(
∑M
i=1 d

w∗
i log(|Vi|)+1)

Junction Tree O(
∑M
i=1 d

w∗
i ) O(

∑M
i=1 d

w∗
i +1)

Table 1: #SATGround complexities using various strategies. M
is the number of formulas, Vi is the set of variables in the CSP
encoded for the ith formula, d is the domain-size of each variable
and w∗i is the treewidth of the CSP encoded for the ith formula.

Next, we will formalize this intuition and precisely define
how to encode the #SATGround problem as a CSP solu-
tion counting problem.
Encoding f-to-CSP. Given a first-order clause f and a world
ω, the corresponding CSP C has a variable for each (univer-
sally quantified) logical variable in f . The domain of each
variable in C is the set of constants in the domain of the cor-
responding logical variable. For each atom R(x1, . . . , xu) in
f , we have a relation φ in C defined as follows:

φ(xu) =

{
ωR(X1,...,Xu) if R is negated in f
¬ωR(X1,...,Xu) Otherwise

where xu = (x1 = X1, . . . , xu = Xu) denotes an assign-
ment to the CSP variables and ωR(X1,...,Xu) is the projection
of the world ω on the ground atom R(X1, . . . , Xu), namely
the truth-value of the ground atom R(X1, . . . , Xu) in ω.

By generalizing the arguments presented for the example
MLN formula given above, we can show that:

Theorem 1. Let f be a first-order clause, x1, . . . , xu be the
(universally quantified) logical variables in f , ω be a world
and let #Sol(C) denote the number of solutions of the CSP
C obtained from (fi, ω) using the f-to-CSP encoding. Then,
Nf (ω) =

∏u
j=1 |∆(xj)| −#Sol(C) where ∆(xj) is the set

of constants in the domain of xj .

Counting the Number of Solutions of the CSP
Since we have reduced the #SATGround problem to the
CSP solution counting problem, it is clear that we can use

any CSP/graphical model inference algorithm and leverage
its advances and guarantees to efficiently compute the for-
mer. Table 1 shows the complexity bounds for various strate-
gies and algorithms for solving the #SATGround problem.

Alchemy (Kok et al. 2006) uses the pre-ground strategy,
namely it grounds all clauses that it is unable to lift. Thus, its
worst case time and space complexity bounds are exponen-
tial in the maximum number of variables in the MLN for-
mulas. The pre-ground strategy is useful when there is large
amount of evidence. In presence of evidence, one can use
unit propagation to remove all clauses that are either True or
False. This reduces the space complexity as well as the time
complexity of subsequent counting problems.

An alternative strategy is to do lazy grounding, which re-
duces to solving the CSP using the generate and test ap-
proach. In this approach, we count the solutions by gener-
ating each tuple and testing whether it is a solution or not.
Although this approach has constant space complexity, its
worst case time complexity is the same as the pre-ground
approach. Moreover, unlike the pre-ground approach, this
approach is unable to take advantage of unit propagation and
the worst-case results apply to all subsequent operations.

A better, more powerful approach is to use advanced
search and elimination techniques such as AND/OR
search (Dechter and Mateescu 2007), recursive condition-
ing (Darwiche 2001), junction tree propagation (Lauritzen
and Spiegelhalter 1988), as well as knowledge compila-
tion techniques such as arithmetic circuits (Darwiche 2003)
and AND/OR multi-valued decision diagrams (Mateescu,
Dechter, and Marinescu 2008). In this paper, we focus on
using the junction tree algorithm for computing the solution
counts, noting that in future, one can use other advanced
techniques mentioned above as well as approximate solu-
tion counting approaches such as WISH (Ermon et al. 2013),
SampleSearch (Gogate and Dechter 2007) and generalized
BP (Yedidia, Freeman, and Weiss 2005).

Junction Trees for Solution Counting
We now briefly review the junction tree algorithm used to
compute the number of solutions #Sol(C) of C.



Definition 1. Given the CSP C, a junction tree is a tree
T (V,E) in which each vertex V ∈ V (also called a cluster)
and edge E ∈ E are labeled with a subset of variables,
denoted by L(V ) and L(E) such that:(i) for every function
φ defined in C, there exists a vertex L(V ) such that S(φ) ⊆
L(V ) and (ii) for every variable x in C, the set of vertexes
and edges in T that mention x form a connected sub-tree in
T (called the running intersection property).

Given a junction tree T of C, we can compute the solution
counts as well as the marginal probability of each CSP vari-
able (the fraction of solutions that the variable participates
in) by calibrating T . We calibrate T by selecting a cluster
as the root and performing sum-product message passing in
two passes: from the leaves to the root (collect pass) and then
from the root to the leaves (distribute pass). Formally, the
message sent from cluster i to cluster j, denoted by mi→j ,
is given by

mi→j(y) =
∑
z

∏
φ∈Φ(Vi)

φ(y, z)
∏

k∈N(i)\{j}

mk→i(y, z) (1)

where Φ(Vi) is the set of functions assigned to vertex Vi,
and N(i) is the set of indexes of the neighbors of Vi in T .

The number of solutions to C can be computed from any
vertex Vk using the following equation:

#Sol(C) =
∑
x

∏
φ∈Φ(Vk)

φ(x)
∏

j∈N(k)

mj→k(x) (2)

The complexity of computing the solution counts using a
junction tree is exponential in the maximum cluster size of
the tree which equals treewidth plus 1. Next, we describe ef-
ficient implementations of two classical approximate infer-
ence algorithms, Gibbs sampling and MaxWalkSAT, using
calibrated3

Application I: Gibbs Sampling
In Gibbs sampling, we start with a random world ω(0). Then
at each iteration i > 0, we compute the conditional distri-
bution over a randomly chosen ground atom R given ω(i−1)

−R

where ω(i−1)
−R is the projection of ω(i−1) on all ground atoms

of the MLN except R. Then, we sample a new value for
R, denoted by R, from this conditional distribution and set
ω(i) = (ω

(i−1)
−R , R). Note that for brevity, we have abused

notation and denoted the ground atom R(X1, . . . , Xr) as R.
The main computational bottleneck in Gibbs sampling is

computing the conditional distribution over the ground atom
ω(i). It is given by:

Pr(R = j|ω(i)
−R) ∝

∑
fk∈F (R)

wkNfk(ω
(i)
−R, R = j) (3)

where j ∈ {0, 1} and F (R) is the set of first-order formulas
in the MLN that contain R (the Markov Blanket of R).

Given a formula fk and a world ω, let Ck denote the con-
straint network obtained from (fk, ω) using the f-to-CSP en-
coding. Let Tk denote the junction tree obtained from Ck. If

3Technically, Gibbs sampling can be implemented more effi-
ciently using uncalibrated junction trees.

we calibrate the junction tree Tk, then we can easily compute
Nfk(ω) from it (see Eq.2). The main challenge is comput-
ing Nfk(ω′) where ω′ = (ω−R,¬ωR). We describe how to
compute it next.

Consider the two CSPs Ck and C′k obtained from (fk, ω)
and (fk, ω

′) respectively using the f-to-CSP encoding. Since
fk defines the scope of the functions in the CSP, both CSPs
have functions defined over the same scope. Moreover, since
ω and ω′ differ only in a truth assignment to one ground
atom, the corresponding functions in Ck and C′k differ only
in at most one entry. Thus, we can efficiently construct a
calibrated junction tree T ′k from Tk by appropriately prop-
agating the changed entries. Specifically, assuming that all
functions that have changed are present in a cluster V in Tk,
we designate V as the root and distribute messages away
from it, stopping propagation beyond a cluster if the new
message and the old message to the cluster are the same.

Application II: MaxWalkSAT
The MAP problem in Markov logic networks reduces to the
problem of finding a possible world that maximizes sum
of weights of satisfied clauses. Any weighted satisfiabil-
ity solver can used to solve the MAP problem, however
the most commonly used solver is MaxWalkSAT (Kautz,
Selman, and Jiang 1997). The latter is a weighted variant
of WalkSAT, a local-search algorithm for satisfiability test-
ing (Selman, Kautz, and Cohen 1996).

MaxWalkSAT takes as input an MLNM and a probabil-
ity p. The algorithm begins by randomly generating a pos-
sible world. Then, at each iteration, it selects a false ground
clause uniformly at random and flips the value assigned to
one of its atoms as follows. With probability p, the atom (lit-
eral) to be flipped is selected uniformly at random and with
probability (1−p), the atom which when flipped maximizes
the number of satisfied ground clauses is selected (greedy
hill-climbing step which selects the best atom).

The last two steps of flipping a random atom and the best
atom can be accomplished by using the same approach de-
scribed in the previous section. Namely, we maintain a cali-
brated junction tree for the current world ω and each formula
fk, updating it as necessary to determine the weight of the
world after the flip. The most challenging step is selecting a
false ground clause uniformly at random. Next we describe
a procedure for accomplishing this.
Selecting a False Clause uniformly at random: We solve
this problem using a two step procedure. In the first step,
we select a first order formula fi such that the probability of
selecting fi is proportional to the number of its false ground-
ings. In the second step, we select a false ground clause of
fi uniformly at random.

To select a first-order formula, we first compute the num-
ber of false ground clauses for all first-order formulas (using
the calibrated junction tree) and normalize them to yield a
distribution over the formulas. We then sample a first-order
formula from this distribution.

Let fi be the sampled first-order formula. To select a
false ground clause of fi uniformly at random, we sample
the calibrated junction tree of fi using the junction tree so-
lution sampling method described in (Dechter et al. 2002;



Gogate 2009). Sampling the junction tree yields a solution
to the corresponding CSP Ci. Based on our encoding, each
solution of Ci corresponds to a false clause of fi.
Selecting a False Clause in Presence of Evidence: In pres-
ence of evidence, the solution sampling method described
above cannot be used because the sampled ground clause
may be trivially false, namely, none of the atoms of the
clause can be flipped because all of its atoms are evidence
atoms. Thus, the solution sampling method must be modi-
fied so that it never selects a trivially false clause.

Before describing our method to solve this problem, we
introduce some notation. Let E , Eu and Et denote the set
of ground clauses, false ground clauses and trivially false
ground clauses of f respectively. From the definition, it is
obvious that Et ⊆ Eu ⊆ E and any method that samples an
element of the set (Eu \ Et) will not sample a trivially false
clause. We can use rejection sampling to find such a clause
but this will be quite slow, especially when there is a large
amount of evidence.

A more clever approach is to use two constraint networks.
Formally, given a formula fk and the constraint network Ck
obtained from it we define another constraint network (re-
ferred to as evidence network) Cεk as follows. Cεk is defined
over same set of variables as Ck. Corresponding to each
function φ(xu) in Ck, we define a function φε(xu) in Cεk as
follows: let R(x1, . . . , xu) denote the atom corresponding to
φ(xu) in Ck

φε(xu) =

{
φ(xu) if R(x1, . . . , xu) is an evidence atom
0 Otherwise

where xu = (x1 = X1, . . . , xu = Xu). From construction
of Cεk it follows that each solution of Cεk is a trivially false
clause and vice versa.

Thus, we have a way of computing the number of non-
trivial false groundings of a clause. As outlined earlier for
the non-evidence case, this number can be used to select a
first-order clause fk (by sampling each formula with prob-
ability proportional to the number of its non-trivial false
groundings). To select a non-trivial false ground clause of
fk, we use the following procedure. We maintain two cal-
ibrated junction trees T εk and Tk corresponding to the two
constraint networks Cεk and Ck respectively. Note that the
junction tree T εk needs to be calibrated only once because
the evidence does not change. We then create a new junction
tree T ′k by subtracting Tk from T εk . T ′k represents a uniform
distribution over the elements of the set (Eu \ Et) and there-
fore we draw a sample, uniformly at random from it to yield
a non-trivial false ground clause of fk. For details of this
subtraction operation and the sampling procedure, we refer
the reader to the extended version of this paper (Venugopal
and Sarkhel and Gogate 2014).

Extensions
Existential Quantifiers
In this subsection, we describe how our approach, specifi-
cally the f-to-CSP encoding, can be extended to handle exis-
tential quantifiers. We consider two cases.

Case 1: If no universal quantifier is nested inside an existen-
tial one then each first-order formula is just a compact rep-
resentation of a disjunction over the groundings of the exis-
tentially quantified variables. For example, if the domain is
{A,B}, then the first-order formula ∀x, ∀z ∃y R(x, y) ∨
S(z, y) represents the clause ∀x,∀z R(x,A) ∨ R(x,B) ∨
S(z,A) ∨ S(z,B). Given a world ω, we can encode this
clause as a CSP having two variables x and z, and four unary
constraints φ1(x), φ2(x), φ3(z) and φ4(z) corresponding
to the truth assignments to R(x,A), R(x,B), S(z,A) and
S(z,B) respectively in the world ω. In general, the variables
in the CSP encoding are the universally quantified variables
in the clause and we have a constraint over the universally
quantified variables for each atom and each possible value
assignment to the existentially quantified variables. Thus,
an existentially quantified variable increases the number of
constraints but does not factor in determining the complexity
of the junction tree computations.
Case 2: If a universal quantifier is nested within an exis-
tential one, then the first-order clause corresponds to a dis-
junction of conjunctions of propositional clauses. This case
is much harder than the previous case and whether our ap-
proach can be extended to such cases is an open problem.

Lifted Inference
Our approach can be easily incorporated within lifted in-
ference algorithms (cf. (Poole 2003; de Salvo Braz 2007;
Gogate and Domingos 2011; Van den Broeck et al. 2011;
Venugopal and Gogate 2012; Bui, Huynh, and Riedel
2013)). For example, consider the lifted MaxWalkSAT al-
gorithm described in (Sarkhel et al. 2014). Sarkhel et al.’s
algorithm works as follows. It first converts given normal
MLN to a non-shared (normal) MLN by grounding all the
shared terms in each formula. Then, it reduces the domain-
size of all non-shared terms to 1 and computes the MAP
value over this new MLN using MaxWalkSAT. Sarkhel et
al’s approach works because the MAP value for each atom
in a non-shared MLN lies at the extreme: ground atoms in a
non-shared MLN are either all true or all false in the MAP
tuple. To combine Sarkhel et al.’s algorithm with our ap-
proach, all we have to do is set domain sizes of all non-
shared logical variables to 1. Effectively, this removes the
variable from all the junction tree computations, possibly
decreasing its treewidth. Moreover, the proposed combina-
tion is more powerful because Sarkhel et al pre-ground the
MLN, which can be exponentially worse than our approach
(see Table 1).

Experiments
Setup
We used 10 benchmark MLNs with varied structures and
random evidence (< 25%) to evaluate the performance
of our Gibbs sampling and MaxWalkSAT algorithms. We
compared our system with two state-of-the-art MLN sys-
tems: Alchemy and Tuffy. Alchemy implements both Gibbs
sampling as well as MaxWalkSAT whereas Tuffy only im-
plements MaxWalkSAT. Of the 10 benchmarks, 5 were



MLN #Groundings C-Time SRate
student-100 1.0003e+08 0 11397
student-500 6.25008e+10 0 496.72
student-1000 1e+12 0 117.901
relation-100 1.03e+06 0 7047.97
relation-500 1.2575e+08 1 274.901
relation-1000 1.003e+09 10 68.6392
longchain-100 1e+14 0 3235.09
longchain-500 7.8125e+18 0 126.147
longchain-1000 1e+21 1 31.836
transitive1-100 1.01e+06 0 88739.7
transitive1-500 1.2525e+08 0 24568.4
transitive1-1000 1.001e+09 0 8879.61
transitive2-100 1.01e+06 0 73.4589
transitive2-500 1.2525e+08 1 0.590163
webkb 1.01011e+10 1 183.836
seg 1.26038e+09 0 32.6557
er 1.59375e+09 21 5.83606
protein 5.00312e+08 1 116.672
coref 5.27568e+08 2 180.967

Figure 2: Results on benchmarks for Gibbs sampling using our
approach. SRate is the sampling rate (#samples/second) and C-
Time is the compilation time in seconds. Note that Alchemy timed
out (2 hours) or ran out of memory on all the instances and there-
fore its results are not shown.

from Alchemy: webkb, entity resolution (er), segmenta-
tion (seg), protein interaction (protein) and coreference res-
olution (coref). Our 5 synthetic benchmarks are as fol-
lows: (i) student: ¬Student(x, p) ∨ ¬Publish(x, z)
∨Cited(z, u) (ii) relation: ¬Friends(x, y) ∨ ¬Related (y,
z) ∨Likes (z, x) (iii) longchain: ¬R1(x1,x2) ∨ ¬R2(x2,x3)
. . . R6(x6,x7) (iv) transitive1: ¬Likes(x, y) ∨ ¬Likes(y,
z) ∨Likes(y, x) (v) transitive2: ¬Friends (x, y) ∨
¬Friends(y, z) ∨ Friends(z, x) .

Each synthetic benchmark was designed to illustrate
the influence of MLN structure on scalability. Specifically,
though similar-looking, student has a smaller treewidth (for
its encoded CSP) compared to relation. Longchain illustrates
a long formula with small treewidth. Finally, though transi-
tive1 and transitive2 appear similar, it turns out that in each
step of Gibbs/MaxWalkSAT, very few messages of the junc-
tion tree underlying transitive1 need to be updated while for
transitive2, nearly all messages need to be updated.

Figures 2 and 3 show our results for Gibbs sampling and
MaxWalkSAT respectively. For our evaluation, we compute
two metrics: the compilation time (C-Time) in seconds and
the sampling/flip rate (SRate/FRate). C-time is the time
taken to initialize our junction trees. SRate is the number
of samples generated in a second for Gibbs sampling and
FRate is the number of flips per second in MaxWalkSAT.

Results for Gibbs Sampling
Both C-time as well as SRate depends upon the struc-
ture as well as the #groundings in the MLN. We can see
from Figure 2 that C-time was quite negligible for almost
all the MLNs (at most 21 seconds). SRate depends upon
the efficiency of updating the junction tree messages dur-
ing Gibbs sampling. For example, in transitive1, we could
generate 88,000 samples/second because each update op-

MLN #Groundings Ours Alchemy Tuffy
student-100 1.0003e+08 0;31629 - -
student-500 6.25008e+10 0;252.5 - -
student-1000 1e+12 0;72 - -
relation-100 1.03e+06 0;2455.5 95;1000 75;300
relation-500 1.2575e+08 1;142.8 - -
relation-1000 1.003e+09 13;36 - -
longchain-100 1e+14 0;928.3 - -
longchain-500 7.8125e+18 0;50 - -
longchain-1000 1e+21 1;12.3 - -
transitive1-100 1.01e+06 0;32082 75;350 65;100
transitive1-500 1.2525e+08 0;1032 - -
transitive1-1000 1.001e+09 0;284.2 - -
transitive2-100 1.01e+06 0;30 75;200 65;150
transitive2-500 1.2525e+08 1;0.22 - -
webkb 1.01011e+10 1;48.5 - -
seg 1.26038e+09 0;8.6 - -
er 1.59375e+09 26;1.2 - -
protein 5.00312e+08 1;6.8 - -
coref 5.27568e+08 3;6.3 - -

Figure 3: Results on benchmarks for MaxWalkSAT. For each
system, we show C-Time;FRate, where C-Time is the compila-
tion time (in seconds) for our system or the grounding time in
Alchemy/Tuffy. FRate is the flip rate (#Flips/second). “-” denotes
that the system ran out of time or memory.

eration is very efficient, while for transitive2 which has
the same #groundings, we could generate only 73 sam-
ples/second. Similarly, the MLNs, student-100 and relation-
500 have approximately the same #groundings, however,
their SRates are vastly different due to the treewidth of
their encoded CSPs. Student has treewidth 1 whereas rela-
tion has treewidth 2, therefore, while we could collect more
than 11,000 samples in a second for student-100, we could
only collect about 275 samples for relation-500. On the other
hand, for the same treewidth, #groundings affects SRate.
For example, longchain-1000 is almost 10 million times
larger than longchain-100. Therefore, FRate on longchain-
1000 is just 10% of the FRate on longchain-1000. Note that
Figure 2 does not include results for Alchemy because it
timed out (2 hours) or ran out of memory on all the instances.

Results for MaxWalkSAT
Figure 3 shows our results for MaxWalkSAT. C-Time is
very similar to the Gibbs sampler. Again, FRate depends
upon the MLN structure and the number of groundings be-
cause both affect the efficiency of the junction tree opera-
tions. For instance, since student has lower treewidth than
relation, the FRate for student is much higher. Transitive2
has the lowest FRate because each update involves recom-
puting the junction tree messages from scratch. When these
updates are efficient as in transitive1, FRate is several orders
of magnitude higher. Both Alchemy and Tuffy did not work
on most of the benchmarks except on three of the smallest-
sized ones; our approach was slightly worse than Tuffy and
Alchemy only on transitive2-100.

In summary, our results clearly demonstrate the supe-
rior scalability of our approach over the pre-grounding ap-
proaches used by Tuffy and Alchemy.



Conclusion
For large MLNs a sub-step, which is typically a bottleneck,
in several inference algorithms is “counting the true ground-
ings of a first-order formula in a possible world.” We pro-
posed to solve this counting problem by encoding it as a
CSP solution counting problem, thereby allowing us to ex-
ploit numerous advances, guarantees, principles and tech-
niques in the active research area of CSP and probabilis-
tic graphical models. Further, we developed a junction tree
based exact CSP solution counting algorithm and applied it
to two widely used MLN inference techniques, Gibbs sam-
pling and MaxWalkSAT, both of which require an answer to
a dynamic version of the counting problem at each iteration.
Our experiments with these algorithms on a wide variety of
MLN benchmarks with large domain-sizes clearly showed
that our approach was orders of magnitude more scalable
than existing state-of-the-art inference systems.
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