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Abstract

Estimation of individual muscle forces during human movement can provide insight into neural control and tissue loading and can
thus contribute to improved diagnosis and management of both neurological and orthopaedic conditions. Direct measurement of muscle
forces is generally not feasible in a clinical setting, and non-invasive methods based on musculoskeletal modeling should therefore be
considered. The current state of the art in clinical movement analysis is that resultant joint torques can be reliably estimated from motion
data and external forces (inverse dynamic analysis). Static optimization methods to transform joint torques into estimates of individual
muscle forces using musculoskeletal models, have been known for several decades. To date however, none of these methods have been
successfully translated into clinical practice. The main obstacles are the lack of studies reporting successful validation of muscle force
estimates, and the lack of user-friendly and efficient computer software. Recent advances in forward dynamics methods have opened
up new opportunities. Forward dynamic optimization can be performed such that solutions are less dependent on measured kinematics
and ground reaction forces, and are consistent with additional knowledge, such as the force–length–velocity–activation relationships of
the muscles, and with observed electromyography signals during movement. We conclude that clinical applications of current research
should be encouraged, supported by further development of computational tools and research into new algorithms for muscle force esti-
mation and their validation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The force output of cardiac muscle can be quantified by
simply recording arterial pressure. It is far more difficult to
obtain clinically relevant information on the function of
skeletal muscles. Imagine what could be done with such
information. In the treatment of cerebral palsy, the clini-
cian could ‘‘see’’ which muscle is responsible for an abnor-
mal gait pattern, and that muscle could then be directly
targeted for surgery. In an athlete with a recurrent overuse
injury, we could ‘‘see’’ the loads being placed upon bones
and joints during movement and how these loads are
altered during rehabilitation. There are many other neuro-
logical and orthopaedic problems where knowledge of
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muscle forces could enhance clinical decision making. In
this paper, we will review what methods currently exist,
and to which extent they are ready for clinical applications.

Direct measurement of muscle forces in vivo is usually
limited to minimally invasive measurements in superficial
tendons such as the Achilles (Finni et al., 1998; Komi
et al., 1992). Otherwise, in vivo measurements can be con-
ducted in the operation room where a force transducer
can be placed on a tendon, following data collection and
the removal of the device before the completion of the sur-
gery, e.g. flexor tendons of fingers during surgeries of carpal
tunnel (Dennerlein et al., 1998; Dennerlein et al., 1999; Den-
nerlein, 2005; Schuind et al., 1992). Such approaches may
not necessarily be feasible in a clinical setting; therefore
such tendon force measurement techniques have been uti-
lized mostly in research laboratories (Ravary et al., 2004;
Fleming and Beynnon, 2004). Non-invasive methods rely
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Fig. 1. (A) A musculoskeletal model of the lower extremity utilized in
forward dynamics solutions. Muscle forces generate the movement of the
hip, knee, and ankle joints. (B) A joint torque-driven model of the lower
extremity commonly used for inverse dynamics analysis of gait data.
Lower extremity was simply illustrated as an example; similar models exist
for upper extremities and other body segments.
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on the basic principle that muscles produce skeletal move-
ment and ground reaction forces. Clearly, none of these
observable variables provides information on any single
muscle. Instead, a technique known as inverse dynamic
analysis has been developed, based on computational mod-
eling of the dynamics of linked body segments. The analysis
produces estimates of joint torques, each of which repre-
sents the resultant action of all muscles crossing a joint.
While inverse dynamic analysis has become a routine tool
in clinical gait analysis (Vaughan et al., 1992; Winter,
2005), muscles are not represented and the approach
provides no information on muscular load sharing, ago-
nist–antagonist activity, energy transfer between joints via
biarticular muscles, and dynamic coupling (van den Bogert,
1994; Zajac et al., 2002). Electromyograpy (EMG) data can
support a clinical inverse dynamic analysis to more effec-
tively interpret joint torques, but there are no estimates of
individual muscle forces (Zajac et al., 2003).

Actual estimates of muscle forces can only be obtained
with computational models in which the skeleton and mus-
cles are both represented. Implemented in a variety of
forms, musculoskeletal models have been used in conjunc-
tion with non-invasive measurements to obtain individual
muscle forces during a number of movement tasks. Within
the current article, we have attempted to critically evaluate
those studies that have combined musculoskeletal models,
optimization methods and movement data to estimate indi-
vidual muscle forces. A review of literature is first provided
with the necessary methodological background, followed
by the applications of the various techniques with a discus-
sion of limitations. Novel strategies that attempt to improve
understanding of muscle function are also presented. We
will conclude with recommendations, for clinical applica-
tions and for further research that may increase the applica-
bility and validity of these techniques in clinical practice.

2. Musculoskeletal dynamics

Dynamic human motion is achieved via activation of the
muscles, which subsequently produce force and in turn,
move the joints in a controlled fashion to accomplish the
predetermined task requirements. Quite often, these tasks
are also required to take place against the action of exter-
nal forces. The outcome of this entire process largely
depends on the force-generation properties of the muscles,
the anatomical features of the skeletal system (e.g. anthro-
pometric properties, muscle paths) and the underlying neu-
ronal control system. It is thus critical to understand the
coupling between these mechanisms if one wishes to exam-
ine the success and applicability of various muscle force
estimation techniques. A brief explanation on modeling
these various components is thus presented below.

2.1. Equations of motion

For illustrative purposes, we will consider a musculo-
skeletal system where the kinematic degrees of freedom
(DoF) are a set of n joint angles q. The relationship
between movement and muscle forces in a musculoskeletal
model (Fig. 1A) can be expressed in matrix form by Eq. (1)
(Pandy, 2001).

MðqÞ€qþ Cðq; _qÞ þ GðqÞ þ RðqÞF MT þ E ¼ 0; ð1Þ

where M(q) is the system mass matrix (n · n); Cðq; _qÞ is the
centrifugal and coriolis loading (n · 1); G(q) is the gravita-
tional loading (n · 1); and E represents external forces.
R(q)FMT represents muscular joint torques (n · 1), where
R(q) is the matrix of muscular moment arms (n · m) and
FMT are the muscle forces (m · 1, m: number of muscles).

The system is usually redundant, with the number of
unknown muscle forces exceeding the number of equations
(m > n). In order to estimate muscle forces therefore, one
must either reduce m by combining muscles (Pierrynowski
and Morrison, 1985); or use a methodology relying on opti-
mization principles (described below). In its simplest form,
the reduction approach converges to the standard gait
analysis protocol where the muscular torque at each joint
is calculated from movement data and the ground reaction
forces (Otten, 2003; Fig. 1B). In that case, the generalized
system equations reduce to allow one-to-one correspon-
dence between degrees of freedoms and muscular loading:

MðqÞ€qþ Cðq; _qÞ þ GðqÞ þ T MT þ E ¼ 0; ð2Þ

where TMT are the muscular joint torques (n · 1) which are
equal to R(q)FMT.
2.2. Muscle–skeleton coupling

The origin and insertion sites of the muscles of interest
define the associated moment arms at the joints that they
span. This moment arm, multiplied by the force generated
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by the muscle, is the magnitude of the muscle force contri-
bution to the resultant joint torque which generates joint
rotation. Moment arms are classically defined as the dis-
tance between a muscle’s line of action and the joint’s axis
of rotation. As indicated in Eq. (1), this distance may be
joint angle dependent.

A more general definition of moment arms is provided
using the principle of virtual work (e.g., An et al.
(1984b)). If Rij(q) for example, is the moment arm of mus-
cle j with respect to joint axis i, the following equation
holds:

RijðqÞ ¼ �
@LjðqÞ
@qi

; ð3Þ

where Lj(q) is the origin–insertion length of muscle j as a
function of all joint angles q. Considering this relation-
ship, a musculoskeletal model that is used for estimating
muscle forces must necessarily incorporate accurate and
anatomical descriptions of the muscle insertions and the
three-dimensional path of the muscle relative to the moving
skeleton (Delp and Loan, 1995; Herzog, 1992).

2.3. Muscle modeling

The magnitude of the muscle force depends on its acti-
vation level (from the activation dynamics, Eq. (4a)) as well
as its force-generation properties defined by force–fiber
length and force–fiber velocity relationships (Eq. (4b),
Fig. 2). Also important are the properties of the tendon,
which is serially attached to the muscle and completes the
musculotendon unit (Zajac, 1989). Zajac (1989) presented
the widely known Hill-type muscle model in a generic fash-
ion as two differential equations:

_a ¼ f1ðu; aÞ; ð4aÞ
_lM ¼ f2ðlM; lMT; aÞ; ð4bÞ

where u is the muscle excitation and a is the muscle activa-
tion. lM is the muscle fiber length and lMT is the musculo-
tendon unit length. Muscle force (FMT) is the by-product
of the solution of these dynamic equations. It is common
practice to represent any musculotendon unit by defining
the following model parameters: maximum isometric force
(F0), optimal fiber length (l0

M), maximum shortening veloc-
Fig. 2. Commonly used musculotendon model for musculoskeletal simulations
element (PE); all in series with the tendon. Force generation capacity of the m
contractile element and the nonlinear spring properties of the passive element.
pennation angle (a) is included in the calculations.
ity (vS), tendon slack length (lTS) and pennation angle (a)
(Zajac, 1989). For a given state, all these intrinsic muscle
properties influence the magnitude of the muscle force,
and therefore define the boundaries of maximal muscle
force during muscle force estimations. This model has been
widely accepted and used in many large-scale musculoskel-
etal models as well as commercially available software such
as SIMM (Musculographics, Inc., Chicago, IL, USA; Delp
and Loan (1995)).
2.4. Forward solution

The system equations (Eq. (1) or Eq. (2)) provides the
relationship between skeletal motion and muscle forces or
joint torques occurring during the movement under inves-
tigation. How this equation is used depends on the
research/clinical problem and the availability of the exper-
imental data or a priori information related to the move-
ment. When muscle excitations or joint torques are
available or assumed, a forward dynamics approach can
be utilized that integrates the system equations to calculate
the movement patterns (Fig. 3A):

€q ¼ MðqÞ�1½Cðq; _qÞ þ GðqÞ þ T MT þ E�: ð5Þ

The approach is advantageous in that the movement is
predicted. Yet, accurate (a priori) knowledge of muscle
excitations (forces) or joint torques is rare, eliminating
the stand-alone application of this technique. This method,
however, can be utilized in combination with optimization
to estimate muscle forces. Examples of this will be reviewed
below. In forward solutions, E is usually obtained using a
viscoelastic contact model (Eðq; _qÞ; e.g., McLean et al.,
2003). A less common alternative is to use measured exter-
nal loads as input (E(t)) but this can lead to unstable
solutions.
2.5. Inverse solution

The inverse dynamics approach has been a frequent
component of muscle force estimation routines, due to
the availability of the joint kinematics data and ground
reaction forces following a standard gait analysis. Given
the time history of these variables, it is possible to calculate
. The contractile element (CE) of the muscle is in parallel with the passive
uscle was defined by the force–length and force–velocity properties of the
In the most general form, tendon elasticity is assumed to be nonlinear and
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Fig. 3. (A) Data flow in a musculoskeletal model during forward dynamics simulations. At each time step, the integration scheme calculates muscle forces
and joint kinematics using muscle and kinematic states of the previous time step. (B) Data flow in a joint torque-driven model for inverse dynamics
simulations. Time history of joint kinematics and external loading are fed into linear algebraic equations to solve for joint torques.
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muscular joint torques at each instant of the movement by
re-arranging Eq. (2) (Fig. 3B):

T MT ¼ MðqÞ€qþ Cðq; _qÞ þ GðqÞ þ E: ð6Þ

Although Eq. (6) is a straightforward representation of the
system dynamics to solve for muscular joint torques, it is
rarely used in practice. Instead, muscular joint torques
are typically derived from equations of motion of a single
segment, working recursively from distal to proximal (Win-
ter, 2005). A notable exception is the work by Kuo (1998),
who applied Eq. (6) to a whole body model. Such an ap-
proach was found to be advantageous since there are typ-
ically fewer unknown joint torques than equations
(degrees of freedom) in a whole body model. q includes
translational and rotational degrees of freedom for the
body relative to the ground where the forces and moments
are known to be zero.

The inverse dynamics technique has also been utilized to
evaluate gait changes as a result of pathology or treatment
(Davids et al., 2004). These types of investigations are
descriptive, not predictive, and interpretation at the muscu-
lar level is necessarily based on a total muscular joint tor-
que, and also possibly on EMG data. With the help of
optimization techniques described in the following sec-
tions, the methodology can be used to estimate muscle
forces, therefore providing an in-depth evaluation of mus-
cle function during the measured movement.
3. Muscle force estimation

Model-based estimation of muscle forces usually requires
optimization regardless of the strategy (inverse or forward
dynamics) selected to solve for the equations describing
the musculoskeletal system (Pandy, 2001; Tsirakos et al.,
1997). The redundancy of muscular load sharing can be
addressed by minimizing a cost or objective function appro-
priately selected for the movement under investigation. The
adoption of either an inverse or forward dynamics approach
is typically dependent on the availability of the experimental
data or the clinical/research question to be answered.
3.1. Inverse dynamics-based static optimization

Muscle force estimation using gait data combined with
inverse dynamics and static optimization has been prac-
ticed for almost three decades (Tsirakos et al., 1997). First,
joint torques are calculated from joint kinematics and
ground reaction force data using Eq. (6). The muscular
load sharing problem is then solved for each instant in
time, by minimizing an objective function J (e.g. total mus-
cle force) subject to constraints representing the equality of
the sum of individual muscular moments to the joint tor-
ques calculated from the inverse dynamics analysis
(Fig. 4A, Eq. (7)). The individual muscular moment is cal-
culated from the muscle force (the unknown of the optimi-
zation problem) and muscle moment arms, which are
derived from musculoskeletal anatomy and may or may
not depend on joint angles. Usually, the maximum possible
muscle forces are limited by physiological values as an
additional boundary constraint (Eq. (7)). Muscular dynam-
ics can be implicitly implemented by deriving time-depen-
dent bound constraints on muscle force from lower and
upper bounds of excitation levels fed through a dynamic
muscle model (Happee, 1994; Happee and van der Helm,
1995). The optimization problem may be subject to addi-
tional constraints (g,h) depending on the specifics of the
joint under investigation, e.g. constraints on the direction
of joint contact force to prevent dislocation of the glenoid
joint during simulations (van der Helm, 1994).

minimize JðF MTÞ
subject to RðqÞF MT ¼ T MT; ð7Þ

0 6 F MT 6 F max;

gðF MT; qÞ 6 0;

hðF MT; qÞ ¼ 0:
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Fig. 4. (A) Inverse dynamics-based static optimization. A joint torque-driven model solves for joint torques. Initial muscle force values are fed into a
musculoskeletal model that calculates muscular moments. Muscle forces are iteratively updated by an optimization scheme until the objective function J

(e.g. total muscle stress) is minimized and equality constraints between experimental joint torques and muscular moments are satisfied. (B) Forward
dynamics assisted data tracking. Initial values for muscle excitations are used to calculate muscle forces and joint kinematics using forward dynamics.
Muscle excitations are iteratively updated by an optimization algorithm to minimize tracking error between experimental data and model predictions (the
objective function J) and satisfy additional constraints. Measured external forces may also be included in tracking error calculations. (C) Optimal control
strategies. Initial muscle excitations are used to calculate muscle forces and joint kinematics in a forward dynamics fashion. Muscle excitations are
iteratively updated by an optimization scheme to minimize a physiologically based (e.g. metabolic energy consumption) or to maximize a performance-
based (e.g. jumping height) objective function J and satisfy task constraints g. Experimental data are solely needed for evaluation of results.
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Inverse dynamics-based static optimization has been
commonly applied to estimate muscle forces in the lower
extremity during walking (Table 1). Several investigators
tested the sensitivity of the results on objective function
selection (e.g., Glitsch and Baumann, 1997; Collins,
1995), as well as model parameters, (e.g. Glitsch and Bau-
mann, 1997; Herzog, 1992; Brand et al., 1986). Many sim-
pler models and movements were also investigated for
these purposes (Table 1). Static optimization is computa-
tionally efficient since it does not require multiple integra-
tions (solution of Eq. (6) instead of Eq. (5)). The moment
equality and boundary constraints of muscle forces are typ-
ically linear and proper selection of an objective function
can further increase cost-effectiveness by reducing the opti-
mization problem into linear programming, e.g. total mus-
cle force (Rohrle et al., 1984; Pedersen et al., 1987).
Although limited, the linear programming can be imple-
mented into standard movement analysis in a straightfor-
ward fashion. In particular, a double linear programming
formulation (spinal compression force subject to mini-
mized maximum muscle intensity) was frequently used
for the analysis of spinal forces (Table 1) and implemented



Table 1
Estimation of muscle forces using inverse dynamics-based static optimization

Activity Model Objective Validation Notes Reference

Walking 31 MGs Minimize sum of muscle
forces + 4 * (sum of joint moments) and
also original + weighted hip joint force

EMG, comparison of hip joint forces with
literature

Predicted muscle load sharing and lower
limb joint reactions. Modifying objective
function to include minimization of joint
reactions resulted in a limited reduction in
joint forces

Seireg and
Arvikar (1975)7 Segments

27 MGs Minimize sum of muscle stresses Temporal validation of muscle force
predictions via EMG

Accurate determination of hip joint contact
and muscle forces was sensitive to hip center
location

Crowninshield
et al. (1978)4 Segments

31 MGs Minimize sum of muscle forces and also
mechanico-chemical power output of
muscles (a function of muscle rest length,
endpoint velocity and zero force velocity)

EMG, predicted muscle forces must not
exceed physiological muscle stress capability,
muscle force gait patterns should not display
excessive inter-subject variation

Biggest source of error in present gait models
was depicted as the incomplete information
on the physiologic function and role of
individual muscles during the gait cycle

Patriarco et al.
(1981)7 DoFs

47 MGs Minimize sum of nth power of muscle
stresses (n = 1, 2, 3, 4 and 100)

EMG n = 3 was found to be appropriate. Muscular
force patterns were not sensitive to small
changes in n

Crowninshield
and Brand (1981)3 Joints

42 MGs Minimize sum of muscle forces Comparison of model outputs to previous
literature. Sensitivity analysis of muscle and
joint forces to changes in muscle origin/
insertion coordinates

Geometrical changes or errors in hip muscle
idealization had a greater influence on
muscle forces than joint forces at the hip

Rohrle et al.
(1984)6 DoFs

47 MGs Maximize endurance by minimizing sum
of muscle stresses cubed

Comparison of three solution sets of muscle
forces and hip joint forces

Illustrated the sensitivity of muscle force
predictions on physiologic cross-sectional
area of muscles

Brand et al. (1986)
3 Joints

7 MGs Minimize sum of muscle forces/muscle
forces squared/muscle stresses/ligament
forces/contact forces/instantaneous muscle
power

EMG All objectives except the principal of
minimum total ligament force afforded
successful predictions of muscle activation.
All minimization principles failed to
accurately predict antagonistic activity at the
hip and knee

Collins (1995)
3 Joints

47 MGs Minimize sum of muscle forces/muscle forces
squared/muscle stresses/muscle stresses
squared/muscle stresses cubed

EMG Internal loading was found to depend on the
description of joint kinematics. Muscle
stresses squared combined with less
constrained joints predicted synergistic and
antagonistic muscle activities

Glitsch and
Baumann (1997)3 Joints

47 MGs Minimize sum of muscle stresses cubed
(maximize endurance)

Comparison of model predicted femoral
head contact forces to previously reported
direct outputs from an instrumented
prosthesis

Provided information on the magnitudes and
directions of pelvic muscle forces and
acetabular contact forces during normal gait

Pedersen et al.
(1997)3 Joints
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Knee flexion 3 MGs Minimize sum of muscle forces/muscle
stresses

None Predicted load sharing depended on the
choice of decision variable in the objective.
When forces were used, activation preference
for muscles with large moment arms
observed. When stresses were used,
activation preference for muscles with
product of large moment arms and cross-
sectional area were noticed. Linear load
sharing criteria predicted orderly muscle
recruitment that might apply to onset of
muscle action. Non-linear criteria predicted
synergistic muscle action

Dul et al. (1984)
1 DoF

10 MGs Minimize sum of muscle forces/joint
moments/muscle stresses cubed/muscle
activations

EMG All (linear, non-linear and physiological)
optimization criteria predicted antagonistic
muscle contraction. Methodology was found
to be more sensitive to kinematic
information than selection of particular
optimization criteria

Li et al. (1999)
3 DoF

4 MGs Minimize sum of muscle activations
squared/shifted muscle activations squared

None A parameter was subtracted from muscle
activation to represent stability of the joint
and to control antagonistic activity. Co-
contraction was predicted through the use of
this shift parameter

Forster et al.
(2004)1 DoF

Running 47 MGs Minimize sum of muscle forces/forces
squared/muscle stresses/stresses squared/
stresses cubed

EMG Internal loading was found to depend on the
description of joint kinematics; muscle stress
squared combined with more flexible joints
predicted synergistic and antagonistic
activities

Glitsch and
Baumann (1997)3 Joints

Clenching 26 MGs Minimize sum of muscle forces/joint reaction
forces

Muscle, joint and bite forces were compared
to literature

Minimization of sum of muscle forces were
consistent with in vivo observations

Osborn and
Baragar (1985)6 DoFs

16 MGs Minimize relative activity of the most active
muscle

Previously published literature Magnitude of bite forces were calculated for
a range of bite point locations and bite force
directions. The magnitude of maximum
possible bite force was found to depend on
bite location and direction

Koolstra et al.
(1988)6 DoFs

10 MGs Minimize joint loads/sum of muscle forces/
forces squared/muscle stresses/stresses
squared

Ability to predict joint morphologies and
muscle outputs with reasonable trends

Minimization of joint load appeared to be
more important for morphological
development of the temporomandibular
joint

Trainor et al.
(1995)1 to 3 DoFs

(continued on next page)

A
.

E
rd

em
ir

et
a

l.
/

C
lin

ica
l

B
io

m
ech

a
n

ics
2

2
(

2
0

0
7

)
1

3
1

–
1

5
4

137



Table 1 (continued)

Activity Model Objective Validation Notes Reference

Spinal
compression

22 MGs Minimize maximum
muscle contraction stress
required to satisfy
equilibrium

EMG Prediction of muscle forces and lumbar spine loads
during isometric tasks imposing extension, bending
and twisting; isometric heavy exertions; and level
walking

Schultz et al. (1983,
1987)

4 MGs Minimize maximum
muscle intensity/spinal
compression force
subject to minimized
maximum muscle
intensity

None A multi-objective, double linear programming
approach was proposed as an alternative scheme to
solve for muscle forces. In the later study
co-contraction was modeled as an incremental
increase in the lower bounds of muscle forces

Bean et al. (1988)
2 DoFs Hughes et al. (1995)

10 MGs Minimize sum of cubed
muscle stresses/squared
muscle stresses/
minimum stress-
compression/eigenvector
synergy

EMG Predictions minimizing muscle stresses cubed were
closest to EMG. Muscular contributions to spinal
compression force were highly dependent on objective
function selection

Hughes et al. (1994)
2 DoFs

10 MGs Minimize maximum
muscle stress and spinal
compression (double
linear programming)/
sum of muscle stresses
cubed

EMG Inability of both models to reliably predict measured
EMG activity suggested that neither could adequately
represent the neural mechanism responsible for
generating muscle activation patterns for tested
loading conditions (maximum voluntary contractions
of trunk flexion and twisting)

Hughes and Chaffin
(1995)3 DoFs

10 MGs Minimize intensity-
compression/muscle
intensity cubed

None Influence of objective function selection on peak spinal
compression force during mildly asymmetric lifting
tasks was found to be minimal

Hughes (2000)
3 DoFs

11 MGs Minimize sum of muscle
stresses cubed

Comparison against EMG literature Combined finite element analysis with optimization
protocol. Illustrated the importance of muscular
loading on the stability and stress distribution
of the lumbar spine. Latter study extended similar
methodology to 66 muscles spanning 5 lumbar joints
to investigate spinal loading
during static sagittal plane lifting

Goel et al. (1993)
2 Segments Kong et al. (1998)

10 MGs Minimize muscle
intensity (force/area)
cubed

Sensitivity analysis, EMG Various load combinations of flexion and bending.
Reasonable variations of muscle lines of actions (due
to anatomical differences and modeling approaches)
affected model predictions, particularly shear loading
on the spine. Latter study explored Artificial Neural
Network classification of muscle recruitment against
optimization results

Nussbaum et al.
(1995)3 DoFs

Nussbaum and
Chaffin (1997)

Line missing
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8 MGs Minimize muscle force None Lumbosacral joint loads and muscle forces were
predicted for walking at slow, preferred and fast
speeds

Cheng et al. (1998)
6 DoFs

30 MGs Minimize maximum
muscle contraction
intensities/squared
muscle stress

Published EMG data Transfer of spinal forces to pelvis and leg was
examined

Hoek van Dijke
et al. (1999)6 Joints

46 MGs Minimize sum of muscle
stresses/muscle stresses
cubed/local shear forces

Comparison against literature Coupled with finite element analysis to represent
nonlinear passive response of the lumbar spine. The
latter study included another segment and ten more
muscles to represent the thoracic cage and extended
the study to standing postures with and without
loading

Shirazi-Adl et al.
(2002, 2005)6 Segments

12 MGs Minimize muscle stress
cubed

None Walking (specifically the instant of peak lumbar joint
force) was investigated. Forces were input to a finite
element model of the lumbar spine

Ezquerro et al.
(2004)3 DoFs

180 MGs Minimize muscle stress
cubed/+lateral bending
moment squared (for all
segments)/+maximize
self-correcting lateral
bending moments (above
and below curve apex)

None Spinal loading during scoliosis was found to be a
function of muscle activation strategy

Stokes and Gardner-
Morse (2004)6 Segments

52 MGs Minimize muscle forces
cubed/intervertebral
forces (L4–L5 level)
squared

EMG Objective functions were tested for isometric loading
with and without a stability level constrained to a
target predicted from regression equations. Inclusion
of the stability constraint provided more realistic
antagonistic activity and spinal compression in
agreement with EMG-based estimations

Brown and Potvin
(2005)3 DoFs

Neck
movements

14 MGs Double linear
programming
minimizing maximum
muscle contraction
intensity and vertebral
compression force with
maximum muscle
contraction intensity as
an upper bound

EMG Linear relationship between model predicted forces
and EMG signals were less prominent than those
previously reported for the lumbar region

Moroney et al.
(1988)3 DoFs

Finger
movements

11 MGs Minimize sum of muscle
stresses squared

Published EMG data Rapid pinching, hypothetical disk rotation. Finger
considered as an isolated system

Brook et al. (1995)
4 DoFs
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Table 1 (continued)

Activity Model Objective Validation Notes Reference

Wrist 4 MGs Minimize sum of muscle
forces

Previously published EMG One of the earlier articles using linear
programming principles

tirow20ptPenrod
et al. (1974)2 DoFs

Elbow
movements

9 MGs Minimize upper bound
for muscle stresses/sum
of muscle forces/muscle
forces squared/muscle
stresses/muscle stresses
squared

Previously published EMG data All objectives predicted the same number of
active muscles. Minimizing upper bound of
muscle stresses was proposed as a linear
programming problem that considered
individual muscle effort

An et al. (1984a)
2 DoFs

3 MGs Minimize sum of nth
power of muscle forces/
muscle stresses/relative
muscle forces (n = 1, 2,
3, 10, and 100)

Comparisons against a validated muscle
model driven by maximal muscle activation

Maximally loaded elbow flexion was
investigated. Estimated muscle forces were
not physiologically realistic when compared
to predictions of muscle model. Constant
relative force for all muscles (when using
relative muscle forces as an objective) was
proposed as an alternative for realistic
predictions

Challis and
Kerwin (1993)1 DoF

3 MGs Minimize sum of muscle
stress squared/muscle
stress cubed/normalized
muscle force squared/
normalized muscle force
cubed

Elbow torque during maximal muscular
activity

Submaximal isometric, submaximal
dynamic, and maximal dynamic elbow
flexions investigated under three separate
upper bounds on muscle forces: (i)
maximum isometric force, (ii) maximal force
as predicted by force–length curve, (iii)
maximum muscle force as predicted by
force–length and force–velocity curves.
Upper bounds were found to be effective on
predicted forces

Challis (1997)
1 DoF

4 MGs Minimize weighted sum
of muscle forces squared

None Introduced Lagrange multipliers to enforce
positive and continuous solutions for muscle
forces. Also developed a generalized model
of the upper limb with 7 DoFs, 30 MGs

Raikova (1992)
1 DoF

5 MGs Minimize sum of nth
power of weighted
muscle forces (n = 2–10
with a variety of weight
constants)

None Muscle lever arms (due to different ways of
muscle force modeling) exerted a great
influence of muscle force predictions. Joint
reaction force and muscle forces were not
influenced by objective function. Weighting
constants for agonistic antagonistic groups
were required to have different signs and
their magnitude depended on the direction
of the net external joint moment.
Optimization criterion was formulated for
non-negative muscle forces and continuity

Raikova (1996)
1 DoF

Line missing
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5 MGs Minimize sum of 1nth
power (2,3) of weighted
muscle forces/2muscle
activations/3nth power
(2) of muscle stress/4nth
power (2) of normalized
muscle force/5a weighted
combination of error between
desired joint torque and torque
obtained by summing the
individual moments of all
motor unit twitches, muscle
activation and total muscle
force

None 2,3included calculation of force from a
muscle model including force–length, force–
velocity relationships. Maximum muscle
force used for normalization is a function of
force–length, force–velocity relationship in 4.
Muscle models incorporated the distribution
of motor unit twitches (fast, intermediate,
slow). 5incorporated individual motor units.
Hill-type models were found to be suitable
for calculating maximum possible forces
that can be used as weighting factors.
Incorporation of individual function of
motor units was promising to explore motor
control including co-contraction and the
role of fast and slow twitches

Raikova and
Aladjov (2003)1 DoF

5 MGs Minimize a weighted
combination of error
between desired joint
moment and moment
obtained by summing the
individual moments of all
motor unit twitches, muscle
activation and total muscle force

EMG Explored learning fast elbow flexions.
Muscle models incorporated the distribution
of motor unit twitches (fast, intermediate,
slow). Objective function incorporated
individual motor units

Raikova et al.
(2005)1 DoF

6 MGs Minimize sum of muscle stress cubed Sensitivity analysis Elbow modeled as spherical joint with zero
joint moments. Neglecting the joint reaction
moment made the results sensitive to the
origin of the coordinate system

Pierce and Li
(2005)3 DoFs

Arm and
shoulder
movements

19 MGs Minimize muscle stresses squared Published EMG and shoulder
loading data

EMG results were not satisfactory. The
direction of glenohumeral joint force was
identified as a prospective constraint for
future studies

Karlsson and
Peterson (1992)6 DoFs

20 MGs Minimization of muscle
forces squared1/muscle
stresses squared2/normalized
muscle forces squared3/
maximum muscle stress4

EMG Direction of glenohumeral joint force was
constrained in order to guarantee joint
stability. 1leads to an overuse of favorably
located muscles. 2allows distribution of
muscle forces based on muscle cross-
sectional area and is computationally
efficient. 3provides the influence of force–
length properties of the muscle. 4prevents
high muscle stresses but is numerically
unstable. EMG cannot identify the best
criterion

van der Helm
(1994)7 DoFs

2 MGs Minimize weighted sum of muscle forces
squared/cubed

EMG Predicted coordinated control of an agonist/
antagonist muscle pair in goal-directed
movements. Muscle dynamics was
implemented in the form of dynamic
boundary constraints on possible muscle
forces

Happee (1994)
1 DoFs

(continued on next page)
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Table 1 (continued)

Activity Model Objective Validation Notes Reference

20 MGs Minimize metabolic cost (muscular energy
consumption)

EMG Maximal fast goal-directed arm movements
in the sagittal plane. Direction of
glenohumeral joint was constrained for joint
stability. Muscle dynamics was implemented
in the form of dynamic boundary constraints

Happee and van
der Helm (1995)7 DoFs

30 MGs Minimize sum of muscle forces squared EMG Load sharing patterns between shoulder
muscles during isometric flexion tasks

Nieminen et al.
(1995a)8 DoFs

30 MGs Maximize the endurance time of an activity
combined with minimization of muscle
forces squared

EMG Investigated fatiguing static contractions.
Model predicted order of fatigue
corresponded to EMG signals

Nieminen et al.
(1995b)9 DoFs

30 MGs Minimize ratio of current muscle stress and
time-dependent maximum muscle stress

None Novel muscular synergy principle for
computing shoulder muscle load sharing.
Studied relation between muscle stiffness
requirement and muscle co-contraction level

Niemi et al. (1996)
8 DoFs

16 MGs Minimize sum of muscle forces squared/
muscle stresses squared/muscle stresses
cubed/normalized muscle force cubed/
fatigue

EMG Isometric joint loading of the arm. Muscle
coordination patterns highly depended on
the number of balanced DoFs at the elbow.
Influence of cost function on results were
minimal. Cost functions were adequate to
represent actual muscle activity at the wrist
but not at the elbow

Buchanan and
Shreeve (1996)2 Joints

20 MGs Maximize hand force in a given direction
(linear programming)

Comparison against measured maximum
pull strengths

Isometric arm loading during pulling at
maximal strength. An arm strength
prediction model based on individual muscle
strength was provided

Hughes et al.
(1999)7 DoFs

13 MGs Minimize muscle stress squared Previously published muscle forces Possible to identify muscular function in
relation to stages of wheelchair propulsion

Lin et al. (2004)
3 DoFs

31 MGs Minimize muscle stress None Investigated the influence of tetraplegia and
paraplegia on glenoumeral joint and muscle
forces while using wheelchairs. Tetraplegic
subjects had significantly higher joint contact
forces

van Drongelen
et al. (2005)Not specified

MG: muscle group; DoF: degree of freedom. For studies not reporting number of DoFs, total number of joints or segments is shown.
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into ergonomics design software (3D SSSP, University of
Michigan, Ann Arbor, MI, USA). Inadequate kinematic
models to represent the motion of interest (Glitsch and
Baumann, 1997), and inaccuracies of experimental data
have been identified as weaknesses of the methodology.

Muscle force patterns are typically compared to EMG
activity patterns to validate the results of the static optimi-
zation approach (Table 1). In many cases, similarities have
been noted but controversy existed while predicting co-
contraction of muscles (Herzog and Binding, 1992; Herzog
and Binding, 1993; Herzog and Leonard, 1991; Hughes
et al., 1995). Minimizing the sum of cubed muscle stresses
as proposed by Crowninshield and Brand (1981) to maxi-
mize endurance has been widely accepted for lower extrem-
ity analysis and used to predict muscle forces during
walking regardless its formulation as a nonlinear optimiza-
tion problem (Table 1). For the investigation of muscular
loading of the upper extremity, minimizing sum of squared
muscle forces seems to be more common (Table 1). A vari-
ety of performance criteria based on muscle forces has also
been tested and compared (Collins, 1995; Li et al., 1999).
The computational cost of the technique is small, which
allowed sensitivity analyses to be performed in almost all
studies (Table 1).
3.2. Forward dynamics assisted data tracking

Another approach that exploits gait data to estimate
muscle forces is forward dynamics assisted data tracking.
Rather than solving the inverse dynamics problem (Eq.
(6)), an initial set of muscle activations are fed into a for-
ward dynamics model of the musculoskeletal system (Eq.
(5)). The solution is compared against experimental data
and the process is iterated by updating the muscle activa-
tions that best reproduce the experimental kinematics and
in some cases kinetics, e.g. ground reaction forces, as
depicted by the objective J (Fig. 4B, Eq. (8)). Muscle exci-
tations are always limited to unity bound constraints (Eq.
(8))

minimize Jðq� qexpÞ
subject to 0 6 u 6 1:

ð8Þ

A typical cost function is J = kq � qexpk, i.e. least squares
fitting of experimental kinematics. Measured external
forces may also be included, J(q � qexp, E � Eexp). The
technique has been used in a variety of activities and partic-
ularly found its applications for high pace movements of
sports biomechanics (Table 2). A common use has been
to find a set of muscle activations that can reliably repro-
duce the movement pattern, and subsequently perturb
parameters of the optimal solution to explore injury mech-
anisms (McLean et al., 2004; McLean et al., 2003). This
strategy is advantageous due to the more straightforward
inclusion of muscle dynamics within the solution when
compared to inverse dynamics-based static optimization
(Happee, 1994). Although the dynamics of the muscle (acti-
vation and force generation properties) might not be influ-
ential for low pace movements, muscle force estimation for
activities of high performance might benefit from this prop-
erty of forward dynamics assisted data tracking.

Unlike the inverse dynamics case, kinematic data is
incorporated within the forward dynamics model approach
in a somewhat weak fashion, allowing muscle force estima-
tions to be less sensitive to measurement errors in kine-
matic inputs. Regardless of these advantages, however,
the technique is computationally involved due to multiple
integrations to obtain optimal joint kinematics. Consider-
ing these facts, direct application of the forward dynamics
assisted data tracking approach to the clinical setting may
be difficult, where a rapid output response is often neces-
sary. Recently an efficient technique was proposed to solve
the tracking problem (Thelen et al., 2003), which should
result in muscle force estimates which are consistent with
measured joint torques as well as with known muscle
properties.

The forward dynamics methodology is commonly
assessed by its performance while tracking experimental
data (Table 2). In a majority of the presented cases, the
agreement between model predicted movements and kine-
matic measurements was good. Additional evaluation
involved comparison of untracked experimental data (such
as pedal forces by Neptune and Hull (1999)) with model
predictions. In terms of muscle forces, the validation was
solely based on comparing EMG data with estimated mus-
cle activation patterns (Table 2). It is possible that multiple
solutions exist to track the same experimental data. Many
investigators also explored minimization of a physiological
variable, e.g. muscle stress (Yamaguchi and Zajac, 1990),
in addition to the tracking error. This multi-objective crite-
rion probably increased the tracking errors in favor of esti-
mating muscular forces based on task objectives. The
validity of such an approach and the extent of weighting
in between these objectives are not yet known.

3.3. Optimal control strategies

Occasionally the experimental data might be incomplete
or the movement related investigations require predictive
simulations of the musculoskeletal system in novel situa-
tions for which no movement data are available. Under
these circumstances, optimal control strategies that use for-
ward dynamics are alternatives to solve for muscle excita-
tions (and forces as by-products) during movements
(Pandy, 2001; Pandy et al., 1992). Given an initial set of
muscle excitations, system equations are first solved in a
forward dynamics fashion (Eq. (5)). Then, the objective J

of the movement and task related constraints h, e.g.
static equilibrium at final time, are calculated (Fig. 4C,
Eq. (9)). The objective J can be a function of muscle force
and kinematics, can be related to task performance, e.g.
maximum height jumping, and it is usually represented
in an integral form to introduce dependence on time his-
tory. Muscle excitations are always limited to unity bound



Table 2
Estimation of muscle activations using forward dynamics assisted data tracking

Activity Model Objective Validation Notes Reference

Walking 9 MGs Minimize tracking error and metabolic energy
consumption

Comparison with static
optimization, comparisons with
EMG estimates from literature

Swing phase only, continuous controls Davy and
Audu (1987)3 DoFs

10 MGs Minimize tracking error and sum of cubed muscle
stresses (�muscle fatigue)

Kinematics, GRF, EMG against
normative data in literature

Exploration of normal gait simulations as a baseline for
functional neuromuscular stimulation

Yamaguchi
and Zajac
(1990)

8 DoFs

9 MGs Minimize kinematics and kinetics tracking error Kinematics and kinetics, EMG Followed by induced acceleration analysis to quantify
individual contributions of ankle plantar flexors to
support, forward progression and swing initiation,
controls modeled as a block pattern (onset, duration
and magnitude)

Neptune et al.
(2001)9 DoFs

Cycling 15 MGs Minimize tracking error in pedal forces1/crank torque2/
joint torques3/crank torque and pedal angle4/2 and 35/
1, 3 and 46/1, 3, 4 and timing of muscles7

Kinematics, kinetics, EMG Performance criteria of tracking all variables7 provided
the best agreement, controls modeled as block pattern
with duration and magnitude

Neptune and
Hull (1998)2 DoFs

15 MGs Minimize tracking error in kinematic and kinetic data
and timing of muscles

Pedal forces and crank torque Preferred cycling rate selection in endurance cycling
based on neuromuscular quantities (e.g. muscle stress,
endurance), controls modeled as block pattern with
duration and magnitude

Neptune and
Hull (1999)2 DoFs

9 MGs Minimize tracking error in pedal forces, crank torque,
joint torques

Pedal forces Comparison of optimization algorithms, controls
modeled as block pattern with duration and magnitude

Neptune
(1999)2 DoFs

Jumping 9 MGs Minimize tracking error and neuromuscular values of
muscle excitations

Kinematics, EMG One-legged jump; controls approximated by
polynomials

Spagele et al.
(1999)3 DoFs

Running 14 MGs Minimize tracking error in segment kinematics and
GRF

Joint kinematics, GRF, EMG Stance phase of heel–toe running, controls modeled as
block pattern with duration and magnitude

Neptune et al.
(2000)20 DoFs

Side
stepping

11 MGs Minimize tracking error in kinematics and GRF Joint angles, vertical GRF, muscle
activation comparisons with
literature

Prediction of knee joint loading; perturbation to
simulation inputs to model subject variability and
evaluate potentially hazardous knee joint loading,
linear interpolation of controls

McLean et al.
(2003)12 DoFs

Landing in
skiing

8 MGs Minimize tracking error in kinematics Joint angles Injury simulation by muscular over stimulation with
respect to optimal solution, constant controls during
the entire movement

Gerritsen et al.
(1996)6 DoFs

Muscle forces are by products of the solution technique. MG: muscle group; DoF: degree of freedom.
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constraints (Eq. (9)). The process is iterated until an opti-
mal set of muscle excitation patterns is found that mini-
mizes the objective and satisfies the constraints (Eq. (9))

minimize JðF MT; qÞ
subject to 0 6 u 6 1;

hðqÞ ¼ 0:

ð9Þ

Optimal control approaches have been used to investi-
gate muscular function during the activities of daily living
such as walking and sit-to-stand, under more physically
demanding tasks like jumping and running and for goal-
directed movements of the upper limb (Table 3). The tech-
nique allows for changes in motion and adaptations at the
muscular control level following alterations in the system.
This major advantage can lead to predictive simulations
to assess changes in control of muscles and muscle forces
as a result of therapeutic interventions, surgery and reha-
bilitation (e.g., plantar fasciotomy by Erdemir and Piazza
(2004)).

Muscle activations and movements predicted by the
optimal control strategies are usually evaluated by compar-
isons to joint kinematics data, ground reaction forces and
EMG data (Pandy, 2001). In most of the cases, the model
predictions are qualitatively in agreement with measured
data. However, the selection of an objective function can
still be controversial; the criterion is clear for movements
that aim for optimal performance (e.g. maximal height
jumping) but for other activities (that rely on physiological
function) such as walking at different speeds and non-bal-
listic movements, this selection relies on the investigators’
preference. It is possible that different objective functions
lead to similar movement patterns and muscle forces
(Pandy et al., 1995). Testing multiple criteria, however, is
not always feasible, particularly due to excessive computa-
tion time. Computational complexity and implementation
difficulties also prohibit the routine use of this technique
in clinical settings and limit its use to research
environments.
3.4. Alternative strategies

Inaccuracies of inverse dynamics analysis and high com-
putational cost associated with multiple forward dynamics
simulations have directed many investigators to search for
alternative strategies to estimate muscle forces. This section
highlights some of these studies which preferred including
EMG data into calculations rather than using the informa-
tion solely for validation purposes, as well as studies that
focused on combining methodologies or fine-tuning algo-
rithms to speed up the solution process.

Using prescribed muscle activations (e.g. maximal acti-
vation), a single forward dynamics simulation provides
the joint movements and muscle forces. Such an approach
was particularly common to investigate jaw mechanics
(Koolstra and van Eijden, 1997; Koolstra and van Eijden,
2005; Langenbach and Hannam, 1999). Muscle activations
can be prescribed in an educated manner by directly incor-
porating EMG data into an EMG-driven forward dynam-
ics model, as pioneered by Hof and van den Berg (1981).
The approach was also used to investigate elbow motion
(Koo and Mak, 2005) and knee movements during the
swing phase of walking (Piazza and Delp, 1996) and a
step-up task (Piazza and Delp, 2001). The analysis is com-
monly performed by prescribing the trajectory of some
joint angles, e.g. hip and ankle, and predict the remaining
from the EMG-driven forward dynamics, e.g. knee move-
ments (Piazza and Delp, 1996; Piazza and Delp, 2001). It
is likely that the muscle forces predicted via such
approaches suffered from inaccuracies of the muscle model
parameters and the processing of the EMG.

EMG data have also been used in combination with the
inverse dynamics approach to estimate muscle forces across
a series of joints. This process usually involves the calibra-
tion of musculoskeletal models and adjusting of muscular
gains by minimizing the difference between measured joint
torques and those calculated by the EMG-driven model
(e.g., Amarantini and Martin (2004)). The methodology
was particularly popular to estimate muscle and joint
forces during spinal loading (Cromwell et al., 1989; Cho-
lewicki and McGill, 1994; Cholewicki et al., 1995; Cholew-
icki and McGill, 1996; Granata and Marras, 1995;
Nussbaum and Chaffin, 1998; Thelen et al., 1994; van
Dieen et al., 2003; Marras et al., 1999). It has also been
used for muscle force prediction during arm movements
(Manal et al., 2002; Langenderfer et al., 2005; Soechting
and Flanders, 1997), isometric tasks of the elbow (Manal
and Buchanan, 2003; Wang and Buchanan, 2002) and the
wrist (Buchanan et al., 1993). Utilization of the method
for the lower extremity included walking (Amarantini
and Martin, 2004) and running (Lloyd and Besier, 2003).
These studies usually required additional experimentation
to obtain the relationship between isometric EMG and
joint torque, e.g. ‘‘isometric calibration’’ by maximal iso-
metric effort testing, isometric knee flexion and extension
contractions at 20–80% of maximum voluntary contraction
with increments of 20% (Amarantini and Martin, 2004).
The influence of EMG processing on the estimation of joint
moment under dynamic conditions was addressed in detail
(Amarantini and Martin, 2004), support for linear EMG to
muscle force processing was provided (Raschke and Chaf-
fin, 1996), and novel approaches including processing using
neural networks were also proposed (Wang and Buchanan,
2002). Gagnon et al. (2001) compared the ability of EMG-
based methods and inverse dynamics-based static optimiza-
tion to predict spinal loads and trunk muscle forces.
Although spinal compression was similar among the
approaches, only EMG-based methods detected individual
trunk muscle strategies.

Static optimization has also been implemented with for-
ward dynamics. Koolstra and van Eijden (2001) predicted
jaw trajectory and muscle forces during goal-directed
movements of the jaw, by finding a rest force that maxi-
mizes the movement to the desired position at each step



Table 3
Estimation of muscle activations using optimal control strategies

Activity Model Objective Constraints Validation Notes Reference

Walking 54 MGs Minimization of metabolic energy
expenditure per unit distance traveled

Bilateral symmetry,
fixed final time,
temporal symmetry

Kinematics, GRF,
EMG

Linear interpolation of controls Anderson and
Pandy (2001b)23 DoFs

Jumping 8 MGs Maximum height Bilateral symmetry Jump height, lift-
off time,
qualitative
comparisons

Bang-bang (on–off) controls Pandy et al.
(1990)4 DoFs

8 MGs Maximum height Bilateral symmetry Kinematics, GRF,
EMG

Bang-bang (on–off) controls Pandy and Zajac
(1991)4 DoFs

8 MGs Maximum height Bilateral symmetry Kinematics, GRF,
EMG

Linear interpolation of controls Pandy et al.
(1992)4 DoFs

54 MGs Maximum height Bilateral symmetry Kinematics, GRF,
EMG

Linear interpolation of controls Anderson and
Pandy (1999)23 DoFs

6 MGs Maximum height Bilateral symmetry Joint kinematics Controls were defined by time onset of maximal
activation

Bobbert (2001)
3 DoFs
20 DoFs Maximum height Bilateral symmetry None Controls modeled as a series of step function with

constant duration. Investigated counter
movement jump

Nagano et al.
(2005)32 MGs

Cycling 15 MGs Maximize crank progress (speed) Bilateral symmetry Crank kinematics,
crank forces,
EMG

Bang-bang (on–off controls) Raasch et al.
(1997)3 DoFs

15 MGs Minimize summed integrated muscle
activation and average endurance

Bilateral symmetry,
average pedaling rate of
90 rpm

Pedal forces and
crank torque

Controls modeled as block pattern with duration
and magnitude

Neptune and
Hull (1999)2 DoFs

Posture 10 MGs Minimize sum of squared derivatives of
adimensional muscle forces (� minimize jerk
or maximize smoothness)

Final limb angles and
angular velocities set to
zero

None Linear interpolation of controls (small time steps) Menegaldo et al.
(2003)3 DoFs

Rising on toes 6 MGs Minimize squared muscle stress Bilateral symmetry,
fixed final time, static
equilibrium at final time

Pelvis kinematics,
GRF, EMG

Linear interpolation of controls Erdemir and
Piazza (2004)6 DoFs

Rising from a
chair

8 MGs Minimize squared muscle stress (normalized
muscle force)/minimize squared time
derivative of normalized muscle force/
combination

Bilateral symmetry,
static equilibrium at
final time

Vertical GRF and
seat forces, EMG

Linear interpolation of controls; better
performance of combined criterion

Pandy et al.
(1995)3 DoFs

Kicking 5 MGs Minimum time kicking Constant final hip and
knee angle and zero
knee angular velocity

Comparison of
results from
different muscle
models

Continuous controls Audu and Davy
(1985)2 DoFs
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of forward dynamics integration. Formulations of static
optimization coupled with forward dynamics has also been
provided to minimize tracking error of movements (Yam-
aguchi et al., 1995; Thelen et al., 2003). In these protocols,
a single forward dynamics simulation is performed, thereby
avoiding the time consuming process associated with stan-
dard forward dynamics assisted data tracking. Yamaguchi
et al. (1995) calculated muscle forces during arm move-
ments by minimizing the sum of the cubed muscle stresses
(Crowninshield and Brand, 1981) at each instant in time,
while achieving muscle-induced accelerations that pro-
duced a desired trajectory. Thelen et al. (2003) imple-
mented static optimization into a feedback control system
to minimize tracking errors in joint kinematics during
cycling by minimizing the sum of the squared muscle acti-
vations at each step of the forward dynamic solution. Sen-
sitivity of results on the selection of objective function
while using these cost-effective tracking algorithms has
not been addressed yet.

3.5. Validation

Studies of muscle force predictions usually compare
muscle loading or activation patterns against EMG data
as an estimate of validity (Tables 1–3). Although evaluat-
ing the temporal characteristics and intensity of muscle fir-
ing during a movement is useful, such comparisons cannot
verify the magnitude of the calculated muscle force. Fortu-
nately, alternative and more advanced analyses exist, which
incorporate the quantification of muscle force sensitivity on
modeling parameters and comparisons of muscle forces
against direct measurements of tendon loading.

Some critical model parameters are associated with the
force generation properties of the muscle. Maximum iso-
metric force and physiological cross-sectional area of mus-
cles have been shown to affect the magnitude of muscle
force estimates, particularly during inverse dynamics-based
static optimization (Brand et al., 1986). Force–length,
force–velocity properties and activation dynamics can have
significant effects when using forward dynamics assisted
data tracking or optimal control solutions (Audu and
Davy, 1985). Also important, as noted earlier, are the ori-
gin, insertion, and path of muscles relative to the skeleton.
These variables determine the moment arms for each mus-
cle; an increased moment arm would result in a decreased
muscle force estimate while producing the same moment
at a given joint (Raikova and Prilutsky, 2001).

Descriptions of joint mechanics also have impacts on the
distribution of muscular forces. A variety of joint types are
available for modeling, from simple hinge joints to the
three-dimensional spherical joints. The joint type defines
the constraints of movements and has been found to influ-
ence muscle force calculations (Buchanan and Shreeve,
1996; Glitsch and Baumann, 1997). For example, in a
spherical joint, all joint torques need to be balanced by
muscular moments, whereas for a hinge joint, out of
plane torques are balanced by reaction torques at the joint.



148 A. Erdemir et al. / Clinical Biomechanics 22 (2007) 131–154
Consequently, muscle forces can be overestimated when
the physiological joint constraints are not imposed, e.g.
modeling the ankle joint as a spherical joint (Burdett,
1982). Related to kinematics, a two-dimensional musculo-
skeletal model will give different results than a three-dimen-
sional model as a result of enforcing joint movements,
which are naturally three-dimensional, to be in a plane
(Glitsch and Baumann, 1997). A recent study also illus-
trated the dependence of muscle force estimations on coor-
dinate system definitions (Pierce and Li, 2005).

Among simulation parameters, selection of the objective
function might have an effect on the prediction of muscle
forces. Multiple physiological criteria have been tested
while calculating muscular loading using inverse dynam-
ics-based static optimization (Table 1). Although a wide
variety of these objective functions resulted in similar mus-
cle forces, some seemed to work better depending on the
movement pattern under investigation (e.g. Crowninshield
and Brand (1981)), and when predicting co-activation of
muscles (Forster et al., 2004; Li et al., 1999; Hughes
et al., 1995). Objective function definition is clear for for-
ward dynamics assisted data tracking. Further, models
incorporating tracking of both kinematic and kinetic vari-
ables (e.g. external forces) were less erroneous than those
including kinematic variables only (Neptune and Hull,
1998). Identification of a performance criterion is critical
in optimal control simulations as a result of the generated
movement depending on that criterion as well as the con-
straints of the task. The movement patterns are supplied
in inverse dynamics-based static optimization and forward
dynamics assisted data tracking. Pandy et al. (1995) have
shown that similar movement patterns can be obtained
using optimal control simulations with different objective
functions while investigating non-ballistic activities, but
the muscle activation patterns might be different.

Accuracy of the experimental data used within the
model is paramount for accurate muscle force estimations.
Errors in joint kinematics and calculated joint torques for
example, are known to significantly alter modeled muscle
force magnitudes, particularly when the calculations are
done using inverse dynamics and static optimization (Li
et al., 1999; Glitsch and Baumann, 1997). Anderson and
Pandy (2001a) illustrated that it is possible to predict sim-
ilar muscle forces and joint reaction forces for walking
using the inverse dynamics-based static optimization
approach and the optimal control simulation approach.
They used the joint kinematics and torques calculated from
the forward dynamics simulation of the optimal control
problem as input to the inverse dynamics-based static opti-
mization. The consistency observed in these muscle force
predictions suggests that if experimental accuracy can be
improved, then resultant muscle forces might not depend
on the simulation characteristics.

Direct validation of predicted muscle forces is possible
by comparing them against the tendon forces measured
experimentally. Typically, direct validations are limited to
simple musculoskeletal models, e.g. with one or two
degrees of freedom (Binding et al., 2000), and tendon force
measurements are performed on animals by surgical
implantation of tendon force measurement devices (Herzog
and Leonard, 1991; Landjerit et al., 1988). Nonetheless, the
results of these studies can be used to assess the validity of
objective functions used in inverse dynamics-based static
optimization and the load sharing between synergistic mus-
cles (Binding et al., 2000). Validation data for pathological
conditions however do not currently exist and unfortu-
nately, direct validation in humans using current in vivo
tendon force transducers is limited. The devices are inva-
sive (Ravary et al., 2004; Fleming and Beynnon, 2004),
can only be placed on extrinsic tendons (e.g., the Achilles
tendon by Komi et al. (1992)) or used in the operation
room during surgery (Dennerlein et al., 1998; Dennerlein
et al., 1999; Dennerlein, 2005; Schuind et al., 1992), possess
measurement errors inherent to transducer design (Ravary
et al., 2004), and transducer calibration remains a largely
unsolved problem. In large-scale musculoskeletal models,
validity of muscle force estimates has been assessed indi-
rectly by comparing measured joint reaction forces against
those predicted by modeling. Brand et al. (1994) compared
hip forces predicted by a musculoskeletal model to direct
measurements from an instrumented hip implant. They
reported that muscle forces were apparently overestimated
due to the lack of realistic wrapping of muscle paths
around the hip joint, making moment arms smaller than
they should have been.
4. Induced acceleration analysis

The effect of muscular loading on joint kinematics is
clear for uniarticular muscles and for simple movements.
However, the influence of individual muscle forces on kine-
matics may not be identified easily when the movement
pattern is complicated and contains musculoskeletal cou-
pling and the involvement of multiple muscles and joints,
e.g. walking. Induced acceleration analysis (IAA) provides
a platform to establish the link between an isolated change
in a muscle force and the corresponding changes in the
movement. The induced accelerations of muscle j is defined
as the contribution of muscle j to all system accelerations:

IAAj ¼ MðqÞ�1RðjÞðqÞF MTj ð10Þ

where R(i)(q) is the ith column of the muscular moment arm
matrix R(q). Zajac and Gordon (1989) showed that the ele-
ments of the matrix M(q)�1R(j)(q) in Eq. (10) are non-zero.
This implies that each muscle contributes to motion of all
joints. This ‘‘coupled dynamics’’ representation can explain
some of the counterintuitive functions of biarticular mus-
cles, such as the gastrocnemius functioning as knee exten-
sor for specific conditions (Zajac and Gordon, 1989).
Usually, the analysis is based on forward dynamics solu-
tions obtained through data tracking or by optimal control
(Anderson and Pandy, 2003; Neptune et al., 2001; Zajac
et al., 2003). However, data can also be entered directly
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into Eq. (10) through the measured kinematics (q(t)). If the
musculoskeletal model includes contact with the ground,
special care is needed to avoid incorrect results (Neptune
et al., 2001; Kepple et al., 1997).

A common IAA variable is the trunk acceleration. Its
vertical component provides the contribution of individual
muscles to keep the trunk supported during locomotion;
the horizontal component gives a measure of contribution
to forward progression (Neptune et al., 2001). IAA has also
been presented in the form of induced position or velocity
analysis. In that case, a small time-step integration of Eq.
(10) is needed to quantify the influence of an individual
muscle on the kinematic variable of interest; for example,
knee flexion (Anderson et al., 2004) and knee flexion veloc-
ity (Goldberg et al., 2004). Vertical ground reaction force
has also been used to implicitly evaluate the contribution
of each muscle to support the body center of mass (Ander-
son and Pandy, 2003).

5. Recommendations for clinical applications

The ability to obtain quantitative estimates of muscle
forces during movement has significant clinical potential,
which has not yet been realized. Before considering such
clinical applications, it is important to balance the potential
usefulness of this approach against its limitations.

Clinical estimation of muscle forces can be compared to
the more traditional techniques of EMG and inverse
dynamics (quantification of joint moments). While EMG
is a direct measurement of individual muscle activity, the
magnitude of the signal is affected by electrode placement
and tissue conductivity (De Luca, 1997), which makes it
difficult to use EMG as an indicator of muscle force when
comparing between patients and control subjects, or
between testing sessions such as before and after treatment
(Clark et al., in press). Surface EMG is only applicable to
superficial muscles. Intramuscular EMG does not have this
limitation but is even less correlated to muscle force, limit-
ing its use to studying the timing of muscle activity. Inverse
dynamic analysis is well established but it only provides an
estimate of the total joint torques produced by all muscles
that cross a joint. Interpretation of joint torques often
involves a decision process about which muscles could be
responsible for the observed results. This interpretation is
typically done for one joint at a time, and can be incorrect
unless the clinician has a good understanding of functional
anatomy and is experienced in combining the joint torques
of the entire limb and possible contributions from each
muscle. For instance, if a knee extensor moment is small,
this is usually attributed to an abnormally small quadriceps
force (Berchuck et al., 1990). An equally plausible interpre-
tation, however, is that the hamstrings force is abnormally
large. One would have to examine the hip extensor moment
to resolve the ambiguity, but even then, this is not straight-
forward because the hamstrings are not the only muscles
contributing to the hip joint torque. Any technique which
estimates individual muscle forces, such as those reviewed
in this article, automatically includes all these consider-
ations. Therefore, we recommend that estimation of muscle
forces should be considered if the clinical question requires
an interpretation in terms of individual muscle forces, and
when a useful interpretation cannot be obtained from joint
torques or EMG. Typically this would be the case when the
clinical problem involves co-contraction of antagonistic
muscles and a case-control or longitudinal study design
where EMG is not applicable. Muscular co-contraction is
important in injury prevention and rehabilitation (Hurd
et al., 2006) and in applications where articular forces must
be estimated (Crowninshield et al., 1978). On the other
hand, if the clinical question can be answered with EMG
or joint torques alone, we recommend pursuing that path,
rather than introducing the additional complexity and
uncertainty of estimating individual muscle forces.

Once a specific clinical need for estimating muscle forces
has been established, the clinical potential must be balanced
against the many limitations of the methodology. First,
there are currently no user-friendly software systems that
allow estimation of muscle forces from kinesiological data.
Vendors of data acquisition systems typically provide soft-
ware to evaluate joint angles and joint torques, which still
require significant post-processing in order to obtain muscle
forces. In the above review, we have pointed out the impor-
tance of using a model with the appropriate number of
degrees of freedom in order to avoid overestimation of mus-
cle forces. This means that the standard 3D joint torques are
not necessarily a good starting point. We refer to Table 1 for
guidance on the design of appropriate models and algo-
rithms for the various subsystems in the body. The lack of
software means that clinical researchers will likely require
help from programmers, but also scientific input into the
design of the mechanical models. Second, there is a need
for preliminary research to establish and validate a suitable
method for estimating muscle forces in each particular
application. Previous research (Table 1) has quantified sen-
sitivity of muscle force estimations and resulted in qualita-
tive or semi-quantitative (EMG-based) validations for
specific muscles, specific movements, and mostly in healthy
populations. In addition, most optimization algorithms are
based on the notion that muscles are coordinated according
to a minimal effort principle. In a patient with pain, muscle
coordination may be guided more by the desire to avoid
mechanical stress on the painful tissue. In a patient with a
neurological disorder, muscle coordination may be affected
by spasticity or paralysis, which would no longer allow the
central nervous system to use a minimal energy principle.
Nevertheless, estimates may still be adequate if muscle
forces predictions are constrained sufficiently by measured
kinematics or joint torques. As discussed in this paper, force
estimates may be constrained even more by considering
known mechanical properties of muscle and measured
EMG signals. Therefore, the validity of muscle force esti-
mation, or at least its sensitivity, must be established for
each clinical application with the intention to estimate
study-specific error margins.
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6. Recommendations for research

This review of literature points towards opportunities
for research in three areas: clinical, computational, and
experimental.

Clinical research is necessary in order to develop and
encourage important applications. This includes develop-
ment of clinical protocols and their validation, as discussed
in the previous section. Once such protocols are estab-
lished, it would also be important to perform clinical stud-
ies aimed at demonstrating that such analyses may lead to
improved clinical decision making and ultimately, a better
health outcome or lower cost of treatment. Without such
research, cost reimbursements for eventual clinical applica-
tions will remain problematic.

Development of user-friendly computational tools is
important to support clinical applications. These tools
might combine existing algorithms and musculoskeletal
models (e.g. Table 1) and make them accessible to a
broader group of users. Several commercial initiatives are
currently being undertaken, such as by Musculographics,
Inc. (Chicago, IL), the Anybody Group (Aalborg, Den-
mark), and Biomechanics Research Group, Inc. (San Cle-
mente, CA) but their use is still limited to research.
Clinical applications have not been reported, possibly
because the software is still difficult to use and lacks scien-
tific validation.

Research on new algorithms is also warranted, espe-
cially in optimal control methods to predict movements
from optimization principles without use of measurements.
This type of application is important for surgical planning
(e.g. tendon transfers) and in prosthetic design. If move-
ment can be predicted, there is an opportunity for a true
computer-aided design of the human–machine system.
Current movement prediction algorithms are extremely
computer-intensive (Anderson and Pandy, 2001a,b) which
necessitates parallel computing (Neptune, 1999; Anderson
et al., 1995; van Soest and Casius, 2003; Koh et al.,
2004). A promising approach lies in collocation methods
(Kaplan and Heegaard, 2001), which may solve the move-
ment prediction problem on standard desktop hardware.
Computationally effective tools are also evolving for data
tracking which combines static optimization with a single
forward dynamic simulation (Yamaguchi et al., 1995; The-
len et al., 2003; Thelen and Anderson, 2006). In a mature
state, these tools should allow for integration of kinemat-
ics, external forces, and EMG to improve the reliability
of muscle force estimations.

A third area of computational research is in musculo-
skeletal modeling. It is not known to which extent it is
important to obtain patient-specific model parameters,
such as muscle moment arms, skeletal anatomy, and mass
properties. Subject-specific models may be especially
important in clinical populations with bone deformities
or altered muscle properties (Arnold et al., 2000, 2001).

Experimental studies are needed to further establish the
validity of muscle force estimations by comparison to
direct measurements or EMG. Direct measurements are
currently only possible by transducers that are implanted
and difficult to calibrate (Ravary et al., 2004; Fleming
and Beynnon, 2004). A less invasive technique based on
ultrasound is a promising alternative (Pourcelot et al.,
2005). With appropriate statistical techniques, such as cor-
relation, uncalibrated transducers and semi-quantitative
measurements (e.g. EMG) can be effectively used for vali-
dation of model-based muscle force estimates (De Zee
et al., in press). There is especially a need for validation
in clinical populations in which the minimal effort assump-
tions may not be valid. On a more fundamental level, such
research may be done in animal models.
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