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Abstract

This paper presents a theoretical framework for automatically partitioning parallel loops
to minimize cache coherency tra�c on shared-memory multiprocessors. While several previ-
ous papers have looked at hyperplane partitioning of iteration spaces to reduce communica-
tion tra�c, the problem of deriving the optimal tiling parameters for minimal communication
in loops with general a�ne index expressions has remained open. Our paper solves this open
problem by presenting a method for deriving an optimal hyperparallelepiped tiling of it-
eration spaces for minimal communication in multiprocessors with caches. We show that
the same theoretical framework can also be used to determine optimal tiling parameters for
both data and loop partitioning in distributed memory multicomputers. Our framework
uses matrices to represent iteration and data space mappings and the notion of uniformly
intersecting references to capture temporal locality in array references. We introduce the
notion of data footprints to estimate the communication tra�c between processors and use
linear algebraic methods and lattice theory to compute precisely the size of data footprints.
We have implemented this framework in a compiler for Alewife, a distributed shared memory
multiprocessor.

1 Introduction

Cache-based multiprocessors are attractive because they seem to allow the programmer to ignore

the issues of data partitioning and placement. Because caches dynamically copy data close to

where it is needed, repeat references to the same piece of data do not require communication

over the network, and hence reduce the need for careful data layout. However, the performance

of cache-coherent systems is heavily predicated on the degree of temporal locality in the access

patterns of the processor. Loop partitioning for cache-coherent multiprocessors is an e�ort to

increase the percentage of references that hit in the cache.

�A short version of this paper appears in ICPP 1993.
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The degree of reuse of data, or conversely, the volume of communication of data, depends

both on the algorithm and on the partitioning of work among the processors. (In fact, parti-

tioning of the computation is often considered to be a facet of an algorithm.) For example, it is

well known that a matrix multiply computation distributed to the processors by square blocks

has a much higher degree of reuse than the matrix multiply distributed by rows or columns.

Loop partitioning can be done by the programmer, by the run time system, or by the

compiler. Relegating the partitioning task to the programmer defeats the central purpose of

building cache-coherent shared-memory systems. While partitioning can be done at run time

(for example, see [1, 2]), it is hard for the run time system to optimize for cache locality because

much of the information required to compute communication patterns is either unavailable at

run time or expensive to obtain. Thus compile-time partitioning of parallel loops is important.

This paper focuses on the following problem in the context of cache-coherent multiprocessors.

Given a program consisting of parallel do loops (of the form shown in Figure 1 in Section 2.1),

how do we derive the optimal tile shapes of the iteration-space partitions to minimize the

communication tra�c between processors. We also indicate how our framework can be used for

loop and data partitioning for distributed memory machines, both with and without caches.

1.1 Contributions and Related Work

This paper develops a uni�ed theoretical framework that can be used for loop partitioning

in cache-coherent multiprocessors, or for loop and data partitioning in multicomputers with

local memory.1 The central contribution of this paper is a method for deriving an optimal

hyperparallelepiped tiling of iteration spaces to minimize communication. The tiling speci�es

both the shape and size of iteration space tiles. Our framework allows the partitioning of doall

loops accessing multiple arrays, where the index expressions in array accesses can be any a�ne

function of the indices.

Our analysis uses the notion of uniformly intersecting references to categorize the references

within a loop into classes that will yield cache locality. This notion helps specify precisely the set

of references that have substantially overlapping data sets. Overlap produces temporal locality

in cache accesses. A similar concept of uniformly generated references has been used in earlier

work in the context of reuse and iteration space tiling [3, 4].

The notion of data footprints is introduced to capture the combined set of data accesses

made by references within each uniformly intersecting class. (The term footprint was originally

coined by Stone and Thiebaut[5].) Then, an algorithm to compute precisely the total size of

the data footprint for a given loop partition is presented. Precisely computing of the size of the

set of data elements accessed by a loop tile was itself an important and open problem. While

general optimization methods can be applied to minimize the size of the data footprint and

derive the corresponding loop partitions, we demonstrate several important special cases where

the optimization problem is very simple. The size of data footprints can also be used to guide

program transformations to achieve better cache performance in uniprocessors as well.

Although there have been several papers on hyperplane partitioning of iteration spaces, the

problem of deriving the optimal hyperparallelepiped tile parameters for general a�ne index

expressions has remained open. For example, Irigoin and Triolet [6] introduce the notion of loop

partitioning with multiple hyperplanes which results in hyperparallelepiped tiles. The purpose

1This paper, however, focuses on loop partitioning, but indicates the modi�cations necessary for data

partitioning.
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of tiling in their case is to provide parallelism across tiles, and vector processing and data locality

within a tile. They propose a set of basic constraints that should be met by any partitioning

and derive the conditions under which the hyperplane partitioning satis�es these constraints.

Although their paper describes useful properties of hyperplane partitioning, it does not ad-

dress the issue of automatically generating the tile parameters. Careful analysis of the mapping

from the iteration space to the data space is very important in automating the partitioning pro-

cess. Our paper describes an algorithm for automatically computing the partition based on the

notion of cumulative footprints, derived from the mapping from iteration space to data space.

Abraham and Hudak [7] considered loop partitioning in multiprocessors with caches. How-

ever, they dealt only with index expressions of the form index variable plus a constant. They

assumed that the array dimension was equal to the loop nesting and focused on rectangular and

hexagonal tiles. Furthermore, the code body was restricted to an update of A[i; j].

Our framework, however, does not place these restrictions on the code body. It is able to

handle much more general index expressions, and produce parallelogram partitions if desired.

We also show that when Abraham and Hudak's methods can be applied to a given loop nest,

our theoretical framework reproduces their results.

Ramanujam and Sadayappan [8] deal with data partitioning in multicomputers with local

memory and use a matrix formulation; their results do not apply to multiprocessors with caches.

Their theory produces communication-free hyperplane partitions for loops with a�ne index

expressions when such partitions exist. However, when communication-free partitions do not

exist, they can deal only with index expression of the form variable plus a constant o�set. They

further require the loop dimension to be equal to the loop nesting.

In contrast, our framework is able to discover optimal partitions in cases where communica-

tion free partitions are not possible, and we do not restrict the loop nesting to be equal to array

dimension. In addition, we show that our framework correctly produces partitions identical to

those of Ramanujam and Sadayappan when communication free partitions do exist.

In a recent paper, Anderson and Lam [9] derive communication-free partitions for multi-

computers when such partitions exist, and block loops into squares otherwise. Our notion of

cumulative footprints allows us to derive optimal partitions even when communication-free par-

titions do not exist.

Gupta and Banerjee [10] address the problem of automatic data partitioning by analyzing

the entire program. Although our paper deals with loop and data partitioning for a single loop

only, the following di�erences in the machine model and the program model lead to problems

that are not addressed by Gupta and Banerjee: (1) The data distributions considered by them

do not include general hyperparallelepipeds. In order to deal with hyperparallelepipeds, one

requires the analysis of communication presented in our paper. (2) Their communication model

does not take into account caches. (3) They deal with simple index expressions of the form

c1 � i+ c2 and not a general a�ne function of the loop indices.

Our work complements the work of Wolfe and Lam [3] and Schreiber and Dongarra [11].

Wolfe and Lam derive loop transformations (and tile the iteration space) to improve data locality

in multiprocessors with caches. They use matrices to model transformations and use the notion

of equivalence classes within the set of uniformly generated references to identify valid loop

transformations to improve the degree of temporal and spatial locality within a given loop nest.

Schreiber and Dongarra brie
y address the problem of deriving optimal hyperparallelepiped

iteration space tiles to minimize communication tra�c (they refer to it as I/O requirements).
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However their work di�ers from this paper in the following ways: (1) Their machine model

does not have a processor cache. (2) The data space corresponding to an array reference and

the iteration space are isomorphic. These restrictions make the problem of computing the

communication tra�c much simpler. Also, one of the main issues addressed by Schreiber and

Dongarra is the atomicity requirement of the tiles which is related to the dependence vectors

and this paper is not concerned with those requirements as it is assumed that the iterations can

be executed in parallel.

Ferrante, Sarkar, and Thrash [12] address the problem of estimating the number of cache

misses for a nest of loops. This problem is similar to our problem of �nding the size of the

cumulative footprint, but di�ers in these ways: (1) We consider a tile in the iteration space and

not the entire iteration space; our tiles can be hyperparallelepipeds in general. (2) We partition

the references into uniformly intersecting sets, which makes the problem computationally more

tractable, since it allows us to deal with only the tile at the origin. (3) Our treatment of

coupled subscripts is much simpler, since we look at maximal independent columns, as shown

in Section 5.2.

1.2 Overview of the Paper

The rest of this paper is structured as follows. Section 2 states our system model and our

program-level assumptions. Section 3 �rst presents a few examples to illustrate the basic ideas

behind loop partitioning; it then discusses the notion of data partitioning, and when it is im-

portant. Section 4 develops the theoretical framework for partitioning and presents several

additional examples. Section 5 extends the basic framework to handle more general expressions,

and Section 6 indicates modi�cations to the basic framework to handle data partitioning and

more general types of systems. The framework for both loop and data partitioning has been

implemented in the compiler system for the Alewife multiprocessor. The implementation of our

compiler system and a sampling of results is presented in Section 7, and Section 8 concludes the

paper.

2 Problem Domain and Assumptions

This paper focuses on the problem of partitioning loops in cache-coherent shared-memory multi-

processors. Partitioning involves deciding which loop iterations will run collectively in a thread

of computation. Computing loop partitions involves �nding the set of iterations which when

run in parallel minimizes the volume of communication generated in the system. This section

describes the types of programs currently handled by our framework and the structure of the

system assumed by our analysis.

2.1 Program Assumptions

Figure 1 shows the structure of the most general single loop nest that we consider in this paper.

The statements in the loop body have array references of the form A[~g(i1; i2; : : : ; il)], where the

index function is ~g : Z l ! Zd, l is the loop nesting and d is the dimension of the array A. We

assume that all array references within the loop body are unconditional.

We address the problem of loop and data partitioning for index expressions that are a�ne
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Doall (i1=l1:u1, i2=l2:u2, ..., il=ll:ul)

loop body

EndDoall

Figure 1: Structure of a single loop nest

functions of loop indices. In other words, the index function can be expressed as,

~g(~i) = ~iG+ ~a (1)

where G is a l � d matrix with integer entries and ~a is an integer constant vector of length d,

termed the o�set vector. Note that ~i; ~g(~i), and ~a are row vectors. We often refer to an array

reference by the pair (G;~a). (An example of this function is presented in Section 3). Similar

notation has been used in several papers in the past, for example, see [3, 4]. All our vectors and

matrices have integer entries unless stated otherwise. We assume that the loop bounds are such

that the iteration space is rectangular. However, we note that our methods can still be used to

derive reasonable partitions when this condition is not met. Loop indices are assumed to take

all integer values between their lower and upper bounds, i.e, the strides are one.

Previous work [7, 8, 13] in this area restricted the arrays in the loop body to be of dimension

exactly equal to the loop nesting. Abraham and Hudak [7] further restrict the loop body to

contain only references to a single array; furthermore, all references are restricted to be of the

form A[i1 + a1; i2 + a2; : : : ; id + ad] where aj is an integer constant. Matrix multiplication is a

simple example that does not �t these restrictions.

Given P processors, the problem of loop partitioning is to divide the iteration space into P

tiles such that the total communication tra�c on the network is minimized with the additional

constraint that the tiles are of equal size, except at the boundaries of the iteration space.

The constraint of equal size partitions is imposed to achieve load balancing. We restrict our

discussions to hyperparallelepiped tiles, of which rectangular tiles are a special case.

Like [7, 8, 13], we do not include the e�ects of synchronization in our framework. Syn-

chronization is handled separately to ensure correct behavior. For example, in the doall loop in

Figure 1, one might introduce a barrier synchronization after the loop nest if so desired. We also

note that in many cases �ne-grain data-level synchronization can be used within a parallel do

loop to enforce data dependencies and its cost approximately modeled as slightly more expensive

communication than usual [14]. See Appendix B for some details.

2.2 System Model

Our analysis applies to systems whose structure is similar to that shown in Figure 2. The system

comprises a set of processors, each with a coherent cache. Cache misses are satis�ed by global

memory accessed over an interconnection network or a bus. The memory can be implemented

as a single monolithic module (as is commonly done in bus-based multiprocessors), or in a

distributed fashion as shown in the �gure. The memory modules might also be implemented on

the processing nodes themselves (data partitioning for locality makes sense only for this case).

In all cases, our analysis assumes that the cost of a main memory access is much higher than a

cache access, and for loop partitioning, our analysis assumes that the cost of the main memory

access is the same no matter where in main memory the data is located.
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Figure 2: A system with caches and uniform-access main memory.

The goal of loop partitioning is to minimize the total number of main memory accesses. For

simplicity, we assume that the caches are large enough to hold all the data required by a loop

partition, and that there are no con
icts in the caches. When caches are small, the optimal

loop partition does not change, rather, the size of each loop tile executed at any given time on

the processor must be adjusted so that the data �ts in the cache (if we assume that the cache

is e�ectively 
ushed between executions of each loop tile). Unless otherwise stated, we assume

that cache lines are of unit length. The e�ect of larger cache lines can be included easily as

suggested in [7], and is discussed further in Section 6.2.

3 Loop Partitions and Data Partitions

This section presents examples to introduce and illustrate some of our de�nitions and to motivate

the bene�ts of optimizing the shapes of loop and data tiles. More precise de�nitions are presented

in the next section.

As mentioned previously, we deal with index expressions that are a�ne functions of loop

indices. In other words, the index function can be expressed as in Equation 1. Consider the

following example to illustrate the above expression of index functions.

Example 1 The reference A[i3 + 2; 5; i2� 1; 4] in a triply nested loop can be expressed by

(i1; i2; i3)

2
64 0 0 0 0

0 0 1 0

1 0 0 0

3
75+ (2; 5;�1; 4)

In this example, the second and fourth column of G are zero indicating that the second and

fourth subscripts of the reference are independent of the loop indexes. In such cases, we show

in Section 5.2 that we can ignore those columns and treat the referenced array as an array of

lower dimension. In future, without loss of generality, we assume that the G matrix contains

no zero columns.

Now, let us introduce the concept of a loop partition by examining the following example.

Loop partitioning speci�es the tiling parameters of the iteration space. Loop partitioning is

sometimes termed iteration space partitioning or tiling.
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Figure 3: Two simple rectangular loop partitions in the iteration space.

Example 2

Doall (i=101:200, j=1:100)

A[i,j] = B[i+j,i-j-1]+B[i+j+4,i-j+3]

EndDoall

Let us assume that we have 100 processors and we want to distribute the work among them.

There are 10,000 points in the iteration space and so one can allocate 100 of these to each of

the processors to distribute the load uniformly. Figure 3 shows two simple ways of partitioning

the iteration space { by rows and by square blocks { into 100 equal tiles.

Minimizing communication volume requires that we minimize the number of data elements

accessed by each loop tile. To facilitate this optimization, we introduce the notion of a data

footprint. Footprints comprise the data elements referenced within a loop tile. In other words,

the footprints are regions of the data space accessed by a loop tile. In particular, the footprint

with respect to a speci�c reference in a loop tile gives us all the data elements accessed through

that reference from within a tile of a loop partition.

Using Figure 4, let us illustrate the footprints corresponding to a reference of the form

B[i+j,i-j] for the two loop partitions shown in Figure 3. The footprints in the data space

resulting from the loop partition a are diagonal stripes and those resulting from partition b are

square blocks rotated by 45 degrees. Algorithms for deriving the footprints are presented in the

next section.

Let us compare the two loop partitions in the context of a system with caches and uniform-

access memory (see Figure 2) by computing the number of cache misses. The number of cache

misses is equal to the number of distinct elements of B accessed by a loop tile, which is equal to the

size of a loop tile's footprint on the array B. (Section 6.1 deals with minimizing cache-coherence

tra�c). Caches automatically fetch a loop tile's data footprint as the loop tile executes. For

each tile in partition a, the number of cache misses can be shown to be 104 (see Section 5.1)
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Figure 5: Systems with nonuniform main-memory access time.

whereas the number of cache misses in each tile of partition b can be shown to be 140. Thus,

because it allows data reuse, loop partition a is a better choice if our goal is to minimize the

number of cache misses, a fact that is not obvious from the source code.

When is data partitioning important? Data partitioning is the problem of partitioning the

data arrays into data tiles and assigning each data tile to a local memory module, such that the

number of memory references that can be satis�ed by the local memory is maximized. Data

partitioning is relevant only for nonuniform memory-access (NUMA) systems (for example, see

Figure 5).

In systems with nonuniform memory-access times, both loop and data partitioning are re-

quired. Our analysis applies to such systems as well. The loop tiles are assigned to the processing

nodes and the data tiles to memory modules associated with the processing nodes so that a max-

imum number of the data references made by the loop tiles are satis�ed by the local memory

module. Note that in systems with nonuniform memory-access times, but which have caches,

data partitioning may still be performed to maximize the number of caches misses that can be

satis�ed by the memory module local to the processing node.

Referring to Figure 4, the footprint size is minimized by choosing a diagonal striping of the
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data space as the data partition, and a corresponding horizontal striping of the iteration space

as the loop partition. The additional step of aligning corresponding loop and data tiles on the

same node maximizes the number of local memory references.

In fact, the above horizontal partitioning of the loop space and diagonal striping of the

data space results in zero communication tra�c. Ramanujam and Sadayappan [8] presented

algorithms to derive such communication-free partitions when possible. On the other hand,

in addition to producing the same partitions when communication-tra�c-free partitions exist

(see Sections 5.1 and 6.3), our analysis will discover partitions that minimize tra�c when such

partitions are non-existent as well (see Example 8).

Example 3

Doall (i=1:N, j=1:N)

A[i,j] = B[i,j] + B[i+1,j-2] + B[i-1,j+1]

EndDoall

For the loop shown in Example 3, a parallelogram partition results in a lower cost of memory

access compared to any rectangular partition since most of the inter iteration communication

can be internalized to within a processor for a parallelogram partition (see Section 7.1). Because

rectangular partitions often do not minimize communication, we would like to include parallel-

ograms in the formulation of the general loop partitioning problem. In higher dimensions a

parallelogram tile generalizes to a hyperparallelepiped; the next section de�nes it precisely.

4 A Framework for Loop and Data Partitioning

This section �rst de�nes precisely the notion of a loop partition and the notion of a footprint of

a loop partition with respect to a data reference in the loop. We prove a theorem showing that

the number of integer points within a tile is equal to the volume of the tile, which allows us to

use volume estimates in deriving the amount of communication. We then present the concept

of uniformly intersecting references and a method of computing the cumulative footprint for a

set of uniformly intersecting references. We develop a formalism for computing the volume of

communication on the interconnection network of a multiprocessor for a given loop partition,

and show how loop tiles can be chosen to minimize this tra�c. We brie
y indicate how the

cumulative footprint can be used to derive optimal data partitions for multicomputers with

local memory (NUMA machines).

4.1 Loop Tiles in the Iteration Space

Loop partitioning results in a tiling of the iteration space. We consider only hyperparallelepiped

partitions in this paper; rectangular partitions are special cases of these. Furthermore, we focus

on loop partitioning where the tiles are homogeneous except at the boundaries of the iteration

space. Under these conditions of homogeneous tiling, the partitioning is completely de�ned by

specifying the tile at the origin, as indicated in Figure 6. Under homogeneous tiling, the concept
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Figure 6: Iteration space partitioning is completely speci�ed by the tile at the origin.

of the tile at the origin is similar to the notion of the clustering basis in [6]. (See Appendix A for

a more general representation of hyperparallelepiped loop tiles based on bounding hyperplanes.)

De�nition 1 An l dimensional square integer matrix L de�nes a semi open hyperparallelepiped

tile at the origin of an l dimensional iteration space as follows. The set of iteration points

included in the tile is

f~x j ~x = �l
i=1 �i

~li; 0 � �i < 1g

where ~li is the ith row of L. As depicted in Figure 6, the rows of the matrix L specify the vertices

of the tile at the origin. Often, we also refer to the partition by the L matrix since each of the

other tiles is a translation of the tile at the origin.

Example 4 A rectangular partition can be represented by a diagonal L matrix. Each row being

a separate tile in a three dimensional iteration space I � J �K is represented by2
64 1 0 0

0 J 0

0 0 1

3
75 :

De�nition 2 A general tile in the iteration space is a translation of the tile at the origin. The

translation vector is given by

�l
i=1 �i

~l

where �i is an integer. A tile is completely speci�ed by (�1; : : : ; �l). For example (0; : : : ; 0)

speci�es the tile at the origin.

The rest of this paper deals with optimizing the shape of the tile at the origin for minimal

communication. Because the amount of communication is related to the number of integer

points within a tile, we begin by proving the following theorem relating the volume of a tile to

the number of integer points within it. This theorem on lattices allows us to use volumes of

hyperparallelepipeds derived using determinants to determine the amount of communication.

Theorem 1 The number of integer points (iteration points) in tile L is equal to the volume of

the tile, which is given by j detLj.
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Proof: We provide a sketch of the proof; a more detailed proof is given in [15].

It is easy to show that the theorem is true for an n-dimensional semi-open rectangle. For a

given n-dimensional semi-open hyperparallelepiped, let its volume be V and let P be the number

of integer points in it. It can be shown that one can pack Rn of these hyperparallelepipeds into

an n-dimensional rectangle of volume VR and number of integer points PR, for any positive

integer R, such that both VR �RnV and PR �RnP grow slower than Rn. In other words,

VR = RnV + v(R); PR = RnP + p(R)

where v(R) and p(R) grow slower than Rn. Now subtracting the second equation from the �rst

one, and noting that VR = PR for the n-dimensional rectangle, we get,

V � P = (p(R)� v(R))=Rn:

Given that both v(R) and p(R) grow slower than Rn, this can only be true when V � P = 0.

Proposition 1 The number of integer points in any general tile is equal to the number of integer

points in the tile at the origin.

Proof: Straight-forward from the de�nition of a general tile.

In the following discussion, we ignore the e�ects of the boundaries of the iteration space

in computing the number of integer points in a tile. As our interest is in minimizing the

communication for a general tile, we can ignore boundary e�ects.

4.2 Footprints in the Data Space

For a system with caches and uniform access memory, the problem of loop partitioning is to

�nd an optimal matrix L that minimizes the number of cache misses. The �rst step is to derive

an expression for the number of cache misses for a given tile L. Because the number of cache

misses is related to the number of unique data elements accessed, we introduce the notion of

a footprint that de�nes the data elements accessed by a tile. The footprints are regions of the

data space accessed by a loop tile.

De�nition 3 The footprint of a tile of a loop partition with respect to a reference A[~g(~i)] is

the set of all data elements A[~g(~i)] of A, for ~i an element of the tile.

The footprint gives us all the data elements accessed through a particular reference from

within a tile of a loop partition. Because we consider homogeneous loop tiles, the number of

data elements accessed is the same for each loop tile.

We will compute the number of cache misses for the system with caches and uniform access

memory to illustrate the use of footprints. The body of the loop may contain references to

several variables and we assume that aliasing has been resolved; two references with distinct

names do not refer to the same location. Let A1; A2; : : : ; AK be references to array A within

the loop body, and let f(Ai) be the footprint of the loop tile at the origin with respect to the

reference Ai and let

f(A1; A2; : : : ; AK) =
[

i=1;:::;K

f(Ai)

11



be the cumulative footprint of the tile at the origin. The number of cache misses with respect

to the array A is jf(A1; A2; : : : ; AK)j. Thus, computing the size of the individual footprints and

the size of their union is an important part of the loop partitioning problem.

To facilitate computing the size of the union of the footprints we divide the references into

multiple disjoint sets. If two footprints are disjoint or mostly disjoint, then the corresponding

references are placed in di�erent sets, and the size of the union is simply the sum of the sizes of

the two footprints.

However, references whose footprints overlap substantially are placed in the same set. The

notion of uniformly intersecting references is introduced to specify precisely the idea of \sub-

stantial overlap". Overlap produces temporal locality in cache accesses, and computing the size

of the union of their footprints is more complicated.

The notion of uniformly intersecting references is derived from de�nitions of intersecting

references and uniformly generated references.

De�nition 4 Two references A[~g1(~i)] and A[~g2(~i)] are said to be intersecting if there are two

integer vectors ~i1;~i2 such that ~g1(~i1) = ~g2(~i2). For example, A[i+ c1; j+ c2] and A[j+ c3; i+ c4]

are intersecting, whereas A[2i] and A[2i+ 1] are non-intersecting.

De�nition 5 Two references A[~g1(~i)] and A[~g2(~i)] are said to be uniformly generated if

g1(~i) =~iG+ ~a1 and g2(~i) =~iG + ~a2

where G is a linear transformation and ~a1 and ~a2 are integer constants.

The intersection of footprints of two references that are not uniformly generated is often

very small. For non-uniformly generated references, although the footprints corresponding to

some of the iteration-space tiles might overlap partially, the footprints of others will have no

overlap. Since we are interested in the worst-case communication volume between any pair

of footprints, we will assume that the total communication generated by two non-uniformly

intersecting references is essentially the sum of the individual footprints.

However, the condition that two references are uniformly generated is not su�cient for two

references to be intersecting. As a simple example, A[2i] and A[2i+1] are uniformly generated,

but the footprints of the two references do not intersect. For the purpose of locality optimization

through loop partitioning, our de�nition of reuse of array references will combine the concept

of uniformly generated arrays and the notion of intersecting array references. This notion is

similar to the equivalence classes within uniformly generated references de�ned in [3].

De�nition 6 Two array references are uniformly intersecting if they are both intersecting and

uniformly generated.

Example 5 The following sets of references are uniformly intersecting.

1. A[i; j];A[i+ 1; j � 3]; A[i; j+ 4].

2. A[2j; 2; i];A[2j� 5; 2; i];A[2j+ 3; 2; i].

The following pairs are not uniformly intersecting.
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1. A[i; j];A[2i; j].

2. A[i; j];A[2i; 2j].

3. A[j; 2; i];A[j; 3; i].

4. A[2i]; A[2i+ 1].

5. A[i+ 2; 2i+ 4]; A[i+ 5; 2i+ 8].

6. A[i; j];B[i; j].

Footprints in the data space for a set of uniformly intersecting references are translations of

one another, as shown below. The footprint with respect to the reference (G;~as) is a translation

of the footprint with respect to the reference (G;~ar), where the translation vector is ~as � ~ar.

Proposition 2 Given a loop tile at the origin L and references r = (G;~ar) and s = (G;~as)

belonging to a uniformly generated set de�ned by G, let f(r) denote the footprint of L with

respect to r, and let f(s) denote the footprint of L with respect to s. Then f(s) is simply a

translation of f(r), where each point of f(s) is a translation of a corresponding point of f(r) by

an amount given by the vector (~as � ~ar). In other words,

f(s) = f(r)~+(~as � ~ar):

This follows directly from the de�nition of uniformly intersecting references. Recall that

an element ~i of the loop tile is mapped by the reference (G;~ar) to data element ~dr =~iG + ~ar,

and by the reference (G;~as) to data element ~ds =~iG+ ~as. The translation vector, (~ds� ~dr), is

clearly independent of ~i.

The volume of cache tra�c imposed on the network is related to the size of the cumulative

footprint. We describe how to compute the size of the cumulative footprint in the following two

sections as outlined below.

� First, we discuss how the size of the footprint for a single reference within a loop tile can

be computed. In general, the size of the footprint with respect to a given reference is not

the same as the number of points in the iteration space tile.

� Second, we describe how the size of the cumulative footprint for a set of uniformly in-

tersecting references can be computed. The sizes of the cumulative footprints for each of

these sets are then summed to produce the size of the cumulative footprint for the loop

tile.

4.3 Size of a Footprint for a Single Reference

This section shows how to compute the size of the footprint (with respect to a given reference

and a given loop tile L) e�ciently for certain common cases ofG. The general case ofG is dealt

with in Section 5. We begin with a simple example to illustrate our approach.

Example 6

13
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Figure 7: Tile L at the origin of the iteration space.

Doall (i=0:99, j=0:99)

A[i,j] = B[i+j,j]+B[i+j+1,j+2]

EndDoall

The reference matrix G is "
1 0

1 1

#
:

Let us suppose that the loop tile at the origin L is given by"
L1 L1

L2 0

#
:

Figure 7 shows this tile at the origin of the iteration space and the footprint of the tile (at

the origin) with respect to the reference B[i+ j; j] is shown in Figure 8. The matrix

f(B[i+ j; j]) = LG =

"
2L1 L1

L2 0

#

describes the footprint. As shown later, the integer points in the semi open parallelogram

speci�ed by LG is the footprint of the tile and so the size of the footprint is j det(LG)j. We will

use D to denote the product LG as it appears often in our discussion.

The rest of this subsection focuses on deriving the set of conditions under which the footprint

size is given by j det(D)j. Brie
y, we show that G being unimodular is a su�cient (but not

necessary) condition. The next section derives the size of the cumulative footprint for multiple

uniformly intersecting references.

In general, is the footprint exactly the integer points in D = LG? If not, how do we compute

the footprint? The �rst question can be expanded into the following two questions.

� Is there a point in the footprint that lies outside the hyperparallelepiped D? It follows

easily from linear algebra that it is not the case.

14
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Figure 8: Footprint of L wrt B[i + j; j] in the data space.

� Is every integer point in D an element of the footprint? It is easy to show this is not true

and a simple example corresponds to the reference A[2i].

We �rst study the simple case when the hyperparallelepiped D completely de�nes the foot-

print. A precise de�nition of the set S(D) of points de�ned by the matrix D is as follows.

De�nition 7 Given a matrix D whose rows are the vectors ~di, 1 � i � m, S(D) is de�ned as

the set

f~x j ~x = a1~d1 + a2 ~d2 + : : :+ am~dm; 0 � ai < 1g:

S(D) de�nes all the points in the semi open hyperparallelepiped de�ned by D.

So for the case where D completely de�nes the footprint, the footprint is exactly the integer

points in S(D). One of the cases where D completely de�nes the footprint, is when G is

unimodular as shown below.

Lemma 1 The mapping <l 7! <d as de�ned by G is one to one if and only if the rows of G

are independent. Further, the mapping of the iteration space to the data space (Z l 7! Zd) as

de�ned by G is one to one if and only if the rows of G are independent.

Proof: ~i1G = ~i2G implies ~i1 = ~i2 if and only if the only solution to ~xG = ~0 is ~0. The latter

implies that the nullspace of GT is of dimension 0. From a fundamental theorem of Linear

Algebra [16], this means that the rows of G are linearly independent. It is to be noted that when

the rows of G are not independent there exists a nontrivial integer solution to ~xG = ~0, given

that the entries in G are integers. This proves the second statement of the lemma.

Lemma 2 The mapping of the iteration space to the data space as de�ned by G is onto if and

only if the columns of G are independent and the g.c.d. of the subdeterminants of order equal

to the number of columns is 1.
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Proof: Follows from the Hermite normal form theorem as shown in [17].

Lemma 3 If G is invertible then ~d 2 LG if and only if ~dG�1 2 L.

Proof: Clearly G is invertible implies, ~dG�1 2 L implies ~d 2 LG. G is invertible implies

that the rows of G are independent and hence the mapping de�ned by G is one to one from

Lemma 1.

Theorem 2 The footprint of the tile de�ned by L with respect to the reference G is identical to

the integer points in the semi open hyperparallelepiped D = LG if G is unimodular.

Proof: It is immediate from Lemma 2 that G is onto when it is unimodular. G is onto implies

that every data point in D has an inverse in the iteration space. Can the inverse of the data

point be outside of L? Lemma 3 shows this is not possible since G is invertible.

We make the following two observations about Theorem 2.

� G is unimodular is a su�cient condition; but not necessary. An example corresponds to

the reference A[i+ j]. Further discussions on this is contained in Section 5.

� One may wonder why G being onto is not su�cient for D to coincide with the footprint.

Even when every integer point in D has an inverse, it is possible that the inverse is outside

of L. For example, the mapping de�ned by the G matrix"
4

5

#

is onto as shown by Lemma 2. However, we will show that not all points in LG are in the

footprint. Consider,

L =

"
100 0

0 100

#
:

The data point (1) is in LG but none of its inverses is in L. The same is true for the data

points (2); (3); (6); (7), and (11). The one to one property of G guarantees that no point

from outside of L can be mapped to inside of D. The reason for this is that the one to

one property is true even when G is treated as a function on reals.

Let us now introduce our technique for computing the cumulative footprint when G is

unimodular. Algorithms for computing the size of the individual footprints and the cumulative

footprint when G is not unimodular are discussed in Section 5.

4.4 Size of the Cumulative Footprint

The size of the cumulative footprint F for a loop tile is computed by summing the sizes of

the cumulative footprints for each of the sets of uniformly intersecting references. This section

presents a method for computing the size of the cumulative footprint for a set of uniformly

intersecting references when G is unimodular, that is, when the conditions stated in Theorem 2

are true. More general cases of G are discussed in Section 5. We �rst describe the method

when there are exactly two uniformly intersecting references, and then develop the method for

multiple references.
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Figure 9: Data footprint wrt B[i+ j; j] and B[i+ j + 1; j + 2]

Cumulative Footprint for Two References Let us start by illustrating the computation

of the cumulative footprint for Example 6. The two references to array B form a uniformly

intersecting set and are de�ned by the following G matrix.

G =

"
1 0

1 1

#

Let us suppose that the loop partition L is given by"
L11 L12

L21 L22

#
:

Then D is given by "
L11 + L12 L12

L21 + L22 L22

#
:

The parallelogram de�ned by D in the data space is the parallelogram ABCD shown in Fig-

ure 9. ABCD and EFGH shown in Figure 9 are the footprints of the tile L with respect to

the two references (B[i + j; j] and B[i + j + 1; j + 2] respectively) to array B. In the �gure,
~AB = (L11 + L12; L12), ~AD = (L21 + L22; L22), and ~AE = (1; 2).

The size of the cumulative footprint is the size of footprint ABCD plus the number of data

elements in EPDS plus the number of data elements in SRGH . Given that G is unimodular,

the number of data elements is equal to the area ABCD+SRGH+EPDS = ABCD+ADST+

CDUV � SDUH . Ignoring the area SDUH , we can approximate the total area by�����det
"
L11 + L12 L12

L21 + L22 L22

#�����+
�����det

"
L11 + L12 L12

1 2

#�����+
�����det

"
1 2

L21 + L22 L22

#����� :
Ignoring SDUH is reasonable if we assume that the o�set vectors in a uniformly intersecting set

of references are small compared to the tile size. We refer to this simpli�cation as the overlapping
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Figure 10: Di�erence between the cumulative footprint and the footprint.

subtile approximation. This approximation will result in our estimates being higher than the

actual values. Although one can easily derive a more exact expression, we use the overlapping

subtile approximation to simplify the computation. Figure 16 in Section 7 further demonstrates

that the error introduced is insigni�cant, especially for parallelograms that are near optimal.

The �rst term in the above equation represents the area of the footprint of a single reference,

i.e., j det(D)j. The second and third terms are the determinants of the D matrix in which one

row is replaced by the o�set vector ~a = (1; 2). Figure 10 is a pictorial representation of the

approximation. The �rst term is the parallelogram ABCD and the second and third terms are

the shaded regions.

The following expression captures the size of the cumulative footprint for the above two

references in which one of the o�set vectors is (0; 0):

j detDj+
dX

k=1

j detDk!~aj

where, Dk!~a is the matrix obtained by replacing the kth row of D by ~a.

If both the o�set vectors are nonzero, because only the relative position of the two footprints

determines the area of their nonoverlapping region, we use ~a = ~a1 � ~a0 in the above equation.

The following discussion formalizes this notion and extends it to multiple references.

Cumulative Footprint for Multiple References The basic approach for estimating the

cumulative footprint size involves deriving an e�ective o�set vector â that captures the combined

e�ects of multiple o�set vectors when there are several overlapping footprints resulting from a

set of uniformly intersecting references. First, we need a few de�nitions.

De�nition 8 Given a loop tile L, there are two neighboring loop tiles along the ith row of L

de�ned by f~y j ~y = ~x + ~li; ~x 2 tile Lg and f~y j ~y = ~x � ~li; ~x 2 tile Lg, where ~li is the ith row
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of L, for 1 � i � l . We refer to the former neighbor as the positive neighbor and the latter as

the negative neighbor. We also refer to these neighbors as the neighbors of the parallel sides of

the tile determined by the rows of L, excluding the ith row. Figure 11 illustrates the notion of

neighboring tiles.

The notion of neighboring tiles can be extended to the data space in like manner as follows.

De�nition 9 Given a loop tile L and a reference (G;~ar), the neighbors of the data footprint of

L along the kth row of D = LG are f~y j~y = ~x+ ~dk ; ~x 2 D+~arg and f~y j~y = ~x� ~dk ; ~x 2 D+~arg,
where ~dk is the kth row of D, for 1 � k � d.

De�nition 10 Given a tile L, L0 is a subtile wrt the ith row of L if the rows of L0 are the same

as the rows of L except for the ith row which is � times the ith row of L, 0 � � � 1.

The approximation of the cumulative footprint in Figure 10 can be expressed in terms of

subtiles of the tile in the data space. ABCD is a tile in the data space and the two shaded regions

in Figure 10 are subtiles of neighboring tiles containing portions of the cumulative footprint.

One can view the cumulative footprint as any one of the footprints together with communication

from the neighboring footprints. The approximation of the cumulative footprint expresses the

communication from the neighboring tiles in terms of subtiles to make the computation simpler.

De�nition 11 Let L be a loop tile at the origin, and let ~g(~i) =~iG + ~ar, 1 � r � R be a set of

uniformly intersecting references. For the footprint of L with respect to any reference (G;~ar),

communication along the positive direction of the kth row of D is de�ned as the smallest subtile

of the positive neighbor in the kth direction of the footprint which contains the elements of

the cumulative footprint within that neighbor. Communication along the negative direction is

de�ned similarly. Communication along the kth row is the sum of these two communications.

Each row of D de�nes a pair of parallel sides (hyperplanes) of the data footprint determined by

the remaining rows of D. We sometimes refer to the communication along the kth row as the

communication across the parallel sides of D de�ned by the kth row.

The notion of the communication along the rows of D facilitates computing the size of the

cumulative footprint. Consider the data footprints of a loop tile with respect to a set of uniformly

intersecting references shown in Figure 12. The cumulative footprint can be expressed as the

union of any one of the footprints and the remaining elements of the cumulative footprint. We

take the union because a given data element needs to be fetched only once into a cache.

In Figure 12, the cumulative footprint is the union of the footprint of the loop tile with

respect to ~a4 and the shaded regions corresponding to the remaining elements of the cumulative

footprint resulting from the other references. The area of the shaded region can be approximated

by the sum of communication along the kth row for 1 � k � 2 as shown in Figure 13. The area

of the communication along ~d2 is equal to the area of the parallelogram whose sides are ~d1 and

~a5 � ~a4. Among the o�set vectors, vector ~a5 has the maximum component along ~d2 and vector

~a4 has the minimum (taking the sign into account) component along ~d2. Similarly the area of

the communication along ~d1 is equal to the area of the parallelogram whose sides are ~d2 and

~a4 � ~a1 plus the area of the parallelogram whose sides are ~d2 and ~a5 � ~a4. This is equal to the

area of the parallelogram whose sides are ~d2 and ~a5 � ~a1. As before among the o�set vectors,

vector ~a5 has the maximum component along ~d1 and vector ~a1 has the minimum (taking the
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sign into account) component along ~d1. This observation is used in the proof of Theorem 3. It

turns out that the e�ect of o�set vector ~a5 � ~a1 along ~d2 and ~a5 � ~a4 along ~d1 can be captured

by a single vector â as shown later.

Proposition 3 Let L be a loop tile at the origin, and let ~g(~i) =~iG+ ~ar, be a set of uniformly

intersecting references. The volume of communication along the kth row of D, 1 � k � d, is the

same for each of the footprints (corresponding to the di�erent o�set vectors).

Communication along the positive and negative directions will be di�erent for di�erent foot-

prints. But the total communication along the kth row, 1 � k � d, is the same for each of the

data footprints.

We now derive an expression for the cumulative footprint based on our notion of commu-

nication across the sides of the data footprint. Our goal is to capture in a single o�set vector

â the communication in a cache-coherent system resulting from all the o�set vectors. More

speci�cally, we would like the kth component of â to re
ect the communication per unit area

across the parallel sides de�ned by the kth row of D. The e�ective vector â is derived from the

spread of a set of o�set vectors.

De�nition 12 Given a basis D and a set of o�set vectors ~ar, 1 � r � R, spread(~a1; : : : ;~aR) is

a vector of the same dimension as the o�set vectors, whose kth component is given by

max
r

(ar;k)�min
r
(ar;k); 8k 2 1; : : : ; d:

In other words, the spread of a set of vectors is a vector in which each component is the di�erence

between the maximum and minimum of the corresponding components in each of the vectors.

The spread as de�ned above does not quite capture the properties that we are looking for

in a single o�set vector except when D is rectangular. To derive the footprint component (or

subtile) along a row of D, we need to compute the di�erence between the maximum and the
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minimum components of the o�set vectors using D as a basis. Therefore, we extend the notion

of spread to a general basis as follows. Recall that D is a basis for the data space when G is

unimodular.

In the de�nition below, ~br is the representation of o�set vector ~ar using D as the basis.

De�nition 13 Given a set of o�set vectors ~ar, 1 � r � R, let ~br = ~arD
�1; 8r 2 1; : : : ; R and

let b̂ be spread(~b1; : : : ;~bR). Then

â = spreadD(~a1; : : : ;~aR) = b̂D:

Looking at the special case where D is rectangular helps in understanding the de�nition.

Proposition 4 If D is rectangular then

â = spread(~a1; : : : ;~aR) = spreadD(~a1; : : : ;~aR)

In other words,

âk = max
r

(ar;k)�min
r
(ar;k); 8k 2 1; : : : ; d:

For example, spreadI((1; 0); (2;�1)) = (2� 1; 0� 1) = (1; 1).

For D =

"
1 1

0 1

#
, the spread is given by,

spreadD((1; 0); (2;�1)) = spread((1; 0)D�1; (2;�1)D�1)D = (1; 3)

For caches, we use the max �min formulation (or the spread) to calculate the amount of

communication tra�c because the data space points corresponding to the footprints whose o�set

vectors have values between the max and the min lie within the cumulative footprint calculated

using the spread.2

Lemma 4 Given a hyperparallelepiped tile L, and a set of uniformly intersecting references

~g(~i) =~iG+ ~ar, where G is unimodular, the communication along the kth row of D = LG isPd
k=1 j detDk!âj where â = spreadD(~a1; : : : ;~aR) and Dk!â is the matrix obtained by replacing

the kth row of D by â.

Proof: Straight-forward from the de�nition of spread and the de�nition of communication

along the kth row.

Theorem 3 Given a hyperparallelepiped tile L and a unimodular reference matrix G, the size

of the cumulative footprint with respect to a set of uniformly intersecting references speci�ed by

the reference matrix G and a set of o�set vectors ~a1; : : : ;~aR, is approximately

j detDj+
dX

k=1

j detDk!âj

where â = spreadD(~a1; : : : ;~aR) and Dk!â is the matrix obtained by replacing the kth row of D

by â.

2For data partitioning, however, the formulation must be modi�ed as discussed in Section 6.3.
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Proof: As observed earlier, the size of the cumulative footprint is approximately the size of

any of the footprints plus the communication across its sides. Clearly the size of any one of the

footprints is given by j detDj. The rest follows from Lemma 4.

Finally, as stated earlier, the total communication generated by non-uniformly intersect-

ing sets of references is essentially the sum of the communicating generated by the individual

cumulative footprints. Example 8 in Section 4.5 discusses an instance of such a computation.

4.5 Minimizing the Size of the Cumulative Footprint

We now focus on the problem of �nding the loop partition that minimizes the size of the

cumulative footprint. The overall algorithm is summarized in Table 1.

Given: G, o�set vectors ~a1; : : : ;~aR

Goal: Find L to minimize cumulative footprint size

Procedure: Write D = LG

Find ~b1; : : : ;~bR = ~a1D
�1; : : : ;~aRD

�1

Find b̂ = spread(~b1; : : : ;~bR)

Then, write â = b̂D

Communication C = j detDj+
Pd

k=1 j detDk!âj

Finally, �nd the parameters of L that minimize C

Table 1: An algorithm for minimizing cumulative footprint size for a single set of uniformly inter-

secting references. For multiple uniformly intersecting sets, add the communication component

due to each set and then determine L that minimizes the sum.

Let us illustrate this procedure through the following two examples.

Example 7

Doall (i=1:N, j=1:N, k=1:N)

A[i,j,k] = B[i-1,j,k+1] + B[i,j+1,k] + B[i+1,j-2,k-3]

EndDoall

Here we have two uniformly intersecting sets of references: one for A and one for B. Let

us look at the class corresponding to B since it is more instructive. Because A has only one

reference, whose G is unimodular, its footprint size is independent of the loop partition, given

a �xed total size of the loop tile, and therefore need not �gure in the optimization process. The

G matrix corresponding to the references to B is,2
64 1 0 0

0 1 0

0 0 1

3
75
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The â vector is (2; 3; 4). Consider a rectangular partition L = � given by2
64 Li 0 0

0 Lj 0

0 0 Lk

3
75

In this example, the D matrix is the same as the L matrix. Because D is rectangular, we can

apply Proposition 4 in simplifying the derivation of â. The size of the cumulative footprint for

B can now be computed according to Theorem 3 as

LiLjLk + 2LjLk + 3LiLk + 4LiLj

This expression must be minimized keeping j detLj (or the product LiLjLk) a constant. The

product represents the area of the loop tile and must be kept constant to ensure a balanced

load. The constant is simply the total area of the iteration space divided by P , the number of

processors. For example, if the loop bounds are I , J , and K, then we must minimize LiLjLk +

2LjLk + 3LiLk + 4LiLj , subject to the constraint LiLjLk = IJK=P .

This optimization problem can be solved using standard methods, for example, using the

method of Lagrange multipliers [18]. The size of the cumulative footprint is minimized when

Li, Lj , and Lk are chosen in the proportions 2, 3, and 4, or

Li : Lj : Lk :: 2 : 3 : 4

Abraham and Hudak's algorithm [7] gives an identical partition for this example.

We now use an example to show how to minimize the total number of cache misses when

there are multiple uniformly intersecting sets of references. The basic idea here is that the

references from each set contribute additively to tra�c.

Example 8

Doall (i=1:N, j=1:N)

A(i,j) = B(i-2,j) + B(i,j-1) + C(i+j-1,j) + C(i+j+1,j+3)

EndDoall

There are three uniformly intersecting classes of references, one for B, one for C, and one

for A. Because A has only one reference, its footprint size is independent of the loop partition,

given a �xed total size of the loop tile, and therefore need not �gure in the optimization process.

For simplicity, let us assume that the tile L is rectangular and is given by"
L1 0

0 L2

#
:

BecauseG for the references to arrayB is the identity matrix, theD = LGmatrix corresponding

to references to B is same as L, and the â vector is spread(�2; 0); (0;�1)) = (2; 1). Thus, the

size of the corresponding cumulative footprint according to Theorem 3 is����� L1 0

0 L2

�����+
����� 2 1

0 L2

�����+
����� L1 0

2 1

����� :
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Similarly, D for array C is "
L1 0

L2 L2

#
:

The data footprint D is not rectangular even though the loop tile is. Using De�nition 13,

â = spreadD((�1; 0); (1; 3)) = (4; 3), and the size of the cumulative footprint with respect to C

is

����� L1 0

L2 L2

�����+
����� 4 3

L2 L2

�����+
����� L1 0

4 3

����� :
The problem of minimizing the size of the footprint reduces to �nding the elements of L that

minimizes the sum of the two expressions above subject to the constraint the area of the loop

tile j detLj is a constant to ensure a balanced load. For example, if the loop bounds are I , J ,

then the constraint is j detLj = IJ=P , where P is the number of processors.

The total size of the cumulative footprint simpli�es to 2L1L2+4L1+3L2. The optimal values

for L1 and L2 can be shown to satisfy the equation 4L1 = 3L2 using the method of Lagrange

multipliers.

5 General Case of G

This section analyzes the size of the footprint and the cumulative footprint for a general G, that

is, when G is not restricted to be unimodular. The computation of the size of the footprint is

by case analysis on the G matrix.

5.1 G is Invertible, but not Unimodular

G is invertible and not unimodular implies that not every integer point in the hyperparal-

lelepiped D is an image of an iteration point in L. A unit cube in the iteration space is

mapped to a hyperparallelepiped of volume equal to j detGj. So the size of the data footprint

is j detD= detGj = j detLj. When G is invertible the size of the data footprint is exactly the

size of the loop tile since the mapping is one to one.

Next, the expression for the size of the cumulative footprint is very similar to the one in

Theorem 3, except that the data elements accessed are not dense in the data space. That is,

the data space is sparse.

Lemma 5 Given an iteration space I, a reference matrix G, and a hyperparallelepiped D1 in

the data space, if the vertices of D1G
�1 are in I then the number of elements in the intersection

of D1 and the footprint of I with respect to G is j detD1= detGj.

Proof: Clear if one views D1G
�1 as the loop tile L.

Theorem 4 Given a hyperparallelepiped tile L, and an invertible reference matrix G, the size

of the cumulative footprint with respect to a set of uniformly intersecting references speci�ed by
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the reference matrix G and a set of o�set vectors ~a1; : : : ;~aR, is approximately

j detDj+
Pd

k=1 j detDk!âj

j detGj

where â = spread(~a1; : : : ;~aR;D) and Dk!â is the matrix obtained by replacing the kth row of D

by â.

Proof: Using lemma 5 one can construct a proof similar to that of Theorem 3.

Example 2 (repeated below for convenience) possesses a G that is invertible, but not uni-

modular.

Doall (i=101:200, j=1:100)

A[i,j] = B[i+j,i-j-1]+B[i+j+4,i-j+3]

EndDoall

For this example, the reference matrix G corresponding to array B is"
1 1

1 �1

#
;

and the o�set vectors are

~a0 = (0;�1) and ~a1 = (4; 3)

Let us �nd the optimal rectangular partition L of the form"
Li 0

0 Lj

#
:

The footprint matrix D is given by "
Li Li

Lj �Lj

#
:

The o�set vectors using D as a basis are

~b0 = ~a0D
�1 = (�1=(2Li); 1=(2Lj));

~b1 = ~a1D
�1 = (7=(2Li); 1=(2Lj)):

The vector b̂ = (4=Li; 0) and the vector

â = b̂D = (4; 4)

The size of the cumulative footprint according to Theorem 4 is����� Li Li

Lj �Lj

�����+
����� Li Li

4 4

�����+
����� 4 4

Lj �Lj

���������� 1 1

1 �1

�����
which is

LiLj + 4Lj

If we constrain LiLj = 100 for load balance, we get Lj = 1 and Li = 100. This partitioning

represents horizontal striping of the iteration space.
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5.2 Columns of G are Dependent and the Rows are Independent

We can apply Theorem 4 to compute the size of a footprint when the columns ofG are dependent,

as long as the rows are independent. We derive a G0 from G by choosing a maximal set of

independent columns from G, such that G0 is invertible. We can then apply Theorem 4 to

compute the size of the footprint as shown in the following example.

Example 9 Consider the reference A[i; 2i; i+ j] in a doubly nested loop. The columns of the G

matrix "
1 2 1

0 0 1

#

are not independent. We choose G0 to be "
1 1

0 1

#
:

Now D0 completely speci�es the footprint. The size of the footprint equals j detD0j. If we choose

G0 to be "
2 1

0 1

#

then the size of the footprint is j detD0j=2 for the new D0 since j detG0j is now 2. But both

expressions evaluate to the same value as one would expect.

5.3 The rows of G are Dependent

The rows of G are dependent means that the mapping from the iteration space to the data

space is many to one. It is hard to derive an expression for the footprint in general when the

rows are dependent. However, we can compute the footprint and the cumulative footprint for

many special cases that arise in actual programs. In this section we shall look at the common

case where the rows are dependent because one or more of the index variables do not appear in

the array reference. We shall illustrate our technique with the matrix multiply program shown

in Example 10 below. The notation l$C[i,j] means that the read-modify-write of C[i,j] is

atomic.

Example 10

Doall (i, 0, N)

Doall (j, 0, N)

Doall (k, 0, N)

l$C[i,j] = l$C[i,j] + A[i,k]+B[k,j]

EndDoall

EndDoall

EndDoall
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The references to the matrices A, B and C belong to separate uniformly intersecting references.

So the cumulative footprint is the sum of the footprints of each of the references. We will focus

on A[i,k] and footprint computation for the other references are similar. The G matrix for

A[i,k] is 2
64 1 0

0 0

0 1

3
75 :

We cannot apply our earlier results to compute the footprint since G is a many to one

mapping. However, we can �nd an invertible G0 such that for every loop tile L, there is a tile

L0 such that the number of elements in footprints LG and LG0 are the same. For the current

example, G0 is obtained from G by deleting the row of zeros, resulting in a two dimensional

identity matrix. Similarly L0 is obtained from L by eliminating the corresponding (second)

column of L. Now, it is easy to show that the number of elements in footprints LG and LG0

are the same by establishing a one-to-one correspondence between the two footprints. Let us

use this method to compute the size of the footprint corresponding to the reference A[i,k]. Let

us assume that L is rectangular to make the computations simpler. Let L be2
64 Li 0 0

0 Lj 0

0 0 Lk

3
75 :

Now L0 is 2
64 Li 0

0 0

0 Lk

3
75 :

So the size of the footprint is LiLk . Similarly, one can show that the size of the other two

footprints are LiLj and LjLk . The cumulative footprint is LiLk+LiLj+LjLk which is minimized

when Li, Lj and Lk are equal.

6 Other System Environments

This section describes how our framework can be used to solve the partitioning problem in a

wide range of systems including those with coherent caches, distributed-memory, and non-unit

cache line sizes.

6.1 Coherence-Related Cache Misses

Our analysis presented in the previous section was concerned with minimizing the cumulative

footprint size. This process of minimizing the cumulative footprint size not only minimizes

the number of �rst-time cache misses, but the number of coherence-related misses as well. For

example, consider the doall loop embedded within a sequential loop in Example 11.

Example 11

Doseq (t=1:T)
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Doall (i=1:N,j=1:N)

A(i,j) = A(i+1,j)

EndDoall

EndDoseq

For this example, we have

G =

"
1 0

0 1

#

Let us attempt to minimize the cumulative footprint for a loop partition of the form

L =

"
Li 0

0 Lj

#

The cumulative footprint size is given by

LiLj + Lj

In a load-balanced partitioning, j detLj = LiLj is a constant, so the LiLj term drops out of

the optimization. The optimization process then attempts to minimize Lj , which is proportional

to the volume of cache coherence tra�c, as depicted in Figure 14.

Let us focus on regions X, Y and Z in Figure 14(c). As explained in Figure 13, the processor

working on the loop tile to which these regions belong (say, processor PO) shares a portion

of its cumulative footprint with processors working on neighboring regions in the data space.

Speci�cally, region Z is a subtile of the positive neighbor and region Y is a subtile shared with

its negative neighbor. Region X, however, is completely private to PO.

Let us consider the situation after the �rst iteration of the outer sequential loop. Accesses

of data elements within region X will hit in the cache, and thereby incur zero communication

cost. Data elements in region Z, however, potentially cause misses because the processor working

on the positive neighbor might have previously written into those elements, resulting in those

elements being invalidated from PO's cache. Each of these misses by processor PO su�ers a

network round trip because of the need to inform the processor working on its positive neighbor

to perform a writeback and then to send the data to processor PO. Furthermore, if the home

memory location for the block is elsewhere, the miss requires an additional network roundtrip.

Similarly, in region Y, a write by processor PO potentially incurs two network round trips as

well. The two round trips result from the need to invalidate the data block from the cache of

the processor working on the negative neighbor, and then to fetch the blocks into PO's cache.

In any case, the coherence tra�c is proportional to the area of the shared region Z, which is

equal to the area of the shared region Y, and is given by Lj .

6.2 E�ect of Cache Line Size

The e�ect of cache line sizes can be incorporated easily into our analysis. Because large cache

lines fetch multiple data words at the cost of a single miss, one data space dimension will

be favored by the cache. Without loss of generality, let us assume that the jth dimension of
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Footprint of
A[i,j]

Cumulative 
Footprint of
A[i,j], A[i+1,j]

Y X ZZ

(a) (b) (c)

Figure 14: (a) Footprint of reference A[i; j] for a rectangular L. (b) Cumulative footprint for the
references A[i; j] and A[i+ 1; j]. The hashed region Z represents the increase in footprint size due to the
reference A[i+1; j]. (c) The regions X, Y, Z, collectively represent the cumulative footprint for references
A[i; j] and A[i+ 1; j]. Region Z represents the area in the data space shared with the positive neighbor.
Region Y represents the area in the data space shared with the negative neighbor.

the data space bene�ts from larger cache lines. Then, the e�ect of cache lines of size B can be

incorporated into our analysis by replacing each element dij in the jth column ofD in Theorem 3

by �
dij

B

�

to re
ect the lower cost of fetching multiple words in the jth dimension of the data space3, and

by modifying the de�nition of intersecting references to the following.

De�nition 14 Two references A[~g1(~i)] and A[~g2(~i)] are said to be intersecting if there are two

integer vectors ~i1;~i2 for which A[~g1(~i1)] = A[(d11; d12; : : :)] and A[~g2(~i2)] = A[(d21; d22; : : :)] such

that A[(: : : ; d1(j�1);
l
d1j
B

m
; : : :)] = A[(: : : ; d2(j�1);

l
d2j
B

m
; : : :)], where B is the size of a cache line,

and the jth dimension in the data space bene�ts from larger cache lines.

6.3 Data Partitioning

In systems in which main memory is distributed with the processing nodes (e.g., see Figure 5),

data partitioning is the problem of partitioning the data arrays into data tiles and the nested

loops into loop tiles and assigning the loop tiles to the processing nodes and the corresponding

data tiles to memory modules associated with the processing nodes so that a maximum number

of the data references made by the loop tiles are satis�ed by the local memory module. Our

formulation facilitates data partitioning straightforwardly. There are two cases to consider:

systems with caches and systems without caches.

Systems with Caches The data partitioning strategy in distributed shared-memory systems

with caches (Figure 5(a)) proceeds as follows. The optimal loop partition L is �rst derived by

minimizing the cumulative footprint size as described in the previous sections.

3We note that the estimate of cumulative footprint size will be slightly inaccurate if the footprint is misaligned

with the cache block.
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Diagonal tiling
of the data space

Figure 15: A communication-free data partition.

Data partitioning requires the additional derivation of the optimal data partition D for each

class of uniformly intersecting references from the optimal loop partition L. We derive the

shapes of the data tiles D for each G corresponding to a speci�c class of uniformly intersecting

references. A speci�c data tile is chosen from the footprints corresponding to each reference in

an uniformly intersecting set. In systems with caches, the choice of a speci�c footprint does not

matter, because each data element in the footprint results in a single miss. We then place each

loop tile with the data tiles accessed by it on the same processing node.

As an example, let us work out the optimal data partitioning for Example 2. The optimal

loop partition for this example was worked out in Section 5.1. The optimal L was shown to

stripe the iteration space horizontally and was given by"
100 0

0 1

#

The corresponding footprint D = LG represents a diagonal striping of the data space and is

given by "
100 100

1 �1

#

Thus, for this example, if diagonal tiles of data (as depicted in Figure 15) are placed in the

memory modules close to the processors with the corresponding iteration tiles, cache misses will

be satis�ed completely within the node. This data partition thus represents a communication-

free data partition.

Interestingly, because G for this example is not unimodular (its determinant is 2), not all

data space points are accessed. In the �gure, the shaded points represent the untouched data

elements.
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Systems without Caches The compiler has two options to optimize communication volume

in systems without caches. The compiler can choose to make local copies of remote data, or it

can fetch remote data each time the data is needed. In the former case, the compiler can use the

same partitioning algorithms described in this paper for systems with caches, but it must also

solve the data coherence problem for the copied data. This section addresses the latter case.

Although the overall data partitioning strategy remains largely the same as described in the

previous section, we must make one change in the footprint size computation to re
ect the fact

that a given data tile is placed in local memory and data elements from neighboring tiles have to

be fetched from remote memory modules each time they are accessed. Because data partitioning

for distributed-memory systems without caches (see Figure 5(b)) assumes that data from other

memory modules is not dynamically copied locally (as in systems with caches), we replace the

max�min formulation by the cumulative spread a+ of a set of uniformly intersecting references.

That is

a+ = cumulativespreadD(~a1; : : : ;~aR) = b+D;

in which the kth element of b+ is given by,

b+k =
X
r

j [br;k �medr(br;k)] j; 8k 2 1; : : : ; d;

where~br = ~arD
�1; 8r 2 1; : : : ; R andmedr(br;k) is the median of the o�sets in the kth dimension.

The rest of our framework for minimizing the footprint size applies to data partitioning if â is

replaced by a+.

The data partitioning strategy proceeds as follows. As in loop partitioning for caches, for a

given loop tile L, we �rst write an expression for the communication volume by deriving the size

of that portion of the cumulative footprint not contained in local memory. This communication

volume is given by
dX

k=1

j detDk!a+ j

We then derive the optimal L to minimize this communication volume. We then derive the

optimal data partition D for each class of uniformly intersecting references from the optimal

loop partition L as described in the previous section on systems with caches. A speci�c data

tile is chosen from the footprints corresponding to each reference in an uniformly intersecting

set. In systems without caches, because a single data element might have to be fetched multiple

times, the choice of a speci�c data footprint does matter. A simple heuristic to maximize the

number of local accesses is to choose a data tile whose o�sets are the medians of all the o�sets

in each dimension. We can show that using a median tile is optimal for one-dimensional data

spaces, and close to optimal for higher dimensions. However, a detailed description is beyond

the scope of this paper. We then place each loop tile with the corresponding data tiles accessed

by it on the same processor.

7 Implementation and Results

This paper presents cumulative footprint size measurements from an algorithm simulator and

execution time measurements from an actual compiler implementation on a multiprocessor.
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7.1 Algorithm Simulator Experiments

We have written a simulator of partitioning algorithms that measures the exact cumulative foot-

print size for any given hyperparallelepiped partition. The simulator also presents analytically

computed footprint sizes using the formulation presented in Theorem 3.

We present in Figure 16 algorithm simulator data showing the communication volume for

array B in Example 3 (repeated below for convenience) resulting from a large number of loop

partitions (with tile size 96) representing both parallelograms and rectangles. The abscissa is

labeled by the L matrix parameters of the various loop partitions, and the parallelogram shape

is also depicted above each histogram bar.

Doall (i=1:N, j=1:N)

A[i,j] = B[i,j] + B[i+1,j-2] + B[i-1,j+1]

EndDoall

The example demonstrates that the analytical method yields accurate estimates of cumula-

tive footprint sizes. The estimates are higher than the measured values when the partitions are

mismatched with the o�set vectors due to the overlapping subtile approximation described in

Section 4.4. We can also see that the di�erence between the optimal parallelogram partition and

a poor partition is signi�cant. The di�erences become even greater if bigger o�sets are used.

This example also shows that rectangular partitions do not always yield the best partition.

7.2 Implementation on Alewife

We have also implemented some of the ideas from our framework in a compiler for the Alewife

machine [19] to understand the extent to which good loop partitioning impacts end application

performance, and the extent to which our theory predicts the optimal loop partition. The

Alewife machine implements a shared global address space with distributed physical memory

and coherent caches. The nodes contain slightly modi�ed SPARC processors and are con�gured

in a 2-dimensional mesh network.

Distributed-memory architectures require three types of related analyses to distribute code

and data on to the machine:

Loop Partitioning Each processor must be assigned a set of loop iterations that maximizes

reuse of data in caches and achieves good load balance.

Data Partitioning and Alignment Arrays must be distributed among the processors such

that memory references that miss in the cache go to the local memory rather than across

the network to another node. This is accomplished by partitioning arrays with tile shapes

suggested by the D matrix, and then aligning corresponding loop and data tiles on the

same processor.

Placement In an architecture like Alewife the memory access time depends on the distance

between the node making the memory request and the node where the requested data

resides. The data partitioning and alignment phases make assignments to virtual proces-

sors which must be mapped onto the real machine in order to minimize memory reference

latency. This is a smaller e�ect that may become important in very large machines.
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Figure 16: Actual and computed footprint sizes for several loop partitions.
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Figure 17: The Alewife Code Generation Process.

We have implemented loop and data partitioning as well as alignment. The results in this

paper focus on loop partitioning so we made sure that whatever loop partition was chosen,

the optimal data partition for that particular loop partition was used. Otherwise, isolating the

e�ect of cache misses is di�cult because changing the loop partition alters both the number of

non-local memory references and the number of cache misses.

The structure of our compiler is shown in Figure 17. The input to the compiler is a program

where parallelism is speci�ed either by the programmer, or in a previous compilation phase. As

in [7], we separate the notion of parallelization from that of implementation. The languages

accepted at present are Mul-T, a parallel Lisp language, and Semi-C, a parallel version of C.

An initial series of transformations are performed including constant-folding and procedure

integration producing a graphical intermediate form called WAIF.

WAIF is a hierarchical graphical representation of a source program. WAIF has two ab-

straction levels: The program graph (WAIF-PG) and the task and data communications graph

(WAIF-CG). WAIF-PG is a customized version of an abstract syntax tree. WAIF-CG summa-

rizes the communication patterns between tasks and data structures that can be derived from a

static analysis. Data and loop partitioning are performed as transformations on the WAIF-CG

and then code for sequential threads with explicit synchronization is generated. The sequen-

tial code-generation process performs standard optimizations such as strength reduction and

loop-invariant code motion, producing machine code for Alewife's processors.

7.3 Alewife Experiment

The performance gain due to loop and data partitioning depends on the ratio of communication

to computation and other overhead. To get an understanding of these numbers for Alewife, we

ran several versions of the following parallel loop nest on an Alewife machine simulator.

Doall (i=0:255, j=4:251)

A[i,j] = A[i-1,j] + B[i,j+4] + B[i,j-4]
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Figure 18: Running times in 1000's of cycles for di�erent aspect ratios on 16 processors.

EndDoall

The G matrix for the above program fragment is the 2 � 2 identity matrix, and the o�set

vectors are ~a1 = (0; 0), ~a2 = (�1; 0), ~b1 = (0; 4), and ~b2 = (0;�4). We simulated 16 and 64

processors, with each array being 256 elements (words) on a side. The cache line size is four

words, and the arrays are stored in row-major order.

Using the algorithms in this paper, and taking the four-word cache line size into account,

the compiler chooses a rectangular loop partition and determines that the optimal partition

has an aspect ratio of 2:1. The compiler then chooses the closest aspect ratio (1:1) that also

achieves load balance for the given problem size and machine size, which results in a tile size of

64x64 iterations. We also generate code using suboptimal partitions with tile sizes ranging from

16x256 to 256x16. This set of executions is labeled run A.

We ran a second version of the program using a di�erent set of o�set vectors that give an

optimal aspect ratio of 8:1 (run B). This results in a desired tile size between 256x16 and 128x32,

with the compiler choosing 256x16, which has the aspect ration 16:1.

Figure 18 shows the running times for the di�erent tile sizes, and demonstrates that the

compiler was able to pick the optimal partitions for both cases. There is some noise in these

�gures because there can be variation in the cost of accessing the memory that is actually shared

due to cache coherence actions, but the minima of the curves are about where the framework

predicted. The actual slope of the curves depends on the cost of computing an address and the

actual memory latency. One of the reasons that the slopes of these curves are not very steep

is that we used ideal data partitions making most references local. The other is that the code

generated for index calculations for array references is not very good right now because Alewife

does not have virtual memory. This means that arrays must be allocated non-contiguously and

accessed indirectly. Much of this overhead can be eliminated with more sophisticated compiler
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Figure 19: Running times in 1000's of cycles for di�erent aspect ratios with non-communication overhead
subtracted out.

analysis of loop invariant expressions.

We can separate these two e�ects by running the same programs with a no-op replacing

the actual loads and stores for the array references. This running time represents the non-

communication overhead including index calculation as well as the time to spawn tasks on all

processors. Subtracting these times from those in the previous �gure gives us the numbers

in Figure 19. They represent di�erences due only to communication and thus represent the

greatest possible gain from correct partitioning when the data is partitioned so that almost all

accesses are to local memory. In a more realistic program it would likely not be possible to have

such an ideal data partition and there would be more non-local references making cache reuse

that much more important. In addition, these di�erences are smaller than they might be on

future machines because the local memory latency on Alewife is quite low and will increase as

processors get even faster.

Another consideration is that 16 processors is a small machine size. In a larger machine the

rectangular partitions can have wider aspect ratios leading to greater di�erences for non-optimal

partitions. We ran the same program on 64 processors, increasing the data size so that each

processor would do the same amount of work as in the 16 processor case. The much wider

variation can be seen in Figure 20. The 8x512 point for run A is o� the top of the chart.

8 Conclusions

The performance of cache-coherent systems is heavily predicated on the degree of temporal

locality in the access patterns of the processor. If each block of data is accessed a number

of times by a given processor, then caches will be e�ective in reducing network tra�c. Loop

partitioning for cache-coherent multiprocessors strives to achieve precisely this goal.
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Figure 20: Running times in 1000's of cycles for di�erent aspect ratios on 64 processors.

This paper presented a theoretical framework to derive the parameters of iteration-space

partitions of the do loops to minimize the communication tra�c in multiprocessors with caches.

The framework allows the partitioning of doall loops into optimal hyperparallelepiped tiles where

the index expressions in array accesses can be any a�ne function of the indices. The same

framework also yields optimal loop and data partitions for multicomputers with local memory.

Our analysis uses the notion of uniformly intersecting references to categorize the references

within a loop into classes that will yield cache locality. The notion of data footprints is introduced

to capture the combined set of data accesses made by the references within each uniformly

intersecting class. Then, an algorithm to compute precisely the total size of the data footprint

for a given loop partition is presented. Once an expression for the total size of the data footprint

is obtained, standard optimization techniques can be applied to minimize the size of the data

footprint and derive the optimal loop partitions.

Our framework discovers optimal partitions in many more general cases than those han-

dled by previous algorithms. In addition, it correctly reproduces results from loop partitioning

algorithms for certain special cases previously proposed by other researchers.

The framework, including both loop and data partitioning for cache-coherent distributed

shared memory, has been implemented in the compiler system for the Alewife multiprocessor.
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A A Formulation of Loop Tiles Using Bounding Hyperplanes

A speci�c hyperparallelepiped loop tile is de�ned by a set of bounding hyperplanes. Similar

formulations have also been used earlier [6].

De�nition 15 Given a l dimensional loop nest~i, each tile of a hyperparallelepiped loop partition

is de�ned by the hyperplanes given by the rows of the l � l matrix H and the column vectors ~


and ~� as follows. The parallel hyperplanes are ~hj~i = 
j and ~hj~i = 
j + �j, for 1 � j � l. An

iteration belongs to this tile if it is on or inside the hyperparallelepiped.

When loop tiles are assumed to be homogeneous except at the boundaries of the iteration

space, the partitioning is completely de�ned by specifying the tile at the origin, namely (H;~0; ~�),

as indicated in Figure 21. For notational convenience, we denote the tile at the origin as L.

De�nition 16 Given the tile (H;~0; ~�) at the origin of hyperparallelepiped partition, let

L = L(H) = �(H�1)T , where � is a diagonal matrix with �ii = �i. We refer to the tile by

the L matrix, as L completely de�nes the tile at the origin. The rows of L specify the vertices

of the tile at the origin.

B Synchronization References

Sequential do loops can often be converted to parallel do loops by introducing �ne-grain data-

level synchronization to enforce data dependencies or mutual exclusion. The cost of synchro-

nization can be approximately modeled as slightly more expensive communication [14]. For

example, in the Alewife system the inner loop of matrix multiply can be written using �ne-grain

synchronization in the form of the loop in Example 12.
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Figure 21: Iteration space partitioning is completely speci�ed by the tile at the origin.

Example 12

Doall (i=1:N, j=1:N, k=1:N)

l$C[i,j] = l$C[i,j] + A[i,k] + B[k,j]

EndDoall

In the code segment in Example 12, the \l$" preceding the Cmatrix references denote atomic

accumulates. Accumulates into the C array can happen in any order, just that each accumulate

action must be atomic. Such synchronizing reads or writes are both treated as writes by the

coherence system. Similar linguistic constructs are also present in Id [20] and in a variant of

FORTRAN used on the HEP [21].
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