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ABSTRACT

Category graph G°©

Many online networks are measured and studied via sam- ‘\. y

pling techniques, which typically collect a relatively dna N

fraction of nodes and their associated edges. Past work in / &

this area has primarily focused on obtaining a represeetati

sample of nodes and on efficient estimation of local graph L d

properties (such as node degree distribution or any node at-Figure 1: Nodes in the original graph (G) be-

tribute) based on that sample. However, less is known aboutlong in one of three categories: white, gray, and

estimating the global topology of the underlying graph. black. The category graph (G€) consists of three
In this paper, we show how to efficiently estimate the nodes, corresponding to the three categories,

coarse-grained topology of a graph from a probability sam- connected by weighted edges. The edge weight

ple of nodes. In particular, we consider that nodes are par-w(o, e) in G¢ is the probability that a black and

titioned intocategories (e.g., countries or work/study places  a white node, randomly chosen from G, are con-

in OSNSs), which naturally defines a weightedegory graph. nected in G (see Eq.(3])). The main goal of this

We are interested in estimating (i) the size of categoriels an paper is to estimate these edge weights based on

(i) the probability that nodes from two different categgsi  a probability sample of nodes of G.

are connected. For each of the above, we develop a fam-

ily of estimators for design-based inference under uniform currently studied via sampling techniques. Sampling

or non-uniform sampling, employing either of two measure- becomes necessary due to the sheer size of these net-

ment strategiesinduced subgraph sampling, which relies works and/or access limitations, which make it infea-

only on information about the sampled nodes; afagt sam- sible to collect (and, in some cases, to analyze) these

pling, which also exploits category information about the networks in their entirety.

neighbors of sampled nodes. We prove consistency of these Most principled graph sampling methods to date have

estimators and evaluate their efficiency via simulation on focused on collecting a probability sample of nodes [6,

fully known graphs. We also apply our methodology to a 19,20,30,35,51-53,60]. Based on such a sample, one

sample of Facebook users to obtain a number of categorycan efficiently estimate many local graph properties,

graphs, such as the college friendship graph and the countrypuch as node attribute frequency, degree distribution,

friendship graph; we share and visualize the resulting alata degree-degree correlations, or clustering coefficients [26,
www.geosocialmap.com. 34]. However, these features reveal little about the

global properties of the underlying graph, such as path-
based properties (connectivity, diameter, average short-
est path length) or community structure.

In this paper, we show how a particular aspect of
global network structure, namely coarse-grained topol-
ogy, can be efficiently estimated from a probability sam-
ple of nodes. Specifically, we note that nodes in many

Original graph G

Keywords

Online Social Networks, coarse-grained topology, in-
duced subgraph sampling, star sampling, Facebook.

1. INTRODUCTION

Many large online networks, such as online social net-
works (OSNs) and the World Wide Web (WWW), are

*We make our datasets available, together with a customiz-
able web-based visualization at www.geosocialmap.com

online graphs belong to categories, explicitly declared
by users or clearly determined by observable character-
istics. For example, in Facebook, users can officially
declare the college or workplace with which they are af-
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filiated, or a country/city in which they live. Similarly,
in the WWW _ all nodes can be categorized by their do-
main names, and the users of Internet radio sites like
Last.FM may be grouped on the basis of listening be-
havior. This potentially allows us to build and study
category graphs, in which each node corresponds to a
category and edge weights reflect the frequency of ties
between category members in the original graph. We
illustrate these concepts in Fig. [l

The contribution of this paper lies in developing and
evaluating several efficient estimators for two properties
of the category graph, namely the size of the categories
and the edge weights. These estimators take as input
a uniform or non-uniform probability sample of nodes,
measured via one of two strategies: induced subgraph
sampling, in which we have information regarding only
the sampled nodes; and star sampling, in which we also
have category information about the neighbors of sam-
pled nodes. We show that our estimators have good
asymptotic properties (consistency, and hence asymp-
totic unbiasedness) and we evaluate their efficiency via
simulation: employing fully observed graphs from both
synthetic and empirical sources, we examine how es-
timator performance varies with the properties of the
underlying graph. Finally, as a practical illustration
of our approach, we apply our methodology to a sam-
ple of Facebook nodes to estimate several Facebook
category graphs, such as the inter-college and inter-
country friendship graphs. The resulting Facebook cat-
egory graphs are made available (along with a highly-

customizable, web-based visualization service) at jwww.geosoc?

The structure of the remainder of the paper is as
follows. Section 2 presents the problem statement. Sec-
tion 3 reviews node sampling techniques. Sections 4
and 5 present our estimators for uniform and non-uniform
probability samples, respectively. Section 6 presents
simulation results on fully known graphs. Section 7 ap-
plies our estimators to samples of Facebook. Section 8
reviews related work. Section 9 concludes the paper.
Finally, in Appendix we prove the consistency of all es-
timators proposed in this paper.

2. NOTATIONAND PROBLEM STATEMENT

2.1 Basicgrapha

We consider an undirected, statid] graph G = (V, E),
with N=|V| nodes and |E| edges. Denote by deg(v)

!Sampling dynamic graphs is currently an active research
area [51,60,67], but out of the scope of this paper. Indeed,
during the collection of Facebook data sets we use, the un-
derlying graphs changed very insignificantly [20,35]. More-
over, in this paper we focus on coarse granularity, which
should change even more slowly in time, as argued in [67].

the degree of node v € V, and by
vol(A) =)~ deg(v) (1)
vEA
the volume of a set of nodes A C V. We will often use
A 1(A
14 v vOl(4) )

= d =
fa=ig ad JE =000

to denote the relative size of A in terms of number of
nodes and volume, respectively.

2.2 Category graph G°

We assume that the set of nodes V' is partitioned
into a set C of categories, i.e., that (Joce=V. We
are interested in the category graph G° = (C, E<), with
node set given by the categories of GIJ For two different
categories A, B € C, A # B, denote by E4 p C E the
corresponding edge-cut in G, i.e.,

Eap ={{u,v} € E: ue Aand v € B}.

If |[Ea | > 0 then we draw an edge {4, B} between A
and B in G°. We show an example of a category graph
in Fig. [

The way we defined category graph G¢ so far, pre-
vents self-loops, but potentially allows for edge weights.
The weight w(A, B) of edge {A, B} can be defined in
a number of ways. For instance, one could trivially
set it always equal to 1. In some settings, e.g., sta-
tistical modeling, the number of inter-category edges,
é{ﬂil*mépp):clb‘% A,B [, is a useful choic.e. For many purposes,
nowever; 1t 1s useful to have a notion of edge weight that
adjusts for category size, e.g.,

D4zl ®)

MAE) = Ay

This definition has an intuitive interpretation. Because
|A] - |B| is the size of the maximum possible edge-cut
from A to B, w(A4, B) is equal to the probability that
a uniformly selected member of A is connected to a
uniformly selected member of B. We give an example
of these weights w(A, B) in Fig. [

2.3 Goal: Estimate G through sampling

Given the full knowledge of graph G, it is trivial to
construct the category graph with its edge weights. In
many cases, however, the knowledge of the full graph G
is not available, rendering exact computation of Eq.(B)
infeasible. For instance, downloading the entire Face-
book social graph via HTML scraping would require

2We are not the first ones to be interested in coarse-grained
structures. See, e.g., the social network literature on block-
models [66], in which our categories correspond to positions,
our category graph to the reduced graph or block image, and
our edge weights to block densities or mixing rates. See Sec-
tion [§] for additional references.
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downloading and processing about 50 terabytes of HTML
traffic [20], which is rather prohibitive in practice.

In contrast, it is often possible to collect a sample
S C V of nodes of G. Note that we permit S to contain
multiple copies of the same node, i.e., the sampling with
replacement. The challenge, then, and the main goal of
this paper is to estimate the category graph G¢ based
on the sample S.

3. SAMPLING

Our methodology takes as input a probability sample
of nodes. Obtaining such a sample is an active research
topic in its own right (see Section ). In Section Bl
we briefly review the node sampling techniques that we
use later in simulations and Facebook implementation.

Independently of the sampling technique employed,
we may collect less or more category information on
each sampled node. In Section [3:2] we describe two
scenarios most common in practice. As we will see later,
they result in two different sets of estimators, often with
very different performance.

3.1 Node sampling techniques
3.1.1 Independence Sampling

Under independence sampling, we sample nodes in-
dependently from the set V', with replacement. We dis-
tinguish two general cases: Uniform Independence Sam-
pling (UIS), where sampling probabilities are uniform
(the same for all nodes); and Weighted Independence
Sampling (WIS), which samples v with probability pro-
portional to a known weight w(v).

In general, UIS and WIS are not feasible in online
networks because of the lack of sampling frame. For
example, the list of all user IDs may not be publicly
available, or the user ID space may be too sparsely
allocated to permit rejection sampling. Nevertheless,
these techniques can occasionally be employed, either
when permitted by fortuitous circumstances (see e.g.,
use by [19,20]) or when deliberately “down-sampling” a
large graph to speed analysis. Independence samplers
are also conceptually important as a baseline for com-
parison with crawling-based sampling methods.

3.1.2 Sampling via Crawling

In contrast to independence sampling, crawling tech-
niques are feasible in many online networks, and are
thus the main focus of this paper. The crawling meth-
ods described here lead to an approximate probability
sample (asymptotically approaching UIS or WIS) from
the node set, in the limit of increasing sample size.

Simple Random Walk (RW) [41] selects the next-hop
node v uniformly at random among the neighbors of the
current node u. On a connected and aperiodic graph,
RW samples node v with probability linearly propor-
tional to its degree deg(v).

(a) Induced subgraph sampling
[ ]

(b) Star sampling

Sampled nodes

Unsampled nodes, with known category
Unknown nodes

Observed edges

|coe

Figure 2: Observed categories and edges, under
two scenarios we study in this paper.

Weighted Random Walk (WRW) is RW on a weighted
graph [5]. In our simulations and implementation, we
use “Stratified WRW,” or S-WRW [35], i.e., a version
of WRW that increases the sampling efficiency by over-
sampling graph regions relevant to the measurement ob-
jective and under-sampling the irrelevant ones.

Metropolis-Hastings Random Walk (MHRW) is a ver-
sion of random walk that modifies the transition proba-
bilities to converge to a desired stationary distribution
(often uniform). It was shown in [20,51] that RW out-
performs MHRW for most applications, which we ob-
serve in our implementation as well.

3.2 Observed categories and edges

Our estimators will make use of every fully observed
edge, i.e., edge {u, v} for which we know the categories
of both u and v. We distinguish between two measure-
ment scenarios [34] that yield different sets of observed
edges, as follows.

321

Under induced subgraph sampling, we learn the cat-
egories of the sampled nodes only. Consequently, the
observed edges are only the edges induced on the set S
of sampled nodes, as shown in Fig. Pl(a).

3.2.2 Sar Sampling

In some settings, sampling a node u € S reveals the
categories of all its neighbors (not only the neighbors
in S). This is typically the case when sampling is done
through scraping the HTML pages of OSNs [20,35]. We
refer to this as star samplingé) and we show an example
in Fig. 2(b).

Finally, we emphasize that star sampling requires only
information about neighbors’ categories; their degree or
friend list is not needed, nor ties among neighbors (as
in complete egonet sampling [66]).

Induced Subgraph Sampling

3To be precise, following the terminology of [34], labeled star
sampling. The wunlabeled star sampling gets only the total
number of neighbors, without their identities or categories.



4. UNIFORM SAMPLING

In this section, we provide design-based estimators for
category sizes and category graph edge weights, given a
uniform independence (UIS) sample from the node set.
All estimators shown in this section and in Section
are consistent; proofs are provided in the Appendix.

4.1 Estimating category size (|A|)

Learning the size of a given category can be an im-
portant measurement objective per se. Moreover, it is
also a building block of the edge weight estimators we
derive in Section

4.1.1 Induced subgraph sampling

The size |A] of category A can be trivially estimated
by multiplying by N the fraction of nodes sampled in
A, i.e.,

|Sal

4] = N'W’ (4)

where
Sa={veS:ve A}

is a multiset containing all samples from category A.

4.1.2 Sar sampling

Although not obvious at first blush, star sampling
gives us an alternative way to estimate category sizes.
Denote by

ka deg(v) and ky = deg(v
T 4] Z IVI 2

veEA veV

the average node degree in category A and in the en-
tire graph, G, respectively. Because vol(A) = |A| - ka,
we can re-write the relative volume [} of category A

(see Eq.[@)) as
v _ vol(4)
AT vol(V)

|A] - ka
V|- kv

|A| - ka
N by

This allows us to estimate the size |A] of category A as

A = N2 5)
A
This formula may seem less attractive than Eq.(d), be-
cause we now have to estimate three different numbers.
However, ky and k4 can be easily estimated, respec-
tively by

T Zyesdeg(v)

kV _ ZUGSA deg(v)
5]

|Sal (©)

and %A =

Similarly, 3 could be estimated by

ZUGS deg( ) - 1{v€A}

= =N deav)

But we have proposed in [35] a much more efficient star-

vol

based estimator of f}, i.e.,

fi' = vol Z Z Liveay- (7)

SES veEN(s)

By plugging Eq.(@) and Eq.([d) into Eq.(E), we obtain a
complex yet powerful star-based estimator of size |A|.

We show later that the star sampling estimator of
Eq. (@) often outperforms the trivial estimator or Eq. @),
especially in dense graphs. One reason for this result
is that Eq.#l) employs only the number |S4| of sam-
ples from A. This number is a random variable with
a potentially high variance (especially for walks). In
contrast, Eq.(H) relies on mean degree estimates rather
than on counting-based estimates, which employ more
information (edges not in G[S]) and tend to be more
stable.

4.2 Estimating category edgeweights(w(A4, B))

Recall from Eq.(B) that, given the full knowledge of
graph G, the weight w(A, B) is obtained by dividing
the number of edges between A and B by the maxi-
mal possible number of such edges. We use this same
idea when estimating w(A, B) from our sample S, ex-
cept that now we divide the number of edges observed
between A and B by the maximal number of such edges
we could potentially observe.

4.2.1 Induced subgraph sampling

Under induced subgraph sampling, we observe edges
between the sampled nodes only. Consequently, in our
sample we observe >, .o > ies, L{{ab}er) edges be-
tween distinct categories A and B, out of the maximal
number |Sy|-|Sp| we could possibly observe, leading to

the trivial estimator
> > Waner

AAB _ acS A beESE ' 8
W(4,B) ARG (8)

(Note that when S contains the same node multiple
times, we count any corresponding sampled edges mul-
tiple times as well.)

4.2.2 Sar sampling

Under star sampling, on sampling node a € A we
observe the set E, p C E of all edges between a and
category B # A. So we observe |E, p| edges out of a
potential |B| edges between a and B. If we consider all
nodes S4 we sampled from A, we observe ZaESA |Eq. 5|
out of a potential |S4| - |B| edges. The same applies
to nodes Sp sampled in B and their neighbors in A.
Consequently, we can estimate the category graph edge
weight w(A, B) by dividing the total number of edges
we observed between A and B by our estimate of the



maximal number we could potentially observe, i.e.,

> |Eusl + > B4l

) _ a€S beSE (9)
Sal-|B] + |SB|-|A]

Note that because we usually do not know the real sizes
of A and B, Eq.(@)) uses their estimators |A| and |B].
We can employ either Eq.( ) or Eq.(#), as needed.

Observe that the star sampling estimator is poten-
tially more efficient than the trivial induced subgraph
estimator, because we include edges (and non-edges)
between sampled members of A and B and members of
the respective sets that were not themselves sampled.
For categories with large mean degree, this may rep-
resent a substantial increase in information versus the
induced subgraph case.

W(A,B

4.3 Population size (N)

In our estimation of category sizes, the population
size N=|V| is required. In some cases N is known (e.g.,
in an OSN context, it may be published by the service
provider), but in general this is not the case. Fortu-
nately, where N is not available, we can turn to esti-
mation. For instance, [33] proposes an approach based
on a “reversed coupon collector” problem, which can be
used with both uniform and non-uniform sampling.

Finally, we note that NV is only necessary where abso-
lute values of category sizes are required. Specifically,
all edge weights and category sizes can be estimated up
to a constant of proportionality without knowing the
size of the total population. Thus, if we are interested
in ratios of category sizes and/or edge weights (e.g., the
relative weight of the A, B connection versus the A, C'
connection in GY), then N can be ignored (and replaced
by an arbitrary constant in the above equations).

5. NON-UNIFORM SAMPLING

The estimators derived in Section @] hold under UTS,
where every node v € V' is sampled with the same prob-
ability. Such a sampling design is rarely feasible in prac-
tice. Moreover, in some cases UIS may be also unde-
sirable, e.g., when some categories are irrelevant to our
measurement [35].

A more common scenario is non-uniform probabil-
ity sampling, where every node v € V is sampled with
probability proportional to a known weight w(v). In-
deed, this is the case for WIS, RW, S-WRW and other
principled walk-based sampling methods, provided that
samples have adequately converged [20]. Non-uniform
samples are by definition biased towards nodes of higher
weight (typically degree), which may dramatically dis-
tort the estimation results if used without correcting for
sampling probabilities [21].

Fortunately, where sampling weights are known (as in
the above designs), they can be corrected for by an ap-

propriate (though not necessarily obvious) re-weighting
of the measured values. In this section, we rewrite all
estimators from Section @] in such a corrected form.

5.1 Correcting for sample bias

A weighted sample can be unbiased using the Hansen-
Hurwitz estimator [25] as shown e.g., in [56,65] for ran-
dom walks and also used in [51]. Let every node v € V
carry a value z(v). We can estimate the population
total z.,, = >, x(v) by

b= LAY (10)

veES

where 7(v) is the sampling probability of node wv.

In practice, we usually know 7(v), and thus Z,,,, only
up to a constant, i.e., we know the (non-normalized)
weights w(v), w(v) ~ w(v). Fortunately, we can often
address this problem by estimating the ratio of two to-
tals, which makes the unknown constants cancel out.
We will use this approach below.

5.2 Estimating category size (|A|)

5.2.1 Induced subgraph sampling

Following Eq.( ), we can estimate |Sa| by setting

2(v) = lgyeay. This yields [Sa| = 23, g 1{;@;&} —

1 1 ~ 1 1
D vESa =0y Analogously, S| = 1% s &y Con-
sequently, we can rewrite Eq.( ) as

1 1
|21‘| - N. Z’UGSA 7(v) - N. ZUGSA w(v)
- E 1 - Z 1
veS w(v) veS w(v)
W—l(SA)
= N - ——= 11
wa(S) (11)

where

veX

is a ‘re-weighted size’ of multiset X C V.

5.2.2 Sar sampling

As in Section .T.2] we estimate the size of a category
A using Eq.([@), i.e.,
n S Ry
ka

However, now, the terms f;{”, %V and %A must be calcu-
lated taking into account the sampling weights. Indeed,

o~

the weighted version of % is (after [35])

veEN(s)

~ 1
= < s O een |- 09
(



Similarly, the estimators Eq.(@]) of ky and k4 can be
rewritten respectively by

R Z s de%(i)}) R Z s deg(v)
T — VeS8 wl) o Toa = ZvE%a wl) gy
v w.(95) A W (SA) (14)

5.3 Estimating category edgeweights(w(4, B))

5.3.1 Induced subgraph sampling

Note that in the numerator of Eq.(®), we have a sum
over node pairs, rather than single nodes. In this case,
Hansen-Hurwitz estimator divides every component by
the product of weights of the two involved nodes [34],
which yields

> Li{abyen)
acsa vegy V(@) W(b)

w(A,B) = w.(Sa) - w.(SB)

5.3.2 Sar sampling

Finally, under nonuniform sampling, Eq.(@]) becomes

Z |Ea,B] n Z | Eb,al
w(a) w(b)
@'(A,B) _ a€Sa _ beSp .
W (Sa) - [B] + w.(Sp) - 4]
Again, we have two size estimators Eq.([I]) and Eq.(I2])
to choose from to plug into |A| and |B|. We recommend
selecting the one with smaller variance for the specific
application. This variance can be estimated, e.g., using
bootstrapping [9].

5.4 Sampling viacrawling

As we argued in Section B.I.2] in many online net-
works the only feasible sampling approach is via crawl-
ing. Such techniques result in non-uniform sampling
probabilities, and, consequently, sampling weights. For

example, under RW the sampling weights converge asymp-

totically to w(v)= deg(v) [41]. Using these weights in
conjunction with the WIS estimators above allows for
consistent estimation of coarse-grained topology from
random walk samples.

Of course, consecutive samples collected by crawls
are in general correlated, which can potentially affect
the efficiency of our estimators. One way to deal with
that is to take, say, every T-th sample. For T large
enough, this thinning technique effectively reduces sam-
ple correlations, at a cost of discarding a large portion
of available information. Thinning is crucial in some
applications, e.g., those primarily based on counting
repeated nodes, as in [33]. The ergodicity of standard
random walk designs, however, guarantees convergence
to the target (WIS) distribution with any effect of au-
tocorrelation vanishing in the limit of sample size. (See
Appendix.)

6. SIMULATION RESULTS

6.1 Objective and performance metrics

In this section, we apply our methodology to fully ob-
served graphs from both synthetic and empirical sources.
Our objective is to evaluate estimator performance by
comparing the (known) values of the category sizes and
edge weights in each case with the values inferred us-
ing our methods. We use the Normalized Root Mean
Square Error (NRMSE) to assess estimation error:

E((@—x)?]

NRMSE(T) = — (17)

where z is the real value and 7 is the estimate.

6.2 Generated topologies

First, we consider synthetic graphs. By simulating G,
we control many crucial parameters (such as graph den-
sity, or category size and tightness) and study the effect
of these parameters on the efficiency of our estimators.

6.2.1 Graph model

We consider a graph G with N = 88,850 nodes parti-
tioned into 10 categories. Their sizes range from |C|=50
to |C|=50000. Initially, nodes in each category form
a k-regular random graph, with the average node de-
gree ranging from k=5 to k= 49. In addition, we
add N - k/10 random edges between nodes in different
categories. The resulting graph G is connected (in all
instances we used) and has |E| = 0.6 - N - k edges. By
construction, G has a very strong community structure.
In order to study the effect of community tightness, we
next permute randomly the category labels of a frac-
tion « € [0, 1] of nodes. For =0, node categories fol-
low the strong community structure, whereas for a=1
the categories are completely independent of the graph
structure.

6.2.2 Category sizes

We first study the efficiency of the category size esti-
mators, Eq.([) and Eq.([5). We present the results in the
top row of Fig. Bl and make the following observations.

In all of our simulated cases, all estimators converge
to the true value as sample size increases. Moreover,
the star estimator performs better than the induced
subgraph estimator, although its efficiency can depend
on properties of G. For example, (i) the denser the
graph, the better the star estimator is (Fig. Bla)), but
(ii) its efficiency can be limited when clustering closely
follows the category structure (Fig. Bl(b)). In contrast,
the induced subgraph estimator is not affected by any
of these properties. We also observe that both estima-
tors perform better for larger categories (Fig. Bl(c)). In
Fig. Bl(d), we show the CDF of the NMSE of all (ten)
estimators of the category sizes.
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Figure 3: Simulations of UIS on synthetic graphs. We estimate category sizes (top) and category
edge weights (bottom), using induced subgraph sampling (circles) and star sampling (stars).

Dataset V] |E| kv

Facebook: Texas [62] | 36364 | 1590651 | 87.5
Facebook: New Orleans [64] | 63392 816885 | 25.8
P2P [40] | 62561 147877 | 4.7

Epinions [54] | 75877 405738 | 10.7

Table 1: Empirical topologies used in Sec. [6.3

6.2.3 Category edge weights

In the bottom row of Fig.[Bl we use Eq.(®) and Eq.(@)
to estimate the category edge weights under induced
and star sampling designs, respectively.

Again, both estimators converge, with the star esti-
mator performing better than the induced one. As be-
fore, the star estimator benefits from higher graph den-
sity (Fig.Bl(e)) and looser category structure (Fig.[B(f)).
However, in this case the induced estimator is affected
by these properties as well. Finally, in Fig.[Blg) we com-
pare the estimation efficiency of low-weight edge €0,
(defined as the edge with 25" percentile weight) with
the high-weighted edge epign (75" percentile). As be-
fore, both estimators perform better for large estimated
values.

6.3 Empirically observed topologies

6.3.1 Datasets

We consider four fully known topologies described
in Table [l We use two graphs extracted from Face-
book because (i) they significantly differ in density, and

(ii) Facebook is our focus in the experimental study
of Section [

In Section [6.2] we have seen that star sampling per-
forms the worst if categories are aligned with the com-
munities (dense clusters) existing in graphs. We decided
to simulate presumably the worst-case category parti-
tion from the star sampling point of view. In particular,
we use a standard community finding algorithm based
on eigenvalues [47] to identify the 50 largest communi-
ties, and define each such community to be a category.
All the remaining smaller categories (if any) are then
grouped together as the 515 category.

From these known graphs we then generate synthetic
datasets by three different sampling methods: UIS, RW
and S-WRW. Under S-WRW ([35], we use equal category
weights for all categories, and we set fg = 0 (because
there are no irrelevant categories) and v = oo (for sim-
plicity). As previously, our interest is in whether our
estimators (applied to these realistic samples) will ac-
curately reconstruct the true properties of the graphs
in question.

6.3.2 Categorysize

We study the efficiency of the category size estima-
tors in the top row of Fig. @ Due to lack of space, we
only report the median NRMSE across all categories. In
Fig. Bl(d), this would correspond to the points on the
horizontal line Y = 0.5.

The main observation is that, in contrast to Sec-
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Figure 4: Simulations on empirically observed graphs. We estimate category sizes (top) and category
edge weights (bottom), using induced subgraph sampling (circles) and star sampling (stars).

tion 620 here the induced estimators can outperform
the star estimators. This is particularly visible under
UIS, probably because of the highly skewed node degree
distributions. Such a distribution increases the variance
of the average degree estimator k4 that is used in the
star-based size estimation in Eq.@) [

However, in contrast to UIS, under RW and S-WRW
star sampling usually performs better. This can also be
explained by the highly skewed node degree distribu-
tion. Indeed, because both RW and S-WRW visit high-
degree nodes more often than UIS, their star samples
inherently collect and exploit more information about
neighbor categories, which translates to a better perfor-
mance. This effect is similar to the better star sampling
performance under higher graph density in Section

6.3.3 Category edge weights

While there is no clear winner in the category size
estimation, in the category edge weight estimation star
sampling consistently and significantly outperforms in-
duced sampling. Indeed, in Fig. @l(e-h), the induced es-
timators often need 5-10 times more samples to achieve

“We might address this problem by modifying Eq.(E) to take

e.g., ka=ky or a similar model-based extension. Such mod-
ifications may greatly reduce the variance of size estimation,
albeit at the cost of some bias. (Indeed, this is an example of
the classic “precision vs accuracy” tradeoff.) Note that such
modifications can allow us to use Eq.([H) to estimate |A|,
even if none of our sampled vertices were drawn from A.
Our initial experiments with such modifications have been
encouraging, but we do not treat them in depth here.

Dataset [Studied categories Crawl [% categ|# total
type |samplesjsampleg
MHRWO09| 34% [28x81K
RW09 41% [28x81K
UIS09 34% [28x35K

RW10 9% [25x40K
S-WRW10 86% [25x40K

] Regional (507)

2009 [20 (34% of population)

Colleges (10K+)

2010 [35) (3.5% of population)

Table 2: Facebook datasets.

the same accuracy as star estimators.

UIS clearly performs best, especially when estimat-
ing category sizes. Not surprisingly, direct indepen-
dence sampling should be preferred whenever available.
In the more practical scenarios, however, we are lim-
ited to exploration-based techniques. In our simula-
tions, S-WRW is consistently better than RW. Note
that because all categories (and thus nodes) are rele-
vant, this advantage of SSWRW is purely due to strati-
fication. Moreover, the advantage of S-WRW increases
with higher heterogeneity of category sizes (not shown
here), which is in agreement with [35].

7. FACEBOOK CATEGORY GRAPHS

In this section, we use the estimators developed in this
paper to infer several category graphs from Facebook.

7.1 Data sets

In our previous work [20,35], we collected samples
of Facebook users (about 10.1 million total users), with
publicly available information. These datasets are sum-
marized in Table 2] and are used as input for the esti-
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mators of this paper. These datasets were collected
using HTML scraping, which allowed us to collect for
each user v not only v’s category, but also the list of
v’s friends together with their categories; i.e., we effec-
tively collected a star sample of Facebook users. By
discarding the information about v’s nodes, we can also
use the induced subgraph estimators, for comparison.

The 2009 data sets: These data sets was collected
in April 2009 [20], using three existing sampling tech-
niques, UIS, MHRW and RW, as summarized in Ta-
ble2 At that time, a Facebook user could be a member
of any of four different types of categories, called “net-
works” in the Facebook terminology. Three of them,
high school, college and workplace, required passing a
verification process, usually based on an email account
from the institution in question. The fourth category,
geographical region, did not require any verification, and
indicated the user’s city, state or country. In this pa-
per, we consider the geographical region categories from
the 2009 data sets. Each dataset consisted of 100-1000
samples from each of the 507 geographical regions, as
shown in Fig.Bl(a); UIS collected about two times fewer
samples than the other two techniques.

The 2010 data sets: The geographical region cate-
gory was phased out in June 2009. Therefore, the data
sets we collected in 2010 [35] contain only the three re-
maining categories, from which we chose colleges as the
category studied in this paper. Furthermore, Facebook
switched from 32 bit to 64 bit userIDs, thus leading to
a sparse userID space, which made UIS impractical to
apply. For this reason, in our 2010 Facebook data sets
we collected only a RW sample (because RW proved to
outperform MHRW [20,51]) as well as three variants of
S-WRW [35]. A full length (1M) RW typically collected
only 0-10 samples of a particular college (Fig. E(b)).
This is because of a relatively small college population
(about 3.5%) and a large number of colleges (more than
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Figure 6: Results for 100 most popular regional
networks in 2009 (a,c) and 100 college networks
in 2010 (b,d) : category size estimation (a,b),
and edge weight estimation (c,d).

10,000). Fortunately, SS-WRW, a technique designed
to oversample particular categories (here colleges), im-
proves that result by at least one order of magnitude.

7.2 Category graph estimation

We present our results in Fig.[6l To calculate NRMSE we
use as ground truth the average of estimation over all
samples for each crawl type. In addition, we treat each
of the 28 and 25 different walks, for the 2009 and 2010
data sets respectively, as a different sample.

7.2.1 Categorysize

We show the results of Facebook category size esti-
mation in Fig.[fl(a,b). Similarly to what we observed in
the simulations in Section [G, UIS performs the best,
and S-WRW outperforms RW. MHRW performs the
worst, which was also expected given the recent studies
of MHRW in [20,51]. Under UIS, the induced estima-
tor performs better. Under RW and S-WRW, the star
version is better, especially when categories are small,
as in the 2010 data set.

7.2.2 Category edge weight

The estimation of category edge weights in Facebook,
shown in Fig. [Bl(c,d), also confirms the observations
in the simulations of Section Indeed, all star es-
timators dramatically outperform their induced coun-
terparts. And, as before, the sampling techniques or-
dered from the best to worst are: UIS, S-WRW, RW
and MHRW.



Finally, note that NRMSEs in Fig. Bla-d) are rela-
tively high, even under star (i.e., the better performing)
sampling. This is because these plots reach only rela-
tively small sample sizes | S| (i.e., 25 or 28 times smaller
than the entire sample at our disposal). Therefore, one
could extrapolate the plots in Fig.[6l by much more than
a decade to the right, further reducing the values of
NRMSE. Moreover, in the data sets that we eventually
prepare, we combine together several outcomes of dif-
ferent, independent sampling techniques, which should
further limit the estimation variance. Therefore, the re-
sults in Fig. [0 should be treated as a guideline about
the relative efficiency of the sampling techniques, rather
than a comparison of the the absolute values of NRMSE.

7.3 Geosocial visualization

Finally, we have developed a highly customizable,
web-based tool for visualization of our Facebook cat-
egory graphs. We have made a beta-version of the
tool available at jwww.geosocialmap.com and invite the
reader to use it to experiment with the category-graphs
described in this paper. This can be used to gain insight
into the friendship relations among these categories, as
defined in FacebookPl

7.3.1 Cross-country friendships

As mentioned earlier in Section [Z.I] the 2009 data set
contains the geographical region information, at various
granularities depending on Facebook’s penetration in
that region. This may may be either a user’s city or
state, (e.g., for USA, Canada, UK) or the entire country
(more typically).

As an example, we create the country-to-country friend-

ship graph. To this end, we first merged together all
categories coming from the same country. Next, we es-
timated the sizes of the resulting categories. Because,
according to Fig. [0(a), the UIS induced sampling per-
formed exceptionally well, we used it in the category size
estimation. This information was next fed to the star
estimators of category edge weights. Finally, for every
edge, we take the average of the three estimates (re-
sulting from UIS, MHRW and RW). Fig. [[{a) presents
a subset of “The world according to Facebook” graph.

7.3.2 North America

For the USA and Canada, the 2009 data set contains
the geographical information at the granularity of 272
counties and provinces. This allows us to create the

SHowever, one should be careful about declaring categories
in Facebook as representative of the real world. First, Face-
book attracts some age groups more than others. Second,
many Facebook users do not declare (or hide) their cate-
gory membership. Finally, a user might have mistakingly
chosen her category. For example, the third strongest link
for “Greece” is “Athens, GA“, which is clearly mistaken for
Athens, Greece.
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(a) Intra-continental country connections: Note the
strong cliques formed between Middle Eastern countries
and South-East-Asian countries.There is no Facebook in
China.

(b) North-American regions: Physical distance is a ma-
jor factor in the United States (red), but seemingly less
so in Canada (green). Additionally, US and Canada are
relatively weakly interconnected (thin blue lines).

m_l»/:ﬁ"” ; %

(¢) Top 133 US colleges according to the “US News
World Report’09”: Physical distance is a major factor
for public colleges (green), but seemingly less so for pri-
vate ones (red).

Figure 7: The friendship graph between regional
networks. Available at www.geosocialmap.com

North American friendship map. We followed the same
steps as in Section [L3Il An example is presented in

Fig. [@(b).

7.3.3 UScolleges

Both the 2009 and 2010 data sets contain college cat-
egories. We chose the 2010 data set to create a college-
to-college friendship graph. This data set consists of one
RW sample and three S-WRW ones. Because S-WRW
performed much better than RW (see Fig. Blb,d)), we
decided to use the three S-WRW samples only. More-
over, this time we estimated the size with the help


www.geosocialmap.com

of the star estimators, because they performed bet-
ter (Fig. [Bl(b)). Finally, as before, we fed the resulting
category sizes into the star estimators of category edge
weights, and we averaged the three S-WRW estimates
into a final estimate. Fig. [c) presents a subgraph of
the resulting category graph.

8. RELATED WORK

Node sampling in graphs. Most state-of-the-art
crawling-based node sampling techniques use variants of
random walks (RW), such as the classic RW [20,27,41,
51,56], Metropolis-Hasting RW (MHRW) [18,20,42,51,
60], multiple dependent RW [52], multigraph RW [19],
RW with jumps [6,30,38,53], and weighted RW [35].
Based on the resulting (uniform or non-uniform) sample
of nodes, there exist principled methods to estimate lo-
cal graph properties (degree distribution, assortativity
and clustering coefficient). [34] is an excellent introduc-
tion; other examples include [3,6,20,21,26,37,51-53,59].
In our prior work [19,20,35], we used random-walk based
crawls to collect user samples, which we use as input to
the estimators proposed in this paper.

Topology inference. Much classic work on inference
for basic network properties from node samples was
done by Ove Frank and colleagues; see particularly [13—
15], which introduce Horvitz-Thompson estimators of
edge totals (i.e., volumes) from probability samples of
nodes. Early results involving topology inference from
induced subgraph and star sampling were reviewed by
[16]. This prior work focused on the case of known
population and category sizes, and assumed without-
replacement designs.

Breadth First Search (BFS) has been used to sample
topology e.g., in [4,43,44]. However, a BFS sample is
known to introduce a strong bias towards high degree
nodes [7,20,36,37,46,70], which makes it not represen-
tative with respect to many metrics. Although this de-
gree bias can often be significantly corrected for [36],
the BFS sample covers only the neighborhood of the
arbitrary starting node, which is not necessarily repre-
sentative of the entire topology.

[38] evaluates a number of sampling methods and the
graphs they induce. The authors conclude that Forest
Fire [39], intuitively a hybrid of RW and BFS, produces
topology samples that resemble the original graph the
most. However, Forest Fire is subject to the same biases
as BFS described above.

Another approach for inferring network structure is
matrix completion of the distance matrix [10,68]. How-
ever, this approach faces its own challenges when ap-
plied to OSN samples. First, the distance matrix is
typically high rank and one has to carefully identify a
low rank structure [10]. Second, unlike traceroutes or
tomographic techniques, crawling does not yield a ran-
dom sample of distances [10,68].
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Induced subgraph vs. star sampling [34] is a good
summary of these two sampling designs. Induced sub-
graph sampling has been studied, e.g., in [34,37,38] Star
sampling is similar to egonet sampling [66], except that
under star sampling we do not see edges between neigh-
bors of a sampled node. Our contribution here is to
apply these measurement schemes in the context of cat-
egory graph estimation.

Block models and mixing rates The use of parti-
tions to produce reduced-form versions of larger net-
works has an extensive history in the social network lit-
erature, primarily under the label of “block modeling;”
see [49,66] for extensive reviews. Block models with
known partitions are sometimes called “confirmatory”
block models, and have been studied largely from a sta-
tistical point of view (e.g., [11,12]and [66] ch. 16). Much
of the latter interest is in modeling the edge weights
(“block densities” or “mixing rates”) from covariates or
other information in a fully-observed context, with con-
siderable additional interest in the case where the net-
work is observed but the categories are latent [48,58].
Estimation of mixing rates from uniform node sam-
ples for categories of known size is also a well-known
problem (see., e.g., [13,45,69]). Comparable methods
for link-trace samples are less well-developed, though
see [17,24,27,28].

Although estimation of mixing rates from sampled
data is relatively straightforward where categories are
of known size and the number of categories |C] is fairly
small (so that a random sample provides large num-
bers of vertex pairs in each pair of categories), it is
much more difficult when |C| is large and category sizes
are not known. Our techniques thus extend the prior
literature on block models and mixing rates to cases
such as group interaction in OSNs and other large-scale
social networks, in which one must estimate interac-
tion among many groups of uncertain size from (typi-
cally non-uniformly) sampled data. Our work also dif-
fers from much recent social network literature in being
design-based rather than model-based; design-based in-
ference is frequently easier to employ than model-based
inference, although both approaches have merits [61].

Facebook colleges. The Facebook social graph has
been measured and studied in the past. For exam-
ple, [22] studies the interactions between all 4.2M Face-
book users in 492 universities in North America between
Feb 2004 and March 2006. (As a side note, the inter-
pretation is hindered by the full anonymization of user
and universities.) [62] studies the social structure within
100 Facebook college categories. Given the above full
datasets, one could apply Eq.(B) and create the cate-
gory graph. In contrast, our methodological contribu-
tion lies in estimating the category graph from a sample
of nodes, not from the fully known user graph.



Social graph visualization. There exist many tools
that visualize social graphs (including Facebook), for
example [1,2,29]. [www.geosocialmap.com differs from
most of these tools in that it (i) is category-centric
(vs user-centric), (ii) contains an aggregated informa-
tion view of entire Facebook population, (iii) is well
suited for data exploration (e.g., allows arbitrary se-
lection of categories), and (iv) accepts as input any

weighted graph with arbitrary set of node/edge attributes

(ongoing work).

9. CONCLUSION

Estimation performance. In this paper, we derive
a number of category graph estimators for probability
samples of nodes, uniform (Section @) and non-uniform
(Section [l). We evaluate their performance in simula-
tion (Section [B]) and on Facebook samples (Section [T]).
We showed that they all converge to their true val-
ues for reasonable sample sizes, a result we extend for-
mally in the Appendix. Based on our evaluation, we
also provide recommendations, summarized as follows.
When estimating category sizes, there is no universal
choice between induced and star sampling. For ex-
ample, the performance of the star estimator improves
(i) in dense graphs, (ii) in graphs with homogeneous
node degree distribution, (iii) in graphs with weaker
community structure, and (iv) under sampling tech-
niques that oversample high degree nodes. In contrast,
when estimating the category edge weights, the star es-
timators are a clear winner; the induced subgraph esti-
mators often need 5-10 times more samples to achieve
the same accuracy. Finally, the sampling techniques
strongly affect estimator efficiency. They can be or-
dered from best to worst as follows: UIS, S-WRW, RW
and MHRW.

Potential applications. We applied our methodol-
ogy to samples of Facebook users and we estimated po-
tentially interesting category graphs, such as the global
friendship map, or the friendship network of US col-
leges. We visualized and made publicly available these
weighted topologies at [www.geosocialmap.conl

In addition to purely descriptive uses, the techniques
described here can also be employed as a first step to-
wards model-based analysis. Using the unnormalized
edge weights together with the number of possible edges
within each cut yields the numbers of possible and re-
alized edges needed for likelihood-based analysis of in-
teraction probabilities. For instance, given additional
features associated with each category (e.g., for univer-
sities, their size, location, ranking, and expense), one
can model the inter-category mixing rates as a func-
tion of category features (e.g., the effect of geographi-
cal distance on tie probability). This permits both hy-
pothesis testing for putative theories of tie formation
and ex ante prediction of interaction rates among new
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or unobserved categories (given their hypothesized fea-
tures) for extremely large, incompletely observed net-
works. Given the large and growing literature on sta-
tistical modeling of networks (e.g., [8,23,31,32,50,55,63]
among many others), the potential for applications in
this area is substantial.
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Appendix: Consistency of the estimators

A desirable property of a statistical estimator is that of
consistency. A statistical estimator (X,,) is a function
of the sample size (n = |S]), and is said to be consis-

tent if it converges in probability (i>) to the true value
of interest () [57] (which also implies asymptotic unbi-

asedness). Formally: If X, N 0, as n — oo, then X,
is said to be consistent for #. To prove the consistency
of the estimators in this paper we invoke two classic
theorems in probability: (1) The Law of Large Num-
bers, and (2) Slutsky’s Theorenld; which require the
following assumptions: For the uniform case we need to
assume that the mean and variance are finite (6 < oo;
02 < o0); for the non-uniform case we need to make an
additional assumption on the sampling weights so as to
guarantee the consistency of the Hansen-Hurwitz (HH)
estimator, specifically that the sum of the weights be
bounded (}_, oy w(v) < cld. Both of these conditions
are satisfied for finite graphs.

LLN and Slutsky’s Theorem

THEOREM 10.1 (Law of Large Numbers (LLN)).
Let X1, Xo,... be i.i.d. random variables with EX; = 0

and Var X; = 0% < 0o. Then X, = 23> o X (v) 0.
THEOREM 10.2  (Slutsky’s Theorem). Let X, il

a and Yy, £, B, where a and 3, respectively, are real
numbers. Then

(p'l) X, +Y, L a+ B;
(p'2) Xn- Y, L a-B;

(p-3) 3= where § # 0.

P (e
Yn

57

Uniform sampling estimators

Eq.@: |4 = N[

the LLN.
-~ deg(v
Eq.@): hy = <55

kg = w L ks by the LLN (as above).

P
=+ Xves Lweay — |A] by

Ly ky and

Eq'(m): f;lo} = ﬁ(s) ZSES ZUGN(S)I{UEA}

» > > 1 P
n Zises Tven (ol {ved) vol i
Tvol(S) — [ by an application

of the LLN to both the numerator and denomina-
tor, separately, followed by an application of Slut-
sky’s Theorem (p.3).

Eq.(@): |A| = N-f;f‘ . %—V £, |A| by two applications
A
of Slutsky’s Theorem (p.2 and p.3) and consistency
of the individual estimators.

®For more details about these two theorems see [57].
"There are some alternate assumptions on the weights that
can be made to guarantee convergence.
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Yacs, 2besy H{ap)cr)
[Sal-1SB]

Eq.®): #(A,B) =

N2
VT 2oaes, 2evesp H{abtery P |Eap|
— =w(A,B
TS Soes Uaeog maresgy  1A1E VA B)
by LLN and Slutsky’s Theorem (p.3).
LA  Yaesy |PaBl + Xyesy 1Ebal
Eq.@): w4, B) = |SalIBI ¥ 1Ssl1Al
N wes, | Banl + X3 0es, 1Bval P |Eap|+|Eanl
Nisal1B| + X|sp||A] [A[IBI+[A[IB] —
w(A, B) by the LLN on numerator and denomina-
tor and then by five applications of Slutsky’s The-

orem (p.1, p.2, and p.3).

Non-uniform sampling estimators
a1 z(v)
Eq.(m). Lot = o ZUES m
in [25].
DA _ =w.1(S4)
Eq.[I1): |A] = N T (8)

tency of the HH estimator in the numerator and
denominator and then by Slutsky’s Theorem (p.3).

is shown to be consistent

N |A] by the consis-

E E o Xues dﬁ;g(i’j) P k d
@ @): by = Z5pes S0 Pop oy

%w.l(S)

1 deg(v)
n ZvESA w(v)

k\A = Lw.1(Sa)
the HH estimator and Slutsky’s Theorem (p.3).

Eq.@@): fy — *leslsmiuvoloen) Py g

1 deg(s)

W 2seS wis)
by the consistency of the HH estimator and Slut-
sky’s Theorem (p.3).

Eq.[@2): |A| = N~f;‘°1~%—v N |A| by the consistency
A
of the estimators and Slutsky’s Theorem (p.2 and
p-3).

Eq.(@8): #(A,B) =

£, ka by the consistency of

1 {{ab}eB}
7% 2acS, 2beSpy Wi wit)

n_lgwfl(SA)'Wfl(SB)

AN ‘Ii’l‘l’g“ = w(A, B) by the consistency of the HH
estimator and Slutsky’s Theorem (p.2 and p.3).
w Daes, ‘I::N(?;})B‘ + % Dtesy % _

Bq.@8): ¥(4,5) = St AT tvata T
P, |Basl+|EaBl _ :
W = w(A, B) by the consmteflcy of
HH estimators in the numerator and denominator
and then by five applications of Slutsky’s Theorem
(p-1, p.2 and p.3).

A note on dependent samples

These results continue hold in the case of depen-
dent (correlated) samples, such as RW, under the con-
dition that these samples converge asymptotically to
UIS or WIS limits. This follows from the ergodic the-
orem, which provides a corresponding LLN for conver-
gent Markov Chains. For more technical details on the
LLN in the context of dependent samples see [52].
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