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ABSTRACT

We introduce the tidy set, a minimal simplicial set that cap-
tures the topology of a simplicial complex. The tidy set is
particularly effective for computing the homology of clique
complexes. This family of complexes include the Vietoris-
Rips complex and the weak witness complex, methods that
are popular in topological data analysis. The key feature of
our approach is that it skips constructing the clique com-
plex. We give algorithms for constructing tidy sets, im-
plement them, and present experiments. Our preliminary
results show that tidy sets are orders of magnitude smaller
than clique complexes, giving us a homology engine with
small memory requirements.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-
sentations; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—
Computations on discrete structures
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Algorithms, Theory
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Figure 1: Size of the Vietoris-Rips complex versus
the tidy set at scale ǫ for dataset D in Section 5.1, a
set of 88,571 points in R

3. Note: y-axis is log scale.

1. INTRODUCTION
In this paper, we introduce the tidy set, a minimal sim-

plicial set that captures the topology of a simplicial com-
plex. We give algorithms for computing the tidy set, imple-
ment the algorithms, and present preliminary experimen-
tal results. Our method is particularly effective computing
the homology of clique complexes without first constructing
them. To inspire the reader, Figure 1 compares computing
homology of a point set with a clique complex, the Vietoris-
Rips complex, versus the tidy set. At the highest scale ǫ,
the standard method constructs a simplicial complex with
46M simplices. Our method produces a simplicial set that
has the same homology but is nearly three orders of magni-
tude smaller. With only 51K simplices, this tidy set is even
smaller than the input point set. Our method is also five
times faster than the standard method.

1.1 Motivation
We are motivated by topological data analysis, where the

goal is recovering the lost topology of sampled data [31].
The standard recovery process has two steps: First, we ap-
proximate the underlying space of data using a combina-
torial structure; Second, we compute topological invariants
of this structure, such as homology. There are a number



of methods for completing the first step, such as the Čech
complex [15], the alpha complex [10], and the flow com-
plex [12], to name a few. These methods, especially when
geometric in nature, do not scale to large datasets or extend
to high dimensions. For example, we currently do not have
efficient software for computing the alpha complex in dimen-
sions higher than three. There are currently two methods
used in practice. The Vietoris-Rips complex [14] is popular
due to its algorithmic simplicity, but yields massive non-
embedded complexes even for small point sets. The (weak)
witness complex [9] mitigates the problem of size by only
approximating the topology over a subset of the data. Both
of these complexes are clique complexes of certain graphs.
Therefore, our goal is to find methods for computing ho-
mology of clique complexes of large datasets. We do so by
computing a minimal simplicial set directly from the graph
itself without first constructing the clique complex. We call
this simplicial set the tidy set.

1.2 Prior Work
A common assumption in topological analysis is that step

one – constructing a complex – is easy, while step two – com-
puting homology – is hard. This assumption is somewhat
justified since the classic reduction algorithm for comput-
ing homology over integers has supercubical complexity in
the size of the complex [28]. Over field coefficients, reduc-
tion simplifies to Gaussian elimination, still having quadratic
space and cubic time complexity. It is a reasonable strategy
to search for heuristics that reduce the size of the complex
while preserving its topology. There have been a number
of reduction techniques proposed for different categories of
structures. For simplicial complexes, the earliest and per-
haps simplest method is elementary contraction, proposed
by Whitehead in defining the simple homotopy type [29]. A
stronger technique is the recent LC-reduction [5] that pro-
duces not only a homotopic, but isomorphic complex [19,
1]. Both these techniques produce simplicial complexes with
fewer simplices. Due to the popularity of simplicial com-
plexes in computational topology, the techniques have been
widely used.

For cubical complexes, the CHomP project [4] has exam-
ined a large number of heuristics over the years, resulting
in an array of homology engines [16]. Our methods in this
paper are analogous to those by Mrozek et al. [22]. Our
work was done independently from this group and applies to
arbitrary-dimensional simplicial complexes, not three-
dimensional cubical complexes. The primary characteristic
that unifies both works is using cell collapses. This reduc-
tion moves us from the familiar simplicial complex category
to the unfamiliar simplicial set category. The only instance
of simplicial sets in computational topology that we know of
is Perry [24] who describes an implementation of simplicial
sets and an algorithm for computing their homology.

1.3 Our Approach
Our approach is based on our experience in applying topo-

logical techniques to problems in a number of areas, such
as shape description [6], biophysics [17], and computer vi-
sion [2]. We find that the opposite of the traditional as-
sumption is true: Constructing a complex is hard as non-
embedded complexes, such as clique complexes, can get very
large, very fast, requiring large construction time and stor-
age. Also, computing homology over fields is easy using the

persistence algorithm [33] as it represents matrices sparsely,
resulting in linear time behavior. A significant repercussion
of these two observations is that standard reduction tech-
niques are not competitive for us. We spend most of time
building a massive complex, not computing its homology.

Our approach, then, is to avoid constructing the full com-
plex by reducing it during its construction. We make reduc-
tion techniques effective by applying them to high-dimensional
simplices only as simplices have exponential complexity. We
maintain a compact representation of the structure through-
out computation and postpone enumerating the structure
and computing its homology as long as possible.

The contributions of this paper are as follows. In Sec-
tion 3, we define the tidy set, a minimal simplicial set that
has the same homology as an input simplicial complex. In
Section 4, we give algorithms for computing the tidy set as
well as for computing homology of clique complexes directly.
In Section 5, we give preliminary results of our implemen-
tation of the algorithms, including computing homology of
point sets using the Vietoris-Rips complex. Our implemen-
tation can process large datasets in arbitrary dimensions,
datasets that are currently not handled by any existing soft-
ware. It is also fast, takes less memory, and produces tidy
sets that are orders of magnitude smaller, often sublinear in
input size.

2. BACKGROUND
We begin with a review of simplicial complexes and their

generalization, simplicial sets. We are interested in simpli-
cial sets that may be derived from simplicial complexes via
collapses, which we describe next. We then describe ho-
mology for both categories. We end this section with clique
complexes, the family of complexes whose homology we wish
to compute. For an accessible introduction to computational
topology, see [31].

2.1 Simplicial Complex
A simplicial complex is a set K of finite sets, closed un-

der the subset relation: If σ ∈ K and τ ⊆ σ, then τ ∈ K.
We then say that τ is a face of σ, its coface. A simplex
is maximal if it has no proper coface in K. If σ ∈ K has
cardinality |σ| = k + 1, we call σ a k-simplex of dimen-
sion k, denoted dim σ = k. K is d-dimensional if d =
dim K = maxσ∈K dim σ. Given a subset L ⊆ K, L is
a subcomplex if it is a simplicial complex. Otherwise, the
smallest subcomplex containing L is its closure under sub-
set: Cl L = {τ ∈ K | τ ⊆ σ ∈ L}. A key subcomplex is
the k-skeleton consisting of simplices in K of dimension less
than or equal to k.

2.2 Simplicial Set
A simplicial set, initially called the complete semi-simplicial

complex or c.s.s. complex, generalizes a simplicial complex
to model a well-behaved topological space [8, 11, 20]. In-
formally, a simplicial set is like a simplicial complex where
simplices may be collapsed to a point, and vertices may be
identified. Formally, a simplicial set X is a collection of sets
{Xn}n together with maps

di : Xn → Xn−1,

si : Xn → Xn+1,



for 0 ≤ i ≤ n, that satisfy the following identities:

di ◦ dj = dj−1 ◦ di, if i < j.

si ◦ sj = sj+1 ◦ si, if i ≤ j.

di ◦ sj =

8

<

:

sj−1 ◦ di, if i < j,
1Xn

, if i = j or i = j + 1,
sj ◦ di−1, if i > j + 1,

where 1Xn
is the identity on Xn. An element of Xn is an n-

simplex, the map di is the ith face operator, and si is the ith
degeneracy operator [8, 20]. Simplicial sets may be elegantly
reinterpreted in the language of category theory [13].

In this paper, we are interested simplicial sets that are de-
rived from simplicial complexes, such as the seven 2-simplices
in Figure 2. Let K be a simplicial complex and denote its
n-simplices by Kn. We assume that the vertices in each sim-
plex are ordered. For instance, a total order on the vertices
in the complex implies an order for each simplex. We define
the simplicial set X that corresponds to simplicial complex
K inductively:

X0 = K0,

Xn = Kn ∪ ∪
n
i si(Xn−1), n > 0.

The ith face operator di deletes the ith vertex, and the ith
degeneracy operator si repeats it:

di([v0, . . . , vn]) = [v0, . . . , v̂i, . . . , vn],

si([v0, . . . , vn]) = [v0, . . . , vi, vi, . . . , vn].

It is easy to verify that these operators satisfy the simpli-
cial identities. A simplex that may be written as si(σ) for
some σ is degenerate and is not in the simplicial complex.
Otherwise, the simplex is non-degenerate.

Example 1 (triangle) Consider the triangle abc in Fig-
ure 2. As a simplicial complex K, abc has

K0 = {a, b, c},

K1 = {ab, bc, ac},

K2 = {abc},

a

b c

a

d

m (3, 3, 1) (2, 2, 1) (1, 1, 1) (1, 0, 1)
β (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 1)

m (2, 3, 1) (1, 2, 1) (1, 3, 1)
β (1, 1, 0) (1, 1, 0) (1, 2, 0)

Figure 2: The 7 possible 2-simplices in a simplicial
set. The triangle is the only one allowed in a com-
plex. The rest have collapsed edges (top row), iden-
tified vertices (bottom row), or both. The vector m

counts the non-degenerate simplices and the vector
β holds the Betti numbers.

where we denote simplices as strings for brevity. As a sim-
plicial set X, abc has

X0 = {a, b, c},

X1 = {ab, bc, ac, aa, bb, cc},

X2 = {abc, aab, abb, bbc, bcc, aac, acc, aaa, bbb, ccc}.

Note the addition of degenerate simplices. For example, abb
may be viewed as a collapsed triangle.

2.3 Simplicial Collapse
Simplicial sets may be constructed directly, but we are in-

terested in sets that is derived from complexes by collapses
only. Given a simplicial set X and an n-simplex σ ∈ X,
the collapse of σ identifies it to a single point, giving us a
new simplicial set X ′ = X/σ. To construct X ′, we intro-
duce a new vertex v and replace σ, its faces, and its de-
generacies, with the degeneracies of v. We first gather its
non-degenerate k-faces inductively for k ≥ 0:

F̄k(σ) =

8

<

:

∅, if k > n,
{σ}, if k = n,
∪k+1

i=0 di(F̄k+1(σ)), if k < n.

By adding the degenerate faces, we get all the faces.

Fk(σ) =



F̄0(σ), if k = 0,

F̄k(σ) ∪
Sk−1

i=0 si(Fk−1(σ)), if k > 0.

We may now define the k-simplices for X ′ as

X ′
k = (Xk − Fk(σ)) ∪ {sk

0(v)},

where sk
0 denotes applying the degeneracy operator k times.

We next define the operators for the new set:

d′
i(τ) =



di(τ), if di(τ) 6∈ Fi−1(σ),
si−1
0 (v), otherwise.

s′i(τ) =



si(τ), if si(τ) 6∈ Fi+1(σ),
si+1
0 (v), otherwise.

Example 2 (2-gon) In Example 1, we listed the n-simplices
of the triangle abc in Figure 2 as a simplicial set X. We now
collapse edge bc to a new vertex d to get the 2-gon X ′ = ad
in the figure. We have

F̄2(bc) = ∅,

F̄1(bc) = {bc},

F̄0(bc) = F0(bc) = {b, c},

F1(bc) = {bc, bb, cc},

F2(bc) = {bbc, bcc, bbb, ccc},

X ′
0 = {a, d},

X ′
1 = {ab, ac, aa, dd},

X ′
2 = {abc, aab, abb, aac, acc, aaa, ddd}.

The operators follow easily, e.g. d′
0(abc) = dd.

Generally, we may also identify vertices in constructing sim-
plicial sets. While we do not use vertex identifications in this
paper, vertices may be identified by collapsed neighbors.



2.4 Simplicial Homology
Simplicial homology extends naturally to simplicial sets.

Let X be a simplicial set. The nth chain group Cn(X) of
X is the free Abelian group on K’s set of oriented, non-
degenerate, n-simplices. The boundary homomorphism
∂n : Cn(X)→ Cn−1(X) is the linear extension of

∂n =
n

X

i=0

(−1)idi,

where di are the face operators and a degenerate face is
treated as 0. The fundamental property of the boundary
homomorphism is that ∂n∂n+1 = 0 for all n.

Example 3 (collapsed ∂) The face operators for our col-
lapsed set in Example 2 give us the correct boundary. For
instance, we have d0(abc) = dd, d1(abc) = ac, and d2(abc) =
ab, giving us ∂2(abc) = −ac+ab, as dd is degenerate. Taking
another boundary, we have

∂1∂2(abc) = ∂1(−ac) + ∂1(ab) = −(d− a) + (d− a) = 0.

The boundary homomorphism connects the chain groups
into a chain complex C∗:

· · · → Cn+1(X)
∂

n+1
−−−→ Cn(X)

∂n−−→ Cn−1(X)→ · · · .

Given any chain complex, the nth homology group is

Hn(X) = ker ∂n/ im ∂n+1.

Homology is a functor that we may apply to C∗ to get an-
other sequence H∗:

· · · → Hn+1(X)
H(∂

n+1)
−−−−−−→ Hn(X)

H(∂n)
−−−−→ Hn−1(X)→ · · · .

Given a subset A ⊆ X that is a simplicial set, we may
also define the relative homology groups Hn(X, A), where
we view the subset A as collapsed onto a single point. A
contractible space has the homotopy type of a point, and
it is often convenient for it to have trivial homology in all
dimensions, including zero. For this, we define reduced ho-
mology groups H̃n(X), so that H0(X) ∼= H̃0(X) ⊕ Z and

Hn(X) ∼= H̃n(X) for n > 0. We say that a space X is

acyclic if it has trivial reduced homology, i.e. H̃n(X) = 0
for all n. Contractible spaces, such as simplices in a simpli-
cial complex, are acyclic.

We end this section with an integer topological invariant
that is coarser than homology, but may be computed by
simple counting. Given a simplicial set X, the Euler char-
acteristic χ(X) is

χ(X) =
X

n

(−1)ncn =
X

n

(−1)nβn,

where cn is the number of non-degenerate simplices in X and
βn = rank Hn(X) [15]. The second equality is the Euler-
Poincaré formula that allows us to conclude that an acyclic
space X has χ(X) = 1, such as the three spaces on the left
in Figure 2. The figure also lists mn and βn for each space
and we may confirm the Euler-Poincaré formula readily.

2.5 Clique Complex
Suppose we are given a graph G = (V, E), such as the

graph in Figure 3(a). A clique is a set of vertices Q ⊆ V
that induces a complete subgraph in G. A clique is maxi-
mal if it cannot be made any larger. Figure 3(a) highlights

(a) G = (V, E) (b) C(G)

Figure 3: A graph G (a) with shaded ovals highlight-
ing its nine maximal cliques that become maximal
simplices in its clique complex C(G) (b).

the 9 maximal cliques of the graph with shaded ovals. The
clique complex C(G) has the maximal cliques of G as its
maximal simplices [18]. Since subsets of cliques are also
cliques, the clique complex is a simplicial complex, as shown
in Figure 3(b) for our example. Different graphs give rise to
different families of clique complexes.

Example 4 (Vietoris-Rips) given a finite point set S ⊆
R

d, the Vietoris-Rips graph (VR graph) at scale ǫ ∈ R is
the geometric graph Gǫ(S) = (S, Eǫ(S)), where Eǫ(S) =
{{u, v} | d(u, v) ≤ ǫ, u 6= v ∈ S}. That is, vertices within
distance ǫ are connected. The graph in Figure 3(a) is a VR
graph. The clique complex of the VR graph is the Vietoris-
Rips complex (VR complex) [14].

Example 5 (witness) Given a finite point set S ⊆ R
d,

choose a subset Alternatively, we may also choose a subset
L ⊆ S of landmarks and let W = S−L. The witness graph at
scale ǫ ∈ R is the graph G = (L, Eǫ,L), where {l1, l2} ∈ Eǫ,L

if there exists a witness w ∈W that is closer to li than any
other landmark, and d(w, li) ≤ ǫ for i = 1, 2. The clique
complex of this graph is the (weak) witness complex [9].

Each method defines a one-parameter filtered family of com-
plexes that describe the shape of the point set at different
scales. Both methods are currently popular in topological
data analysis and motivate our work on clique complexes.

3. TIDY SET
In this section, we define the tidy set, a minimal simplicial

complex. We begin by describing two reductions that we
use in deriving the tidy set, as previewed in Figure 3. We
then describe a minimal representation for simplicial sets.
Our representation both simplifies and increases the efficacy
of the reductions. We end by showing that the tidy set is
minimal with respect to both reductions.

3.1 Reductions
Our first reduction technique is trimming leaves. Intu-

itively, a leaf in a simplicial complex has an acyclic intersec-
tion with the rest of the complex, the intersection being its
“stem”. We generalize this notion for simplicial sets.

Definition 1 (leaf) Let X be a simplicial set. A simplex
σ ∈ X is a leaf if for all n,

Hn(Clσ,Clσ ∩ Cl (X − Clσ)) = 0.



(a) Complex (b) Trimmed

(c) Tidy Set

Figure 4: 1-skeletons of homologous complexes:
Complex (a), trimmed complex (b), and tidy set (c)
for dataset G in Section 5.1.

Here, Cl σ is σ as a simplicial complex, and Cl (X − Cl σ)
is the rest of the complex. In a simplicial complex, the
definition simplifies to our earlier intuition.

Theorem 1 (complex leaf) Let K be a simplicial com-
plex and σ ∈ K be a leaf. Then for all n,

H̃n(Clσ ∩ Cl (X − Clσ)) = 0.

Proof. From the definition of a leaf and an application
of the Mayer-Vietoris sequence [15], we have

Hn(Cl σ) ∼= Hn(Cl σ ∩ Cl (X − Cl σ))

Simplices in simplicial complexes are contractible and there-
fore acyclic, so H̃n(Cl (σ)) = 0 for all n.

Leaves may be deleted without any change in homology.

Theorem 2 Let X be a simplicial set and σ ∈ X be a leaf.
Then for all n, Hn(X) ∼= Hn(Cl (X − Clσ)).

Proof. Let A = Cl (X − Cl σ) and B = Cl σ and note
that X = A ∪ B. By the definition of a leaf, we have
Hn(B, A∩B) = 0 for all n. By excision [15, Corollary 2.24],
we have Hn(B, A ∩ B) ∼= Hn(X, A) for all n. Combining,
we get Hn(X, A) = 0 giving us Hn(X) ∼= Hn(A) for all n
through Mayer-Vietoris.

The idea of removing leaves is not new. For instance, it
is called shaving for full-dimensional cubes within cubical
complexes [25]. Deleting is a favored technique as it reduces
the size of a complex without changing its category.

Our second reduction technique is collapsing as defined in
Section 2.2. Collapsing changes the category of the struc-
ture, from a simplicial complex to a simplicial set, but some-
times, does not change its homology:

Theorem 3 (collapse) Let X be a simplicial set and σ ∈
X. If Clσ is acyclic, then for all n, Hn(X) ∼= Hn(X/σ).

Proof. The proof follows [15, Theorem 2.13].

3.2 Definition
A key feature of our approach is that we use a minimal

description for representing simplicial sets. We narrow our
focus to sets that are complexes with collapsed maximal sim-
plices.

Definition 2 (X) Let Q and C be disjoint sets of maximal
sets. Then X(Q, C) is the simplicial set having the sets in Q
as maximal simplices and the sets in C as collapsed maximal
simplices. We use the tuple (Q, C) to denote X(Q, C).

Our representation is a natural extension of a minimum rep-
resentation for simplicial complexes, with X extending clo-
sure as the face enumeration operator.

Definition 3 (Q) Let K be a simplicial complex. We define
Q(K) to be the set of maximal simplices.

Theorem 4 (representation) Q(K) is a unique represen-
tation of minimum size for simplicial complex K.

Proof. Q(K) is a set of maximal sets, where maximality
is with respect to subset. Now, Cl Q(K) = K, so Q(K) gen-
erates K. Uniqueness follows from the definition of maximal
sets and axioms of specification and extension. For minimal-
ity, observe that a maximal set σ must be in any description
of K as σ is not a subset of any other set. We may prove
this formally using order theory.

We may denote K with (Q(K), ∅) as a simplicial set. For
general simplicial sets, the representation is not unique as we
may build the same set through different operations. It also
does not have minimum size necessarily, as we may collapse
any acyclic set to a single point. It does, however, make
reduction operations very easy.

Definition 4 (trim & thin) Let (Q, C) denote a simpli-
cial set. For σ ∈ Q, we have two homology-preserving re-
ductions:

trim: (Q, C) 7→ (Q− {σ}, C) σ, a leaf
thin: (Q, C) 7→ (Q− {σ}, C ∪ {σ}) σ, acyclic

Note that both reductions maintain the invariant that Q
and C are disjoint. Our representation also enables us to
postpone enumeration of simplicial sets until we require it
for computing homology. We are now ready to define the
tidy set.

Definition 5 (tidy set) A tidy set is a trimmed, then
thinned, simplicial complex.

That is, we first delete all maximal leaves in the input simpli-
cial complex. We then collapse all maximal acyclic simplices
to get a simplicial set, as shown in Figure 3.

3.3 Minimality
The order in which we do reduction is important. Indeed,

it may seem reasonable to try trimming a tidy set again,
as we currently trim complex leaves only. The following
theorem states, however, that collapses do not grow leaves.

Theorem 5 (minimal) A tidy set has no leaves. That is,
it is minimal with respect to trimming and thinning.



Proof. Recall Definition 1. For any σ ∈ Q, let c ∈
Hn(Cl σ) be a nontrivial homology class for some n. We
know that this class exists as otherwise, σ would be acyclic
and collapsed, σ ∈ C, but we know Q∩C = ∅. Initially, how-
ever, σ was acyclic as a simplex within the input simplicial
complex. So, c developed within Cl σ due to the collapse of
a neighboring simplex. But this development was through
σ’s intersection with the neighbor and this intersection was
also collapsed, so c 6∈ Hn(Cl σ ∩ Cl (X − Cl σ)). Therefore,
σ is not a leaf.

Because of the theorem above, a tidy set is a minimal model
for representing a simplicial complex. It is not unique as
it depends on the ordering of the sequence of deletions and
collapses.

4. ALGORITHMS
In this section, we describe algorithms for computing ho-

mology by first constructing a tidy set. We begin with a
quick look at data structures as well as algorithms for com-
puting homology. We then describe algorithms for acquiring
the minimal representations for simplicial complexes. For re-
duction, we give a recursive algorithm for trimming, and a
two-phase algorithm for thinning.

4.1 Basic Blocks
We begin with a brief discussion on data structures for

computing homology with simplicial sets. A crucial aspect
of our approach is having two representations: For most of
the computation, we represent a simplicial set X(Q, C) us-
ing the tuple (Q, C). But when required, we enumerate the
simplices as a set. We represent each simplex or clique as a
set of vertices, with the boundary operator being implicit.
This implicit representation means that we need to main-
tain vertex identifications that may result from simplicial
collapses. The vertices form disjoint sets, so we utilize a
union-find data structure [7]. To determine whether a sim-
plex σ is degenerate, we check to see if σ is a subset of any
set in C, and we only keep non-degenerate faces during enu-
meration. Consequently, a simplicial set, unlike a simplicial
complex, is not closed in our representation. However, this
design decision allows our sets to remain small, a principle
goal of our paper.

An important structure is the dual graph, which captures
the intersection pattern of the maximal simplices.

Definition 6 (dual graph) Let Q be a set of maximal sets.
The dual graph is G = (Q, E), where E = {{σ, τ} | σ ∩ τ 6=
∅, σ 6= τ ∈ Q}.

For sparse complexes, such as clique complexes of sparse
graphs, we represent the dual complex explicitly for quick
access to neighbors of simplices. For denser complexes, how-
ever, explicit construction is computationally infeasible and
we must construct the graph locally as needed. For the rest
of the section, we assume the procedure Dual-Graph(Q)
returns the dual graph for a set of maximal sets Q.

For reduction, we need to compute homology, and we may
do so by using the reduction algorithm [23]. However, plac-
ing any arbitrary filtration on a simplicial set turns it into
a based persistence complex [34], allowing us to use the per-
sistence algorithm over fields. Below, we assume that the
procedure Betti(X) returns the reduced Betti numbers of

a given simplicial set X in a vector by first computing ho-
mology over Z2 coefficients using the generalized persistence
algorithm [34]. We use the same implementation of the al-
gorithm for computing homology of simplicial complexes.

While a clique complex may have high dimension, a space
does not have non-trivial homology in dimensions higher
than its embedding dimension [15]. So, for geometric sim-
plicial sets embedded in R

d, we only require the d-skeleton
in computing homology. Similarly, in many applications, we
only need the ith homology, which requires the (i + 1)th
skeleton. Therefore, in practice, we parameterize our algo-
rithms with the maximum dimension of the skeleton we are
interested in. In the discussion below, we hide this parame-
ter to simplify presentation.

4.2 Maximal Simplices
Given a simplicial complex K, we need to compute its

minimum representation Q(K), its maximal simplices, which
is equivalent to maximal sets in K. Yellin [30] gives an
output-sensitive iterative algorithm for this problem with
complexity O(mn), where m is the number of maximal sets
and n =

P

σ∈K |σ| is the complexity of K. As described, the

algorithm requires a prohibitive Θ(|K|2) additional space
for storing an array of counters. We observe, however, that
these counters are used locally in each iteration of the al-
gorithm. This observation allows us to reduce the space
complexity to Θ(dim K), making the algorithm feasible for
large complexes. We define Maximal-Sets(K) to be the
function that returns the set of maximal simplices in K.

For clique complexes, we may compute our representation
directly from the input graph G as maximal simplices are
maximal cliques. This correspondence reduces our problem
to enumerating maximal cliques of a graph. An n-vertex
graph may have up to 3n/2 maximal cliques in the worst
case [21], so this problem is hard in general. There have
been a number of algorithms based on greedy or output sen-
sitive approaches. We define Maximal-Cliques(G) to be
the function that computes the set of maximal cliques in G
using the IK-GX algorithm [3]. We emphasize that we do
not have to construct the complex C(G) to find its minimal
representation Q(C(G)).

4.3 Greedy Reduction
We employ an iterative scheme for both trimming and

thinning the complex. Our approach is greedy as a sim-
plex has exponential number of faces, so eliminating large
simplices has enormous payoff. Therefore, we always main-
tain sets of simplices in decreasing order of size. We de-
fine Greedy(Q, C, Is-Reducible,Reduce) to be the proce-
dure that reduces the simplicial set denoted (Q, C) by the
reduction technique specified by predicate Is-Reducible and
action Reduce.

Greedy(Q, C, Is-Reducible,Reduce)

1 P ← Q
2 while P 6= ∅ � Potential
3 do R← ∅ � Reduced
4 foreach σ ∈ P
5 do if Is-Reducible(σ, Q, C)
6 then (Q, C)← Reduce(σ, Q, C)
7 R← R ∪ {σ}
8 P ← Neighbors(R, Q)
9 return (Q, C)



The algorithm maintains a set P of potentially reducible
simplices, initializing it to Q. In each round, the algorithm
collects reduced simplices in set and uses their neighbors in
Q as candidates for the next round. We use this scheme,
along with another greedy thinning algorithm, DFS-Thin,
to define the procedure Tidy-Set(Q), which reduces a sim-
plicial complex with maximal simplices Q and returns the
tidy set as a tuple (Q, C).

Tidy-Set(Q)

1 (Q, C)← Greedy(Q, ∅, Is-Leaf,Trim)
2 (Q, C)← DFS-Thin(Q, C)
3 (Q, C)← Greedy(Q, C, Is-Acyclic,Thin)
4 return (Q, C)

4.4 Recursive Trimming
To trim using the greedy scheme, we define the action

Trim and the predicate Is-Leaf. By Theorem 5, we only
need to trim leaves in the simplicial complex, so we use the
definition of complex leaves in Theorem 1. For this reason,
Trim follows Definition 4, and C = ∅ is not used below.

Trim(σ, Q, C)

1 return (Q− {σ}, C)

Is-Leaf(σ, Q, C)

1 I ←
S

τ∈Q−{σ}(σ ∩ τ) � Stem

2 M ←Maximal-Sets(I)
3 if |M | = 1 � Single set
4 then return true

5 elseif (maxτ∈M dim τ) > max-dim

6 then (QM , CM )← Tidy-Set(M) � Recurse
7 XM ← X(QM , CM )
8 if χ(XM ) = 1
9 then return Betti(XM ) = 0

10 else return false

11 else KM ← Cl M � Direct
12 if χ(KM ) = 1
13 then return Betti(KM ) = 0
14 else return false

To determine if σ is a leaf in the simplicial complex, the
predicate Is-Leaf needs to determine if the intersection I
of σ and the rest of the complex is acyclic. The procedure
computes I and represents it with maximal simplices M by
using Maximal-Sets from Section 4.2. If the intersection
has only one maximal set, it immediately returns true as a
maximal set corresponds to a simplex which is acyclic in a
complex. If the intersection has high dimension, it recurses
by using the procedure Tidy-Set as it now has a smaller
instance of the original problem. It then enumerates the
resulting simplicial set and checks if its reduced Betti num-
bers are all zero. Since both Tidy-Set and Is-Leaf call each
other, the two procedures become mutually recursive. Oth-
erwise, when the intersection has low dimension, it directly
computes homology by enumerating the simplicial complex.
In both cases, it uses the Euler characteristic to skip ho-
mology computation whenever possible. Based on our ex-
periments, we currently set max-dim to 5. It is important
to emphasize that the minimal representation is key to the
efficiency of our trimming procedure: It allows both simple
acyclicity testing as well as recursive evaluation, using direct
homology testing of small complexes as a base case.

4.5 Two-Phase Thinning
We thin the trimmed complex in two phases, correspond-

ing to complex and set thinning, respectively. Within a
complex, all simplices are acyclic, but collapsing any sim-
plex may cause a neighboring simplex to have non-trivial
homology. For this reason, we attempt to find a large set
of non-neighboring simplices that we may collapse at once.
This idea may remind the reader of an independent set, a
set of vertices in a graph that are pairwise non-adjacent.
Indeed, vertices in an independent set of the dual graph
correspond to non-intersecting maximal simplices. We may
collect a larger set, however.

Theorem 6 A simplex with one collapsed neighbor remains
acyclic.

Proof. Two simplices intersect along a shared face. If
we collapse one of the simplices, the shared face is also col-
lapsed, and this does not cause the other simplex to develop
non-trivial homology.

Given this observation, we search the dual graph using depth-
first-search (DFS) [7] to collect a set of acyclic simplices.
DFS-Thin reduces a simplicial set denoted by (Q, C) by
searching the dual graph and collecting acyclic simplices us-
ing Thin-DFS-Visitor upon node discovery. We use the
algorithm visitor paradigm [27] along with a generic version
of DFS and define action Thin exactly as in Definition 4.
Note that this is a fast and simple procedure as it does not
require either face enumeration or homology computation.

Thin(σ, Q, C)

1 return (Q− {σ}, C ∪ {σ})

DFS-Thin(Q, C)

1 return DFS(Dual-Graph(Q), Thin-DFS-Visitor)

Thin-DFS-Visitor(σ, Q, C)

1 N ← Neighbors(σ, C) � Collapsed neighbors
2 if |N | ≤ 1
3 then return Thin(σ, Q, C)

Having thinned the complex, we move into the category
of simplicial sets. To thin using the greedy scheme, we de-
fine the predicate Is-Acyclic, having defined action Thin

already. The procedure now needs to enumerate the full
simplicial set. As with trimming, we attempt to avoid com-
puting homology by using the Euler characteristic.

Is-Acyclic(σ, Q, C)

1 Xσ ← X({σ}, C)
2 if χ(Xσ) = 1
3 then return Betti(Xσ) = 0
4 else return false

5. EXPERIMENTS
In this section, we describe an implementation of our algo-

rithms, examine its performance on real and synthetic data,
and compare it with existing software. Our implementation
is in generic C++ and part of a library we are currently
developing for computational topology. All our timings are
done on a 64-bit GNU/Linux machine with two dual-core 3



Gǫ = (S, E) C(Gǫ)S dim S |S| ǫ
time |E| time size

β time total time

G 3 318 5.00 0.00 3,960 0.11 71,032 0.12 0.23
M 8 10,000 0.13 0.22 36,263 48.74 13,234,966 126.01 174.97
B 3 34,837 0.05 0.38 489,876 19.29 9,714,912 26.35 46.02
S 8 50,000 0.18 2.17 546,388 49.25 19,134,612 76.66 128.08
D 3 88,571 0.0014 1.08 543,996 168.40 45,995,489 297.71 467.19

Table 1: Data sets and statistics on computing the VR graph Gǫ at scale ǫ, the complex C(Gǫ), and computing
its homology. All times are in seconds.
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Figure 5: Homology time using the VR complex
versus the tidy set at scale ǫ for dataset D.

GHz Xeon processors, although our software is not threaded
and uses only one core. We measured all timings with clock

from the Standard C library, and zero means that measured
time was below the granularity of this function.

5.1 Data
Our datasets are listed in in Table 1. G is Gramicidin A,

a small protein. M is a portion of the van Hateren-Mumford
dataset with parameters k = 30 and cut = 20% [2]. B and D

are points sampled from the surface of the Stanford bunny
and dragon, respectively. S is sampled from a unit 3-sphere,
diagonally embedded in R

8. The standard method for com-
puting homology involves constructing the VR complex for
which we give timing and statistics in Table 1. We use the
Ann library to build the VR graph Gǫ, and modify algorithm
Incremental-VR [32] to build a non-filtered VR complex
C(Gǫ) in the ambient dimension, e.g. an 8-dimensional com-
plex for S. Finally, we compute Betti numbers β using the
persistence algorithm [34].

5.2 Timing
We build the tidy set directly from the graph Gǫ. Figure 5

shows the performance of our algorithm for dataset D across
scale. We showed the size of the resulting tidy set in Fig-
ure 1. Figure 6 compares our method for the 8-dimensional
dataset M. Note that the complex is just beginning to con-
nect and develop topological attributes at the scales we are
examining. Table 2 lists the times for all phases of our
method at the maximum scale for each dataset. We observe
that our algorithm is generally much faster than comput-
ing with the VR complex, and competitive for smaller sets.

S Q dual trim dfs thin X β total
G 0.03 0.01 0.13 0.00 0.00 0.00 0.00 0.17
M 0.34 0.60 3.81 0.00 1.75 0.14 0.20 7.06
B 8.45 3.95 25.22 0.01 0.01 0.00 0.00 38.02
S 8.03 3.45 32.43 0.08 17.39 3.19 4.16 70.09
D 37.63 15.36 33.12 0.04 3.53 0.11 0.11 90.98

Table 2: Time, in seconds, for computing cliques
Q of the VR graph Gǫ, the dual graph, trimming,
thinning using DFS and greedy scheme, enumerat-
ing the tidy set, and computing homology. The total
includes time for computing Gǫ from Table 1.

Moreover, our method requires much less memory. For ex-
ample, computing the VR complex and homology for D re-
quires 5 GB and 10 GB of memory, respectively, while our
method only needs 500 MB, a factor of 20 times less.

5.3 Statistics
Table 3 gives statistics on the number and size of cliques in

the VR graph, the efficacy of our trimming and two thinning
procedures, and the size of the resulting tidy set. We gen-
erally have a great number of cliques, including large ones,
such as a 73-clique for D that generates

`

73
4

´

or roughly 1M
tetrahedra in the VR complex. Our methods are highly ef-
fective in reducing cliques. For G, we are left with a single
9-clique that generates 264 simplices, as compared to 71K
simplices in the VR complex. For B, we have a tidy set that
has a factor of 9,000 fewer simplices. The tidy set for S

has nearly 21K cliques, although its topological complexity
(
P

i |βi|) is 2,223. We hope to examine such hard cases to
look for further reduction.

In general, the effectiveness of reduction techniques vary
across scale, as illustrated by Figure 7 for G. The techniques,
however, are complementary, removing nearly 90% of max-
imal cliques at all scales. Initially, the graph is just a set
of points, which DFS “contracts” trivially. With increasing
scale, as the graph becomes denser, the complex gains thick-
ness, allowing us to trim from the boundary inward. What is
intriguing is that the efficacy of the methods as displayed in
in the figure reflects the underlying topology of the point set:
The first local minimum for trimming is near 2 Angstroms,
slightly larger than radii of atoms, when atoms connect and
form a large number of 1-cycles.

We end by comparing our methods with JPlex [26] the
only publicly available software that implements VR com-
plexes and computes homology using the persistence algo-
rithm. Figure 8 compares total computation time for B, our
largest dataset that JPlex is able to process. At the highest
scale, our methods run about 13 times faster and requires 5
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Figure 6: Homology times and sizes of the VR complex and tidy sets for dataset M.

cliques Q
S

ave max num
− trim − dfs − thin = tidy |X|

G 8.97 13 870 853 8 8 1 246
M 5.31 22 16,114 10,626 3,702 644 1,142 76,008
B 9.40 16 140,052 139,679 358 9 6 1,104
S 6.56 18 167,742 129,835 7,986 8,938 20,983 1,477,416
D 6.91 73 123,091 87,336 25,773 3,079 6,903 51,448

Table 3: Average and maximum clique size, and number of cliques, number removed by trimming using DFS
and greedy scheme, remaining cliques in the tidy set, and its enumerated size.
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Figure 7: Cumulative graphs showing percentage of
cliques removed by our three reduction techniques:
trimming, DFS thinning, and greedy thinning for
dataset G.

times less memory (4.7 GB vs. 958 MB) even though JPlex
is optimized for simplicial complexes in low dimensions.

6. CONCLUSION
In this paper, we define the tidy set, a minimal simpli-

cial set, for computing homology of clique complexes. We
give recursive algorithms for computing the tidy set, imple-
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Figure 8: Comparison of our methods with JPlex
for dataset B.

ment them, and experimentally verify their effectiveness by
computing homology of large datasets. Our software en-
ables a number of interesting applications. For instance, we
may compute geometric descriptions of homological cycles
of tidy sets and expand them back onto the original point
set to identify regions with nontrivial homology.

There are a number of rich avenues for research. While we
focus on clique complexes in this paper, our work applies to
arbitrary simplicial complexes, provided we compute maxi-



mal simplices efficiently. We also have not applied our meth-
ods toward computing witness complexes: We may now use
large sets of landmarks for massive datasets. Dense graphs
behave very differently from sparse graphs, and we are work-
ing on algorithms for computing their clique homology. We
plan to extend our methods to filtered complexes to enable
computation of persistence barcodes. Finally, almost every
step of our method is parallelizable by design.
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Birkhäuser-Verlag, Basel, Switzerland, 1999.

[14] Gromov, M. Hyperbolic groups. In Essays in Group
Theory, S. Gersten, Ed. Springer-Verlag, New York,
NY, 1987, pp. 75–263.

[15] Hatcher, A. Algebraic Topology. Cambridge
University Press, New York, NY, 2002.
http://www.math.cornell.edu/~hatcher/AT/ATpage.html.

[16] Kaczynski, T., Mischaikow, K., and Mrozek, M.

Computational Homology. Springer-Verlag, New York,
NY, 2004.

[17] Kasson, P. M., Zomorodian, A., Park, S.,

Singhal, N., Guibas, L. J., and Pande, V. S.

Persistent voids: a new structural metric for
membrane fusion. Bioinformatics 23, 14 (2007),
1753–1759.

[18] Kozlov, D. Combinatorial Algebraic Topology.
Springer-Verlag, New York, NY, 2008.
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