Evaluating Two Loop
Transformations for Reducing
Mutliple-Writer False Sharing

Franois Bodin
Elana D. Granston
Thierry Montaut

CRPC-TR94479
August, 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

From the 7th Annual Workshop on Languages and Compiler for Parallel Computing,
Ithaca, New York, August, 1994. Abridged version to be published by Springer-Verlag.

Evaluating Two Loop Transformations
for Reducing Multiple-Writer False Sharing

Francois Bodin® Elana D. Granston! Thierry Montaut®
bodin@irisa.fr granston@cs.rice.edu montaut@irisa.fr

* IRISA, Campus de Beaulieu, 35042 Rennes, Cedex, France

T Rice University, Center for Research on Parallel Computation
6100 S. Main Street, Houston, Texas 77005, USA

Abstract. To simplify the programming of hierarchical and distributed-
memory parallel systems, the notion of shared virtual memory (SVM)
has been proposed. This abstraction provides the programmer with the
illusion of a flat global address space and coherence is maintained at
the page level. The success of this abstraction depends on the efficiency
of page management. This in turn depends on the efficiency of handling
false sharing and the resulting ping-pong effects that it can cause. In this
paper, we evaluate two loop transformations for attacking this problem.
The first is a simple, new, compile-time technique for reducing the ping-
pong effects that result from multiple-writer false sharing. The second is
our previously-proposed technique for eliminating multiple-writer false
sharing itself. These techniques have been implemented in the Fortran-S
compiler, which generates code that runs on the iPSC/2 under the KOAN
SVM. Preliminary performance results are presented.

1 Introduction

To simplify the programming of parallel systems with memory hierarchies and
physically distributed address spaces, much research effort has been directed
toward providing the programmer with the illusion of a global address space,
known as shared virtual memory (SVM) [1]. SVM shields the programmer from
the underlying memory architecture of a distributed-memory parallel computer
by providing a virtual address space consisting of pages, where a page is the unit
of data to which coherency is applied. (In practice, this coherency unit may be
an actual physical page, a cache line, or a multiple or portion thereof.) Pages
are physically distributed according to some mapping function.

The success of this SVM abstraction depends heavily on page caching and
on the existence of page-level locality. Unfortunately, false sharing can prevent
the exploitation of this locality. Especially problematic is multiple-writer false
sharing, which arises when two or more processors are writing distinct data on
the same page in an unsynchronized fashion. Assume that the system supports
an invalidate-based coherence protocol whereby, before a processor can write to
a page, all other copies must be invalidated. Then multiple-writer false sharing

Loop Nest 1

Execution Time (ms)

DO I; =0 TO N¢-1
DOALL I5 = 0 TO Nyp-1
A[Q* I{1+10%xI9+ 1] = h(Il, 12)
END DOALL
END DO o

50

5 10 15 20 25 30 35 40 a5
Time Between Two Writes (10s of microseconds)

Fig. 1. Fzecution times for three versions of
Loop Nest 1.

causes writes to be serialized. Furthermore, it causes a minimum of np-1 page
faults for a given page, where np is the number of processors simultaneously
accessing that page. To reach this minimum, each processor must be able to
complete all of its accesses to that page before the next processor begins. When
this is not the case, the page can bounce back and forth repeatedly between
processors, causing the number of page faults to rise much higher. These ad-
ditional page faults are referred to as ping-pong effects. The term ping-pong is
used because the affected page bounces back and forth between processors.

As an example, consider Loop Nest 1. Execution times are shown in Fig. 1
for three versions of this loop nest:

— the original loop (ORIG),
— a version optimized to reduce ping-pong effects only (PP-OPT), and
— a version optimized to eliminate multiple-writer false sharing (FS-OPT).

All three versions were executed on 16 processors of a 32-processor iPSC/2 under
the KOAN SVM system [2], which supports the aforementioned invalidate-based
coherence protocol and employs a page size of 4 KB (512 double-precision num-
bers). (A brief overview of KOAN can be found in Appendix A.) The problem
size was Ny = Ny = 103. The performance difference between the two optimized
versions and ORIG provides a conservative approximation of the degradation
that can be caused by multiple-writer false sharing alone, and by multiple-writer
false sharing compounded by ping-pong effects.

In this paper, we briefly describe the two transformations used in the afore-
mentioned experiment. We also present preliminary performance results for these
transformations. The remainder of this paper is organized as follows. Sect. 2 and
Sect. 3 discuss the application of PP-OPT and FS-OPT to loops containing a
single static write reference. Sect. 4 extends these techniques to loops contain-
ing multiple static write references. Sect. 5 presents performance results. Sect. 6
compares our approach to related work in the area of false sharing. Sect. 7 sum-
marizes this work and discusses future research directions.

2 Reducing Ping-pong Effects (PP-OPT)

Ping-pong effects occur only when at least one processor is writing to a page
multiple times and there is sufficient time between successive writes by this
processor for a second processor to acquire the page, thus causing this first
processor to fault on a successive write. This phenomenon can be seen in Fig. 1,
where the time between successive writes is varied along the x-axis. As this time
increases, ping-pong effects become more pronounced. The phenomenon is due
to a combination of the page-transfer protocol and the relative magnitude of the
network latency in comparison to the time between writes. Although the actual
values are characteristic of KOAN, these trends should generalize to other SVM
systems.

Therefore, ping-pong effects can be reduced by minimizing the time between
successive writes by the same processor to the same page. This can be accom-
plished by stripmining the parallel loop and then delaying the non-local writes
within each strip until the strip’s end, causing these writes to be performed in
quick succession. The main advantages of this simple, new technique are its wide
applicability and its simplicity of implementation at the compiler level. The re-
sult of applying this optimization to Loop Nest 1 can be seen in Loop Nest 2.
The local array buff serves as a software write buffer which stores results locally
between the time that they are computed and the time that they are written
out.

Loop Nest 2 LOCAL ARRAY: buff[0:buffsz-1]

DO I; = 0 TO Ny-1
DOALL 1T, = 0 TO No-1 by buffsz

/* Main loop */

J=20

DO I, = II, TO MIN(IIp+buffsz, No)-1
buff[J1=h(I1,15)
J=J+1

END DO

/* Copy-out loop: A — buff */

J=0

DO Iy = IIo TO MIN(IIg+buffsz, Noy)-1
A[2+I4+10%Ip+ 1] = buff[J]
J=J+1

END DO

END DOALL
END DO

As one might intuitively expect, there is a space—performance tradeoff: the
larger the buffer, the better the performance of PP-OPT. For more details on
this transformation itself and on the cost—benefit tradeoffs involved in selecting
buffer sizes, see [3, 4].

3 Eliminating False Sharing (FS-OPT)

For cases where reducing ping-pong effects is insufficient, we review our previ-
ously proposed transformation for eliminating multiple-writer false sharing itself.
In this section, we present examples of applying this optimization to loop nests
containing a single static write reference. In the interest of brevity, we restrict our
discussion to cases that occur in the benchmarks discussed later in this paper.

3.1 Handling One-Dimensional Loop Nests

Consider Loop Nest 3. Multiple-writer false sharing can be eliminated by parti-
tioning pages into blocks of k pages, known as k-blocks. Then we can partition
the computation such that during any given DOALL loop iteration, the set of
I-loop iterations that are executed are exactly those that map to some distinct
k-block.

Assume that a page can hold precisely m elements of & and that o(ALezpr])
is the offset of A[ezpr] on some page, where 0 < o(A[ezpr]) < m. The code to
accomplish this partitioning is shown in Loop Nest 4.1

Loop Nest 3 Loop Nest 4

DOALL II = 0 TO [(N+ ¢)/4]-1
/* I-loop iterates over exactly one k-block */
DO I = MAX([II*fS —¢], 0) TO

DOALL I = 0 TO N-1 MINC[(II+1)* 8 — ¢], N)-1
R: A[3*I] = h(I) R: A[3#I]1 = h(I)
END DOALL END DO
END DOALL
where

Be{pth)=kx|keP)

b c {¢A(n): (O(A[O])—}—n*rg)mod(k*m)|n€[0:k)m}

Depending on the choice of k, applying this transformation may lead to the use
of a non-integer block size 3. The alignment factor ¢ compensates for the fact
that the array element accessed during iteration I=0 falls in the middle of a
k-block. A comprehensive discussion of this optimization can be found in [5].
As an example, let m = 4 and o(A[0]) = 3.2 We arbitrarily choose k = 2 and
n = 0 so that the block size is § = 8/3 and the alignment factor is ¢ = 1. Fig. 2

! We use the following set notation: IN = {0,1,...}, IP = {1,2,...}, and IR is the set of
real numbers. [mn : mz) = {r € R | mn < r < mz}. [mn: mz)s = [mn:mz)NS,
where S € {IN, IP}.

2 For illustrative purposes, an unrealistically small page size has been chosen.

k-blocks 2-block 0 2-block 1 2-block 2

T e T

Pages | page0 page 1 page 2 page 3 page 4 page 5
Array Elements LT T T TTTITITTTITIITTT[Seee
A[0] A[3] A[6] A[9] A[12] A[15] A[18]

Iterations 1=0 1=1 1=2 1=3 1=4 1=5 1=6

11=0 =1 =2

Fig. 2. Partitioning of iterations/pages that results after executing Loop Nest 4 when
m =4, o(A[0]) =3, §=28/3, and ¢ = 1.

shows the partitioning of iterations/pages into k-blocks that results. Because
k = 2, the I-loop iterations that are executed during any given iteration of the
II-loop (the outer loop after stripmining the original DOALL loop) are exactly
those that map to some 2-block.

Consider elements A[9] and A[12], which both lie on page 3 and are accessed
during iterations I=3 and I=4, respectively. To prevent false sharing of this
page, both of these iterations must be executed by the same processor.® This
is ensured in two steps. First, the iteration partitioning strategy maps both of
these iterations to the same 2-block. Then, it guarantees that all iterations that
map to this 2-block are executed by the same processor.

Because the blocking factor is not an integer, the number of iterations that
map to a k-block can vary by one from block to block. There are k = 2 possible
pairings of pages into 2-blocks. By choosing n = 0, page 0 has become the first
page in some 2-block. Had we chosen n = 1, page 0 would have been the second
page in some 2-block.

3.2 Handling Two-Dimensional Loop Nests

Consider Loop Nest 5. In this section, we show how to eliminate multiple-writer
false sharing and other sources of page migration from this example loop nest.
A more general discussion of two-dimensional loop nests can be found in [4, 5].

Loop Nest 5 DO I; = 0 TO Nq-1
DOALL T = 0 TO No-1
R: Al4 * Il—|—3*12] = h(Il,Iz)
END DOALL
END DO
In the above loop nest, page faults due to write references could arise from
one or more of the following sources:

— Source 1: cold start misses,
— Source 2: multiple-writer false sharing within a single execution of a

DOALL loop, and

? Had we chosen a larger, more realistic page size, there would have been more cases
similar to this.

— Source 3: overlap between the sets of pages written during two distinct
executions of a DOALL loop.

In our experience, cold start misses are generally insignificant compared to those
arising from the remaining two sources; therefore, we ignore these. To eliminate
page migrations of the second and third sources, we apply the same technique
as in the case of one-dimensional loop nests, but impose the additional restric-
tions that (1) the same partitioning of pages into k-page blocks must be used
during every iteration of the I loop and (2) a surjective mapping must be es-
tablished between k-blocks and processors that is enforced at run time, so that
each processor executes exactly those iterations associated with “its” k-blocks.
The mapping that we choose maps every P k-block to the same processor,
where P is the number of processors. This effects a block-cyclic schedule.

The transformed code is shown in Loop Nest 6. It is assumed that if a DOALL
loop with P iterations is executed, then each distinct DOALL loop iteration is
mapped to a distinct processor.

Loop Nest 6

DO I; = 0 TO Ny-1
DOALL II5 = 0 TO P-1
pid = GetPid()
DO II, = ﬁrst[terA(pid,I1) TO [(No +¢/8)] —1 by P
/* Ig-loop iterates over exactly one k-block */
DO I, = MAX([IIg% 3 — @], 0) TO MIN([(IIg+1)* 3 — ¢], Ny)-1
R: A[4*Il—|—3*I2] = h(Il,IQ)
END DO
END DO
END DOALL
END DO

where

Be (Uy=kxg kelP)

6 c {(b%l(n): (0(A[0])+4*11+;1*m)mod(k*m) |n€[0:k)]N}

firstlter®(pid, 1q) = (Pid_ lO(A[O])+4*I1+n*mJ) ap

k+xm

As an example, assume that m = 4 and that o(A[0]) = 3. We arbitrarily
choose k = 2 and n = 0, so that the blocking factor is # = 8/3 and the alignment
factor is ¢ = ((3+4+*1I4) mod 8)/3. Fig. 3 shows the mapping between k-blocks
and processors that results.

As asecond example, recall Loop Nest 1. The performance benefit of applying
this technique (FS-OPT) to that loop nest can be seen graphically in Fig. 1.

processor PO processor P1 processor P2
I I I |
k-block 0 k-block 1 k-block 2

T e T

page 0 page 1 page 2 page 3 page 4 page 5
LTI T T I TP P T I
A[Q] A[3] A[6] A[9] A[12] A[15] A[18]
11=0: (12=0) (12=1) (12=2) (12=3) (12=4) (12=5) (12=6)
LI T T IT I]
Al4] A[7] A[10] A[13] A[16] A[19]
11=1: (12=0) (12=1) (12=2) (12=3) (12=4) (12=5)
LT T T ITTI T TT]
A[8] A[11] A[14] A[17] A[20]
11=2: (12=0) (12=1) ' (12=2) (12=3) (12=4)

Fig. 3. Mapping between k-blocks and processors that results after executing Loop Nest 6
when o(A[0]) =3, m=4, k=2, and n = 0.

To maximize parallelism and reduce synchronization overhead, it is gener-
ally preferable, when legal, to interchange loops so that the DOALL loop is
outermost.

Note that FS-OPT eliminates page migrations across multiple executions
of the same doall loop by employing the same mapping between pages and
processors during each execution. This same sort of affinity can be provided
across distinct loop nests that each contain write references to the same array
variable by choosing the same values of £ and n in each case.

4 Handling Loop Nests Containing Multiple Write
References

In practice, programs often contain DOALL loops with more than one static
write reference. In this section, we briefly present three new methods for ex-
tending our aforementioned strategies to handle multiple write references. These
techniques differ in their aggressiveness and generality. As a running example
throughout this section, we will use Loop Nest 7, a key loop nest from a two-
dimensional explicit hydrodynamics code fragment known as Lawrence Liver-
more Kernel 18.

4.1 Technique 1: Reducing Ping-pong Effects (PP-OPT)

The technique from Sect. 2 can be readily applied to reduce ping-pong effects
for both references. An example of applying this technique to Loop Nest 7 is
depicted in Loop Nest 8. The effective buffer size is bounded from above by the

Loop Nest 7

/* Key loop nest from Lawrence Livermore Kernel 18
(2-D eaxplicit hydrodynamics code fragment) */

DOALL II, = 0 TO [(N—2)/8] -1
DO I; =27T06
DO Ip = MAX([IIg«* f3]+2, 2) TO MIN([(II9+ 1)x3]+2, M)-1
RZU: 7U[1,,14] = ZU[I5,14]1 + S * (ZA[I5,14] % (ZZ[I9,14] - ZZ[Ip+1,141))
- ZA[I9-1,I41 * (ZZ[19,I41 - ZZ[I9-1,I41)
- ZB[IQ,I1] * (ZZ[Iz,Il] - ZZ[IQ,Il—l])
+ ZB[I5,I1+1] * (2Z[19,11) - ZZ[I5,I1+1)))
REV: gV[I,,141 = ZV[Io,14]1 + $ * (ZA[I9,T4] * (ZR[I5,1¢] - ZR[Io+1,141)
- ZA[I9-1,I41 # (ZR[I9,I4]1 - ZR[Io-1,I41)
- ZB[I9,I1+1] * (ZR[I9,I{]1 - ZR[I9,I{-11)
+ ZB[I5,I1+1] * (ZR[I9,I1] - ZR[I,,I1+11))
END DO
END DO
END DOALL

block size §. In Loop Nest 8, the buffer sizes are set to 8. The copy-in loops,
where ZU and ZV are read into their respective buffers, are not strictly necessary
for this loop nest. However, we include them here because they may be needed
to handle the general case and consequently are generated by default by the
compiler in which these optimizations are currently implemented.

4.2 Technique 2: Eliminating False Sharing for One Reference
Group and Reducing Ping-pong Effects for the Remainder
(FS-PP-OPT)

A reference group is a set of one or more write references with the same page off-
sets, the same array dimensions (excluding the outermost dimension), the same
size elements, and the same subscript expressions (these need not be references
to the same variable). A reference group has the property that the footprint
of each reference in the group moves through memory at the same speed and
crosses page boundaries at the same time. For example, in Loop Nest 7, ZU and
ZV have the same size elements and the same subscript expressions. If they also
have the same innermost dimension and the same offset, then they belong to
the same reference group. Otherwise, they belong to distinct reference groups.
In general, there are at most a few reference groups within a given loop nest.
This is especially true if arrays are aligned with page boundaries when possible.

A reference group has the additional property that the set of block sizes and
alignment factors that can be used to eliminate false sharing is the same for each
reference in the group. Therefore, we can eliminate multiple-writer false sharing
and Source 3 page migrations (Sect. 3.2) within a given reference group G, by

Loop Nest 8

/* Technique 1: Reducing ping-pong

effects for both references /* Main loop */
from Loop Nest 7 (PP-OPT). */ J=0
DO I, = I,MIN TO I,MAX
LOCAL ARRAY: buffZU[0:3-1] buffZU[J] = buffZU[J] + ---

LOCAL ARRAY: buffZV[0:3-1] buffZV[J] = buffZV[J] + ...
J=73+1
DOALL II5 = 0 TO [(N—2)/8] —1 END DO
DO I; =2 TO 6
IoMIN = MAX([IIq* 3]+2, 2) /* Copy-out loops:
IoMAX = MINC[(IIo+ 1) 3]+2, N)-1 ZU «— buffZU, ZV «— buffZv */
J=0
/* Copy-in loops: DO Iy = IoMIN TO IoMAX
buffZU — ZU, buf£ZV — ZV */ R¥: zU[15,11] = buffzu[J]
I=0 J=J+1
DO Iy = I MIN TO IoMAX END DO
buffZU[J] = ZU[I5,14] =0
IJ=J+1 DO Iy = IoMIN TO IoMAX
END DO REV: 7V[14,14]1 = buffzv[J]
J=0 IJ=J+1
DO Iy = I MIN TO IoMAX END DO
buffZV[J] = ZV[I5,I4]
J=J+1 END DO
END DO END DOALL

applying our false sharing elimination techniques from Sect. 3, when applicable.
If there is only one reference group, then both of these sources of page migrations
are eliminated altogether. If there is more than one reference group, then we can
apply our ping-pong reduction techniques in addition to reduce ping-pong effects
elsewhere.

For example, assume that ZU and ZV belong to different reference groups.
Loop Nest 9 displays the result of optimizing to eliminate false sharing for the
reference to ZU and optimizing to reduce ping-pong effects for the reference to
ZV.

4.3 Technique 3: Eliminating Multiple-Writer False Sharing for All
References (FS-OPT)

Under certain circumstances, multiple-writer false sharing and Source 3 page
migrations can be eliminated simultaneously for multiple reference groups by
applying the following compound transformation:

— Step 1: distribute the DOALL loop to encapsulate the references from each
group in distinct DOALL loops.

Loop Nest 9

/* Technique 2: Eliminating false

RZU

sharing for and reducing

ping-pong effects for RZV from
Loop Nest 7 (FS-PP-OPT). */

LOCAL ARRAY: buffZV[O:ﬁZU(k)-l]
DOALL II5 = 0 TO P-1

pid = GetPid()
8 = LUk

DO II5 = 0 TO [(N—2)/6]-1 by P 27U,

DO I{ =2 TO 6
6 = of) (m)

/* All elements of ZU written
during iterations
(I1, ToMIN : ToMAX) lie
within some k-block that is
mapped to processor pid */

/* Copy-in loop:
buffZv — ZV f/

I=0
DO Iy =

J=1]
END DO

IoMIN TO I,MAX
buffZV[J] = ZV[Ig,I4]

+ 1

/* Main loop */

J=0

DO Iy = IoMIN TO IoMAX

ZU[I
buff
J =
END DO

2,111
ZV[J]
J+ 1

= ZU[I5,I4]1 + -
buffZV[J] + ---

/* Copy-out loop:
ZV — buffzv */

J=0

D0 I, = IHMIN TO I,MAX
ZV[Iy,I9] = buffZV[J]

IoMIN = MAX([(IIo+ RV,
Fz'rst[terZU(pid,I1)) J =
*G — ¢1+2, 2) END DO
IoMAX = MIN([(IIo+
Firstlter®U(pid, 14) END DO
+1) % — ¢]+2, M)-1 END DO
END DOALL

J+ 1

— Step 2: independently select block sizes and alignment factors for each ref-

erence group (equivalently, each loop nest).

— Step 3: fuse the DOALL loops back together so that no additional synchro-

nization is necessary.

The circumstances under which this optimization can be performed are described
in [4]. An example of applying this optimization to Loop Nest 7 is depicted in
Loop Nest 10. For this example, it is again assumed that the references to ZU

and ZV belong to different reference groups.

5 Preliminary Experimental Results

The optimizations to reduce ping-pong effects (Sect. 2) and eliminate false shar-
ing (Sect. 3) have been implemented in the Fortran-S compiler [6], which gener-
ates code that runs on the iPSC/2 under the KOAN SVM [2]. When P processors
are allocated to this code, there is an initial fork onto all P processors and a join

10

Loop Nest 10

/* Technique 3: Eliminating false sharing for both write references

from Loop Nest 7 (FS-OPT). */

DOALL IT5 = 0 TO P-1
pid = GetPid()

/* Loop nest containing ZU after splitting main loop */
8 = 3"k
DO II, = 0 TO [(N—2)/3]-1 by P
DO I4 =2 TO 6
_ ZU
¢ = ¢I1(n)

/* All elements of ZU written during tterations (I1, IoMIN : IoMAX)
lie within some k-block that is mapped to processor pid */

ToMIN = MAX([(ITq+ Firstlter?V(pid,11)) % 8 — ¢]+2, 2)
IoMAX = MIN([(IIo+ Firstlter®U(pid, 1)+ 1)+ 8 — ¢]+2, N)-1
DO I, = IoMIN TO I,MAX
RZU, ZU[I5,14] = ZU[I5,14] + ---
END DO
END DO
END DO
* Loop nest containing ZV after splitting main loop *
/ p g plitting D
B = 2V (k)
DO II4 =0 TO [(N—2)/]-1 by P
D0 I; =2TO6
¢ = o2V (n)
1
/* All elements of ZV written during iterations (I1, IoMIN : IoMAX)
lie within some k-block that is mapped to processor pid */
IMIN = MAX([(II5+ Firstlter?Y (pid, 11)) * 8 — ¢]+2, 2)
IoMAX = MIN([(II,+ Firstlter?Y (pid, 1)+ 1)+ 8 — ¢]+2, N)-1
DO I, = I,MIN TO I,MAX
RZV, ZV[Iy,14] = ZV[Ip,I¢] + ---
END DO
END DO
END DO
END DOALL

11

at the end. The starts and ends of DOALL loops are replaced by P-processor
barrier operations as needed. Whenever a DOALL loop is executed, iteration
I = j of that DOALL loop is executed on processor Fj, where 0 < F; < P,
which provides some affinity across DOALL loops.

The compiler generated three versions of each Fortran 77 benchmark stud-
ied: ORIG, PP-OPT and FS-OPT. For the ORIG and PP-OPT versions, each
processor was assigned a consecutive chunk of § = N/P iterations, where N is
the problem size. For the PP-OPT version, a buffer size of § was chosen. For the
FS-OPT version, each processor was assigned a consecutive chunk of 8 = #(k)
(equivalently, k “pages” of) iterations, where k that was chosen to yield the block
size B(k) that was closest to N/P. For all three versions, the innermost DOALL
loop was parallelized. To maximize the grain of parallelism, loop interchanging
was then applied when legal.

5.1 DMXPY

Loop Nest 11 depicts the Fortran kernel DMXPY from LINPACKD [7] which
performs matrix—vector multiplication.

Loop Nest 11 /* DMXPY */

DO I{ = 0 TO N4
DO I, = 0 TO Ny
R: Y[Ip] = Y[Io] + X[I4] * M[Ip,14]
END DO
END DO

Fig. 4 depicts the performance of the ORIG, PP-OPT and FS-OPT versions
of these programs for four different problem sizes. As can be seen in Fig. 4(a),
the overhead for applying either PP-OPT or FS-OPT is less than 10% of the se-
quential execution time. Therefore, as the number of processors increases and the
degree of false sharing with it, the optimized versions quickly outperform ORIG.
Note that the curves that correspond to the optimized versions are smoother
as well. This makes the performance of the optimized versions easier to predict,
which facilitates program tuning.

For this benchmark and the range of processors studied, the performance of
PP-OPT and FS-OPT is similar. The only exception occurs when the number
of processors is very small in comparison to the problem sizes. In this case, the
degree of false sharing is too small to offset the load unbalancing caused by
FS-OPT. However, this trend quickly reverses as the number of processors is
increased. This effect can be seen in Fig. 4(c)(d).

5.2 Triangularized DMXPY

Because there is processor affinity across executions of the I4 loop in DMXPY,
the reference pattern is the same on every execution of this loop, and the degree

12

2 p—
ORIG

Execu- _W

ti A

R N
Time NN
RN
(Sec) 0.2 — Vx‘.y»_ |Fs-opT
0.1 | | | | i PP-OPT

1 2 4 8 16 32

Number of Processors

(a) Problem Size: No=5000

2_

Execu- 1

\\/\ ORIG

tion N
. 0.5 N
Time DN
(sec) 0.2 — \\ FS-OPT (- -
\ PP-OPT (- -

0.1 T T 1
1 2 4 8 16 32

Number of Processors

(b) Problem Size: N2=10000

-)
-

2 — \/\ 2 — \
N

Ex.ecu— 1 — N ORIG Ex.ecu— 1— \\\ ORIG

tion N tion N

. 0.5 — AN . 0.5 — N
Time N Time ~._ |ppopT ()
(sec) 0.2 — \‘Q PP-OPT (SeC) 0.2 — FS-OPT (- - -)
FS-OPT
0-1 T T 1 0.1 T T 1
1 2 4 8 16 32 1 2 4 8 16 32

Number of Processors Number of Processors

(c) Problem Size: No=15000 (d) Problem Size: N2=20000

Fig.4. Ezecution times for original and optimized versions of DMXPY (Loop Nest 11)
with the inner loop parallelized and interchanged. N1 = 10.

of false sharing is not very high. False sharing would become more significant if
the reference pattern changed across executions of the I4 loop. To create such
a situation, we created the triangularized version of the DMXPY loop shown in
Loop Nest 12.

Loop Nest 12 /* Triangularized version of DMXPY */

DO I; = 0 TO Ny
DO I, = I4+1 TO Ny
R: Y[Ip] = Y[Io]l + X[I4] * M[Ip,14]
END DO
END DO

The performance of the triangularized version of DMXPY can be seen in
Fig. 5. Again, the optimized versions outperform the unoptimized versions. This
time, however, the FS-OPT version significantly outperforms the PP-OPT ver-
sion. There are several reasons for this. First, because of the triangulation, the
PP-OPT version no longer has the advantage of affinity across DOALL loop

13

20 — ORIG 20 — ORIG
.{PP-OPT _//
Execu- 10 — Execu- 10 — .{pP.oPT
tion 5 | tion 5 |
Time Time \
\
(sec) 9 ___drsopr (sec) 9 | \\— ___Jes.opr
1 N A 1 T T 1
1 2 4 8 16 32 1 2 4 8 16 32
Number of Processors Number of Processors
(a) Problem Size: N2=5000 (b) Problem Size: N2=10000
20 — \/ ORIG 20 — ORIG
Execu- 10 — Execu- 10 — /
.{PP-OPT1 PP.OPT
tion tion e
. 5 — \ . 5 \
Time \ Time \
(Sec) 2 — \\, _{Fs-oPT (sec) 2 — _ —4Fs-opT
L I L I B I
1 2 4 8 16 32 1 2 4 8 16 32

Number of Processors Number of Processors

(c) Problem Size: N=15000 (d) Problem Size: N2=20000

Fig.5. Ezecution times for unoptimized and optimized triangularized versions of
DMXPY (Loop Nest 12) with inner loop parallelized (no interchanging). Ny = 100.

executions, but the FS-OPT version still does. Second, the number of iterations
per processor and, hence, the buffer size decrease as I increases. Because the
benefits of PP-OPT are proportional to the buffer size, PP-OPT becomes less
effective as execution of the triangularized kernel progresses.

5.3 LLK18

Fig. 6 presents execution times for unoptimized and optimized versions of
LLK18, a two-dimensional explicit hydrodynamics code, known as Lawrence
Livermore Kernel 18. This code contains three loop nests similar to that de-
picted in Loop Nest 7. Although each loop nest contains multiple write refer-
ences, the references within each loop nest belong to the same reference group.
This is because they have the same dimensions and subscript expressions, and
the Fortran-S compiler automatically aligns an array with the beginning of a
page when possible. Therefore, if false sharing is eliminated with respect to one
write reference in each loop nest, it is automatically eliminated with respect to

both.

14

100

50 —
Execu- 9¢ ORIG
tion 10 —
Time N
— -{PP-OPT
(sec) 1 —
0.5 — FS-OPT
T T 1
1 2 4 8 16 32
Number of Processors
(a) Problem Size: N=1000
1g8] J ORIG
Execu- 9¢
tion 10— <
.] N
Time | S N PP-OPT
~
(Sec) 1 — S Fs-oPT
0.5 —
1T 1T 1
1 2 4 8 16 32

Number of Processors

(c) Problem Size: N=10000

100
50 — ORIG
Execu- 909 — /
tion 10 —
Time 1Nl N
— N PP-OPT
(sec) 1— ~<_
0.5 — S Fs-opT
T T 1
1 2 4 8 16 32
Number of Processors
(b) Problem Size: N=5000
100
50 — ORIG
Execu- 20 — /
tion 10 — _
Time _| k*'§~-~ PP-OPT
(sec) 1 — ~ N Fs-oPT
0.5 —
1T 1T 1

1 2 4 8 16 32

Number of Processors

(d) Problem Size: N=15000

Fig. 6. FEzecution times for original and optimized versions of LLK18, with inner loops
parallelized and interchanged. All arrays are aligned with page boundaries, so there is
only one reference group per loop nest.

As can be seen in Fig. 6, both PP-OPT and FS-OPT again significantly
outperform ORIG. As the number of processors increases, FS-OPT increasingly
outperforms PP-OPT. Note that this is true for all four graphs in Fig. 5 as
well. This trend is due largely to the constraints that FS-OPT imposes on the
scheduling policy. In general, with any program, increasing parallelism past some
threshold will cause performance to worsen. Finding this point, however, is non-
trivial. Because FS-OPT requires that pages are treated as indivisible units
(i.e., all writes to a given page must be performed by the same processor), the
maximum amount of parallelism is bounded from above by the number of pages.
Therefore, FS-OPT has the side effect of bounding the amount of parallelism
that can be exploited.

In contrast, PP-OPT does not make any such requirement. Therefore, as the
number of processors increases, the number of iterations per processor decreases.
Because the maximum effective buffer size is bounded from above by the number
of iterations per processor, the maximum effective buffer size decreases as well.
Because the benefits of PP-OPT are proportional to the buffer size, PP-OPT

15

becomes less effective as the number of processors is increased. Note that, for
these experiments, we set the actual buffer size equal to the maximum possible
buffer size. Regardless of the buffer size chosen, however, the same trend would
be observed beyond some threshold.

The best example of this effect can be seen in Fig. 6(a), where performance
more or less flattens out after 8 processors, increasing only slightly beyond this
point. The flattening out occurs because no more processors will be used even
if they are available. The slight but steady increase after this point occurs for
two reasons. First, in the current version of the compiler, no attempt has been
made to prevent the execution of empty loop iterations. Second, the program is
forked across all available processors, regardless of whether they are used. Both
of these could be overcome at least partially in a more mature compiler, in which
case performance would be expected to level out even more. Had we been able
to run experiments on larger systems, we would expect to see this same trend in
the other graphs in Fig. 6 as well.

5.4 Key Loop Nest from LLK18 with Multiple Reference Groups

To test our extensions for handling loop nests containing multiple reference
groups, we changed the bounds of array ZV from Loop Nest 7 so that they no
longer match ZU. In Fig. 7, we compare the original version of this loop nest
(ORIG) to the three optimized versions PP-OPT, FS-PP-OPT, and FS-OPT,
depicted as Loop Nests 8, 9 and 10. For ORIG, PP-OPT and FS-OPT, block
and buffer sizes are chosen as described earlier. For FS-PP-OPT, we use the
same block size as in FS-OPT, and the buffer size is chosen to be equal to the
block size.

In general, for 2 to 32 processors, all three optimized versions greatly out-
perform ORIG. Note that, in the case of both PP-OPT and FS-PP-OPT, the
maximum possible buffer size shrinks as the number of processors increase. In
PP-OPT, the shrinkage is effectively unbounded for the reasons mentioned ear-
lier. Therefore, the performance benefits of PP-OPT will eventually diminish as
the number of processors is increased (this can already be seen for the two smaller
problems sizes as the number of processors approaches 32). In both the FS-OPT
and FS-PP-OPT versions, the amount of parallelism is bounded from above,
because of the indivisibility of pages. Consequently, in FS-PP-OPT, the buffer
size cannot grow smaller than £(1), the smallest possible block size. Therefore,
the performance curves for both these versions will more or less flatten out for
the reasons mentioned earlier. FS-OPT slightly outperforms FS-PP-OPT, but
the differences for this benchmark are negligible.

One advantageous side effect of the optimizations under study is that page-
level locality is increased and the working set size is decreased. Occasionally the
effects are dramatic. For example, in Fig. 7(c), ORIG performs very poorly on
two processors because of thrashing. Because of the smaller working sets of the
optimized versions, all three perform much better.

16

ORIG
ORIG

P-OP PP-OPT
FS-PP-OPT FS-PP-OPT
FS-OPT FS-OPT

1 2 4 8 16 32 1 2 4 8 16 32
Number of Processors Number of Processors
(a) Problem Size: N=1000 (b) Problem Size: N=5000
500 — 500 —
Execu- %gg _] Execu- %gg _]
tion %@ — ORIG tion %@ — ORIG
Time] Time] <
(sec) 415 lerern,, (o) 1= T
8% — FS-OPT 8% — FS-OPT
) 1T 1T 1 1T 1T 1
1 2 4 8 16 32 1 2 4 8 16 32
Number of Processors Number of Processors
(c) Problem Size: N=10000 (d) Problem Size: N=15000

Fig. 7. Ezecution times for original and optimized versions of Loop Nest 7 from LLK18,
with inner loops parallelized and interchanged. ZU and ZV are declared with different
dimensions, so that Loop Nest 7 contains two reference groups.

6 Related Research

The potential performance degradation that can be caused by false sharing has
been studied by several researchers. Based on this research, data layout opti-
mizations to reduce false sharing, such as array padding [2, 8, 9] and array rein-
dexing [10], have been proposed. Others have studied data layout optimizations
to reduce false sharing in languages with structures and pointers [11].

In many cases, when coherency units are small, compiler-directed program
transformations that increase temporal and spatial locality without directly con-
sidering the size of the coherency unit alleviate much of the problem. These
include transformations such as loop interchanging that increase locality within
an individual loop nest [12, 13, 14] as well as optimizations that increase locality
across loop nests, for example [15, 16, 17]. Unfortunately, when the coherency
unit becomes larger, such techniques no longer suffice.

One run-time solution to the false sharing problem is to relax the consistency
model. Systems such as Treadmarks [18] (by default) and KOAN [2] (as an op-
tion) allow multiple copies of writable pages to exist and merge modifications

17

only at synchronization points. While these run-time techniques are more general
than the compile-time techniques that we study here, they entail a significant
space cost to keep track of modifications as well as a time cost associated with
both the bookkeeping and the merging.

Observe that, for this study, we targeted the elimination of false sharing
to improve performance. Because of our assumptions of a page-coherent sys-
tem (supported in either hardware or by the run-time system), the resulting
program would execute correctly regardless of whether false sharing was elim-
inated. Therefore, we do not consider any transformations that would require
the insertion of additional synchronization. In contrast, on systems where no
hardware or run-time support for coherence is provided, false sharing must be
eliminated to ensure correctness. Breternitz et al. [19] study this problem. Tthey
insert additional synchronization as needed so that the compiler can maintain
coherence. Consequently, their techniques are more general than ours. However,
on page-coherent systems, the overhead for the additional synchronization may
outweigh the performance gain from eliminating false sharing.

Eliminating false sharing is only one optimization that a good SVM compiler
should perform. Several researchers have begun exploring techniques to reduce
synchronization overhead and hide latencies on SVM systems [10, 16, 20].

7 Conclusions

In this paper, we have distinguished between false sharing and its chief symp-
tom, the ping-pong effect. We have evaluated two compile-time techniques for
attacking multiple-writer false sharing for the purpose of improving performance
(as opposed to ensuring program correctness). The first is PP-OPT, a new loop
transformation that reduces the ping-pong effect by encouraging processors to
perform multiple writes to a page before relinquishing the page. It is simple to
implement and has wide applicability. We have shown that using this technique
to reduce ping-pong effects can eliminate much of the performance degradation
attributed to false sharing. For cases where a more aggressive approach is mer-
ited, we evaluated a second technique FS-OPT that targets false sharing directly.
This loop transformation partitions iterations into blocks of “pages” and assigns
these blocks to processors as indivisible units, thus ensuring that no page is
written by more than one processor.

For both techniques, computation can be done symbolically at compile time
if necessary. Triangular loops and loops with non-unit strides can be handled.
Many commonly occurring cases of loops containing multiple references can also
be handled. We are currently working on techniques to generalize these opti-
mizations even further.

Overall, both techniques increase locality and, hence, reduce thrashing. Our
experimental results have shown that run-time overhead is generally low and
quickly offset as the number of processors is increased to even a moderate num-
ber. A secondary benefit to both optimizations is that performance becomes
more predictable, which facilitates both manual and automatic program tuning.

18

In general, for any fixed problem size, increasing the amount of parallelism
beyond some threshold will cause an application’s performance to deteriorate.
One of the benefits of FS-OPT is that, as a side effect of treating pages as
indivisible units, the amount of parallelism that will be utilized is bounded from
above by the number of pages. This helps prevent performance from deteriorating
when the number of processors available becomes too large. In contrast, PP-OPT
does not impose any limits on parallelism or even provide any hints as to what
the bound should be.

Consequently, in general, when the number of processors is increased beyond
this threshold, FS-OPT should increasingly outperform PP-OPT. Below this
threshold, however, the performance of the two optimizations is expected to be
comparable in many cases. These trends can be seen in the preliminary experi-
mental data presented in this paper. Because this threshold is often difficult to
determine, the profitability margin of FS-OPT is likely to be higher. Moreover,
FS-OPT has the advantage of naturally providing affinity across doall loops.
However, PP-OPT has the advantage over FS-OPT of being simpler to imple-
ment and more generally applicable. Therefore, an aggressive compiler should
probably support both FS-OPT and PP-OPT; FS-OPT should be applied where
possible and PP-OPT used for the remaining cases. In a less aggressive compiler,
it would probably suffice to support PP-OPT only.

Because the performance degradation due to page migrations is proportional
to page size, so is the benefit of applying our techniques. Although we targeted
systems with page-sized coherency units, it should also be possible to realize (al-
beit smaller) performance gains on SVM systems with cache-line-sized coherency
units.

Clearly, eliminating false sharing is only one of several optimizations that
a good SVM compiler should perform. In the future, we hope to study and
incorporate optimizations to reduce synchronization, to hide latencies where
communication is unavoidable, and to handle irregular accesses.

Acknowledgements

The authors would like to thank Thierry Priol and Zakaria Lahjomri for providing
access to and assistance with KOAN, Preston Briggs, Ervan Darnell, William Jalby,
Ken Kennedy, Ajay Sethi and the anonymous referees for their helpful comments and
suggestions, and Debbie Campbell for proofreading this paper.

Frangois Bodin and Thierry Montaut are supported by the Esprit Agency DG XIII
under Grant No. APPARC 6634 BRA III and Intel SSD under Grant No. 1 92 C 250
00 31318 01 2. Elana D. Granston is supported by the Center for Research on Parallel
Computation under Grant No. CCR-9120008, a grant from the International Business
Machines Corporation, and a Postdoctoral Research Associateship in Computational
Science and Engineering under National Science Foundation Grant No. CDA-9310307.

References

1. K. L1, Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

Yale University, Sept. 1986.

. Z. Lajormi and T. Priol, “KOAN: A Shared-Memory for the iPSC/2 Hypercube,”

in CONPAR/VAPP92, LNCS 634, Springer-Verlag, Sept. 1992.

T. Montaut and F. Bodin, “False Sharing in Shared Virtual Memory: Analysis and
Optimization,” tech. rep., IRISA, 1993.

F. Bodin, E. D. Granston, and T. Montaut, “Experiences Reducing False Sharing
in Shared Virtual Memory Systems.” Submitted for publication.

. E. D. Granston, “Toward a Compile-Time Methodology for Reducing False Shar-

ing and Communication Traffic in Shared Virtual Memory Systems,” in the Sixth
Annual Workshop on Languages and Compilers for Parallel Computing, (Portland,
Oregon), Aug. 1993. Published in Languages and Compilers for Parallel Comput-
ing, Banerjee et al. (Eds.), LNCS 768, Springer—Verlag, 1994, pages 273-289.

. F. Bodin, L. Kervella, and T. Priol, “Fortran-S: A Fortran Interface for Shared

Virtual Memory Architectures,” in Supercomputing ’93, pp. 274-283, IEEE Com-
puter Society Press, Nov. 1993.

J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK User’s Guide, 1979.
W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott, “Simple But Effective Techniques
for NUMA Memory Management,” in Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pp. 19-31, ACM Press, Dec. 1989.

J. Torrellas, M. S. Lam, and J. L. Hennessy, “False Sharing and Spatial Local-
ity in Multiprocessor Caches,” Aug. 1992. Submitted to IFEF Transactions on
Computers.

S. P. Ammarsinghe, J. M. Anderson, M. S. Lam, and C.-W. Tseng, “Design and
Evaluation of Compiler Optimizations for Scalable Address Space Machines,” 1994.
To be published.

S. J. Eggers and T. E. Jeremiassen, “Eliminating false sharing,” in Proceedings of
the International Conference on Parallel Processing, pp. 377-381, CRC Press, Inc.,
Aug. 1991.

F. Bodin, C. Eisenbeis, W. Jalby, and D. Windheiser, “A Quantitative Algorithm
for Data Locality Optimization,” in Code Generation-Concepts, Tools, Techniques,
Springer-Verlag, 1992.

K. Kennedy and K. S. McKinley, “Optimizing for Parallelism and Data Locality,”
in International Conference on Supercomputing, pp. 323-334, ACM Press, July
1992.

M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm,” in Pro-
ceedings of the SIGPLAN ’91 Conference on Programming Languages Design and
Implementation, pp. 30-44, ACM Press, June 1991.

J. Fang and M. Lu, “A Solution to the Cache Ping-Pong Problem in RISC Based
Parallel Processing Systems,” in International Conference on Parallel Processing,
Aug. 1991.

B. Appelbe, C. Hardnett, and S. Doddapaneni, “Program Transformation for Lo-
cality Using Affinity Regions,” in the Sixth Annual Workshop on Languages and
Compilers for Parallel Computing, (Portland, Oregon), Aug. 1993. Published in
Languages and Compilers for Parallel Computing, Banerjee et al. (Eds.), LNCS
768, Springer—Verlag, 1994, pages 290-300.

J. Anderson and M. Lam, “Global Optimizations for Parallelism and Locality on
Scalable Parallel Machines,” in Proceedings of the SIGPLAN ’93 Conference on
Programming Languages Design and Implementation, ACM Press, June 1993.

P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “Treadmarks: Distributed

20

Shared Memory On Standard Workstations and and Operating Systems,” in Win-
ter Usenixz Conference, 1994.

19. M. Breternitz, Jr., M. Lai, V. Sarkar, and B. Simons, “Compiler Solutions for the
Stale-Data and False-Sharing Problems,” Tech. Rep. 03.466, IBM Santa Teresa
Laboratory, Apr. 1993.

20. R. Michandaney, S. Hiranandani, and A. Sethi, “Improving the Performance of
DSM Systems via Compiler Involvement,” in Supercomputing ‘94, 1994.

21. L. Censier and P. Feautrier, “A New Solution to Coherence Problems in Multicache
Systems,” IEFE Transactions on Computers, pp. 1112-1118, Dec. 1978.

A Overview of KOAN

The KOAN SVM system [2] is embedded in the operating system of the iPSC/2.
Pages of size 4 KB are physically distributed across processors’ local memories.
KOAN uses a distributed-manager algorithm based on [1], with an invalidation
protocol that ensures that the shared memory is coherent at all times [21]. Under
this protocol, pages can have one of three access modes: read-only, write-exclusive
and invalid. Multiple copies of a page are permitted only when all copies are in
read-only mode. When a processor needs to write to a page and either has a
read-only copy or no copy at all, the processor must send a message to the
page’s manager requesting write-exclusive access. Once all other copies of that
page are invalidated, a write-exclusive copy is sent to the requesting processor,
which can then proceed with its write.

This article was processed using the INTpX macro package with LLNCS style

21

