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Abstract. In this article, we introduce three commands to conduct robust data-
driven statistical inference in regression-discontinuity (RD) designs. First, we
present rdrobust, a command that implements the robust bias-corrected confi-
dence intervals proposed in Calonico, Cattaneo, and Titiunik (2014d, Economet-
rica 82: 2295-2326) for average treatment effects at the cutoff in sharp RD, sharp
kink RD, fuzzy RD, and fuzzy kink RD designs. This command also implements
other conventional nonparametric RD treatment-effect point estimators and confi-
dence intervals. Second, we describe the companion command rdbwselect, which
implements several bandwidth selectors proposed in the RD literature. Following
the results in Calonico, Cattaneo, and Titiunik (2014a, Working paper, Univer-
sity of Michigan), we also introduce rdplot, a command that implements several
data-driven choices of the number of bins in evenly spaced and quantile-spaced
partitions that are used to construct the RD plots usually encountered in empiri-
cal applications. A companion R package is described in Calonico, Cattaneo, and
Titiunik (2014b, Working paper, University of Michigan).
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1 Introduction

The regression-discontinuity (RD) design is a well-established and widely used research
design in empirical work. In this design, units receive treatment on the basis of whether
their value of an observed covariate is above or below a known cutoff. The key feature
of the design is that the probability of receiving treatment conditional on this covariate
jumps discontinuously at the cutoff, inducing “variation” in treatment assignment that
is assumed to be unrelated to potential confounders. Because of its local nature, RD
average treatment-effects estimators are usually constructed using local polynomial non-
parametric regression, and statistical inference is based on large-sample approximations
(an exception being Cattaneo, Frandsen, and Titiunik [Forthcoming]).!

In this article, we discuss data-driven (that is, fully automatic) local-polynomial-
based robust inference procedures in the RD design. We introduce three main commands

1. For review and further discussion, see Hahn, Todd, and Van Der Klaauw (2001), Porter (2003),
Lee (2008), Imbens and Lemieux (2008), Lee and Lemieux (2010), Dinardo and Lee (2011), and
Imbens and Kalyanaraman (2012).
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that together offer an array of data-driven nonparametric inference procedures useful
for RD empirical applications, including point estimators and confidence intervals (CIs).
First, our main command, rdrobust, implements the bias-corrected inference proce-
dure proposed by Calonico, Cattaneo, and Titiunik (2014d), which is robust to “large”
bandwidth choices. This command also implements other classical inference procedures
using local polynomial regression, as suggested in the recent econometrics literature
(see references in footnote 1). This implementation offers robust bias-corrected Cis for
average treatment effects at the cutoff for sharp RD, sharp kink RD, fuzzy RD, and fuzzy
kink RD designs, among other possibilities.

To construct these nonparametric estimators and CIs, all of which are based on
estimating a regression function in a neighborhood of the cutoff, we need one or more
choices of bandwidth. Our second command, rdbwselect, which is called by rdrobust,
provides different data-driven bandwidth selectors based on the recent work of Imbens
and Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik (2014d). Although
this command can be used as a stand-alone bandwidth selector in RD applications, its
main purpose is to provide fully data-driven bandwidth choices to be used by rdrobust.

Finally, our third command, rdplot, implements the results described in Calonico,
Cattaneo, and Titiunik (2014a), offering several data-driven choices of the number of
bins in evenly spaced and quantile-spaced RD plots. These plots are derived either to
approximate the regression function with local sample averages of the outcome variable
within bins of the running variable or to depict the overall variability of the data in
a disciplined and objective way. These selectors are obtained by approximating the
asymptotic integrated variance and bias of certain partitioning-type estimators (see
Cattaneo and Farrell [2013] for references) and are implemented nonparametrically us-
ing spacings and series estimators. We show how the results implemented in rdplot
can be used to construct the RD plots commonly found in empirical applications. This
command offers a fully automatic way of constructing several useful RD plots that can
be used for both presenting the data and falsifying the design.

The rest of this article is organized as follows. In section 2, we review the methods
implemented in our commands. In sections 3, 4, and 5, we describe the syntax of
rdrobust, rdbwselect, and rdplot, respectively. In section 6, we offer an empirical
illustration of our commands by investigating party advantages in U.S. Senate elections
using the data and research design in Cattaneo, Frandsen, and Titiunik (Forthcoming).
We illustrate several of the main features of our commands, including their compatibility
with outreg2 (Wada 2005). Finally, in section 7, we conclude. A companion R package
is described in Calonico, Cattaneo, and Titiunik (2014b).

2 Review of methods

In this section, we review the methods implemented in our commands rdrobust,
rdbwselect, and rdplot. To avoid distractions and technicalities, we do not present
the regularity conditions and technical discussions underlying these methods herein, but
these can be found in the references below. Also, to simplify the discussion, we focus
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on the special case of the sharp RD design, where the probability of treatment changes
deterministically from zero to one at the cutoff. However, we also cover sharp kink RD,
fuzzy RD, and fuzzy kink RD designs. We discuss the implementation for the latter cases
briefly in section 2.6 (see also sections 3 and 4 for the corresponding syntax), but we
refer the reader to Calonico, Cattaneo, and Titiunik (2014d; 2014c) for further details.

For recent reviews on classical inference approaches in the RD design and compre-
hensive lists of empirical examples, see Imbens and Lemieux (2008), Lee and Lemieux
(2010), Dinardo and Lee (2011), and references therein. Here we focus on approaches
using local polynomial nonparametric estimators with data-driven bandwidth selectors
and bias-correction techniques, also following the recent results in Imbens and Kalya-
narman (2012) and Calonico, Cattaneo, and Titiunik (2014d) and their supplemental
appendix (Calonico, Cattaneo, and Titiunik 2014c).

2.1 Setup and notation

We focus on large-sample inference for the average treatment effect at the cutoff in
the sharp RD design. For each unit ¢, the scalar random variable Y; denotes the out-
come of interest, while the scalar regressor X; is the “running variable” or “score” that
determines treatment assignment based on a known cutoff.

We adopt the potential-outcomes framework commonly used in the treatment-effects
literature (for example, Heckman and Vytlacil [2007]; Imbens and Wooldridge [2009]).
Let [{Y;(0),Y;(1),X;} : i = 1,2,...,n] be a random sample from {Y(0),Y (1), X},
where Y (1) and Y (0) denote the potential outcomes with and without treatment, re-
spectively, and treatment assignment is determined by the following known rule: unit 4
is assigned to the treatment condition if X; > T and is assigned to the control condition
if X; < T for some known fixed value Z. Thus the observed outcome is

Y{YZ—(O) if X; <%

and the observed random sample is {(V;, X;):i=1,2,...,n}.

We discuss and implement several data-driven inference procedures for the sharp
average treatment effect at the threshold, which is given by

7 = E{Yi(1) - Yi(0)| X; = 7}

This popular estimand in the RD literature is nonparametrically identifiable under mild
continuity conditions (Hahn, Todd, and Van Der Klaauw 2001). Specifically,

T =g — pe
with
iy = gf%u(x), o = }ggu(fc% p(z) = E(Y;|X; = 2)

where here, and elsewhere in the article, we drop the evaluation point of functions
whenever possible to simplify notation.
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Following Hahn, Todd, and Van Der Klaauw (2001) and Porter (2003), we construct
a popular estimator of 7 by using kernel-based local polynomials on either side of the
threshold. These regression estimators are particularly well suited for inference in the
RD design because of their good properties at the boundary of the support of the re-
gression function—see Fan and Gijbels (1996) for more details. The local polynomial
RD estimator of order p is

7A—p(hn) = ﬁ+,p(hn) - ﬁ*,p(hn)

where [i4 ,(hy) and i ,(h,) denote the intercept (at ) of a weighted pth-order poly-
nomial regression for only treated and only control units, respectively. More precisely,

fisp(hn) = €B ,(hy) and  fiop(hy) = epB_(hn)

with
B, ,(hy) =arg min > 1(X; > D){Yi —1,(X; — 7) B} K, (Xi — )
) BGRP+1 iz
2 _ . - . = - =V a2 L=
B_ ,(hn) = argﬁg@gl 24 1(X; <Y —rp(X; —2)BY Ky, (X; — T)
where r,(z) = (1,z,...,2P), ey = (1,0,...,0) € RPT! is the first unit vector, Kp(u) =

K(u/h)/h with K() a kernel function, h,, is a positive bandwidth sequence, and 1()
denotes the indicator function.

Under simple regularity conditions, and assuming the bandwidth h,, vanishes at an
appropriate rate, local polynomial estimators are known to satisfy

B, p(hn) =p By, and B_(hy) =, B_,

with
(2 @\’
_ 1 MKy By
Bip= <N+1N+ a27"'7p!>
(2) @\’
_ L A K-
ﬂ—,p_<,ua,u— 2 P p'>
u{) = lim : p+ ()
+ z|T oxrs
i (z) = E{Y (DX, = )
) _y 0°
f lim = pi—(z)
p-(z) = E{Y (0)|X; = =}
s = 1,2,...,p, thereby offering a family of consistent estimators of 7. Among these

possible estimators, the local linear RD estimator 77 (h,,) is perhaps the preferred and
most common choice in practice.
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2.2 Overview of upcoming discussion

We now survey the results presented in the following sections to help the reader easily
identify the conceptual differences between the estimators implemented by rdrobust.
In particular, in sections 2.3 and 2.4, we review some of the salient asymptotic prop-
erties of RD treatment-effect estimators 7,(hy), which are based on local polynomial
nonparametric estimators. We outline our discussion in these sections as follows:

1. We assess some of the main properties of 7,,(h,,) as point estimators in the first part
of section 2.3. Specifically, we discuss a (conditional) mean-squared error (MSE)
expansion of 7,(h,) that highlights its variance and bias properties. We also
use this expansion to summarize some bandwidth-selection approaches tailored to
minimize the leading terms in the asymptotic MSE expansion, including plug-in
rules and a cross-validation (CV) approach.

2. In the rest of section 2.3, we discuss the construction of asymptotically valid ClIs
based on 7,(h,,) for the sharp mean treatment effect 7. In particular, we discuss
two distinct approaches: one based on “undersmoothing” and the other based on
“bias correction”.

The first approach, which is arguably the most commonly used in practice, assumes
away the bias of the estimator and constructs 100(1 — «) percent CIs of the form

011704’“ = { ?p(hn) + (I);,l% \V {’\n }

where @1 denotes the appropriate quantile of the Gaussian distribution (for ex-
ample, 1.96 for a = 0.975), and ¥, denotes an appropriate choice of variance
estimator. This approach is theoretically justified only if the (smoothing) leading
bias of the RD estimator is “small”, which requires some form of “undersmooth-
ing”; that is, it requires choosing a “smaller” bandwidth than the MSE-optimal
one. In practice, researchers typically use the same bandwidth used to construct
the RD point estimator 7, (h,,), thereby ignoring the potential effects of the leading
bias on the performance of these CIs.

A second approach to constructing CIs is to use bias correction. This approach is
conventional in the nonparametric literature, although it is not commonly used in
empirical work, because it is regarded as having inferior finite-sample properties.
The resulting CIs in this case take the form

OB = [ {Foa) =B} £ 0705 V5, |

where here the only difference is the bias-estimate 3,“ which is introduced with the
explicit goal of removing the potentially large effects of the unknown leading bias
of the RD estimator, 7,(hy). This second approach to constructing Cls justifies
using MSE-optimal bandwidth choices when constructing the estimators.
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2.3

Robust data-driven inference in the regression-discontinuity design

The results in Calonico, Cattaneo, and Titiunik (2014d) offer alternative CIs based
on bias-corrected local polynomials, which take the form

orbe, = [ {?p(hn) on} + <I>1‘_1% \/be ]

where the key difference between the “conventional” bias-corrected (CI1”¢) and
these alternative robust CIs (CI'P°) is the presence of a different variance esti-
mator, denoted here by ¥2°. This new variance formula is theoretically derived
by using an alternative asymptotic approximation to the bias-corrected RD es-
timator 7,(hy) — b,. The resulting CIs have some attractive theoretical proper-
ties and, as we discuss in more detail below, allow for the use of MSE-optimal
bandwidth choices while offering excellent finite-sample performance. In sec-
tion 2.4, we offer a heuristic discussion of these results, which are developed by
Calonico, Cattaneo, and Titiunik (2014d) and are the main motivation for the
development of our package.

In section 2.5, we summarize all the statistical procedures available in our com-
mands for sharp RD designs. In section 2.6, we briefly explain how these results
are extended to sharp kink, fuzzy, and fuzzy kink RD designs, among other possi-
bilities.

Finally, in section 2.7, we discuss several fully automatic approaches for construct-
ing the plots commonly shown in RD applications. Specifically, we implement the
results in Calonico, Cattaneo, and Titiunik (2014a), which offer optimal choices
of bin length for evenly spaced and quantile-spaced partitioning schemes for con-
structing local sample means for control and treatment units. These local sample
means help to approximate the underlying regression functions and are usually
plotted together with global polynomial estimates to summarize the empirical
features of the RD design.

Conventional RD inference

Point estimators

Under appropriate regularity conditions, the treatment-effect estimator 7,(h,) admits
the following MSE expansion. Let X,, = (X1, Xo,..., X,,)".

with

MSEp (hn) = E {7 (hn) = 7} [Xa | ~ B2 B2+ —— Vi,

Bnp —p By and V,, —p V)

where B, ;, and V,, ;, represent, respectively, the leading asymptotic bias and the asymp-
totic variance of 7, (hy,). The exact form of B, , and V;, ,,, and their asymptotic counter-
parts, can be found in Calonico, Cattaneo, and Titiunik (2014d). This treatment-effect
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estimator will be consistent if h, — 0 and nh,, — c0. Moreover, the point estimator
Tp(hy,) will be optimal in an asymptotic MSE sense if the bandwidth h,, is chosen so that

L Vp (2p+3) —1
= { — & n, (2p+3)
MSEn» =1 2(p +1)B2

whenever B, # 0. This last assumption may be restrictive because B oc;L(p +1) u(_p+1)

may be (close to) 0 in some applications (see Imbens and Kalyanaraman [2012]; see
them also for a recent review on bandwidth selection in the RD design).

Imbens and Kalyanaraman (2012) use this reasoning in providing a data-driven,
asymptotically MSE-optimal, RD treatment-effect estimator. Specifically, they propose
a more “robust” consistent bandwidth estimator of the form

1
> (2p+3)
YIK”’ _ n T
2(p + 1)812}{,;7 + Rk p

hIK,n,p =

where the additional (regularlzatlon) term Rix P is introduced to avoid small denomina-
tors in moderate-size samples. Here BIK pand VIK p (and RIK p) are nonparametric con-
sistent estimators of their respective population counterparts, which require the choice of
preliminary bandwidths, generically denoted by b,, herein. Imbens and Kalyanaraman
(2012) provide a direct implementation approach for p = 1, but the preliminary band-
widths used in their construction are not optimally chosen. Thus iALIK,W, can be viewed
as a nonparametric first-generation plug-in rule (for example, Wand and Jones [1995]),
sometimes denoted by a direct plug-in rule of order 1.

Motivated by the work of Imbens and Kalyanaraman (2012), Calonico, Cattaneo,
and Titiunik (2014d) propose an alternative second-generation plug-in bandwidth se-
lection approach. Specifically, they propose the following second-order direct plug-in
rule:

1
> (2p+3)
;\lCCT.n p = AVCCT,p — n(2;i3)
2(p + ) BEcr, + Reeryp

This alternative bandwidth estimator has two distinct features relative to ?LIK,W,. First,
not only are the estimators ‘A/CCT,p and ECCTJ) (and f{CCT,p) consistent for their pop-
ulation counterparts, but the preliminary bandwidths used in their constructions are
consistent estimators of the corresponding population MSE-optimal bandwidths. In this
sense, hcot,n,p is a direct plug-in rule of order 2. Second—motivated by finite-sample
performance considerations—Calonico, Cattaneo, and Titiunik (2014d) construct an al-
ternative estimator of V,, (denoted by ‘A/CCTJ) above) that does not require an additional
choice of bandwidth for its comnstruction but, as in the work of Abadie and Imbens
(2006), relies instead on a fixed-matches nearest-neighbor-based “estimate” of the resid-
uals. This construction, as well as other more traditional approaches, is discussed further
below because the term V), plays a crucial role when forming CIs for 7.
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The main bandwidth, A, ,, can be chosen in other ways. A popular alternative is
to use cross-validation, as done by Ludwig and Miller (2007). As discussed in Imbens
and Kalyanaraman (2012), one such bandwidth-selection approach can be described as
follows,

hevnp = argminCvs(h),  ovs(h) = Y LX) < Xi < Xy 1)) {Yi = iy (X3 )}
i=1
where R
~ e/ z,h if z>7
fip(esh) = | 0Fwpltl) -
eyB_ ,(x,h) if z<7Z

n

By plesh) = arg min B11(X; = 2){¥i —rp(Xi — 2) B Kn(Xi — 2)
i=1

n

B_(x,h) = arg min 3 1(X; < @){Yi —rp(X; - ) BY2 Ky (X; — x)

and, for § € (0,1), X_ 5 and X [5; denote the dth quantile of {X;: X; < T} and
{X;: X; = T}, respectively. Our bandwidth-selection command also implements this
approach for completeness.

To summarize, the results discussed so far justify the following three data-driven RD
treatment-effect point estimators:

Tp (hm,n,p) s T (hccmn,p) , and 7, (hcv,n,p)

Under appropriate conditions, these estimators may be interpreted as consistent and
(asymptotically) MSE-optimal point estimators of 7.

Cls: Asymptotic distribution

Under appropriate regularity conditions and rate restrictions on the bandwidth sequence
h, — 0, conventional CIs accompanying the point estimators discussed above rely on
the following distributional approximation,

o2 +o02

f
where 02 = lim,_,z+ 0?(z) and 02 = lim,_,z- o?(z) with 0?(z) = V(V;|X; = z), and
f = f(Z) with f(x) the density of X. Therefore, an infeasible asymptotic 100(1 — «)-
percent CI for 7 is given by

M{%\p(hn) - T hfL-H Bn,P} —d N(O’ Vp)’ Vpoc

~ _ V,
Cl_q(hn) = [{Tp(hn) - h£+1 Bn,p} * (I)l—loz/Q p]
nhy,
To implement this CI, we need to handle the leading bias (B,, ) and the variance (V,,) of
the RD estimator because they involve unknown quantities. We discuss these problems
and related practical issues in the following subsections.
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Cls: Variance estimators

The asymptotic variance is handled by replacing V,, with a consistent estimator. A
natural approach uses the conditional (on X,,) variance of 7,(h,) as a starting point
because, as mentioned above, V;, , =, V},. Here we have

Vo = nhy V{7, (hn)|Xn} =Vinp + Vonyp

with

’—1 —1
Vinp = hnegl XinpWinpEWo 5 p X pl €o

+,n,p +,n,p
_ /—1 —1
Venyp = hneorf,n,pxan,p W_ np W *7n,PX*>n,PI‘7,n,peO

where the exact form of these matrices is discussed in Calonico, Cattaneo, and Titiunik
(2014d). Importantly, the only matrix including unknown quantities is

o2(X)) 0 - 0
0 o3(Xy) - 0
Y= ) ) ] ) = E(e€'|X,,)
0 0 0 02X

where € = (e1,€9,...,6,) with g; =Y; — u(X;).

The “sandwich” structure of V,, ,, arises naturally from the weighted least-squares
form of local polynomials, resembling the usual heteroskedasticity-robust standard-error
formula in linear regression models. Therefore, and just as in linear models, implement-
ing these standard-error estimators requires only an estimator of 3, which reduces the
problem to plugging in an estimator of o%(X;) = E(¢?|X;) for control and treatment
units separately. We consider two approaches to construct such estimators: “plug-in es-
timated residuals” and “fixed-matches estimated residuals”. Both approaches construct
an estimator of V, , by removing the conditional expectation in 3 and replacing €; by
some estimator of it.

Plug-in Estimated Residuals. This approach follows the standard linear models logic
underlying local polynomial estimators and thus replaces ¢; by

Eri =Y — iy p(Xiscn) and Ei=Yi—_p(Xiicn)

for treated and control units, respectively, where [y ,(Xi;cn) = e{)B +p(T, ) and

e p(Xisen) = eg,@ip(a@cn), and ¢, denotes the bandwidth used. In practice, ¢, is
usually chosen to be ¢, = h,, even though this choice may not be optimal and could
lead to poor finite-sample performance of the estimators. The resulting variance formula
becomes the familiar Huber—Eicker—White standard-error estimator, which is robust to
heteroskedasticity of unknown form. We denote this estimator by

Vn,p = V+,n,p + Van,p

where V, ,, , and V_ ,, , use, respectively, €, ; and £_; in their construction.
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Fixed-matches Estimated Residuals. The previous construction is intuitive and easy
to implement, but it requires the additional choice of the bandwidth ¢, to construct the
estimates of the residuals. Employing the same bandwidth choice used to construct
the RD treatment-effect estimator may not lead to a variance estimator with good
finite-sample properties. Calonico, Cattaneo, and Titiunik (2014d) propose a variance
estimator using a different construction for the residuals as an alternative motivated by
the recent work of Abadie and Imbens (2006). This estimator is constructed using a
simple fixed-matches estimator for the residuals, denoted by &, ; and €_ ; for treatment
and control, respectively, which are unbiased but inconsistent. Nonetheless, the resulting
variance estimators are consistent under appropriate regularity conditions (see Calonico,
Cattaneo, and Titiunik [2014d] for more details). We denote this estimator by

Vt”vp = V‘h"ap + V_7”1p

where V, ,, , and V_ ,, ,, use, respectively, the fixed-matches estimators €4 ; and €_ ; in
their construction.

In summary, two alternative variance estimators are i) the plug-in estimated residuals
estimator Vn p and ii) the fixed-matches estimator Vn p» both satisfying

Vip —=pVp and Vi p =, V)

For implementation, we use the same estimated bandwidth used in the treatment-effect
estimator 7,(h,) whenever needed.

Cls: Asymptotic bias

There are two main approaches to handle the leading bias (B, ;) in the infeasible CIs,
crf__ (hy): “undersmoothing” (alternatively, assuming the bias is “small”) or “bias
correction”. We briefly discuss each of these ideas below.

Undersmoothing. The first approach is to “undersmooth” the estimator, that is, to
choose a “small” enough bandwidth so that the bias is negligible. Theoretically, this
approach simply requires selecting a bandwidth sequence h,, — 0 such that

Vnhn {7p(hn) = 7 = W7 B pt = v/nha {7y (ha) = 7} + 0p(1) —a N(0, V)

which is justified whenever the bandwidth h,, vanishes fast enough. In practice, however,
this procedure may be difficult to implement because most bandwidth selectors—such as
hMsE,n,p—Will not satisfy the conditions required for undersmoothing. This fact implies
that most empirical bandwidth selectors could lead to a nonnegligible leading bias in the
distributional approximation, which will bias the associated CIs. Simulation evidence
highlighting this potential drawback of the undersmoothing (small-bias) approach is
provided in Calonico, Cattaneo, and Titiunik (2014d).

Nonetheless, in applications, it is common for researchers to simply ignore the lead-
ing bias and proceed as if B, , ~ 0. This approach is justified by either assuming
the bias is “small” or by shrinking the bandwidth choice by some ad hoc factor (that
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is, undersmoothing). We give the exact formula of the resulting CIs justified by this
approach in the next subsection.

Bias Correction. The second approach to deal with the leading bias in the distribu-
tional approximation is to bias correct the estimator—that is, to construct an estimator
of By, p, which is then subtracted from the point estimate to eliminate this leading bias.

A simple way to implement this idea is to use a higher-order local polynomial to

estimate the unknown derivatives in the leading bias term. Recall that B, oc ,ufﬂ) —

,u(_pH). For example, ,ugfﬂrl) can be estimated by using a gth-order local polynomial

(¢ = p + 1) with pilot bandwidth b, leading to the estimator ﬁfﬂ) = 63:’04r13+,q(17n)7
where e; is the conformable (j+ 1)th-unit vector—for example, e; = (0,1,0,0)" if ¢ = 3.
This is the approach we use herein to construct a bias estimate én,p,q, which depends
on a preliminary bandwidth choice b,. The resulting bias-corrected estimator is

A~

?Xf](hna bn) = %\p(hn) - hfLJrl Bn,p,qa Bn,p,q = Bn,p,q(hna bn)a p<gq

where the exact formula of én)p)q(hn7 by,) is given in Calonico, Cattaneo, and Titiunik
(2014d).

Using this bias-corrected estimator and imposing appropriate regularity conditions
and bandwidth restrictions, we obtain

Vb {706 (s b)) — T} = 3/nhn {7p(hy) —7 — W2 B, ,}

—d N(0,Vy)

Y ”hnhﬁ-ﬂ (én,p,q - Bn,p)

~~
-5 0

which is valid if "
250

n
This result immediately justifies bias-corrected CIs, where the unknown bias in
CIf_, (hy) is replaced by the bias estimate B, ,,. We give the exact formula of the
resulting CIs in the upcoming subsection.

To implement this approach, we must make a choice of pilot bandwidth b,,. As dis-
cussed above, bandwidth choices can be constructed using asymptotic MSE expansions
for the appropriate estimators. This is the approach followed by Calonico, Cattaneo,
and Titiunik (2014d), who propose the following MSE-optimal choice of pilot bandwidth
by, for the bias-correction estimator énpq This optimal pilot bandwidth is given by

1

a+3)

bMSE — % ! n (2;%3)
A Ereny

where V, , and B, , are the corresponding leading variance and bias terms arising
from the MSE expansion used. [Note that this choice is not necessarily optimal for
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70¢ (hn,bn).] Calonico, Cattaneo, and Titiunik (2014d) discuss a relatively simple im-

plementation procedure of b\iSE 5 ¢, Which leads to the following data-driven estimator:

1
> (2¢+3)
3 B (2p +3)Veerpti,q -
CCT,n,p,q — =~ = n (24
) 2(g — p) B R
qa—p CCT,p+1,q + oot prig

They also provide the exact form of the estimators VCCT,p,q, ECCT,p,qv and ECCT,p,q.
We use this pilot bandwidth estimator in our default implementation, but we also im-
plement similar estimators constructed following the underlying logic in Imbens and
Kalyanaraman (2012), denoted by bix np.q-

Cls: Summary of classical approaches

The results discussed so far suggest the following data-driven RD treatment-effect CIs:

o Undersmoothing (Small Bias):

— Plug-in estimated errors: Cl;_, (hIK,M,), Cli—a(hcoT nyp), and

Chi—a(hcv np), where

Cli—a(hy) = { Tp(hy) £ @71

— Fixed-matches estimated errors: 611_a(/ﬁ1K7n7p), Cli_q (ﬁCCT7n7p), and
CAIl,a(hcvwn,p), where

Cli_o(hn) = { Tplhy) £ 70

e Bias Correction:

~

— Plug-in estimated errors: éllfia(hn,gn), where

~

~ bc A~ g _ V
Cllffa(hn, by) = {Tp(hn) - hsz Bn,p,q} x ¢1E% Tp
Nin
— Fixed-matches estimated errors: (?Ilfia (A, by), where
~ bc ~ +1 D -1 ‘//\;’
O (s bn) = | {7 () =5 B} £ 870 [
nhn

Here h, € (hIK,n,pa hCCT,n,pa hCV,n,p) and b, € (bIK,n,erl,qabCCT,n,erLq)v for ex-
ample.
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2.4 Robust RD inference

The classical CIs discussed above may have some unappealing properties that could se-
riously affect their performance in empirical work. The CIs Cl;_4(hy,) and €l _q(hy,)
require undersmoothing (or small bias), which leads to potentially large-coverage dis-
tortions otherwise. The bias-corrected CIs éllfia (hn, by) and CAIlfia(hn, b,,), while theo-
retically justified for a larger range of bandwidths, are usually regarded as performing
poorly in empirical settings, which also leads to potentially large-coverage distortions in
applications. Monte Carlo evidence showing some of these potential pitfalls is reported
in Calonico, Cattaneo, and Titiunik (2014d).

Calonico, Cattaneo, and Titiunik (2014d) propose alternative, more robust CIs con-
structed using bias-corrected RD treatment-effect estimators as a starting point. Intu-
itively, these estimators do not perform well in finite samples because the bias estimate
introduces additional variability in ?;fl (hpybr) = Tp(hy) — k2T By, , . This variability
is not accounted for when forming the associated CIs, for example, (\}/Ilfia(hn, b,) and
~b
CLy o (B, by).

Following this reasoning, Calonico, Cattaneo, and Titiunik (2014d) propose an al-

ternative asymptotic approximation for ?;fl(hn,bn) that is heuristically given by the
observation that

Vo {75 (i bo) = 7} = Vb {Fp(hn) = 7 = Wi B}

—d N(0,V})
Y nhnhfzﬂ (én,p,q - Bn,p)

~
—d N{0,Vp11,4(p)}

provided that appropriate regularity conditions hold and

o 0
™ pe (0,)

Here V, 4(p) could be interpreted as the contribution of the bias correction to the vari-

ability of the bias-corrected estimator. [It can be shown that V,, 4(0) = 0.]

Under weaker conditions than those typically imposed in the results in the previous
subsections, Calonico, Cattaneo, and Titiunik (2014d) show that

Vb {75 (M, b)) — 7} —a N{O, V.S (p)}

where V;}f;(p) is the asymptotic variance for the bias-corrected estimator, which is dif-
ferent from the usual one, V,,. Indeed, it can be shown that Vp‘?g(p) — V, if p | 0; but,
in general, V,>¢(p) > V,, under standard conditions.

It can also be shown that, under appropriate conditions,

The hn»bn -
M 4 N(O,l), Vbc _ Vbc (hn;bn)
A\ Vb

n,p,q n,p,4
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where the exact formula for V,]f; (B by) is given in Calonico, Cattaneo, and Titiunik

(2014d). Intuitively, this variance formula is constructed to account for the variability
of both the original RD treatment-effect estimator 7,(h,) and the bias-correction term,

én’p’q, in the distributional approximation of the Studentized statistic. Further the-
oretical implications of this alternative approach to nonparametric bias correction are
discussed in Calonico, Cattaneo, and Farrell (2014).

This more general distributional approximation leads to the following data-driven
robust CIs:

e Robust Bias Correction:

~

; ) ~ rb -~
— Plug-in estimated errors: CTy -, (hn,bn), where

G, ) = [ {Folh) ~ 71 B = 052 /75,

~

— Fixed-matches estimated errors: CI; - a(ﬁ by), where

%, ) = [ {Folh) — 271 B = 03 /75,

As above, for example h € (hIK nps hCCT p hcv n,p) and

b € (bIK n,p+1,q> bCCT ,n,p+1,qy hCV n,p)

The exact formulas for V,?; . an; (P, bp) and V,E“; . V,f‘; o(hn,by) are given in

Calonico, Cattaneo, and Titiunik (2014d).

2.5 Procedures implemented for sharp RD inference

The commands rdbwselect and rdrobust implement the following procedures:

e rdbwselect implements three bandwidth selectors for hysg,n,p:

— EIK,M,: IK implementation for pth-order local polynomial estimator.

— ECCT, n,p: CCT implementation for pth-order local polynomial estimator.
This is the default in rdbwselect.

— ?LCV,n,p: CV implementation for pth-order local polynomial estimator.

e rdbwselect implements two bandwidth selectors for bysg np,q - EIKm,p,q and
beerinp.g:
— BIK’n,p,q: IK-analog implementation for pth derivative of gth-order local poly-
nomial estimator.

- ECCT%p)q: CCT implementation for pth derivative of gth-order local polyno-
mial estimator. This is the default in rdbwselect.
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e rdrobust implements two point estimators for 7:

— Tp(hp): pth-order local polynomial estimator. This is the default in
rdrobust.

— ?;‘jz(hn, by): pth-order local polynomial estimator with gth-order local poly-

nomial bias correction.
e rdrobust implements six CIs for 7:

— CI1—_o(hy): no bias correction, conventional variance, plug-in residuals.

— CIi_q(hy): no bias correction, conventional variance, fixed-matches residuals.
~ bc . . . . . .

— CI;_,(hn, by): bias correction, conventional variance, plug-in residuals.
~ bc . . . . .

— CIy_o(hn, by): bias correction, conventional variance, fixed-matches residu-

als.

~ rbc . . . . .
— C1y5,(hy, by): bias correction, robust variance, plug-in residuals.

~ rbc . . . s
— CIy_,(hn, by): bias correction, robust variance, fixed-matches residuals.

This is the default in rdrobust.

We give details on the syntax of rdrobust and rdbwselect in section 3 and sec-
tion 4, respectively. We include a complete empirical example that illustrates these
methods and commands using real data in section 6. Further details on implementa-
tion and other technical issues are discussed in Imbens and Kalyanaraman (2012) and
Calonico, Cattaneo, and Titiunik (2014d).

2.6 Extensions to other RD designs

As already mentioned, Calonico, Cattaneo, and Titiunik (2014d) also show how to con-
struct analog robust CIs for average treatment effects (at the cutoff) in other RD con-
texts, including sharp kink RD, fuzzy RD, and fuzzy kink RD designs. For further
discussion on these RD contexts, see, for example, Card et al. (2014) and Dong (2011).

Our implementation also includes the following empirically relevant extensions,
among other possibilities:

e Sharp Kink RD Design. Here the estimand involves the derivative of the underly-
ing regression functions at the cutoff (to a known scale) as opposed to their level.
Using the notation introduced above, we write the generic estimand as

705 = Mf) _ /ASS)
where usually s = 1, and the population parameter of interest is 7(1) /k with k
being a known scaling factor (that is, sharp kink RD estimand). The corresponding
conventional local polynomial RD estimator is, up to the known scale &,

7 (hn) = 35 (hn) — ) (B)



924 Robust data-driven inference in the regression-discontinuity design

where i) (h,) = €8, ,(hn) and i) (h,) = €,B_,(hn), with s < p. All the
results discussed herein extend naturally to this case, and our implementations
allow for this possibility using the option deriv() to set the derivative order and
the option scalepar() to set the value of k. See sections 3 and 4 for further
details.

e Fuzzy RD Design. Here the estimand takes the form of a ratio of two sharp
RD estimands: one for the main reduced-form equation (that is, the regres-
sion of ¥; on X;) and the other for the first-stage equation (that is, the regres-
sion of T; on X;, where T; denotes actual treatment status). As discussed in
Calonico, Cattaneo, and Titiunik (2014d), robust bias-corrected CIs can be con-
structed in this case as well. In our command, CIs for the fuzzy RD estimand are
implemented with the option fuzzy (), as discussed in sections 3 and 4.

e Fuzzy Kink RD Design. Finally, the results also provide robust bias-corrected Cls
in the context of a fuzzy kink RD design, where the estimand of interest is the
ratio of two sharp kink RD estimands: one for the main reduced-form equation
and the other for the first-stage equation. In our command, CIs for the fuzzy kink
RD estimand are implemented when both the deriv() and fuzzy() options are
specified jointly, as discussed in sections 3 and 4.

Note that rdrobust conducts sharp RD inference by default. See section 3 and sec-
tion 4 for details on the syntax of rdrobust and rdbwselect, respectively, to construct
CIs in the other cases.

2.7 Data-driven RD plots

The main aspects of the RD design can be summarized in an easy-to-interpret figure,
which shows how an estimated regression function behaves for control (X; < Z) and
treated (X; = T) units relative to some summary of the actual data. This common RD
plot gives an idea of overall fit while also exhibiting graphically the sharp RD estimate.
In most empirical applications, this figure is constructed using “dots” for local sample
means over nonoverlapping bins partitioning a restricted support of X;, together with
two smooth “global” polynomial regression curve estimates for control and treatment
units separately. The binned means are usually included to capture the behavior of the
“cloud of points” and to show whether there are other discontinuities in the data away
from the cutoff; the two global polynomial estimates are meant to give a flexible global
approximation of p_(x) and pu4(z). An example of this kind of plot using the data
analyzed by Lee (2008) is shown in figure 1.
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RD plot — House elections data

Vote share in election at time t+1

T T
-1 -5 0 15 1
Vote share in election at time t

’ Sample average within bin 4th order global polynomial ‘

Figure 1. Ad hoc RD Plot with evenly spaced bins for U.S. House elections dataset

Calonico, Cattaneo, and Titiunik (2014a) study these RD plots and develop several
(optimal) choices of the number of bins under two partitioning schemes: evenly spaced
and quantile-spaced partitions. Here we briefly summarize the main aspects of this
approach.

RD plots use two main ingredients. First, polynomial regression curves are esti-
mated to flexibly approximate the population conditional mean functions for control
and treated units, usually over a large but restricted support of the running variable.
Formally, these estimates are the pth-order global polynomials given by

fiep(z) = rp(x)/%—,p,l(xl) and Ay pi(z) = rp(x)/;;’-p-,p,l(xu)
with .
~ — 3 . = k N a2
Y pk(r) = arg,ygélﬁl L Lz < Xi STHY —1p(X3)'}
5 pil@) = arg_min YU < X, < @) {VE — 1, (X))
ks ~EeRPH1
where r,(z) = (1,z,...,2P) and k = 1,2. Here z; and x, are the lower and upper

limits on the support of the running variable, and they satisfy z; < T < x,. In other
words, fi— p1(z) and fi4 p 1 () are pth-order global polynomials over the supports [z;, T]
and [Z, 2, ], respectively. This ingredient of the figure is easily implemented in practice,
with common choices being p = 4 and p = 5.

Second, sample means are constructed over nonoverlapping regions of the support
of the running variable X;, for control and treatment units separately. These sample
means provide an approximation of the population regression functions, but they also
help visualize the dispersion of the data, which could be used to detect other potential
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discontinuities away from the cutoff (as a form of a falsification test). To implement
these estimators, we construct two evenly spaced partitions for control and treatment
units separately, as follows,

Jin
U P_; [z, ) and P, = U Pijn= [T, x,]
j=1
[Qfl ) p—,l) ] =1
P_jn= [p—j-1, P—j) j=2,...,J_,—1
[pny—,nfl ) f) j: Jf,n
[T ’ p+,1) j =1
Pyjn = [P+,j—1 , D+j) j=2,...,Jyn—1
[Pigen1, zal  G=Jin
with p_o < p-1 < -+ <p-y ,and pro <py1 < -+ < pyyg,,. Thus P, =

P_, v P,, forms a (disjoint) partition of (z;,z,) centered at Z, which is assumed to
become finer as the sample size grows (that is, J_ ,, — c© and Jy ,, — o).

We consider the following two partitioning schemes:

evenly spaced (ES): p_; =2 + ](37*17) and py;
—,n

)

— T4 J (Ty —7)
J+,n

quantile spaced (QS): p_,; = Xa(l%J) and pi ;= X, N

T_n Ti.n

X_ ) and X ;) denote the ith quantile of the control and treatment subsamples,
respectively, and |-| denotes the floor function. To implement the ES or QS binning in
practice, we must select the lengths of the bins for control and treated units, which are
determined by J_ ,, and J ., respectively. The resulting binned means can be written

as
Z]lpﬂn Vo Y=y Z]lpﬂn )

_jz 1
J+n
fir (@5 T4 n) = Z Lp, ;.(z Y+,]a Y+,j: Z]IP+M i)
’]7, 1

with N_,j = Z?:l ]lP—,j,n, (X1)7 N+7j = Z?:l ]lp+7j,n(Xi)7 and 113(.13) = ]l([l) € P) These
estimators are a simple version of the “nonparametric partitioning estimators”; see, for
example, Cattaneo and Farrell (2013) and references therein.

Calonico, Cattaneo, and Titiunik (2014a) develop asymptotic expansions of the in-
tegrated variance and square-bias of the partitioning estimators under ES and QS parti-
tioning, and they obtain two distinct (optimal) choices for J_ ,, and J. ,, depending on
the explicit goal chosen. They derive an integrated mean squared-error (IMSE)-optimal
choice, which is explicitly tailored to produce binned sample means that “trace out”
the underlying regression function. This choice is useful for falsification purposes (for
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example, identifying potential discontinuities at values of the running variable different
from the RD cutoff). The selectors of the number of bins for control and treatment
units, respectively, take the form

JE = [%_ n%] and J}, = [%r n%]

where the exact form of the constants depends on the partitioning scheme used, ES or
Qs, and [-] denotes the ceiling operator.

Calonico, Cattaneo, and Titiunik (2014a) also propose a different rule for selecting
the number of bins used in the ES and QS RD plots that is explicitly tailored to ap-
proximate the underlying variability of the raw data. This approach, which leads to
a substantially larger number of bins than the IMSE-optimal choice, is useful to depict
the data in a disciplined and objective way. The corresponding selectors for control and
treatment units, respectively, are given by

% _ n * — n
e e o It o

where here the specific constants are different from those in the IMSE-optimal choices,
and they also vary depending on the partitioning scheme employed.

For either method, feasible plug-in rules can be constructed using preliminary es-
timators for the unknown constants ¥ and %, that enter each of the number-of-bins
selectors. Specifically, Calonico, Cattaneo, and Titiunik (2014a) propose implementa-
tions combining spacings and series estimation techniques, with the implementation
varying depending on whether the outcome variable is continuously distributed or not.
All details regarding these selectors, and the resulting data-driven RD plots constructed
using them, can be found in Calonico, Cattaneo, and Titiunik (2014a).

Our command rdplot implements eight distinct data-driven RD plots that vary
in the partitioning scheme used (ES or QS), the objective desired (approximating the
regression function or depicting the variability of the data), and the nonparametric pro-
cedure used for implementation (spacings estimators or polynomial series estimators).
We discuss the syntax details of rdplot in section 5, and we give an empirical example
of this command in section 6.

3 The rdrobust command

In this section, we describe the syntax of the command rdrobust to conduct point
estimation and robust inference for mean treatment effects in the RD design.

3.1 Description

rdrobust provides an array of local-polynomial-based inference procedures for mean
treatment effects in the RD design. The user must specify the dependent and running
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variable. This command permits fully data-driven inference by using the companion
command rdbwselect, which can also be used as a stand-alone command. We describe
rdbwselect below.

3.2 Syntax

rdrobust depvar runvar [ if ] [ in ] [ , c(cutoff) p(pvalue) q(qualue)
deriv(dvalue) fuzzy(fuzzyvar) kernel (kernelfn) h(hvalue) b(bvalue)
rho (rhovalue) scalepar (scaleparvalue) bwselect (bwmethod)
scaleregul (scalerequlvalue) delta(deltavalue) cvgrid min(cvgrid_-minvalue)
cvgrid max (cvgrid_-mazvalue) cvgrid_length(cvgrid_lengthvalue) cvplot

vce (vcemethod) matches (nummatches) level (level) all ]

where depvar is the dependent variable, and runvar is the running variable (also known
as the score or forcing variable).

3.3 Options

c(cutoff) specifies the RD cutoff. The default is c(0).

p(pvalue) specifies the order of the local polynomial to be used to construct the point
estimator. The default is p(1) (local linear regression).

q(qualue) specifies the order of the local polynomial to be used to construct the bias
correction. The default is q(2) (local quadratic regression).

deriv(dvalue) specifies the order of the derivative of the regression functions to be
estimated. The default is deriv(0) (sharp RD, or fuzzy RD if fuzzy() is also
specified). Setting deriv(1) results in estimation of a kink RD design (up to scale),
or fuzzy kink RD if fuzzy() is also specified.

fuzzy (fuzzyvar) specifies the treatment status variable used to implement fuzzy RD
estimation (or fuzzy kink RD if deriv (1) is also specified). The default is sharp RD
design; hence, this option is not used. For fuzzy RD designs, bandwidths are esti-
mated using sharp RD bandwidth selectors for the reduced-form outcome equation.

kernel (kernelfn) specifies the kernel function used to construct the local polynomial
estimators. kernelfn may be triangular, epanechnikov, and uniform. The default
is kernel (triangular).

h (hvalue) specifies the main bandwidth, h,,, to be used to construct the RD point esti-
mator. If not specified, this is computed by the companion command rdbwselect.

b(bvalue) specifies the pilot bandwidth, b,,, used to construct the bias-correction esti-
mator. If not specified, this is computed by the companion command rdbwselect.
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rho (rhovalue) specifies the value of p so that the pilot bandwidth, b,,, equals b, = hy,/p.
The default is rho (1) if h,, is specified but b, is not.

scalepar (scaleparvalue) specifies the scaling factor for the RD parameter of interest.
This option is useful when the population parameter of interest involves a known
multiplicative factor (for example, sharp kink RD). The default is scalpar(1) (no
scaling).

bwselect (bwmethod) specifies the bandwidth selection procedure to be used. By de-
fault, it computes both h,, and b,,, unless p is specified, in which case it computes
only the h,, and sets b,, = h,,/p. bwmethod may be one of the following:

CCT for the bandwidth selector proposed by Calonico, Cattaneo, and Titiunik
(2014d). The default is bwselect (CCT).

IX for the bandwidth selector proposed by Imbens and Kalyanaraman (2012) (avail-
able for only sharp RD design).

CV for the cross-validation method proposed by Ludwig and Miller (2007) (available
for only sharp RD design).

scaleregul (scalerequlvalue) specifies the scaling factor for the regularization terms of
CCT and IK bandwidth selectors. Setting scaleregulvalue(0) removes the regu-
larization term from the bandwidth selectors. See companion command rdbwselect
for more details. The default is scaleregul (1).

delta(deltavalue) specifies the quantile that defines the sample used in the cross-
validation procedure. This option is used only if bwselect(CV) is specified. See
companion command rdbwselect for more details. The default is delta(0.5), that
is, the median of the control and treated subsamples.

cvgrid min(cvgrid_minvalue) specifies the minimum value of the bandwidth grid used
in the cross-validation procedure. This option is used only if buselect (CV) is spec-
ified. See companion command rdbwselect for more details.

cvgrid max (cvgrid_mazvalue) specifies the maximum value of the bandwidth grid used
in the cross-validation procedure. This option is used only if buselect (CV) is spec-
ified. See companion command rdbwselect for more details.

cvgrid_ length (cvgrid_lengthvalue) specifies the bin length of the (evenly spaced) band-
width grid used in the cross-validation procedure. This option is used only if
bwselect (CV) is specified. See companion command rdbwselect for more details.

cvplot generates a graph of the cross-validation objective function. This option is used
only if bwselect (CV) is specified. See companion command rdbwselect for more
details.
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vce (vcemethod) specifies the procedure used to compute the variance—covariance matrix
estimator. vcemethod may be one of the following:

nn for nearest-neighbor matches residuals using matches(). This is the default
option (with matches(3), see below).

resid for estimated plug-in residuals using h,, bandwidth.

matches (nummatches) specifies the number of matches in the nearest-neighbor-
based variance—covariance matrix estimator. This option is used only when nearest-
neighbor matches residuals are used. The default is matches(3).

level (level) is the confidence level for CIs. The default is 1level (95).
all specifies that rdrobust report three different procedures:
i) conventional RD estimates with a conventional variance estimator;

ii) bias-corrected RD estimates with a conventional variance estimator; and

iii) bias-corrected RD estimates with a robust variance estimator.

4 The rdbwselect command

Here we describe the syntax for rdbwselect. This command implements the different
bandwidth selection procedures for the local-polynomial regression-discontinuity esti-
mators discussed above.

4.1 Description

rdbwselect implements several bandwidth selection procedures currently available for
the RD design. The user must specify the dependent and running variable.

4.2 Syntax

rdbwselect depvar runvar [2f] [m] [ , cCeutoff) p(pvalue) q(qualue)
deriv(dvalue) rho(rhovalue) kernel (kernelfn) bwselect (bwmethod)
scaleregul (scalerequlvalue) delta(deltavalue) cvgrid min(cvgrid-minvalue)
cvgrid max (cvgrid_mazvalue) cvgrid length(cvgrid_lengthvalue) cvplot
vce (vcemethod) matches(nummatches) all ]

where depvar is the dependent variable, and runvar is the running variable (also known
as the score or forcing variable).

4.3 Options

c(cutoff) specifies the RD cutoff. The default is c(0).
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p(pvalue) specifies the order of the local polynomial to be used to construct the point
estimator. The default is p(1) (local linear regression).

q(qualue) specifies the order of the local polynomial to be used to construct the bias
correction. The default is q(2) (local quadratic regression).

deriv(dvalue) specifies the order of the derivative of the regression functions to be
estimated. The default is deriv(0) (sharp RD, or fuzzy RD if fuzzy() is also
specified). Setting deriv(1) results in estimation of a kink RD design (up to scale),
or fuzzy kink RD if fuzzy() is also specified.

rho (rhovalue) sets the pilot bandwidth, b,,, equal to h,/p, where h,, is computed using
the method and options chosen below.

kernel (kernelfn) specifies the kernel function used to construct the local polynomial
estimators. Options are triangular, epanechnikov, and uniform. The default is
kernel (triangular).

buselect (bwmethod) specifies the bandwidth selection procedure to be used. By de-
fault, it computes both h, and b,, unless p is specified, in which case it computes
only h,, and sets b,, = h,/p. bwmethod may be one of the following:

CCT for the bandwidth selector proposed by Calonico, Cattaneo, and Titiunik
(2014d). The default is bwselect (CCT).

IX for the bandwidth selector proposed by Imbens and Kalyanaraman (2012) (avail-
able for only sharp RD design).

CV for the cross-validation method proposed by Ludwig and Miller (2007) (available
for only sharp RD design).

scaleregul (scalerequlvalue) specifies the scaling factor for the regularization terms of
CCT and IK bandwidth selectors. Setting scaleregulvalue(0) removes the regu-
larization term from the bandwidth selectors. The default is scalregul(1).

delta(deltavalue) specifies the quantile that defines the sample used in the cross-
validation procedure. This option is used only if bwselect(CV) is specified. The
default is delta(0.5), that is, the median of the control and treated subsamples.

cvgrid min(cvgrid_minvalue) specifies the minimum value of the bandwidth grid used
in the cross-validation procedure. This option is used only if buselect (CV) is spec-
ified.

cvgrid max (cvgrid_mazvalue) specifies the maximum value of the bandwidth grid used
in the cross-validation procedure. This option is used only if buselect (CV) is spec-
ified.

cvgrid-length (cvgrid_lengthvalue) specifies the bin length of the (evenly spaced) band-
width grid used in the cross-validation procedure. This option is used only if
bwselect (CV) is specified.
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cvplot generates a graph of the cross-validation objective function. This option is used
only if bwselect (CV) is specified.

vce (vecemethod) specifies the procedure used to compute the variance—covariance ma-
trix estimator. This option is used only if the bwselect (CCT) or bwselect (IK)
bandwidth procedure is used. vcemethod may be one of the following:

nn for nearest-neighbor matches residuals using matches (). This is the default (with
matches (3), see below).

resid for estimated plug-in residuals using h,, bandwidth.

matches (nummatches) specifies the number of matches in the nearest-neighbor-
based variance—covariance matrix estimator. This option is used only when nearest-
neighbor matches residuals are used. The default is matches(3).

all implements all three bandwidth selection procedures; see bwselect () above.

5 The rdplot command

In this section, we describe the syntax of the rdplot command, which implements dif-
ferent data-driven RD plots using either evenly spaced or quantile-spaced binning. The
number of bins on these plots is chosen either i) to approximate the underlying regres-
sion function (IMSE-optimal selectors) or ii) to mimic the underlying variability of the
raw data. For further details on these approaches, see Calonico, Cattaneo, and Titiunik
(2014a).

5.1 Description

rdplot implements several selectors of the number of bins used to construct RD plots
using either an evenly spaced or a quantile-spaced partitioning of the support of the
running variable X;. Two distinct methods are implemented: one to approximate the
regression function and one to display the variability of the data in an objective way.
The user must specify the dependent and running variables.

5.2 Syntax

rdplot depvar runvar [ if ] [ mn ] [ , cCeutoff) p(pvalue) numbinl (numbinlvalue)
numbinr (numbinrvalue) binselect (binmethod) lowerend (zlvalue)
upperend (zuvalue) scale(scalevalue) scalel(scalelvalue) scaler (scalervalue)
generate (idname meanzname meanyname) graph_options(gphopts) hide ]

where depvar is the dependent variable, and runvar is the running variable (also known
as the score or forcing variable).
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5.3 Options

c(cutoff) specifies the RD cutoff. The default is c(0).

p(pvalue) specifies the order of the global polynomial used to approximate the pop-
ulation conditional mean functions for control and treated units. The default is
p(4).

numbinl (numbinlvalue) specifies the number of bins used to the left of the cutoff, de-
noted J_. If not specified, J_ is estimated using the method and options chosen
below.

numbinr (numbinrvalue) specifies the number of bins used to the right of the cutoff,
denoted J,. If not specified, J, is estimated using the method and options chosen
below.

binselect (binmethod) specifies the procedure to select the number of bins. This option
is available only if J_ and J, are not set manually. binmethod may be one of the
following:

es specifies the IMSE-optimal evenly spaced method using spacings estimators.
espr specifies the IMSE-optimal evenly spaced method using polynomial regression.

esmv specifies the mimicking variance evenly spaced method using spacings estima-
tors; the default.

esmvpr specifies the mimicking-variance evenly spaced method using polynomial
regression.

gs specifies the IMSE-optimal quantile-spaced method using spacings estimators.
gspr specifies the IMSE-optimal quantile-spaced method using polynomial regression.

gsmv specifies the mimicking-variance quantile-spaced method using spacings esti-
mators.

gsmvpr specifies the mimicking-variance quantile-spaced method using polynomial
regression.

lowerend (zlvalue) specifies the lower bound for indepvar to the left of the cutoff. The
default is the minimum value in sample.

upperend (zuvalue) specifies the upper bound for indepvar to the right of the cutoff.
The default is the maximum value in sample.

scale (scalevalue) specifies a multiplicative factor to be used with the optimal number
of bins selected. Specifically, the number of bins used for the treatment and control
groups will be scale(scalevalue) x J; and scale(scalevalue) x J_, where J_ and
J; denote the optimal numbers of bins originally computed for each group. The
default is scale(1).
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scalel (scalelvalue) specifies a multiplicative factor to be used with the optimal num-
ber of bins selected to the left of the cutoff. The number of bins used will be
scalel(scalelvalue) x J_ . The default is scalel(1).

scaler (scalervalue) specifies a multiplicative factor to be used with the optimal num-
ber of bins selected to the right of the cutoff. The number of bins used will be
scaler (scalerval) x J ,,. The default is scaler(1).

generate (idname meanzname meanyname) generates new variables storing the results:

idname specifies the name of a new generated variable with a unique bin id that
identifies the chosen bins. This variable indicates the bin (between lowerend()
and upperend()) to which each observation belongs. Negative natural numbers
are assigned to observations to the left of the cutoff, and positive natural numbers
are assigned to observations to the right of the cutoff.

meanzname specifies the name of a new generated variable (of the same length as
idname) with the middle point of the running variable within each chosen bin.

meanyname specifies the name of a new generated variable (of the same length as
idname) with the sample mean of the outcome variable within each chosen bin.

graph_options (gphopts) specifies graphical options to be passed on to the underlying
graph command.

hide omits the RD plot.

6 lllustration of methods

We illustrate our commands using an extract of the dataset constructed by Cattaneo,
Frandsen, and Titiunik (Forthcoming); the dataset comes from a study on party ad-
vantages in U.S. Senate elections for the period 1914-2010. In particular, we focus here
on the RD effect of the Democratic party winning a U.S. Senate seat on the vote share
obtained in the following election for that same seat. The unit of observation is the
state. This empirical illustration is analogous to the one presented by Lee (2008) for
U.S. House elections.

The dataset rdrobust_rdsenate contains two variables: vote and margin. The
variable margin ranges from —100 to 100 and records the Democratic party’s margin
of victory in the statewide election for a given U.S. Senate seat, which is defined as
the vote share of the Democratic party minus the vote share of its strongest opponent.
The variable vote ranges from 0 to 100 and records the Democratic vote share in the
following election for the same seat (6 years later). Thus observations for years 2008
and 2010 are missing vote. When margin is above zero, the Democratic party wins
the election for that seat; otherwise, it loses. As is usual in the literature, we exploit
this discontinuity in incumbency status that occurs at margin = 0 to estimate the
incumbency advantage of parties with an RD design.
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The dataset has a total of 1,297 complete observations. We load the database and
present basic summary statistics of these two variables.

. use rdrobust_rdsenate.dta

. summarize vote margin

Variable ‘ Obs Mean Std. Dev. Min Max
vote 1297 52.66627 18.12219 0 100
margin 1390 7.171159 34.32488 -100 100

To further explore the available data, we use rdplot to construct an automatic plot
of the RD design.

. rdplot vote margin,

> graph_options(title(RD Plot - Senate elections data)
> ytitle(Vote share in election at time t+1)
> xtitle(Vote share in election at time t))

Number of bins for RD estimates.
Method: Mimicking Variance evenly spaced using spacings estimators.

Cutoff ¢ = 0 | Left of ¢ Right of ¢

Number of observations 595 702

Polynomial order 4 4

Chosen scale 1.000 1.000

Selected bins 15 35

Bin length 6.661 2.856

IMSE-optimal bins 8 9

Mimicking Variance bins 15 35
Relative to IMSE-optimal:

Implied scale 1.875 3.889

WIMSE variance weight 0.132 0.017

WIMSE bias weight 0.868 0.983

Figure 2 is constructed using the default options in the command rdplot, which
produce an RD plot that has evenly spaced bins that mimic the underlying variability
of the data and is implemented using spacings estimators. Using the notation intro-
duced above, we see that the number of optimal bins for control and treatment units
is J_, = 15 and J , = 35, respectively, implying bin lengths of 6.661 and 2.856 per-
centage points, respectively. The global polynomial is constructed using a 4th-degree
polynomial [p = 4 for fi_ , 1(x) and fiy ,1(x)]. The output table also reports the IMSE-
optimal number of bins (first row of the middle panel) and the multiplicative factor
(scale) associated with the selected number of bins (taking the IMSE-optimal value as
a reference). This is shown in the last row of the first panel. Finally, the bottom
panel includes the IMSE weights that correspond to the selected choice of the number
of bins—see Calonico, Cattaneo, and Titiunik (2014a, sec. 3.3.1) for additional details.
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RD Plot — Senate elections data
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Figure 2. Automatic RD plot

Next, we construct an alternative RD plot using evenly spaced bins selected to trace
out the underlying regression function (that is, IMSE-optimal selectors) and implemented
using spacings estimators. The resulting plot is given in figure 3, which shows how the
(local) binned sample means indeed seem to approximate the underlying regression
function well (taking the global polynomial fit as a benchmark). This does not provide
evidence of potential discontinuities away from the cutoff in the underlying regression
functions.

. rdplot vote margin, binselect(es)

> graph_options(title(RD plot - Senate elections data)
> ytitle(Vote share in election at time t+1)
> xtitle(Vote share in election at time t))

Number of bins for RD estimates.
Method: IMSE-optimal evenly spaced method using spacings estimators.

Cutoff ¢ = 0 | Left of ¢ Right of ¢

Number of observations 595 702

Polynomial order 4 4

Chosen scale 1.000 1.000

Selected bins 8 9

Bin length 12.490 11.107

IMSE-optimal bins 8 9

Mimicking Variance bins 15 35
Relative to IMSE-optimal:

Implied scale 1.000 1.000

WIMSE variance weight 0.500 0.500

WIMSE bias weight 0.500 0.500




S. Calonico, M. D. Cattaneo, and R. Titiunik 937

The last two figures show different features of the underlying data and research
design. Figure 2 gives a disciplined scatterplot of the data, which seeks to represent
the overall variability of the raw data. This figure uses more than the IMSE-optimal
number of bins (that is, it undersmooths the nonparametric partitioning estimator),
which induces more variability in the underlying binned sample means. This gives
a visual “cloud of points” on top of the polynomial approximation to the regression
function. On the other hand, figure 3 uses the IMSE-optimal number of bins specifically
tailored to produce an estimator that approximates the underlying regression function
well. In this approach, the optimal number of bins is selected to balance squared bias
and variance to approximate the underlying conditional expectation globally.

RD plot — Senate elections data
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Vote share in election at time t+1
60
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T T T T
-100 -50 0 50 100
Vote share in election at time t

’ Sample average within bin 4th order global polynomial ‘

Figure 3. Automatic RD plot, with scaled-down optimal bin-length choice

Finally, to illustrate some of the other features of the command rdplot, we present
figure 4. Here the RD plot is constructed using the quantile-spaced binning approach.
In this case, the number of optimal bins for control and treatment units is J_ , = 28

and j+7n = 49, respectively.
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. rdplot vote margin, binselect(gsmv)

> graph_options(title(RD plot - Senate elections data)
> ytitle(Vote share in election at time t+1)
> xtitle(Vote share in election at time t))

Number of bins for RD estimates.

Method: Mimicking Variance quantile spaced using spacings estimators.

Cutoff ¢ = 0 | Left of ¢ Right of ¢

Number of observations 595 702

Polynomial order 4 4

Chosen scale 1.000 1.000

Selected bins 28 49

Bin length 3.569 2.040

IMSE-optimal bins 21 16

Mimicking Variance bins 28 49
Relative to IMSE-optimal:

Implied scale 1.333 3.062

WIMSE variance weight 0.297 0.034

WIMSE bias weight 0.703 0.966

RD plot — Senate elections data
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Figure 4. Automatic RD plot using a quantile-spaced approach
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Next, we conduct fully data-driven RD treatment-effects estimation and inference.
The command rdrobust, using its default options, gives the following output:

. rdrobust vote margin

Preparing data.

Computing bandwidth selectors.
Computing variance-covariance matrix.
Computing RD estimates.

Estimation completed.

Sharp RD estimates using local polynomial regression.

Cutoff ¢ = 0 | Left of ¢ Right of ¢ Number of obs = 1297
NN matches = 3
Number of obs 343 310 BW type = CCT
Order loc. poly. (p) 1 1 Kernel type = Triangular
Order bias (q) 2 2
BW loc. poly. (h) 16.794 16.794
BW bias (b) 27.437 27.437
rho (h/b) 0.612 0.612
Outcome: vote. Running Variable: margin.
Method Coef. Std. Err. z P>|z| [95% Conf. Intervall
Conventional 7.4263 1.4954 4.9656 0.000 4.49446  10.3561
Robust - - 4.2675 0.000 4.06975 10.9833

These results contain a variety of information organized into two panels. The upper
panel of the output table contains a summary of the main choices selected to construct
the RD treatment-effect estimators, while the lower panel includes the main estimation
results. Specifically, using the notation introduced above, this table shows the following:

1. The total number of observations is 1,297, with effective 343 control and 310
treated units (given the bandwidth h, chosen; see below). The estimation is
conducted using a local linear (p = 1) estimator with a local-quadratic (¢ = 2)
bias-correction estimate, with a triangular kernel. The variance estimators are
the robust ones proposed by Calonico, Cattaneo, and Titiunik (2014d), computed
using three nearest neighbors.

2. The bandwidth selection procedure is the one proposed by Calonico, Cattaneo,
and Titiunik (2014d) leading to

hocTmp = 16794 and  boornpiig = 27437
with p =1 and g = 2.

3. The point estimator and robust CI are
7 (?LCCT,M) — 74253, I (ﬁCCT,n,l,ECCT’n,Q,Q) — [4.06975,10.9833 |

with o = 0.05.
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The command rdrobust also offers a more detailed output, which includes all the
point estimators, variance estimators, and CIs discussed in section 2. These results are
retrieved by including the option all, as follows:

. rdrobust vote margin, all
Preparing data.

Computing bandwidth selectors.
Computing variance-covariance matrix.
Computing RD estimates.

Estimation completed.

Sharp RD estimates using local polynomial regression.

Cutoff ¢ = 0 | Left of ¢ Right of ¢ Number of obs = 1297

NN matches = 3

Number of obs 343 310 BW type = CCT

Order loc. poly. (p) 1 1 Kernel type = Triangular
Order bias (q) 2 2
BW loc. poly. (h) 16.794 16.794
BW bias (b) 27.437 27.437
rho (h/b) 0.612 0.612

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Intervall

Conventional 7.4253 1.4954 4.9656 0.000 4.49446 10.3561

Robust - - 4.2675 0.000 4.06975 10.9833

All estimates.

Method Coef. Std. Err. z P>|z| [95% Conf. Intervall]

Conventional 7.4253 1.4954 4.9656 0.000 4.49446 10.3561
Bias-corrected 7.5265 1.4954 5.0333 0.000 4.59569 10.4574
Robust 7.5265 1.7637 4.2675 0.000 4.06975 10.9833

This detailed output contains an additional table located at the bottom, relative to
the default output. Using our notation and the options specified in the case above, this
extra table follows the structure of table 1:

Table 1. Bottom table structure in output of rdrobust ..., all

Method Coef. Std. err.  z P> |4 [95% ci]
Conventional — 7,(hn) A/ Vyp/nhn - : Oy —a(hy)

NATALY S : LS (hu, by)

)
) Vbe : : G (M, i)

n,p,q

Bias corrected ?]E,Z(hm by,

Robust 7% (hy, by,

Note: In the output above, p =1, ¢ =2, hy, = ;LCCTyn,p, bp = BCCT,n,p+1,q: and o = 0.05.
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Finally, we explore all the bandwidth selection procedures contained in our package.
Specifically, we can use our companion rdbwselect to compare the CCT bandwidth
selectors with the IK and CV bandwidth selectors:

. rdbwselect vote margin, all

Computing CCT bandwidth selector.
Computing IK bandwidth selector.
Computing CV bandwidth selector.

Bandwidth estimators for RD local polynomial regression

Cutoff ¢ = 0 | Left of ¢ Right of ¢ Number of obs = 1297
NN matches = 3
Number of obs 595 702 Kernel type = Triangular
Order loc. poly. (p) 1 1 Min BW grid = 0.69039
Order bias (q) 2 2 Max BW grid = 99.92107
Range of margin 99.921 99.964 Length BW grid = 4.96153
Method h b rho
CCT 16.79369 27.43745 .612072
IK 15.75038 16.47286 .956141
cv 35.42113 NA NA

Here we used the option all, which computes the three bandwidth selectors briefly
discussed above. In the case of h,,, these choices range from 16.79369 to 35.42113. In
the case of b, we obtain bccTn,22 = 27.43745 and bik 52,2 = 16.47286 for the CCT
and IK methods, respectively. Notice that the option CV is currently not available for
derivative estimation. To further understand the performance of the CV approach, we
include a graph of the CV objective function over the grid being considered in figure 5.
This is done using the option cvplot as follows (in this example, we also changed the
grid features to obtain a better plot and to show this additional functionality in action):

. rdbwselect vote margin, bwselect(CV) cvplot cvgrid_min(10) cvgrid_max(80)
Computing CV bandwidth selector.

Bandwidth estimators for RD local polynomial regression

Cutoff ¢ = 0 | Left of ¢ Right of ¢ Number of obs = 1297

NN matches = 3

Number of obs 595 702 Kernel type = Triangular

Order loc. poly. (p) 1 1 Min BW grid = 10.00000

Order bias (q) 2 2 Max BW grid = 80.00000

Range of margin 99.921 99.964 Length BW grid = 3.50000
Method h b rho

cv 34.5 NA NA
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Cross-Validation objective function

Cross—Validation objective function

20 40 60 80
Grid of bandwidth (h)

Figure 5. Values of the CV function over the grid selected

As discussed above, our commands have many other options. For example, for the
main command rdrobust, we have the following additional examples (output is not
provided to conserve space):

1. rdrobust vote margin, kernel (uniform)
Estimation using uniform kernel.

2. rdrobust vote margin, bwselect (IK)
Estimation using the 1K bandwidth selectors.

3. rdrobust vote margin, bwselect (CV)
Estimation using the CV bandwidth selector (and p = 1).

4. rdrobust vote margin, h(15) rho(0.8)
Estimation using h,, = 15 and b,, = h,,/p = 15/0.8 = 18.75.

5. rdrobust vote margin, p(2) q(4)
Estimation using p = 2 and ¢ = 4.

6. rdrobust vote margin, vce(resid)
Estimation using plug-in residuals estimates in the variance—covariance estimator.



S. Calonico, M. D. Cattaneo, and R. Titiunik 943

Finally, our commands can also be used to conduct inference in other RD design
settings. For example, let’s assume y is the output variable, t is the treatment status
variable, and x is the running variable:

1. rdrobust y x, deriv(1)
Estimation for sharp kink RD.

2. rdrobust y x, fuzzy(t)
Estimation for fuzzy RD.

3. rdrobust y x, fuzzy(t) deriv(1)
Estimation for fuzzy kink RD.

6.1 Generating tables with outreg?2

The output generated by rdrobust can be used to construct tables with available Stata
packages because the main estimates and chosen parameters are stored as e() results.
This can facilitate the creation of tables and postestimation handling of numerical re-
sults, but it should not be used to perform joint or other postestimation hypothesis
tests among the coeflicients in the stored matrices.

To illustrate how to produce output tables with outreg2 (Wada 2005), we consider
the following three estimation specifications:

. rdrobust vote margin, kernel(uniform)
. rdrobust vote margin, bwselect(CV)
. rdrobust vote margin, p(2) q(3)

Then we can easily obtain the following table in IATEX format:

[6)) (2) (3)

VARIABLES vote vote vote
RD_Estimate 7.403 7.167 7.943
Observations 489 1013 828
Robust 95% CI [4.16 ; 11.46]  [4.42 ; 10.59]  [4.03 ; 11.99]
Kernel Type Uniform Triangular Triangular
BW Type CCT Ccv CCT
Conventional Std. Error 1.640 1.103 1.818
Conventional p-value 0.000 0.000 0.000
Robust p-value 0.000 0.000 0.000
Order Loc. Poly. (p) 1.000 1.000 2.000
Order Bias (q) 2.000 2.000 3.000
BW Loc. Poly. (h) 11.095 35.421 24.328
BW Bias (b) 22.790 35.421 35.572

This table is constructed using the following command after each specification:

outreg2 using tablel, addstat(Conventional Std. Err., e(se_cl),
Conventional p-value, e(pv_cl), Robust p-value, e(pv_rb), Order Loc.
Poly. (p), e(p), Order Bias (q), e(q), BW Loc. Poly. (h), e(h_bw), BW
Bias (b), e(b_bw)) addtext(Robust e(level) "% CI, “e(ci_rb)”, Kernel
Type, “e(kernel)”, BW Type, “e(bwsel)”, Observations, “e(N))  noobs nose
noaster nonotes adec(3)
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The appropriate additional options (for example, replace, append, tex, etc.) can
be used as needed. Additional statistics can also be included. The complete list of
estimation results can be obtained by running ereturn list after rdrobust.

Finally, we can also construct tables in a more standard format if we use outreg?2
after running rdrobust with the all option. For example, for the same specifications
as before, we obtain the following table in XTEX format:

1) (2) (3)
VARIABLES vote vote vote

Conventional 7.403%F*F 7T A6TFFR 7.943%**
(1.640)  (1.103)  (1.818)
Bias-corrected ~ 7.810%**  7.502%**  8.006***
(1.640)  (1.103)  (1.818)

Robust 7.810%**  7.502*%**  8.006%**
(1.861) (1.575) (2.031)
Observations 489 1,013 828

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Our companion replication file (rdrobust_illustration.do) includes the exact syn-
tax of all the examples discussed above.

7 Conclusion

In this article, we discussed the implementation of several data-driven local-polynomial-
based (robust) inference procedures in the RD design. We introduced the commands
rdrobust, rdbwselect, and rdplot, which together offer an array of data-driven non-
parametric inference methods for performing empirical work in RD applications. Our
implementations cover average treatment effects at the cutoff in the sharp RD, sharp
kink RD, fuzzy RD, and fuzzy kink RD designs, among other possibilities.

A companion R package is also available—see Calonico, Cattaneo, and Titiunik
(2014b) for a description.

8 Acknowledgments

We specially thank David Drukker for detailed comments and suggestions that greatly
improved our implementation. We also received very useful comments from Richard
Anderson, Sutirtha Bagchi, Devin Caughey, Pablo Celhay, Jose Galdo, Andrew Hall,
Marko Klasnja, Tae Hoon Kim, Benjamin Lutz, Zhuan Pei, Laszl6 Sandor, Jeff Smith,
Ugo Troiano, and a referee on previous versions of this article. The authors gratefully
acknowledge financial support from the National Science Foundation through grant
SES-1357561.



S. Calonico, M. D. Cattaneo, and R. Titiunik 945

0 References

Abadie, A., and G. W. Imbens. 2006. Large sample properties of matching estimators
for average treatment effects. Econometrica 74: 235-267.

Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2014. On the effect of bias estima-
tion on coverage accuracy in nonparametric estimation. Working Paper, University
of Michigan. http://www-personal.umich.edu/~cattaneo/papers/Calonico-Cattaneo-
Farrell_2013_wp.pdf.

Calonico, S., M. D. Cattaneo, and R. Titiunik. 2014a. Optimal data-driven regression
discontinuity plots. Working Paper, University of Michigan.
http://www-personal.umich.edu/~cattaneo/papers/RD-rdplot.pdf.

. 2014b. rdrobust: An R package for robust inference in regression-discontinuity
designs. Working Paper, University of Michigan.
http://www-personal.umich.edu/~cattaneo/papers/Calonico-Cattaneo-
Titiunik_2014_Rpkg.pdf.

. 2014c. Supplement to Robust nonparametric confidence intervals for regression-
discontinuity designs. Econometica Supplementary Materials.

. 2014d. Robust nonparametric confidence intervals for regression-discontinuity
designs. Econometrica 82: 2295-2326.

Card, D., D. S. Lee, Z. Pei, and A. Weber. 2014. Inference on causal effects in a
generalized regression kink design. Working Paper, University of California—Berkeley.

Cattaneo, M. D., and M. H. Farrell. 2013. Optimal convergence rates, Bahadur represen-
tation, and asymptotic normality of partitioning estimators. Journal of Econometrics
174: 127-143.

Cattaneo, M. D., B. Frandsen, and R. Titiunik. Forthcoming. Randomization inference
in the regression discontinuity design: An application to party advantages in the U.S.
Senate. Journal of Causal Inference.

Dinardo, J., and D. S. Lee. 2011. Program evaluation and research designs. In Handbook
of Labor Economics, ed. O. Ashenfelter and D. Card, vol. 4A, 463-536. Amsterdam:
Elsevier.

Dong, Y. 2011. Jumpy or kinky? Regression discontinuity without the discontinuity.
Working Paper, University of California—Irvine.
http://www.economics.uci.edu/files/economics/docs/workingpapers,/2011-
2012/dong-07.pdf.

Fan, J., and 1. Gijbels. 1996. Local Polynomial Modelling and Its Applications. New
York: Chapman & Hall/CRC.

Hahn, J., P. Todd, and W. Van Der Klaauw. 2001. Identification and estimation of
treatment effects with a regression-discontinuity design. Econometrica 69: 201-209.



946 Robust data-driven inference in the regression-discontinuity design

Heckman, J. J., and E. J. Vytlacil. 2007. Econometric evaluation of social programs, part
I: Causal models, structural models and econometric policy evaluation. In Handbook
of Econometrics, ed. J. J. Heckman and E. Leamer, vol. 6B, 4779-4874. Amsterdam:
Elsevier.

Imbens, G. W., and K. Kalyanaraman. 2012. Optimal bandwidth choice for the regres-
sion discontinuity estimator. Review of Economic Studies 79: 933-959.

Imbens, G. W., and T. Lemieux. 2008. Regression discontinuity designs: A guide to
practice. Journal of Econometrics 142: 615-635.

Imbens, G. W., and J. M. Wooldridge. 2009. Recent developments in the econometrics
of program evaluation. Journal of Economic Literature 47: 5-86.

Lee, D. S. 2008. Randomized experiments from non-random selection in U.S. House
elections. Journal of Econometrics 142: 675-697.

Lee, D. S., and T. Lemieux. 2010. Regression discontinuity designs in economics. Journal
of Economic Literature 48: 281-355.

Ludwig, J., and D. L. Miller. 2007. Does Head Start improve children’s life chances?
Evidence from a regression discontinuity design. Quarterly Journal of Economics 122:
159-208.

Porter, J. 2003. Estimation in the regression discontinuity model. Working Paper,
University of Wisconsin. http://www.ssc.wisc.edu/~jrporter /reg_discont_2003.pdf.

Wada, R. 2005. outreg2: Stata module to arrange regression outputs into an illustrative
table. Statistical Software Components S456416, Department of Economics, Boston
College. http://ideas.repec.org/c/boc/bocode/s456416.html.

Wand, M. P., and M. C. Jones. 1995. Kernel Smoothing. New York: Chapman &
Hall/CRC.

About the authors

Sebastian Calonico is an assistant professor of economics at the University of Miami.

Matias D. Cattaneo is an associate professor of economics at the University of Michigan.

Rocio Titiunik is an assistant professor of political science at the University of Michigan.





