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Abstract 

Asymptotic distribution theory is the primary method used to examine the properties 
of econometric estimators and tests. We present conditions for obtaining consistency 
and asymptotic normality of a very general class of estimators (extremum esti- 
mators). Consistent asymptotic variance estimators are given to enable approxi- 
mation of the asymptotic distribution. Asymptotic efficiency is another desirable 
property then considered. Throughout  the chapter, the general results are also 
specialized to common econometric estimators (e.g. MLE and GMM), and in 
specific examples we work through the conditions for the various results in detail. 
The results are also extended to two-step estimators (with finite-dimensional param- 
eter estimation in the first step), estimators derived from nonsmooth objective 
functions, and semiparametric two-step estimators (with nonparametric estimation 
of an infinite-dimensional parameter in the first step). Finally, the trinity of test 
statistics is considered within the quite general setting of G M M  estimation, and 
numerous examples are given. 

1. Introduction 

Large sample distribution theory is the cornerstone of statistical inference for 
econometric models. The limiting distribution of a statistic gives approximate 
distributional results that are often straightforward to derive, even in complicated 
econometric models. These distributions are useful for approximate inference, in- 
cluding constructing approximate confidence intervals and test statistics. Also, the 
location and dispersion of the limiting distribution provides criteria for choosing 
between different estimators. Of course, asymptotic results are sensitive to the 
accuracy of the large sample approximation, but the approximation has been found 
to be quite good in many cases and asymptotic distribution results are an important 
starting point for further improvements, such as the bootstrap. Also, exact distribu- 
tion theory is often difficult to derive in econometric models, and may not apply to 
models with unspecified distributions, which are important in econometrics. Because 
asymptotic theory is so useful for econometric models, it is important to have 
general results with conditions that can be interpreted and applied to particular 
estimators as easily as possible. The purpose of this chapter is the presentation of 
such results. 

Consistency and asymptotic normality are the two fundamental large sample 
properties of estimators considered in this chapter. A consistent estimator O is one 
that converges in probability to the true value 0o, i.e. 0 P-P-* 0o, as the sample size n 
goes to infinity, for all possible true values. 1 This is a mild property, only requiring 

This property is sometimes referred to as weak consistency, with strong consistency holding when 
converges almost surely to the true value. Throughout the chapter we focus on weak consistency, 
although we also show how strong consistency can be proven. 
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that the estimator is close to the truth when the number of observations is nearly 
infinite. Thus, an estimator that is not even consistent is usually considered in- 
adequate. Also, consistency is useful because it means that the asymptotic distribu- 
tion of an estimator is determined by its limiting behavior near the true parameter. 

An asymptotically normal estimator 0is one where there is an increasing function 
v(n) such that the distribution function of v(n)(O-0o) converges to the Gaussian 
distribution function with mean zero and variance V, i.e. v(n)(O- 0o) ~ N(O, V). 
The variance V of the limiting distribution is referred to as the asymptotic variance 

of 0. The estimator is x/-n-consistent if v(n)= ~ n .  This chapter focuses on the 

x/-n-consistent case, so that unless otherwise noted, asymptotic normality will be 

taken to include w/n-consistency. 
Asymptotic normality and a consistent estimator of the asymptotic variance can 

be used to construct approximate confidence intervals. In particular, for an esti- 
mator V of V and for ~7~/2 satisfying Prob[N(0, 1) > ~a/23 = ~/2, an asymptotic l - 
confidence interval is 

Y l  -~ = [ 0 -  p~/2(IZln) l/z, 0 + ~/2(~'/n)1/23. 
If f" is a consistent estimator of V and V > 0, then asymptotic normality of 0 will 
imply that P r ob ( 0o~J l  _~) ~ 1 - ~ as n ~ ~.~ Here asymptotic theory is important 
for econometric practice, where consistent standard errors can be used for approxi- 
mate confidence interval construction. Thus, it is useful to know that estimators are 
asymptotically normal and to know how to form consistent standard errors in 
applications, In addition, the magnitude of asymptotic variances for different esti- 
mators helps choose between estimators in practice. If one estimator has a smaller 
asymptotic variance, then an asymptotic confidence interval, as above, will be 
shorter for that estimator in large samples, suggesting preference for its use in 
applications. A prime example is generalized least squares with estimated distur- 
bance variance matrix, which has smaller asymptotic variance than ordinary least 
squares, and is often used in practice. 

Many estimators share a common structure that is useful in showing consistency 
and asymptotic normality, and in deriving the asymptotic variance. The benefit of 
using this structure is that it distills the asymptotic theory ,to a few essential 
ingredients. The cost is that applying general results to particular estimators often 
requires thought and calculation. In our opinion, the benefits outweigh the costs, 
and so in these notes we focus on general structures, illustrating their application 
with examples. 

One general structure, or framework, is the class of estimators that maximize 
some objective function that depends on data and sample size, referred to as 
extremum estimators. An estimator 0 is an extremum estimator if there is an 

ZThe proof of this result is an exercise in convergence in distribution and the Slutzky theorem, which 
d P • . d states that Y, --~ Y0 and Z, ---*c lmphes Z, 1I, ----*cY o. 
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objective function 4,(0) such that  

0 maximizes 4,(0) subject to 0E O, (1.1) 

where O is the set of possible parameter  values. In  the notat ion,  dependence of 0" 
on n and of 0 and (~,(0) on the data  is suppressed for convenience. This est imator 
is the maximizer of  some objective function that  depends on the data, hence the 
term "extremum es t imator"?  R.A. Fisher (1921, 1925), Wald (1949), Huber  (1967), 
Jennrich (1969), and Mal invaud (1970) developed consistency and asymptot ic  nor-  
mality results for various special cases of ext remum estimators, and Amemiya  (1973, 
1985) formulated the general class of estimators and gave some useful results. 

A prime example of  an extremum est imator is the max imum likelihood (MLE). 
Let the data  (z l , . . . ,  z.) be i.i.d, with p.d.f, f ( z l O o )  equal to some member  of a family 
of p.d.f.'s f ( z lO) .  Throughout ,  we will take the p.d.f, f ( z l O )  to mean a probabil i ty 
function where z is discrete, and to possibly be condit ioned on par t  of  the observa- 
tion z. 4 The M L E  satisfies eq. (1.1) with 

4 , ( 0 )  = n -1  ~ ln f(z~JO). (1.2) 
i = 1  

Here (~,(0) is the normalized log-likelihood. Of  course, the mono ton ic  t ransforma- 
tion of  taking the log of the likelihood and normalizing by n will not  typically affect 
the estimator, but  it is a convenient  normal izat ion in the theory. Asymptot ic  theory 
for the M L E  was outlined by R.A. Fisher (1921, 1925), and Wald's  (1949) consistency 
theorem is the pro to type  result for extremum estimators. Also, Huber  (1967) gave 
weak conditions for consistency and asymptot ic  normal i ty  of the M L E  and other 
extremum estimators that maximize a sample average. 5 

A second example is the nonlinear least squares (NLS), where for data  z i = (Yi, xi) 
with E [ y l x ]  = h(x,  0o), the est imator solves eq. (1.1) with 

(~,(0) = - n -  1 ~ [Yi - h(xi,  0)] 2. (1.3) 
i = 1  

Here maximizing (~,(0) is the same as minimizing the sum of squared residuals. The 
asymptotic normal i ty  theorem of Jennrich (1969) is the pro to type  for many  modern  
results on asymptot ic  normal i ty  of extremum estimators. 

3,,Extremum,, rather than "maximum" appears here because minimizers are also special cases, with 
objective function equal to the negative of the minimand. 

4 More precisely, f(z[O) is the density (Radon-Nikodym derivative) of the probability measure for z 
with respect to some measure that may assign measure 1 to some singleton's, allowing for discrete 
variables, and for z = (y, x) may be the product of some measure for y with the marginal distribution of 
x, allowing f(zlO) to be a conditional density given x. 

s Estimators that maximize a sample average, i.e. where Q_,(O) - n-  1Z7 1 q(z~, 0), are often referred to 
as m-estimators, where the "m" means "maximum-likelihood-like". 
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A third example is the generalized method of moments (GMM). Suppose that 
there is a "moment  function" vector 9(z, O) such that the population moments  satisfy 
E[9(z, Oo)] = 0. A G M M  estimator is one that minimizes a squared Euclidean 
distance of sample moments from their population counterpart  of zero. Let W be 
a positive semi-definite matrix, so that (rn'f/Vm) 1/z is a measure of the distance of m 
from zero. A G M M  estimator is one that solves eq. (1.1) with 

Q,(o) = - [ n - l i ~ = l g ( z i ,  O) ]'l~V[ n- l i~_ l g(zi, O) ]. (1.4) 

This class includes linear instrumental variables estimators, where g(z,O)=x" 
( y -  Y'O), x is a vector of instrumental variables, y is a left-hand-side dependent variable, 
and Y are right-hand-side variables. In this case the population moment  condition 
E[9(z, Oo)] = 0 is the same as the product of instrumental variables x and the 
disturbance y - Y'Oo having mean zero. By varying (V one can construct a variety 
of instrumental variables estimators, including two-stage least squares for I~ = 
( / , / -  1 n X - N i l -  1 6 The G M M  class also includes nonlinear instrumental variables ~ i  ~ 1 z iJ ' 

estimators, where 9(z, O) = x.p(z, O) for a residual p(z, 0), satisfying E[x.p(z, 0o) ] = 0. 
Nonlinear instrumental variable estimators were developed and analyzed by Sargan 
(1959) and Amemiya (1974). Also, the G M M  class was formulated and general 
results on asymptotic properties given in Burguete et al. (1982) and Hansen (1982). 

The G M M  class is general enough to also include MLE and NLS when those 
estimators are viewed as solutions to their first-order conditions. In this case the 
derivatives of in f(z]O) or - [y - h(x, 0)] 2 become the moment  functions, and there 
are exactly as many moment  functions as parameters. Thinking of G M M  as includ- 
ing MLE, NLS, and many other estimators is quite useful for analyzing their 
asymptotic distribution, but not for showing consistency, as further discussed below. 

A fourth example is classical minimum distance estimation (CMD). Suppose that 
there is a vector of estimators ~ ~ ~o and a vector of functions h(O) with ~o = h(Oo). 
The idea is that ~ consists of "reduced form" parameters, 0 consists of "structural" 
parameters, and h(O) gives the mapping from structure to reduced form. An estima- 
tor of 0 can be constructed by solving eq. (1.1) with 

(~,(0)= -[~-h(O)]'ITV[~-h(O)], (1.5) 

where W is a positive semi-definite matrix. This class of estimators includes classical 
minimum chi-square methods for discrete data, as well as estimators for simultaneous 
equations models in Rothenberg (1973) and panel data in Chamberlain (1982). Its 
asymptotic properties were developed by Chiang (1956) and Ferguson (1958). 

A different framework that is sometimes useful is minimum distance estimation, 

6 The 1/n normalization in FV does not affect the estimator, but, by the law of large numbers, will imply 
that W converges in probability to a constant matrix, a condition imposed below. 
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a class of estimators that solve eq. (1.1) for Q,(0)= -O,(O)'lTVO,(O), where 0,(0) is a 
vector of the data and parameters such that 0.(0o)P-~ 0 and I~ is positive semi- 
definite. Both GMM and CMD are special cases of minimum distance, with 0,(0) = 
n -  1Z~= 1 g(zl, O) for GMM and 0,(0) = r~ - h(O) for CMD. 7 This framework is useful 
for analyzing asymptotic normality of G M M  and CMD, because (once) differenti- 
ability of 0,(0) is a sufficient smoothness condition, while twice differentiability is 
often assumed for the objective function of an extremum estimator [-see, e.g. Amemiya 
(1985)]. Indeed, as discussed in Section 3, asymptotic normality of an extremum 
estimator with a twice differentiable objective function Q,(0) is actually a special 
case of asymptotic normality of a minimum distance estimator, with 0,(0) = VoQ,(0) 
and ITV equal to an identity matrix, where V 0 denotes the partial derivative. The idea 
here is that when analyzing asymptotic normality, an extremum estimator can be 
viewed as a solution to the first-order conditions VoQ,(0) = 0, and in this form is a 
minimum distance estimator. 

For consistency, it can be a bad idea to treat an extremum estimator as a solution 
to first-order conditions rather than a global maximum of an objective function, 
because the first-order condition can have multiple roots even when the objective 
function has a unique maximum. Thus, the first-order conditions may not identify 
the parameters, even when there is a unique maximum to the objective function. 
Also, it is often easier to specify primitive conditions for a unique maximum than 
for a unique root of the first-order conditions. A classic example is the MLE for the 
Cauchy location scale model, where z is a scalar, # is a location parameter, a a scale 
parameter, and f (zpO) = C~r- 1(1 + [(z -/~)/a]2) - 1 for a constant C. It is well known 
that, even in large samples, there are many roots to the first-order conditions for 
the location parameter/z, although there is a global maximum to the likelihood 
function; see Example 1 below. Econometric examples tend to be somewhat less 
extreme, but can still have multiple roots. An example is the censored least absolute 
deviations estimator of Powell (1984). This estimator solves eq. (1.1) for Q,(0) = 

- n -  1 ~ _ n _  1 [Yi  - -  max {0, x'iO } 1, where yl = max {0, x'~O o + e i}, and e i has conditional 
median zero. A global maximum of this function over any compact set containing 
the true parameter will be consistent, under certain conditions, but the gradient has 
extraneous roots at any point where x'iO < 0 for all i (e.g. which can occur if x~ is 
bounded). 

The importance for consistency of an extremum estimator being a global maximum 
has practical implications. Many iterative maximization procedures (e.g. Newton-  
Raphson) may converge only to a local maximum, but consistency results only apply 
to the global maximum. Thus, it is often important to search for a global maximum. 
One approach to this problem is to try different starting values for iterative proce- 
dures, and pick the estimator that maximizes the objective from among the con- 
verged values. As long as the extremum estimator is consistent and the true parameter 
is an element of the interior of the parameter set O, an extremum estimator will be 

7For GMM, the law of large numbers implies 0,(0o) P~-~0. 
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a root of the first-order conditions asymptotically, and hence will be included among 
the local maxima. Also, this procedure can avoid extraneous boundary maxima, e.g. 
those that can occur in maximum likelihood estimation of mixture models. 

Figure 1 shows a schematic, illustrating the relationships between the various 
types of estimators introduced so far: The name or mnemonic for each type of 
estimator (e.g. MLE for maximum likelihood) is given, along with objective function 
being maximized, except for G M M  and CMD where the form of 0,(0) is given. The 
solid arrows indicate inclusion in a class of estimators. For  example, MLE is 
included in the class of extremum estimators and G M M  is a minimum distance 
estimator. The broken arrows indicate inclusion in the class when the estimator is 
viewed as a solution to first-order conditions. In particular, the first-order conditions 

A A 

for an extremum estimator are VoQ,(O) = 0, making it a minimum distance estimator 
with 0,(0) = VoQ,(0) and I~= L Similarly, the first-order conditions for MLE make 
it a G M M  estimator with g(z, 0) -- V0 In f ( z  10) and those for NLS a G M M  estimator 
with g(z, 0) = - 2[y - h(x, O)]Voh(x, 0). As discussed above, these broken arrows are 
useful for analyzing the asymptotic distribution, but not for consistency. Also, as 
further discussed in Section 7, the broken arrows are not very useful when the 
objective function Q,(0) is not smooth. 

The broad outline of the chapter is to treat consistency, asymptotic normality, 
consistent asymptotic variance estimation, and asymptotic efficiency in that order. 
The general results will be organized hierarchically across sections, with the asymp- 
totic normality results assuming consistency and the asymptotic efficiency results 
assuming asymptotic normality. In each section, some illustrative, self-contained 
examples will be given. Two-step estimators will be discussed in a separate section, 
partly as an illustration of how the general frameworks discussed here can be applied 
and partly because of their intrinsic importance in econometric applications. Two 
later sections deal with more advanced topics. Section 7 considers asymptotic 
normality when the objective function (~,(0) is not smooth. Section 8 develops some 
asymptotic theory when 0 depends on a nonparametric estimator (e.g. a kernel 
regression, see Chapter 39). 

This chapter is designed to provide an introduction to asymptotic theory for 
nonlinear models, as well as a guide to recent developments. For  this purpose, 

Extremum 
q 

~n(o) 

/ \ 
NLS MLE 

-- ~ {Yi-h(xi, O)}2/n In f(zilO)/n 
i = 1  i = 1  

1 t 

Figure 1. 

Minimum Distance 

-" -On(o)'~vodo) 

/ \ 
G M M  CMD 

n 

2 g(z,, O)/n {0.(0)} ~ - h(O) 
i = l  

.J 
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Sections 2-6 have been organized in such a way that the more basic material is 
collected in the first part  of each section. In particular, Sections 2.1 2.5, 3.1-3.4, 
4.1-4.3, 5.1, and 5.2, might be used as text for part  of a second-year graduate 
econometrics course, possibly also including some examples from the other parts 
of this chapter. 

The results for extremum and minimum distance estimators are general enough 
to cover data that is a stationary stochastic process, but the regularity conditions 
for GMM, MLE, and the more specific examples are restricted to i.i.d, data. 
Modeling data as i.i.d, is satisfactory in many cross-section and panel data appli- 
cations. Chapter 37 gives results for dependent observations. 

This chapter assumes some familiarity with elementary concepts from analysis 
(e.g. compact sets, continuous functions, etc.) and with probability theory. More 
detailed familiarity with convergence concepts, laws of large numbers, and central 
limit theorems is assumed, e.g. as in Chapter 3 of Amemiya (1985), although some 
particularly important  or potentially unfamiliar results will be cited in footnotes. 
The most technical explanations, including measurability concerns, will be reserved 
to footnotes. 

Three basic examples will be used to illustrate the general results of this chapter. 

Example 1.1 ( Cauchy location-scale) 

In this example z is a scalar random variable, 0 = (#, a)' is a two-dimensional vector, 
and z is continuously distributed with p.d.f, f(zlOo), where f(zlO)= C'a-l{1 + 
[(z - #)/a] 2} - 1 and C is a constant. In this example ~t is a location parameter  and 
a a scale parameter. This example is interesting because the MLE will be consistent, 
in spite of the first-order conditions having many roots and the nonexistence of 
moments of z (e.g. so the sample mean is not a consistent estimator of 00). 

Example 1.2 (Probit) 

Probit is an MLE example where z = (y, x') for a binary variable y, y~{0, 1}, and a 
q x 1 vector of regressors x, and the conditional probability of y given x is f(zl 0o) 
for f(zlO) = ~(x'O) y [1 - ~(x '0)]  1 -y. Here f(zlOo)is a p.d.f, with respect to integration 
that sums over the two different values of y and integrates over the distribution of 
x, i.e. where the integral of any function a(y, x) is ~ a(y, x) dz = E[a(1, x)] + E[a(O, x)]. 
This example illustrates how regressors can be allowed for, and is a model that is 
often applied. 

Example 1.3 (Hansen Singleton) 

This is a G M M  (nonlinear instrumental variables) example, where g(z, 0) = x.p(z, O) 
for p(z, 0) = fl" w.y~ - 1. The functional form here is from Hansen and Singleton 
(1982), where fl is a rate of time preference, 7 a risk aversion parameter,  w an asset 
return, y a consumption ratio for adjacent time periods, and x consists of variables 
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in the information set, of an agent maximizing expected constant  relative risk 
aversion utility. This example is interesting because it illustrates the difficulty of 
specifying primitive identification condit ions for G M M  and the type of momen t  
existence assumptions that  are often useful. 

2. Consistency 

To motivate the precise condit ions for consistency it is helpful to sketch the ideas 
on which the result is based. The basic idea is that  if (~,(0) converges in probabil i ty 
to Qo(O) for every 0, and Qo(O) is maximized at the true parameter  0o, then the limit 
of the max imum 0 should be the maximum 0 o of the limit, under  condit ions for 
interchanging the maximizat ion and limiting operations. For  example, consider the 
MLE.  The law of large numbers  suggests (~,(0) P-~ Qo(O) = E[lnf(z[O)]. By the well 
known information inequality, Qo(O) has a unique max imum at the true parameter  
when 0 o is identified, as further discussed below. Then under technical condit ions 
for the limit of the maximum to be the max imum of the limit, 0 should converge in 
probabil i ty to 00. Sufficient conditions for the max imum of the limit to be the limit 
of the maximum are that  the convergence in probabil i ty is uniform and that  the 
parameter  set is compact ,  s 

These ideas are illustrated in Figure 2. Let e be a small positive number.  If (~,(0) 
lies in the "sleeve" [Q0(0) - e, Qo(O) + e], for all 0, then 0 m u s t  lie in [0~, 0,], i.e. must  
be "close" to the value 0 o that maximizes Qo(O). The est imator should then be 
consistent as long as 0 o is the true parameter  value. 

It is essential for consistency that the limit Qo(O) have a unique max imum at the 
true parameter  value. If there are multiple maxima,  then this a rgument  will only 

01 00 0u 0 

Figure 2. 

SThese ideas are also related to the result that the probability limit of a continuous function is the 
function of the probability limit. The maximum is a continuous function of {Q(0)} where the maximum 
is unique, in the metric of uniform convergence on a compact set. Thus, if the probaNlity limit, in this 
metric, of Q(O) is Q(O), and the maximum of Q(O) is unique, then the probability limit of 0 is the maximum 
of the limit Q(O). 
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lead to the estimator being close to one of the maxima, which does not give 
consistency (because one of the maxima will not be the true value of the parameter). 
The condition that Qo(O) have a unique maximum at the true parameter is related to 
identification. 

The discussion so far only allows for a compact parameter set. In theory compact- 
ness requires that one know bounds on the true parameter value, although this 
constraint is often ignored in practice. It is possible to drop this assumption if the 
function 8,(0) cannot rise "too much" as 0 becomes unbounded, as further discussed 
below. 

Uniform convergence and continuity of the limiting function are also important. 
Uniform convergence corresponds to the feature of the graph that (~,(0) was in the 
"sleeve" for all values of 0 e O. Conditions for uniform convergence are given below. 

The rest of this section develops this descriptive discussion into precise results 
on consistency of extremum estimators. Section 2.1 presents the basic consistency 
theorem. Sections 2.2-2.5 give simple but general sufficient conditions for consistency, 
including results for MLE and GMM. More advanced and/or technical material is 
contained in Sections 2.6 2.8. 

2.1. The basic consistency theorem 

To state a theorem it is necessary to define precisely uniform convergence in 
probability, as follows: 

Uniform convergence in probability: 8,(0) converges uniformly in probability to 
Qo(O) means sup0~ ol 8,(0) - Qo(0) l P-~ 0. 

The following is the fundamental consistency result for extremum estimators, and 
is similar to Lemma 3 of Amemiya (1973). 

Theorem 2.1 

If there is a function Qo(O) such that (i)Qo(0) is uniquely maximized at 0o; (ii) O is 
compact; (iii) Qo(O) is continuous; (iv) Q,(O) converges uniformly in probability to 
Qo(O), then 0 P-~ 0o. 

Proof 

For any e > 0 we have with probability approaching one (w.p.a.1)(a) (~,(0) > (~,(0o)- 
~/3 by eq. (1.1); (b) Qo(0)> (~,(0)- e/3 by (iv); (c) 8,(00)> Qo(Oo)-e/3 by (iv). 9 

9The probability statements in this proof are only well defined if each of 0, Q,(O), and Q,(0o) are 
measurable. The measurability issue can be bypassed by defining consistency and uniform convergence 
in terms of outer measure. The outer measure of a (possibly nonmeasurable) event 8 is the infimum of 
ElY] over all random variables Y with Y>~ l(g), where l(g) is the indicator function for the event & 
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Therefore, w.p.a. 1, 

(b) (a) (c) 
Qo(O) > 0,(0*) - e/3 > (~,(0o) - 2e/3 > Qo(Oo) - e. 

Thus, for any e > 0, Qo(O)> Qo(Oo)- e w.p.a.1. Let j l r  be any open subset of O 
containing 0 o. By O n ~Uc compact,  (i), and (iii), sup0 E o~xoQo(O) = Qo(O*) < Qo(Oo) 
for some 0*e O c~ A/"c. Thus, choosing e = Q o(Oo) - sup0 ~ o~.cQo(O), it follows that 
w.p.a.1 Qo(O) > SUpo~o~xoQo(O ), and hence 0 e ~ .  Q.E.D. 

The conditions of this theorem are slightly stronger than necessary. It is not 
necessary to assume that 0 actually maximizes the objective function. This assump- 
tion can be replaced by the hypothesis that (~,(0")/> sup0~ o(~,(0)+ op(1). This replace- 
ment has no effect on the proof, in particular on part  (a), so that the conclusion 
remains true. These modifications are useful for analyzing some estimators in 
econometrics, such as the maximum score estimator of Manski (1975) and the 
simulated moment  estimators of Pakes (1986) and McFadden (1989). These modifi- 
cations are not given in the statement of the consistency result in order to keep that 
result simple, but will be used later. 

Some of the other conditions can also be weakened. Assumption (iii) can be 
changed to upper semi-continuity of Qo(O) and (iv) to (~,(0o) P---+ Qo(Oo) and for all 
e > O, 8,(0) < Qo(O) + e for all 0E O with probability approaching one. I° Under 
these weaker conditions the conclusion still is satisfied, with exactly the same proof. 

Theorem 2.1 is a weak consistency result, i.e. it shows 0P---+ 0 o. A corresponding 
strong consistency result, i.e. 0 a ' s ,0  o, can be obtained by assuming that 
sup0~ ol (~,(0)-  Qo(0)l a.s. 0 holds in place of uniform convergence in probability. 
The proof is exactly the same as that above, except that "a.s. for large enough n" 
replaces "with probability approaching one". This and other results are stated here 
for convergence in probability because it suffices for the asymptotic distribution 
theory. 

This result is quite general, applying to any topological space. Hence, it allows for 
0 to be infinite-dimensional, i.e. for 0 to be a function, as would be of interest for 
nonparametric estimation of (say) a density or regression function. However, the 
compactness of the parameter  space is difficult to check or implausible in many 
cases where 0 is infinite-dimensional. 

To use this result to show consistency of a particular estimator it must be possible 
to check the conditions. For this purpose it is important to have primitive conditions, 
where the word "primitive" here is used synonymously with the phrase "easy to 
interpret". The compactness condition is primitive but the others are not, so that it 
is important to discuss more primitive conditions, as will be done in the following 
subsections. 

lo Upper semi-continuity means that for any Oe 0 and e > 0 there is an open subset 3 ° of 0 containing 
0 such that Qo(O') < Qo(O) + e for all O'e~/. 
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Condition (i) is the identification condition discussed above, (ii) the boundedness 
condition on the parameter set, and (iii) and (iv) the continuity and uniform conver- 
gence conditions. These can be loosely grouped into "substantive" and "regularity" 
conditions. The identification condition (i) is substantive. There are well known 
examples where this condition fails, e.g. linear instrumental variables estimation 
with fewer instruments than parameters. Thus, it is particularly important to be 
able to specify primitive hypotheses for Qo(O) to have a unique maximum. The 
compactness condition (ii) is also substantive, with 0o~ O requiring that bounds on 
the parameters be known. However, in applications the compactness restriction is 
often ignored. This practice is justified for estimators where compactness can be 
dropped without affecting consistency of estimators. Some of these estimators are 
discussed in Section 2.6. 

Uniform convergence and continuity are the hypotheses that are often referred 
to as "the standard regularity conditions" for consistency. They will typically be 
satisfied when moments of certain functions exist and there is some continuity in 
(~,(0) or in the distribution of the data. Moment existence assumptions are needed 
to use the law of large numbers to show convergence of Q,(0) to its limit Qo(O). 
Continuity of the limit Qo(O) is quite a weak condition. It can even be true when 
(~,(0) is not continuous, because continuity of the distribution of the data can 
"smooth out" the discontinuities in the sample objective function. Primitive regu- 
larity conditions for uniform convergence and continuity are given in Section 2.3. 
Also, Section 2.7 relates uniform convergence to stochastic equicontinuity, a property 
that is necessary and sufficient for uniform convergence, and gives more sufficient 
conditions for uniform convergence. 

To formulate primitive conditions for consistency of an extremum estimator, it 
is necessary to first find Qo(O). Usually it is straightforward to calculate Qo(O) as the 
probability limit of Q,(0) for any 0, a necessary condition for (iii) to be satisfied. This 
calculation can be accomplished by applying the law of large numbers, or hypo- 
theses about convergence of certain components. For  example, the law of large 
numbers implies that for MLE the limit of Q,(0) is Qo(O) = E [ln f(zJO)] and for NLS 
Qo(O) = - E[ {y - h(x, 0)}2]. Note the role played here by the normalization of the 
log-likelihood and sum of squared residuals, that leads to the objective function 
converging to a nonzero limit. Similar calculations give the limit for G M M  and 
CMD, as further discussed below. Once this limit has been found, the consistency 
will follow from the conditions of Theorem 2.1. 

One device that may allow for consistency under weaker conditions is to treat 0 
as a maximum of Q,(0) - Q,(0o) rather than just Q,(0). This is a magnitude normali- 
zation that sometimes makes it possible to weaken hypdtheses on existence of 
moments. In the censored least absolute deviations example, where (~,(0)= 

- n- 1ZT= if Yi - max {0, x'iO} 1, an assumption on existence of the expectation of y is 
useful for applying a law of large numbers to show convergence of Q,(0). In contrast 

- 1  . 
= - n  ~,=l[[y~-max{O,x '~O}l-ry~-max{O,x;Oo}l]  is a bounded 

function of y~, so that no such assumption is needed. 
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2.2. Identification 

The identification condi t ion  for consistency of an ext remum est imator  is that  the 
limit of the objective funct ion has a unique  m a x i m u m  at the truth.11 This condi t ion  
is related to identification in the usual  sense, which is that  the d is t r ibut ion  of the 
data at the true parameter  is different than  that  at any other possible parameter  
value. To be precise, identification is a necessary condi t ion  for the l imiting objective 
function to have a unique  maximum,  but  it is not  in general sufficient.12 This section 
focuses on identification condi t ions  for MLE,  NLS, G M M ,  and  CMD,  in order to 
illustrate the kinds of results that  are available. 

2.2.1. The maximum likelihood estimator 

An impor tan t  feature of m a x i m u m  likelihood is that  identif ication is also sufficient 

for a unique  maximum.  Let Y1 ~ Y2 for r a n d o m  variables mean  Prob({ Y1 ¢ Y2 }) > 0. 

Lemma 2,2 (Information inequality) 

If 0o is identified [0 :~ 0 o and  0 e O implies f(zl  O) ¢ f(zl  0o)] and  E [ l ln  f ( z  I 0) 1] < oo 
for all 0 then Qo(O) = E [ l n  f(z]O)] has a unique  ma x i mum at 0o. 

Proof 

By the strict version of Jensen's  inequality,  for any noncons tan t ,  positive ran- 
dom variable Y, - l n (E [Y] )  < E [ -  ln(Y)].  13 Then  for a = f(zlO)/f(z]Oo) and  

0 ¢ 0o, Qo(0o) - Qo(0) = E [  { - In [ f (z  ]O)/f(zlOo)] } ] > - In E [ { f ( z  ]O)/f(z]Oo) } ] = 
- In [Sf(z ] 0)dz] = 0. Q.E.D. 

The term " informat ion  inequali ty" refers to an in terpre ta t ion  of Qo(O) as an informa- 
t ion measure. This result means  that  M L E  has the very nice feature that  uniqueness  
of the m a x i m u m  of the l imiting objective funct ion occurs under  the very weakest 
possible condi t ion  of identification of 0o. 

Condi t ions  for identification in part icular  models are specific to those models. It 

11 If the set of maximands J# of the objective function has more than one element, then this set does 
not distinguish between the true parameter and other values. In this case further restrictions are needed 
for identification. These restrictions are sometimes referred to as normalizations. Alternatively, one could 
work with convergence in probability to a set Jg, but imposing normalization restrictions is more 
practical, and is needed for asymptotic normality. 

a2If 00 is not identified, then there will be some 6~ 00 such that the distribution of the data is the 
same when 0is the true parameter value as when 0 o is the true parameter value. Therefore, Qo(O) will 
also be limiting objective function when Ois the true parameter, and hence the requirement that Qo(O) 
be maximized at the true parameter implies that Qo(O) has at least two maxima, 00 and 0. 

laThe strict version of Jensen's inequality states that if a(y) is a strictly concave function [e.g. 
a(y) = In(y)] and Y is a nonconstant random variable, then a(E[Y]) > E[a(Y)]. 
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is often possible to specify them in a way that  is easy to interpret  (i.e. in a "pr imit ive"  
way), as in the Cauchy  example.  

Example 1.1 continued 

It will follow from L e m m a  2.2 that  E[lnf(zJO)] has a unique m a x i m u m  at the 
true parameter .  Existence of El[In  f(zlO)[] for all 0 follows f rom J ln f(zlO) l <~ C1 + 
ln(1 +a-2 l z  -/~[2) ~< C~ + ln(C 2 + C3JzJ 2) for posit ive constants  C1, C2, and C 3, 
and existence of E[ ln(C2 + C3[zl2)]. Identif icat ion follows f rom f(zfO) being one- 
to-one in the quadra t ic  function (1 + [(z - #)/a]2), the fact that  quadrat ic  functions 
intersect at no more  than  two points,  and the fact that  the probabi l i ty  of  any two 
points is zero, so that  Prob({z:f(zJ O) ¢ f (z l  0o)}) = l > 0. Thus,  by the informat ion  
inequality, E[ ln  f(zrO)] has a unique m a x i m u m  at 0 o. This example  illustrates that  it 
can be quite easy to show that  the expected log-l ikelihood has a unique max imum,  
even when the first-order condit ions for the M L E  do not  have unique roots. 

Example 1.2 continued 

Throughou t  the probi t  example,  the identification and regulari ty condit ions 
will be combined  in the assumpt ion  that  the second-momen t  matr ix  E[xx'] exists 
and is nonsingular.  This assumpt ion  implies identification. To  see why, note  
that nonsingular i ty  of E[xx'] implies that  it is posit ive definite. Let  0 :~ 0 o, so that  
E[{x'(O - 0o)} 2] = (0 - Oo)'E[xx'](O - 0o) > 0, implying that  x'(O - 0o) • 0, and 
hence x'O ~ x'O o, where as before "not  equals" means  "not  equal  on a set of  posi-  
tive probabi l i ty" .  Both qJ(v) and  ~ (  - v) are strictly monotonic ,  so that  x'O ¢ x'O o 
implies bo th  qg(x'O)¢ @(x'Oo) and 1 -  CP(x'O)# 1 -  ~(x'Oo), and hence that  
f ( z  f0) = @(x'0) ' [ l  - @(x'O)] ~ - '  ¢ f ( z  J 0o). 

Existence of E[xx'] also implies that  E[J ln  f(zJ 0) 1] < ~ .  It  is well known that  the 
derivative d In ~(v)/dv = 2(v) = (a(v)/Cb(v) [for ~b(v) = Vv~(v)],  is convex and asymp-  
totes to - v as v ~ - m and to zero as v---, ~ .  Therefore,  a mean-va lue  expansion 
a round 0 = 0 gives 

rln ~(x'0)l  = [In ~0(0) + 2(x'O)x'O[ <~ Iln ~(0)[ + 2(x'O)lx'O] 

~<lln q~(0) [ + C(1 + [x'0[)[ x'O[ <~ [ln ~(0)[ + C(1 + [1 x II I[ 0 [I)[I x [I ]l 0 I[. 

Since 1 - q~(v) = @( - v) and y is bounded,  rlnf(z]O)[ <~ 2[f ln  ~(0)[ + C(1 + jlxl[ × 
I] 0 jp)]] x II II 0 II ], so existence of second momen t s  of  x implies that  EI-]ln f(z[O) l] is 
finite. This par t  of  the probi t  example  illustrates the detailed work  that  m a y  be 
needed to verify that  m o m e n t  existence assumpt ions  like that  of  L e m m a  2.2 are 
satisfied. 

2.2.2. Nonlinear least squares 

The identification condition for NLS  is that  the mean  square error E [ { y - h(x, O) ~2] _- 
- Qo(O) have a unique m i n i m u m  at 0o. As is easily shown, the mean  square  er ror  
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has a unique min imum at the condit ional  mean. 14 Since h(x, Oo)= E [ y [ x ]  is the 
condit ional  mean, the identification condit ion for NLS  is that  h(x, O) # h(x, 0o) if 
0 ~ 0o, i.e. that  h(x, O) is not  the condit ional  mean when 0 # 0 o. This is a natural  
"condit ional  mean"  identification condit ion for NLS.  

In some cases identification will not" be sufficient for condit ional  mean identifica- 
tion. Intuitively, only parameters  that  affect the first condit ional  momen t  o f y  given 
x can be identified by NLS. For  example, if 0 includes condit ional  variance param-  
eters, or parameters  of other higher-order moments ,  then these parameters  may  
not  be identified from the condit ional  mean. 

As for identification, it is often easy to give primitive hypotheses for condit ional  
mean identification. For  example, in the linear model  h(x, O) = x'O condit ional  mean 
identification holds if E [ x x ' ]  is nonsingular,  for then 0 # 0 o implies x'O v a X'Oo, as 
shown in the probit  example. For  another  example, suppose x is a positive scalar 
and h(x, O) = ~ + fix ~. As long as bo th  flo and ~o are nonzero,  the regression curve 
for a different value of 0 intersects the true curve at most  at three x points. Thus, 
for identification it is sufficient that  x have positive density over any interval, or  
that  x have more  than three points that  have positive probability. 

2.2.3. Generalized method o f  moments  

For  generalized method  of  moments  the limit function Qo(O) is a little more  compli- 
cated than for M L E  or NLS,  but is still easy to find. By the law of large numbers,  
0,(0) P-~ 90(0) = E[g(z ,  0)], so that if W P-~ W for some positive semi-definite matrix 
W, then by continuity of multiplication, Q,(0) ~ Qo(O) = - go(O)'Wgo(O). This func- 
tion has a max imum of zero at 0 o, so 00 will be identified if it is less than zero for 

0 5 0 0 .  

L e m m a  2.3 ( G M M  identif ication) 

If  W is positive semi-definite and, for go(O) = E[g(z ,  0)], go(Oo) = 0 and Wgo(O ) vL 0 
for 0 # 0o then Qo(O) = - go(O)'Wgo(O) has a unique maximum at 0 o. 

P r o o f  

Let R be such that  R ' R  = W.  I f0  # 0 o, then 0 # Wgo(O) = R'Rgo(O) implies Rgo(O ) # 0 
and hence Qo(O) = - [Rgo(O)]'[Rgo(O)] < Qo(Oo) = 0 for 0 # 0 o. Q.E.D. 

The G M M  identification condit ion is that  if 0 ~ 0 o then 90(0) is not  in the null space 
of W, which for nonsingular  W reduces to go(O) being nonzero  if 0 # 0 o. A necessary 
order  condit ion for G M M  identification is that  there be at least as many  momen t  

14For m(x)=E[y[x] and a(x) any function with finite variance, iterated expectations gives 
E[{y -- a(x)} 2] = E[{y - re(x)} z] + 2E[{y - re(x) } {re(x) - a(x) } ] + E[ {re(x) - a(x)} 2]/> E[{y - re(x)}2], 
with strict inequality if a(x) # re(x). 
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functions as parameters. If there are fewer moments than parameters, then there 
will typically be many solutions to go(O) = O. 

If the moment functions are linear, say g(z, O) = g(z) + G(z)O, then the necessary 
and sufficient rank condition for G M M  identification is that the rank of WE[G(z)] 
is equal to the number of columns. For example, consider a linear instrumental 
variables estimator, where g(z, O) = x ' ( y  - Y'O) for a residual y - Y'O and a vector 
of instrumental variables x. The two-stage least squares estimator of 0 is a G M M  
estimator with I?¢ = (Z~'= 1 xix'i/n)-1. Suppose that E[xx ']  exists and is nonsingular, 
so that W = (E[xx '])-1  by the law of large numbers. Then the rank condition for 
GMM identification is E[xY ' ]  has full column rank, the well known instrumental 
variables identification condition. If E[  Y'Ixl  = x'rr then this condition reduces to 

having full column rank, a version of the single equation identification condition 
[see F.M. Fisher (1976) Theorem 2.7.1]. More generally, E[xY'1 = E[xE[Y ' I x ] ] ,  
so that G M M  identification is the same as x having "full rank covariance" with 
g f Y l x ] .  

If E [g(z, 0)] is nonlinear in 0, then specifying primitive conditions for identification 
becomes quite difficult. Here conditions for identification are like conditions for 
unique solutions of nonlinear equations (as in E[g(z, 0)1 = 0), which are known to be 
difficult. This difficulty is another reason to avoid formulating 0 as the solution to 
the first-order condition when analyzing consistency, e.g. to avoid interpreting 
MLE as a G M M  estimator with g(z, 0) = V0 In f(z[ 0). In some cases this difficulty is 
unavoidable, as for instrumental variables estimators of nonlinear simultaneous 
equations models. Is 

Local identification analysis may be useful when it is difficult to find primitive 
conditions for (global) identification. If g(z, O) is continuously differentiable and 
VoE[g(z, 0)] = E[Vog(z, 0)], then by Rothenberg (1971), a sufficient condition for a 
unique solution of WE[g(z,  0)] = 0 in a (small enough) neighborhood of 0o is that 
WE[Vog(z, 0o)] have full column rank. This condition is also necessary for local 
identification, and hence provides a necessary condition for global identification, 
when E[Vog(z, 0)1 has constant rank in a neighborhood of 0o [i.e. in Rothenberg's 
(1971) "regular" case]. For  example, for nonlinear 2SLS, where p(z, O) is a residual 
and g(z, O) = x.p(z, 0), the rank condition for local identification is that E [x'Vop(z, 00'1 
has rank equal to its number of columns. 

A practical "solution" to the problem of global G M M  identification, that has 
often been adopted, is to simply assume identification. This practice is reasonable, 
given the difficulty of formulating primitive conditions, but it is important to check 
that it is not a vacuous assumption whenever possible, by showing identification in 
some special cases. In simple models it may be possible to show identification under 
particular forms for conditional distributions. The Hansen Singleton model pro- 
vides one example. 

5 There are some useful results on identification of nonlinear simultaneous equations models in Brown 
(1983) and Roehrig (1989), a l though global identification analysis of instrumental  variables estimators 
remains difficult. 
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Example 1.3 continued 

Suppose that W = (n- ly~,= 1 xix'i), so that  the G M M  estimator is nonlinear two- 
stage least squares. By the law of  large numbers,  if E [xx'] exists and is nonsingular,  
W will converge in probabil i ty to W = (E[xx ' ] ) -  1, which is nonsingular.  Then the 
G M M  identification condit ion is that  there is a unique solution to E[xp(z, 0)] = 0 
at 0 = 00, where p(z, O)= {fiwy ~ -  1}. Quite primitive conditions for identification 
can be formulated in a special log-linear case. Suppose that  w = exp [a(x) + u] and 
y = exp [b(x) + v], where (u, v) is independent  of  x, that  a(x) + 7ob(x) is constant,  and 
that q(Oo)= 1 for q(O)= e x p [ a ( x ) +  7ob(x)]flE[exp(u + 7v)]. Suppose also that the 
first element is a constant,  so that  the other  elements can be assumed to have mean 
zero (by "demeaning" if necessary, which is a nonsingular  linear transformation,  
and so does not  affect the identification analysis). Let ~(x,7)=exp[(7-7o)b(x)] .  
Then E [p(z, O) l x] = ~(x, 7)q(0) - 1, which is zero for 0 = 0o, and hence E[g(z, 0o)] = O. 
For  0 ¢ 0 o, E[g(z, 0)] = {E[~(x, 7)]q(0) -- 1, Cov[x ' ,  ~(x, 7)]~/(0) }'. This expression is 
nonzero  if Coy[x ,  ~(x, 7)] is nonzero,  because then the second term is nonzero  if q(0) 
is nonzero and the first term is nonzero if q(O) = 0. Furthermore,  if Cov Ix, a(x, 7)] = 0 
for some 7, then all of the elements of E[g(z, 0)] are zero for all fl, and one can choose 
fi > 0 so the first element is zero. Thus, Cov [x, ~(x, 7)] ¢ 0 for 7 ~ 70 is a necessary 
and sufficient condition for identification. In other words, the identification condition 
is that  for all 7 in the parameter  set, some coefficient of a noncons tan t  variable 
in the regression of a(x, 7) on x is nonzero.  This is a relatively primitive condition, 
because we have some intuition about  when regression coefficients are zero, al though 
it does depend on the form of b(x) and the distribution of  x in a complicated way. 
If  b(x) is a nonconstant ,  mono ton ic  function of  a linear combina t ion  of x, then 
this covarianee will be nonzero.  16 Thus, in this example it is found that  the assump- 
tion of G M M  identification is not vacuous,  that  there are some nice special cases 
where identification does hold. 

2.2.4. Classical minimum distance 

The analysis of  C M D  identification is very similar to that  for G M M .  If 7~ ~ n o 
and 17¢~ W, W positive semi-definite, then (~(0) = - [~ - h(O)]'lTV[~ - h(0)] 
- [no - h(O)]'W[n o - h(0)] = Qo(O). The condit ion for Qo(O) to have a unique maxi- 
mum (of zero) at 0 o is that  h(Oo) = n o and h(O) - h(Oo) is not  in the null space of  W 
if 0 :~ 0o, which reduces to h(O) ¢ h(Oo) if W is nonsingular.  If h(O) is linear in 0 then 
there is a readily interpretable rank condit ion for identification, but otherwise the 
analysis of global identification is difficult. A rank condit ion for local identification 
is that  the rank of  W.Voh(Oo) equals the number  of components  of 0. 

16 It is well known that Cov[x, f(x)] 4:0 for any monotonic, nonconstant function f(x) of a random 
variable x. 
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2.3. Uniform convergence and continuity 

Once conditions for identification have been found and compactness of the parameter 
set has been assumed, the only other  primitive condit ions for consistency required 
by Theorem 2.1 are those for uniform convergence in probabil i ty and continuity of 
the limiting objective function. This subsection gives primitive hypotheses for these 
conditions that, when combined with identification, lead to primitive condit ions for 
consistency of part icular  estimators. 

For  many  estimators, results on uniform convergence of sample averages, known 
as uniform laws of large numbers, can be used to specify primitive regularity conditions. 
Examples include MLE,  NLS,  and G M M ,  each of  which depends on sample 
averages. The following uniform law of  large numbers  is useful for these estimators. 
Let a(z, O) be a matrix of  functions of an observat ion z and the parameter  0, and for 
a matrix A = [aSk], let r[ A II = t ~  ,~2 ~1/2 ~S.k~Sk ~ be the Euclidean norm. 

Lemma 2.4 

If the data  are i.i.d., Ois  compact ,  a(zi, O) is cont inuous at each 0~ Owi th  probabil i ty 
one, and there is d(z) with Ila(z,O)ll <<.d(z) for all 0 ~ O  and E[d(z)] < ~ ,  then 

n-  i v "  a(zi, O) -- E[a(z, 0)] [1 ~ 0. E[a(z,O)] is cont inuous and sup0~ol[ ~ i=1 

The condit ions of  this result are similar to assumptions of  Wald 's  (1949) consistency 
proof, and it is implied by Lemma 1 of  Tauchen  (1985). 

The condit ions of  this result are quite weak. In particular, they allow for a(z, O) 
to not  be cont inuous  on all of O for given z. iv Consequently,  this result is useful 
even when the objective function is not  cont inuous,  as for Manski ' s  (1975) max imum 
score estimator and the simulation-based estimators of Pakes (1986) and McFadden  
(1989). Also, this result can be extended to dependent  data. The conclusion remains 
true if the i.i.d, hypothesis is changed to strict stationarity and ergodicity of  zi.18 

The two condit ions imposed on a(z, O) are a continuity condit ion and a momen t  
existence condition. These condit ions are very primitive. The continuity condi t ion 
can often be verified by inspection. The momen t  existence hypothesis just  requires 
a data-dependent upper bound  on II a(z, O) IJ that  has finite expectation. This condition 
is sometimes referred to as a "dominance  condit ion",  where d(z) is the dominat ing  
function. Because it only requires that certain moments  exist, it is a "regularity 
condition" rather than a "substantive restriction". 

It is often quite easy to see that  the continui ty condit ion is satisfied and to specify 
moment  hypotheses for the dominance  condition,  as in the examples. 

17 The conditions of Lemma 2.4 are not sufficient for measurability of the supremum in the conclusion, 
but are sufficient for convergence of the supremum in outer measure. Convergence in outer measure is 
sufficient for consistency of the estimator in terms of outer measure, a result that is useful when the 
objective function is not continuous, as previously noted. 

lSStrict stationarity means that the distribution of (zi, z~+ 1,... ,z~+,,) does not depend on i for any m, 
and ergodicity implies that n- 15~= la(zl) ~ E[a(zi)] for (measurable) functions a(z) with E[la(z) l ] < oo. 
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Example I.I continued 

For the Cauchy location-scale likelihood, continuity of l n f ( z [O)= In C -  ln a -  
ln(1 + {(z - #)/a} 2) is obvious. Also, as in the Example 1.1 discussion in Section 2.2.1, 
for any O where 0 is bounded and a 1> 0 is bounded away from zero, the domi- 
nance condition of Lemma 2.4 is satisfied for a(z ,O)=lnf(z lO) and d(z)= C1 + 
ln(C2 + C3lz 12), for certain positive constants C~, C2, and C 3. Thus, by the conclusion 
of Lemma 2.4, E[ln f ( z l  0)] is continuous and the average log-likelihood converges 
uniformly in probability to the expected log-likelihood. 

Example 1.2 continued 

For the probit example, continuity of In f(z]O) = y In ~(x'O) + (1 - y)In ~( -x 'O)  is 
obyious, while the dominance condition of Lemma 2.4 follows as in Section 2.2.1, 
with C(1 + I] x I] 2) = d(z). Then the conclusion of Lemma 2.4 applies to a(z, 0) = In f (z] 0). 

Example 1.3 continued 

In the Hansen-Singleton example, the G M M  objective function depends on 0 
1 n through the average moment functions 0,(0)= n-  ~.i=lg(zi, O ) = n - lx~" .g.....~i= l Xi X 

(fwiy~ - 1). Consequently, as shown below for general G M M  estimators, uniform 
convergence of the objective function and continuity of the limit will hold if the 
hypotheses of Lemma 2.4 are satisfied with a(z, O) equal to each element of g(z, 0). 
By inspection, each element of g(z, 0) is continuous. Also, assuming 69 is specified 
so that f and y are bounded, and letting fit, fu, and 7t, 7u denote upper and lower 
bounds, respectively, 

IPg(z,O)lt ~ Ilxltl-1 + ( l & l +  I f . I ) l w l ( l y l ~ +  ly1~93, OEO. 

Thus, the dominance condition will be satisfied if each of II x H lwlr y r u, JI x II ]wl I y I s' 
and I I x IJ have finite expectations. In this example existence of E[ [[ x r[ Iwl I y I ~u] and 
E[ir xl[ Iw[ [y[~'] may place bounds on how large or small ~ can be allowed to be. 

Lemma 2.4 is useful, but it only applies to stationary data and to sample averages. 
There are many examples of models and estimators in econometrics where more 
general uniform convergence results are needed. It is possible to formulate necessary 
and sufficient conditions for uniform convergence using a stochastic equicontinuity 
condition. Stochastic equicontinuity is an important concept in recent developments 
in asymptotic theory, is used elsewhere in this chapter, and is fully discussed in 
Andrews' chapter in this volume. However, because this concept is somewhat more 
techl~ical, and not needed for many results, we have placed the discussion of 
uniform convergence and stochastic equicontinuity in Section 2.7, and left all 
description of its other uses until needed in Section 7. 
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2.4. Consistency of maximum likelihood 

The conditions for identification in Section 2.2 and the uniform convergence result 
of Lemma 2.4, allow specification of primitive regularity conditions for particular 
kinds of estimators. A consistency result for MLE can be formulated as follows: 

Theorem 2.5 

Suppose that zi, ( i= 1,2 . . . .  ), are i.i.d, with p.d.f, f(zilOo) and (i) if 0#0o  then 
f(zi[O) #f(z~lOo); (ii) 0oeO, which is compact; (iii) In f(z~lO) is continuous at each 
0e O with probability one; (iv) E[sup0Eelln f(zlO) l] < ~ .  Then 6 P_L, 00. 

Proof 

Proceed by verifying the conditions of Theorem 2.1. Condition 2.1(i) follows by 2.5(i) 
and (iv) and Lemma 2.2. Condition 2.1(ii) holds by 2.5(ii). Conditions 2.1(iii) and (iv) 
follow by Lemma 2.4. Q.E.D. 

The conditions of this result are quite primitive and also quite weak. The conclusion 
is consistency of the MLE. Thus, a particular MLE can be shown to be consistent 
by checking the conditions of this result, which are identification, compactness, 
continuity of the log-likelihood at particular points, and a dominance condition for 
the log-likelihood. Often it is easy to specify conditions for identification, continuity 
holds by inspection, and the dominance condition can be shown to hold with a little 
algebra. The Cauchy location-scale model is an example. 

Example 1.1 continued 

To show consistency of the Cauchy MLE, one can proceed to verify the hypotheses 
of Theorem 2.5. Condition (i) was shown in Section 2.2.1. Conditions (iii) and (iv) 
were shown in Section 2.3. Then the conditions of Theorem 2.5 imply that when O 
is any compact set containing 0o, the Cauchy MLE is consistent. 

A similar result can be stated for probit (i.e. Example 1.2). It is not given here because 
it is possible to drop the compactness hypothesis of Theorem 2.5. The probit 
log-likelihood turns out to be concave in parameters, leading to a simple consistency 
result without a compact parameter space. This result is discussed in Section 2.6. 

Theorem 2.5 remains true if the i.i.d, assumption is replaced with the condition 
that zx, 2 2 . . . .  is stationary and ergodic with (marginal) p.d.f, of z i given byf(zl  0o). 
This relaxation of the i.i.d, assumption is possible because the limit function remains 
unchanged (so the information inequality still applies) and, as noted in Section 2.3, 
uniform convergence and continuity of the limit still hold. 

A similar consistency result for NLS could be formulated by combining condi- 
tional mean identification, compactness of the parameter space, h(x, O) being conti- 
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nuous at each 0 with probability one, and a dominance condition. Formulating 
such a result is left as an exercise. 

2.5. Consistency of G M M  

A consistency result for G M M  can be formulated as follows: 

Theorem 2.6 

Suppose that z i, (i = l, 2 . . . .  ), are i.i.d., I~ ~ W, and (i) W is positive semi-definite 
and WE[g(z, 0)] =0  only if0 = 0o; (ii) 0oEO, which is compact; (iii) g(z, O) is continuous 
at each 0~ O with probability one; (iv) E[supo~o II g(z, 0)tJ ] < oo. Then t ) ~  Oo 

Proof 

Proceed by verifying the hypotheses of Theorem 2.1. Condition 2.10) follows 
by 2.6(i) and Lemma 2.3. Condition 2.1(ii) holds by 2.6(ii). By Lemma 2.4 
applied to a(z, O) = g(z, 0), for 9,(0) = n-  1~2n = lg(Zl, O) and go(O) = E[g(z, 0)], one has 
SUpo~olJO,(O)-go(O)ll&O and go(O) is continuous. Thus, 2.1(iii) holds by 
Qo(O) = - go(O)'Wgo(O) continuous. By O compact, go(O) is bounded on O, and by 
the triangle and Cauchy-Schwartz inequalities, 

I 0 . (0 )  - (2o(0) 1 

] [0.(0) - go(O)] ' r~[0 . (o)  - g o ( O ) ] / +  lao(O) ' (w ÷ ~ ' ) [ ~ . ( 0 )  - go(O)]/ 

+ Igo(O)'(~v- W)go(O)l 

<~ II gn( O) - go(O)II 2 II lTv II + 2 II go(O) II II ~.(0) - go(O)II II ff~ II 

+ II go(O)ll 2 fl i f ' -  Wll, 

so that sup0~ o[ Q,(0) - Qo(0)[ ~ 0, and 2. l(iv) holds. Q.E.D. 

The conditions of this result are quite weak, allowing for discontinuity in the 
moment functions. 19 Consequently, this result is general enough to cover the 
simulated moment estimators of Pakes (1986) and McFadden (1989), or the interval 
moment estimator of Newey (1988). 

To use this result to show consistency of a G M M  estimator, one proceeds to 
check the conditions, as in the Hansen-Singleton example. 

19Measurability of the estimator becomes an issue in this case, although this can be finessed by 
working with outer measure, as previously noted. 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2133 

Example 1.3 continued 

Assume that E[xx'] < ~ ,  so that 17V ~ W = (E[xx'])- 1. For  hypothesis (i), simply 
assume that E[g(z, 0)] = 0 has a unique solution at 0 o among all 0~ O. Unfortunately, 
as discussed in Section 2.2, it is difficult to give more primitive assumptions for this 
identification condition. Also, assume that O is compact, so that (ii) holds. Then (iii) 
holds by inspection, and as discussed in Section 2.3, (iv) holds as long as the moment 
existence conditions given there are satisfied. Thus, under these assumptions, the 
estimator will be consistent. 

Theorem 2.6 remains true if the i.i.d, assumption is replaced with the condition 
that zl, z2 . . . .  is stationary and ergodic. Also, a similar consistency result could be 
formulated for CMD, by combining uniqueness of the solution to ~o = h(O) with 
compactness of the parameter space and continuity of h(O). Details are left as an 
exercise. 

2.6. Consistency without compactness 

The compactness assumption is restrictive, because it implicitly requires that there 
be known bounds on the true parameter value. It is useful in practice to be able to 
drop this restriction, so that conditions for consistency without compactness are of 
interest. One nice result is available when the objective function is concave. Intuitively, 
concavity prevents the objective function from "turning up" as the parameter moves 
far away from the truth. A precise result based on this intuition is the following one: 

Theorem 2.7 

If there is a function Qo(O) such that (i) Qo(O) is uniquely maximized at 0o; (ii) 0 o is 
an element of the interior of a convex set O and (~,(0) is concave; and (iii) 8,(0) P-~ 

Qo(O) for all 0~O, then 0, exists with probability approaching one and On p 0 o. 

Proof 

Let ~d be a closed sphere of radius 2e around 0o that is contained in the interior of 
O and let ~ be its boundary. Concavity is preserved by pointwise limits, so that 
Qo(O) is also concave. A concave function is continuous on the interior of its domain, 
so that Qo(O) is continuous on ~. Also, by Theorem 10.8 of Rockafellar (1970), 
pointwise convergence of concave functions on a dense subset of an open set implies 
uniform convergence on any compact subset of the open set. It then follows as in 
Andersen and Gill (1982) that 8,(0) converges to Qo(O) in probability uniformly on 
any compact subset of O, and in particular on cg. Hence, by Theorem 2.1, the 
maximand 0, of  Q,(0) on c~ is consistent for 0 o. Then the event that 0, is within e of 
00, so that Q,(O,)>~ max~Q,(0), occurs with probability approaching one. In this 
event, for any 0 outside ~, there is a linear convex combination 29, + ( 1 -  2)0 
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that lies in ~ (with 2 <  1), so that Q,(0",)~>(~,[)+0,+(1-2)0]. By concavity, 
Q,[20",+ (1 - 4)0] ~> 2(~,(0~) + (1 - 2)Q,(0). Putting these inequalities together, 
(1 - 2)Q,(0) 1> (1 - ,~)Q,(0), implying 0, is the maximand over <9. Q.E.D. 

This theorem is similar to Corollary II.2 of Andersen and Gill (1982) and Lemma 
A of Newey and Powell (1987). In addition to allowing for noncompact O, it only 
requires pointwise convergence. This weaker hypothesis is possible because point- 
wise convergence of concave functions implies uniform convergence (see the proof). 
This result also contains the additional conclusion that O exists with probability 
approaching one, which is needed because of noncompactness of O. 

This theorem leads to simple conditions for consistency without compactness for 
both MLE and GMM. For  MLE, if in Theorem 2.5, (ii) (iv) are replaced by O 
convex, in f(z] O) concave in 0 (with probability one), and E []ln f(z] 0) 1] < ~ for all 
0, then the law of large numbers and Theorem 2.7 give consistency. In other words, 
with concavity the conditions of Lemma 2.2 are sufficient for consistency of the 
MLE. Probit is an example. 

Example 1.2 continued 

It was shown in Section 2.2.1 that the conditions of Lemma 2.2 are satisfied. Thus, 
to show consistency of the probit MLE it suffices to show concavity of the log- 
likelihood, which will be implied by concavity ofln @(x'O) and In tb( - x'O). Since x'O 
is linear in 0, it suffices to show concavity of In q~(v) in v. This concavity follows 
from the well known fact that d In ~(v)/dv = (~(v)/CO(v) is monotonic decreasing [as 
well as the general Pratt  (1981) result discussed below]. 

For GMM, if g(z, 0) is linear in 0 and W is positive semi-definite then the objective 
function is concave, so if in Theorem 2.6, (ii)-(iv) are replaced by the requirement 
that E[  [[ g(z, O) [[ ] < oo for all 0~ O, the conclusion of Theorem 2.7 will give consis- 
tency of GMM. This linear moment function case includes linear instrumental 
variables estimators, where compactness is well known to not be essential. 

This result can easily be generalized to estimators with objective functions that 
are concave after reparametrization. If conditions (i) and (iii) are satisfied and there 
is a one-to-one mapping r(0) with continuous inverse such that Q, [ r - l (2) ]  is 
concave on r(O) and T(0o) is an element of the interior of ~(O), then the maximizing 
value )~of Q,[~- 1(2)] will be consistent for 2 o = ~(0o) by Theorem 2.7 and invariance 
of a maxima to one-to-one reparametrization, and 0 = r-1(~) will be consistent for 
0o = ~- 1(2o) by continuity of the inverse. 

An important class of estimators with objective functions that are concave after 
reparametrization are univariate continuous/discrete regression models with log- 
concave densities, as discussed in Olsen (1978) and Pratt  (1981). To describe this 
class, first consider a continuous regression model y = x'fl0 + %~, where e is indepen- 
dent of x with p.d.f, g(e). In this case the (conditional on x) log-likelihood is 

- In a + In g[~r- l ( y  __ X'fl)] for (fl', ~)~ O = ~kx(O, o0). If In g(e) is concave, then this 
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log-likelihood need not be concave, but the likelihood In 7 + In g(VY - x'5) is concave 
in the one-to-one reparametrization 7 = a -1  and 6 = fl/a. Thus, the average log- 
likelihood is also concave in these parameters, so that the above generalization of 
Theorem 2.7 implies consistency of the MLE estimators of fl and ~r when the 
maximization takes place over O = ~kx(O, 00), if In g(e) is concave. There are many 
log-concave densities, including those proportional to exp( - Ix I s) for ~ ~> 1 (including 
the Gaussian), logistic, and the gamma and beta when the p.d.f, is bounded, so this 
concavity property is shared by many models of interest. 

The reparametrized log-likelihood is also concave when y is only partially 
observed. As shown by Pratt (1981), concavity of ln g(s) also implies concavity of 
l n [ G ( v ) - G ( w ) ]  in v and w, for the CDF G(v)=S~oog(e)de. 2° That is, the log- 
probability of an interval will be concave in the endpoints. Consequently, the 
log-likelihood for partial observability will be concave in the parameters when each 
of the endpoints is a linear function of the parameters. Thus, the MLE will be 
consistent without compactness in partially observed regression models with log- 
concave densities, which includes probit, logit, Tobit, and ordered probit with 
unknown censoring points. 

There are many other estimators with concave objective functions, where some 
version of Theorem 2.7 has been used to show consistency without compactness. 
These include the estimators in Andersen and Gill (1982), Newey and Powell (1987), 
and Honor6 (1992). 

It is also possible to relax compactness with some nonconcave objective functions. 
Indeed, the original Wald (1949) MLE consistency theorem allowed for noncom- 
pactness, and Huber (1967) has given similar results for other estimators. The basic 
idea is to bound the objective function above uniformly in parameters that are far 
enough away from the truth. For  example, consider the MLE. Suppose that there 
is a compact set c~ such that E [ s u p o ~ o ~ c l n f ( z l O ) ]  < E[lnf(z[Oo)-]. Then by the 
law of large numbers, with probability approaching one, sup0so~oQ,(0)~< n-1 x 

ZV=l s u p o ~ o ~ o l n f ( z d O ) <  n - lZ~=l ln f ( z [Oo) ,  and the maximum must lie in ~. 
Once the maximum is known to be in a compact set with probability approaching 
one, Theorem 2.1 applies to give consistency. 

Unfortunately, the Wald idea does not work in regression models, which are quite 
common in econometrics. The problem is that the likelihood depends on regression 
parameters 0 through linear combinations of the form x'O, so that for given x 
changing 0 along the null-space of x' does not change the likelihood. Some results 
that do allow for regressors are given in McDonald and Newey (1988), where it is 
shown how compactness on O can be dropped when the objective takes the form 
6 . ( 0 )  = - 1  . n ~ i  = a a(zl, xiO) and a(z, v) goes to - oo as v becomes unbounded. It would 
be useful to have other results that apply to regression models with nonconcave 
objective functions. 

2°Pratt (198 l) also showed that concavity ofln 9(e) is necessary as well as sufficient for In [G(v) - G(w)] 
to be concave over all v and w. 
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Compactness is essential for consistency of some extremum estimators. For  
example, consider the MLE in a model where z is a mixture of normals, having 
likelihood f(ztO) = p 'a-  l q~ [(1"-  I (Z  - -  U)] -[- (1 -- P)?- 1 ( / ) [ ] 2 - 1 (  Z - (Z)] for 0 = (/4 a, ~, 7)', 
some 0,< p < 1, and the standard normal p.d.f, q~(e)= (2z 0-1/2e-~2/2. An interpreta- 
tion of this model is that z is drawn from N(#, o 2) with probability p and from N(a, 72) 
with probability (1 - p ) .  The problem with noncompactness for the MLE in this 
model is that for certain # (and ~) values, the average log-likelihood becomes 
unbounded as ~ (or 7) goes to zero. Thus, for existence and consistency of the MLE 
it is necessary to bound a (and y) away from zero. To be specific, suppose that/~ = z~ 
for some i. Then f ( z i [O)=p. t r -14~(O)+(1-p)7-1(a[~- l ( z i - -~)]~  a,s a~O, 
and assuming that zj #z i  for all j # i, as occurs with probability one, f(zi[O)~ 
( 1 - -p )y - l~b [? - l ( z j - -~ ) ]> 0 .  Hence, 0,(0) =n-lx~"~i=llnf(zi[0) becomes un- 
bounded as a ~ 0 for # = zv In spite of this fact, if the parameter  set is assumed to 
be compact, so that a and 7 are bounded away from zero, then Theorem 2.5 gives 
consistency of the MLE. In particular, it is straightforward to show that 0 is 
identified, so that, by the information inequality, E[lnf(ztO)] has a unique 
maximum at 00. The problem here is that the convergence of the sample objective 
function is not uniform over small values of a. 

This example is extreme, but there are interesting econometric examples that have 
this feature. One of these is the disequilibrium model without observed regime of 
Fair and Jaffee (1972), where y = min{x'fio + aoe, W'6o + yoU}, e and u are standard 
normal and independent of each other and of x and w, and the regressors include 
constants. This model also has an unbounded average log-likelihood as a ~ 0 for 
a certain values of fl, but the MLE over any compact  set containing the truth will 
be consistent under the conditions of Theorem 2.5. 

Unfortunately, as a practical matter  one may not be sure about  lower bounds on 
variances, and even if one were sure, extraneous maxima can appear  at the lower 
bounds in small samples. An approach to this problem is to search among local 
maxima that satisfy the first-order conditions for the one that maximizes the 
likelihood. This approach may work in the normal mixture and disequilibrium 
models, but might not give a consistent estimator when the true value lies on the 
boundary (and the first-order conditions are not satisfied on the boundary). 

2.7. Stochastic equicontinuity and uniform convergence 

Stochastic equicontinuity is important  in recent developments in asymptotic distri- 
bution theory, as described in the chapter by Andrews in this handbook. This 
concept is also important  for uniform convergence, as can be illustrated by the 
nonstochastic case. Consider a sequence of continuous, nonstochastic functions 
{Q.(0) },~ 1. For nonrandom functions, equicontinuity means that the "gap" between 
Q,(0) and Q,(O) can be made small uniformly in n by making 0 ~ be close enough to 
0, i.e. a sequence of functions is equicontinuous if they are continuous uniformly in 
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n. More  precisely, equicontinuity holds if for each 0, e > 0 there exists 6 > 0 with 
IQ,,('O)-Q,,(O)[ < e  for all It0-011 < 6  and all n, 21 It is well known  that  if Q,,(O) 
converges to Qo(O) pointwise, i.e. for all 0e  6), and 6) is compact ,  then equicontinuity 
is a necessary and sufficient condit ion for uniform convergence [e.g. see Rudin 
(1976)]. The ideas behind it being a necessary and sufficient condit ion for uniform 
convergence is that  pointwise convergence is the same as uniform covergence on 
any finite grid of  points, and a finite grid of  points can approximately  cover a 
compact  set, so that uniform convergence means that  the functions cannot  vary too 
much  as 0 moves off the grid. 

To apply the same ideas to uniform convergence in probabil i ty it is necessary to 
define an "in probabil i ty" version of  equicontinuity.  The following version is for- 
mulated in Newey (1991a). 

Stochastic equicontinuity: For  every e, r />  0 there exists a sequence of r a n d o m  
variables z]. and a sample size no such that  for n/> no, Prob(]L].J > e )<  q and for 
each 0 there is an open set Jff containing 0 with 

supg~x IQn(O)-Q.(O)] ~ A., n >~ no. 

Here the function A. acts like a " r a ndom  epsilon", bounding  the effect of  changing 
0 on (~.(0). Consequently,  similar reasoning to the nonstochast ic  case can be used 
to show that  stochastic equicontinuity is an essential condit ion for uniform conver- 
gence, as stated in the following result: 

Lemma 2.8 

Suppose 0 is compact  and Qo(O)is continuous.  Then sup0~olQ.(O)-  Oo(O)f P--~O 
if and only if Qn(O) P-~ Qo(O) for all 0¢ O a n d  Q.(O) is stochastically equicontinuous.  

The proof  of  this result is given in Newey (1991a). It is also possible to state an 
almost  sure convergence version of  this result, a l though this does not  seem to 
produce  the variety of  condit ions for uniform convergence that stochastic equi- 
continui ty does; see Andrews (1992). 

One useful sufficient condit ion for uniform convergence that is motivated by the 
form of the stochastic equicontinuity proper ty  is a global, "in probabil i ty" Lipschitz 
condition, as in the hypotheses of  the following result. Let Op(1) denote a sequence 
of r andom variables that is bounded  in probability. 22 

21 One can allow for discontinuity in the functions by allowing the difference to be less than e, only for 
n > r~, where ~ depends on e, but not on 0. This modification is closer to the stochastic equicontinuity 
condition given here, which does allow for discontinuity. 

22 y, is bounded in probability if for every e > 0 there exists ~ and q such that Prob([ Y,[ > r/) < e for 
n > / ~ .  



2138 W.K. Newey and D. McFadden 

Lemma 2.9 

If O is compact, Qo(O) is continuous, Q,(O)~Qo(O) for all 0eO,  and there is 
c< > 0 and/~.  = O p ( l )  such that for all 0 ~, Oe O, [ (~.(0-) - (~.(0) 1 ~</~. I] O -  0 IF ~, then 
sup0~o I (~,(0) -- Q0(0)[ ~ 0. 

Proof 

By Lemma 2.8 it suffices to show stochastic equicontinuity. Pick e, t />  0. By 
B, = Or(1 ) there is M such that Prob(]/~,[ > M ) <  ~ for all n large enough. Let 
A. = B.e/M and JV = [0:~ O -  0 II ~ ~< e/M}. Then Prob(I z]. ] > e) = Prob(I B. I > M) < ~/ 
and for all 0", 0eJV', ]Q,(0) - (~,(0) l ~< B, II 0 - 0 II ~ ~</],- Q.E.D. 

This result is useful in formulating the uniform law of large numbers given in 
Wooldridge's chapter in this volume. It is also useful when the objective function 
3,(0) is not a simple function of sample averages (i.e. where uniform laws of large 
numbers do not apply). Further examples and discussion are given in Newey 
(1991a). 

2.8. Least absolute deviations examples 

Estimators that minimize a sum of absolute deviations provide interesting examples. 
The objective function that these estimators minimize is not differentiable, so that 
weak regularity conditions are needed for verifying consistency and asymptotic 
normality. Also, these estimators have certain robustness properties that make them 
interesting in their own right. In linear models the least absolute deviations estimator 
is known to be more asymptotically more efficient than least squares for thick-tailed 
distributions. In the binary choice and censored regression models the least absolute 
deviations estimator is consistent without any functional form assumptions on the 
distribution of the disturbance. The linear model has been much discussed in the 
statistics and economics literature [e.g. see Bloomfeld and Steiger (1983)], so it 
seems more interesting to consider here other cases. To this end two examples are 
given: maximum score, which applies to the binary choice model, and censored least 
absolute deviations. 

2.8.1. Maximum score 

The maximum score estimator of Manski (1975) is an interesting example because 
it has a noncontinuous objective function, where the weak regularity conditions 
of Lemma 2.4 are essential, and because it is a distribution-free estimator for binary 
choice. Maximum score is used to estimate 0 o in the model y = l(x'0 o + e > 0), where 
l ( d )  denotes the indicator for the event d (equal to one if d occurs and zero 
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otherwise), and e is a disturbance term with a condit ional  median (given x) of  zero. 23 
The estimator solves eq. (1.1) for 

(2,(0) = - n  -1 k lY i -  l(x'i0 > 0)1. 
i = 1  

A scale normal izat ion is necessary (as usual for binary choice), and a convenient  
one here is to restrict all elements of  O to satisfy l/0 [4 = 1. 

To show consistency of the max imum score estimator, one can use condit ions 
for identification and Lemma 2.4 to directly verify all the hypotheses of  Theorem 
2.1. By the law of large numbers,  (~,(0) will have probabil i ty limit Qo(0)= 

- E[Iy  - l(x'O > 0)l]. To show that this limiting objective has a unique max imum 
at 00, one can use the well known  result that  for any r andom variable Y, the expected 
absolute deviation E[I Y - a(x) l] is strictly minimized at any median of the condi- 
tional distribution of Y given x. For  a binary variable such as y, the median is unique 
w h e n P r o b ( y  l l x ) ~  1 = 3, equal to one when the condit ional  probabil i ty is more  than 

1 Assume that 0 is the unique condit ional  1 and equal to zero when it is less than 3. 
1 if median of e given x and that  Prob(x '0  o = 0) = 0. Then Prob(y  = 1 Ix) > ( < ) 

1 and only if x'O o > ( < ) 0, so Prob(y  = l fx) = ~ occurs with probabil i ty zero, and 
hence l(x'00 > 0) is the unique median of y given x. Thus, it suffices to show that  
l(x'O > 0)4= l(x'00 > 0) if 0 ¢ 0o. For  this purpose,  suppose that there are corre- 

- -  t i sponding parti t ions 0 = (01,02)' and x - (x l ,  x z) such that  x26 = 0 only if6 = 0; also 
assume that the condit ional  distr ibution of  x I given x2 is cont inuous with a p.d.f. 
that  is positive on N, and the coefficient 0ol o fx  I is nonzero.  Under  these conditions, 
if0 ~ 0 o then l(x'O > 0) ~ l(x'0 o > 0), the idea being that  the cont inuous distribution 
o f x  I means that  it is allowed that  there is a region o f x  1 values where the sign ofx 'O 
is different. Also, under this condition, x'O o = 0 with zero probability,  so y has a 
unique condit ional  median of l(x'0 o > 0) that  differs f rom l(x'O > 0) when 0 -¢ 0 o, so 
that Qo(O) has a unique max imum at 0o. 

For  uniform convergence it is enough to assume that  x'O is cont inuously  distri- 
buted for each 0. For  example, if the coefficient of x 1 is nonzero  for all 0~ O then 
this condition will hold. Then, l(x'O > 0) will be continuous at each 0 with probability 
one, and by y and l(x'O > 0) bounded,  the dominance  condit ion will be satisfied, so 
the conclusion of Lemma 2.4 gives continuity of Qo(O) and uniform convergence of 
(~,(0) to Qo(O). The following result summarizes these conditions: 

Theorem 2.10 

If y = l(x'00 + e > 0) and (i) the condit ional  distr ibution of e given x has a unique 
median at e = 0; (ii) there are corresponding parti t ions x = (Xl, x'2)' and 0 = (01,02)' 

2 3 A median of the distribution of a random variable Y is the set of values m sucl~ that Pro b( Y/> m) ~> ½ 
and Prob(y ~< m) ~ ½. 
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such that Prob(x26 -¢ 0) > 0 for 6 ~ 0 and the conditional distribution of x 1 given 
x 2 is continuous with support N; and (iii) x'O is continuously distributed for all 
0 e O =  {0:lJ0lr = 1}; then 0P--*00 . 

2.8.2. Censored least absolute deviations 

Censored least absolute deviations is used to estimate 0 o in the model y =  
max{0, x'Oo + e} where e has a unique conditional median at zero. It is obtained by 
solving eq. (1.1) for (~,(0) = - n ~, 1Y~'~ 1 (I Yi - max {0, x'~O} [ - IT, - max {0, x'iO o}l) = 
(~,(0) - (~,(0o). Consistency of 0 can be shown by using Lemma 2.4 to verify the 
conditions of Theorem 2.1. The function lye-max{0,  x'iO}l - lYi - max{0, x~Oo} I is 
continuous in 0 by inspection, and by the triangle inequality its absolute value is 
bounded above by [max{0,x'~0}[ + Imax{0,X~0o}l ~< ][ xi l[ ( l[ 0 [[ + I[0o j[), so that if 
g[ l lx l l ]  < oo the dominance condition is satisfied. Then by the conclusion of 
Lemma 2.4, (~,(0) converges uniformly in probability to Qo(O) = g [ l y  - max {0, x ' O } l -  
IT-max{0,X'0o}[].  Thus, for the normalized objective function, uniform conver- 
gence does not require any moments of y to exist, as promised in Section 2.1. 

Identification will follow from the fact that the conditional median minimizes the 
expected absolute deviation. Suppose that P(x'Oo > 0) and P(x '6  4: O lx'O o > O) > 0 
if 6 4 =0. 24 By e having a unique conditional median at zero, y has a unique 
conditional median at max{0, x'Oo}. Therefore, to show identification it suffices to 
show that max{0, x'O} =/= max{0, x'Oo} if 0 ~ 0 o. There are two cases to consider. In 
case one, l(x'O > O) ¢ l(x'Oo > 0), implying max{0, x'Oo} ¢ max{0, x'O}. In case two, 
l(x'O > 0) = l(x'0o > 0), so that max {0, x'O} - max{0, x'Oo} = l(x'0o > O)x' (O-  0o) ¢ 0 
by the identifying assumption. Thus, Qo(O) has a unique maximum over all of R q at 
0 o. Summarizing these conditions leads to the following result: 

Theorem 2.1I 

If (i) y = max{0,X'0o + e}, the conditional distribution of e given x has a unique 
median at e = 0; (ii) Prob(x'0o > 0) > 0, Prob(x'6 va 0Ix'0 o > 0) > 0; (iii) E[ IP x Jl ] < oo; 
and (iv) O is any compact set containing 0o, then 0 ~ 0o. 

As previously promised, this result shows that no assumption on tile existence of 
moments of y is needed for consistency of censored least absolute deviations. Also, 
it shows that in spite of the first-order conditions being identically zero over all 0 
where x'iO < 0 for all the observations, the global maximum of the least absolute 
deviations estimator, over any compact set containing the true parameter, will be 
consistent. It is not known whether the compactness restriction can be relaxed for 
this estimator; the objective function is not concave, and it is not known whether 
some other approach can be used to get rid of compactness. 

241t suffices for the second condition that E[l(x'O o > 0)xx'] is nonsingular. 
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3. Asymptotic normality 

Before giving precise conditions for asymptotic normality, it is helpful to sketch the 
main ideas. The key idea is that in large samples estimators are approximately equal 
to linear combinations of sample averages, so that the central limit theorem gives 
asymptotic normality. This idea can be illustrated by describing the approximation 
for the MLE. When the log-likelihood is differentiable and 0is in the interior of the 
parameter set O, the first-order condition 0 = n- l~-~i=n 1 W0 In f(z~l O) will be satisfied. 
Assuming twice continuous differentiability of the log-likelihood, the mean-value 
theorem applied to each element of the right-hand side of this first-order condition 
gives 

0 = -  Voln f(z~[Oo)+ Vooln f(z~lg) ( 0 - 0 o ) ,  
n i = l  i=1 

(3.1) 

where Ois a mean value on the line joining 0 and 0 o and V00 denotes the Hessian 
matrix of second derivatives. 25 Let J = E[Vo In f ( z i  0o) {V0 In f (z[  0o) }'] be the infor- 
mation matrix and H = E[Voo In f(z[Oo)] the expected Hessian. Multiplying through 
by x/n and solving for ~ ( 0 -  00) gives 

x/n(0- 0o) 

= _ Voolnf(zi[ff)  - -  Volnf(zi[Oo) , - -H-1N(O,J ) .  
[ ~ i = 1  IL n i = 1 (Slutzky 

I I theorem) 

p I (Hessian Conv.) d ](CLT) (3.2) 
(Inverse Cont.) 

H-  l N(0, J) 

By the well known zero-mean property of the score V01n f(zlOo) and the central 
limit theorem, the second term will converge in distribution to N(0, J). Also, since 
ffis between 0 and 0 o, it will be consistent if 0 is, so that by a law of large numbers 
that is uniform in 0 converging to 0, the Hessian term converges in probability to 
H. Then the inverse Hessian converges in probability to H-1 by continuity of the 
inverse at a nonsingular matrix. It then follows from the Slutzky theorem that 
x/~( ~ _ Oo ) d N(O, H ~ 1 j H -  1).26 Furthermore, by the information matrix equality 

25The mean-value theorem only applies to individual elements of the partial derivatives, so that 0- 
actually differs from element to element of the vector equation (3.1). Measurability of these mean values 
holds because they minimize the absolute value of the remainder term, setting it equal to zero, and thus 
are extremum estimators; see Jennrich (1969). 

P d 26The Slutzky theorem is Y. ~ Y o  and Z.  - - - ~ e ~ Z . Y  n ---~cY o. 
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H = - J ,  the asymptotic variance will have the usual inverse information matrix 
f o r m J  a. 

This expansion shows that the maximum likelihood estimator is approximately 
equal to a linear combination of the average score in large samples, so that asymptotic 
normality follows by the central limit theorem applied to the score. This result is 
the prototype for many other asymptotic normality results. It has several components, 
including a first-order condition that is expanded around the truth, convergence of 
an inverse Hessian, and a score that follows the central limit theorem. Each of these 
components is important  to the result. The first-order condition is a consequence 
of the estimator being in the interior of the parameter  space. 27 If the estimator 
remains on the boundary asymptotically, then it may not be asymptotically normal, 
as further discussed below. Also, if the inverse Hessian does not converge to a 
constant or the average score does not satisfy a central limit theorem, then the 
estimator may not be asymptotically normal. An example like this is least squares 
estimation of an autoregressive model with a unit root, as further discussed in 
Chapter 2. 

One condition that is not essential to asymptotic normality is the information 
matrix equality. If the distribution is misspecified [i.e. is not f(zlOo) ] then the MLE 
may still be consistent and asymptotically normal. For example, for certain expo- 
nential family densities, such as the normal, conditional mean parameters will be 
consistently estimated even though the likelihood is misspecified; e.g. see Gourieroux 
et al. (1984). However, the distribution misspecification will result in a more compli- 
cated form H-aJH-1 for the asymptotic variance. This more complicated form 
must be allowed for to construct a consistent asymptotic variance estimator under 
misspecification. 

As described above, asymptotic normality results from convergence in probability 
of the Hessian, convergence in distribution of the average score, and the Slutzky 
theorem. There is another way to describe the asymptotic normality results that is 
often used. Consider an estimator 0, and suppose that there is a function ~(z) such 
that 

x/-n(O- 0o) = ~ tp(z,)/x/n + Op(1), E[~,(z)] = 0, E[O(z)~(z)'] exists, (3.3) 
i = 1  

where op(1) deno t~  a random vector that converges in probability to zero. Asymp- 
totic normality of 0 then results from the central limit theorem applied to Z~= 1 O(zi)/ 
x/n, with asymptotic variance given by the variance of O(z). An estimator satisfying 
this equation is referred to as asymptotically linear. The function O(z) is referred to 
as the influence function, motivated by the fact that it gives the effect of a single 

27 It is sufficient that the estimator be in the "relative interior" of tg, allowing for equality restrictions 
to be imposed on 0, such as 0 = z(~) for smooth z(~) and the true 7 being in an open ball. The first-order 
condition does rule out inequality restrictions that are asymptotically binding. 
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observation on the estimator, up to the op(1) remainder term. This description is 
useful because all the information about the asymptotic variance is summarized in 
the influence function. Also, the influence function is important in determining the 
robustness properties of the estimator; e.g. see Huber (1964). 

The MLE is an example of an asymptotically linear estimator, with influence 
function O(z)= - H - 1 V  0 In f ( z l  0o). In this example the remainder term is, for the 
mean value 0, - - ~ " [ (n Zi = i V00 In f(z,[ 0))- ~ - H -  1] n-  1/2~n_ 1go In f ( z  i [0o), which 
converges in probability to zero because the inverse Hessian converges in probability 

to H and the x ~  times the average score converges in distribution. Each of NLS 
and G M M  is also asymptotically linear, with influence functions that will be 
described below. In general the CMD estimator need not be asymptotically linear, 
because its asymptotic properties depend only on the reduced form estimator 7t. 
However, if the reduced form estimator ff is asymptotically linear the CMD will 
also be. 

The idea of approximating an estimator by a sample average and applying the 
central limit theorem can be used to state rigorous asymptotic normality results for 
extremum estimators. In Section 3.1 precise results are given for cases where the 
objective function is "sufficiently smooth", allowing a Taylor expansion like that of 
eq. (3.1). Asymptotic normality for nonsmooth objective functions is discussed in 
Section 7. 

3.I. The basic results 

For asymptotic normality, two basic results are useful, one for an extremum 
estimator and one for a minimum distance estimator. The relationship between 
these results will be discussed below. The first theorem is for an extremum estimator. 

Theorem 3.1 

Suppose that 0 satisfies eq. (1.1), 0P-~ 0o, and (i) 0o~interior(O); (ii) (~,(0) is twice 

continuously differentiable in a neighborhood ~4/" of 0o; (iii) xSnnVo (~,(00) d_~ N(0, 27); 
(iv) there is H(O) that is continuous at 0 o and sup0~y [1V00(~,(0)- H(O)[I---~ 0; (v) 
H = H(Oo) is nonsingular. Then x ~ ( 0  - 0o) ~ N(0, H -  127H- 1). 

Proof 

A Sketch of a proof is given here, with full details described in Section 3.5. Condi- 
tions (i)-(iii) imply that VoQ,(O) = 0 with probability approaching one. Expanding 

around 0 o and solving for ~ n ( 0 -  0o) = - / t ( 0 ) - 1  ~Vo~n(Oo),  where/4(0) = V00Q,(0) 

and Ois a mean value, located between 0and 0o. By 0 P-£-, 0o_and (iv), with probability 
approaching one, [[ _H(0-) -- H [[ ~< [1/~(0-) -- H(0)][ + 1[ H(O) - H 1[ ~< suP0 ~ o[[ H(0) -- 
H(O) I[ + [1H(O) - H [[ ~ 0. Then by continuity of matrix inversion, - / 4 (0 ) -  1 P_~ 
- H -  1. The conclusion then follows by the Slutzky theorem. Q.E.D. 
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The asymptotic variance matrix in the conclusion of this result has a complicated 
form, being equal to the product H 127H- 1. In the case of maximum likelihood 
this form simplifies to J x, the inverse of the information matrix, because of the 
information matrix equality. An analogous simplification occurs for some other 
estimators, such as NLS where Var(yIx) is constant (i.e. under homoskedasticity). 
As further discussed in Section 5, a simplified asymptotic variance matrix is a feature 
of an efficient estimator in some class. 

The true parameter being interior to the parameter set, condition (i), is essential 
to asymptotic normality. If O imposes inequality restrictions on 0 that are asympto- 
tically binding, then the estimator may not be asymptotically normal. For example, 
consider estimation of the mean of a normal distribution that is constrained to be 
nonnegative, i.e. f(zlO) = (2gO "2) 1 exp [ -- (z - / . t ) 2 / 2 o - 2 ] ,  0 - -  (p ,  (3"2), and O = [0, Go) x 
(0, or). It is straightforward to check that the MLE of # is /~=~ ,~>0 ,  /~=0 

otherwise. If#o = 0, violating condition (ii), then Prob(/) = 0) = ½ and x/n/~ is N(0, 02) 
conditional on/~ > 0. Therefore, for every n (and hence also asymptotically), the 

distribution of x/n(/~ - #o) is a mixture of a spike at zero with probability ½ and the 
positive half normal distribution. Thus, the conclusion of Theorem 3.1 is not true. 
This example illustrates that asymptotic normality can fail when the maximum 
occurs on the boundary. The general theory for the boundary case is quite compli- 
cated, and an account will not be given in this chapter. 

Condition (ii), on twice differentiability of Q,(O), can be considerably weakened 
without affecting the result. In particular, for G M M  and CMD, asymptotic normality 
can easily be shown when the moment functions only have first derivatives. With 
considerably more work, it is possible to obtain asymptotic normality when (~,(0) 
is not even once differentiable, as discussed in Section 7. 

Condition (iii) is analogous to asymptotic normality of the scores. It will often 
follow from a central limit theorem for the sample averages that make up V0(~,(0o). 

Condition (iv) is uniform convergence of the Hessian over a neighborhood of the 
true parameter and continuity of the limiting function. This same type of condition 
(on the objective function) is important for consistency of the estimator, and was 
discussed in Section 2. Consequently, the results of Section 2 can be applied to give 
primitive hypotheses for condition (iv). In particular, when the Hessian is a sample 
average, or depends on sample averages, Lemma 2.4 can be applied. If the average 
is continuous in the parameters, as will typically be implied by condition (iv), and 
a dominance condition is satisfied, then the conclusion of Lemma 2.4 will give 
uniform convergence. Using Lemma 2.4 in this way will be illustrated for MLE and 
GMM. 

Condition (v) can be interpreted as a strict local identification condition, because 
H = VooQo(Oo) (under regularity conditions that allow interchange of the limiting 
and differentiation operations.) Thus, nonsingularity of H is the sufficient (second- 
order) condition for there to be a unique local maximum at 00. Furthermore, if 
VooQo(O) is "regular", in the sense of Rothenberg (1971) that it has constant rank in 
a neighborhood of 0 o, then nonsingularity of H follows from Qo(O) having a unique 
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maximum at 0 o. A local identification condition in these cases is that H is nonsingular. 
As stated above, asymptotic normality of G M M  and CMD can be shown under 

once differentiability, rather than twice differentiability. The following asymptotic 
normality result for general minimum distance estimators is useful for this purpose. 

Theorem 3.2 

Suppose that 0 satisfies eq. (1.1) for Q,(0)= -0,(0) 'W0,(0 ) where W ~ W, W is 

positive semi-definite, 0 P--~0o, and (i) 0o~interior(O); (ii) 0,(0) is continuously 
. . . . . . .  d 

dlfferentlable in a neighborhood JV" of 0o; (111) ,,/n0.(0o) -r-. N(0, ,(2); (iv) there is G(O) 
that is continuous at 0o and suP0~ ]1V00,(0) - G(O)II --~'"0; (v) for G = G(Oo), G'WG 
is nonsingular. Then , , / n ( 0 -  0o) ~ N[0, (G'WG)- 1G'W.(2 WG(G'WG)- 1]. 

Proof 

The argument is similar to the proof of Theorem 3.1, By (i) and (ii), with probability 
approaching one the first-order conditions QJ(O)'I2VO,(O) = 0 are satisfied, for G(0) = 

V00,(0). Expanding 0,(0) around 0o and solving gives x / ~ ( 0 - 0 o ) = -  [G(0)' x 

where Ois a mean value. By (iv) and similar reasoning as 
for Theorem 3.1, (~(0) ~ G and (~(O) ~ G. Then by (v), - Ed(0)' ~d(g)]- ld(0)'~ P--+ 
-(G'WG)-1G'W, so the conclusion follows by (iii) and the Slutzky theorem. 

Q.E.D. 

When W = -(2 - 1, the asymptotic variance of a minimum distance estimator simplifies 
to (G'~2 -1G)-1. As is discussed in Section 5, the value W = .(2 -a corresponds to an 
efficient weighting matrix, so as for the MLE the simpler asymptotic variance matrix 
is associated with an efficient estimator. 

Conditions (i)-(v) of Theorem 3.2 are analogous to the corresponding conditions 
of Theorem 3.1, and most of the discussion given there also applies in the minimum 
distance case. In particular, the differentiability condition for 0,(0) can be weakened, 
as discussed in Section 7. 

For analyzing asymptotic normality, extremum estimators can be thought of as 
a special case of minimum distance estimators, with V0(~,(0) = 0,(0) and 17v" = I = W. 
The first-order conditions for extremum estimators imply that A , ^ ^  g,(O) Wg,(O)= 
VoQ,(0)'V0(~,(0) has a minimum (of zero) at 0 = 0. Then the G and ~2 of Theorem 3.2 
are the H and 2; of Theorem 3.1, respectively, and the asymptotic variance of the 
extremum estimator is that of the minimum distance estimator, with (G'WG)-1 x 
G'W~WG(G'WG)- 1 = (H'H)- 1H'~,H(H'H)- 1 = H -  1 Z H -  1. Thus, minimum dis- 
tance estimation provides a general framework for analyzing asymptotic normality, 
although, as previously discussed, it is better to work directly with the maximum, 
rather than the first-order conditions, when analyzing consistency. 2s 

2SThis generality suggests that Theorem 3.1 could be formulated as a special case of Theorem 3.2. 
The results are not organized in this way because it seems easier to apply Theorem 3.1 directly to 
particular extremum estimators. 
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3.2. Asymptotic normality for MLE 

The conditions for asymptotic normality of an extremum estimator can be specialized 
to give a result for MLE. 

Theorem 3.3 

Suppose that Za,..., z, are i.i.d., the hypotheses of Theorem 2.5 are satisfied and (i) 
0oeinterior(O); (ii) f(z[ O) is twice continuously differentiable and f(zl  0)>  0 in a 
neighborhood ~A/° of 0o; (iii) S suP0~w II Vof(zlO) II dz < o% S suP0~x II Voof(z[O) II dz < oo; 
(iv) J = E EV0 In f(zlOo) {V0 In f(z[Oo)}'] exists and is nonsingular; (v) E [ suP0~  II g00 × 

lnf(zlO) l[] < oo. Then x / n ( 0 -  0o) d N ( o , J - ~ ) .  

Proof 

The ^ p proof proceeds by verifying the hypotheses of Theorem 3.1. By Theorem 2.5, 
0--~ 0 0. Important  intermediate results are that the score s(z)= Vo ln f(zlOo) has 
mean zero and the information matrix equality J = - E [ V o o l n f ( z l O o )  ]. These 
results follow by differentiating the identity ~.f(zl O)dz twice, and interchanging the 
order of differentiation and integration, as allowed by (iii) and Lemma 3.6 in Section 
3.5. Then conditions 3.1(i), (ii) hold by 3.3(i), (ii). Also, 3.1(iii) holds, with 22 = J, 
by E[s(z)] = 0, existence of J, and the Lindberg Levy central limit theorem. To 
show 3.1(iv) with H = - J ,  let O be a compact set contained in ~ and contain- 
ing 0 o in its interior, so that the hypotheses of Lemma 2.4 are satisfied for a(z, O) = 
V00 In f(zlO) by (ii) and (v). Condition 3. l(v) then follows by nonsingularity of J. Now 

~fn(O- 0o) ~ N(O, H -  1JH- 1) = N(O, J -  1) follows by the conclusion of Theorem 3.1 
and H = - J. Q.E.D. 

The hypotheses of Theorem 2.5 are only used to make sure that 0 ~ 0  o, so that 
they can be replaced by any other conditions that imply consistency. For example, 
the conditions that 0 o is identified, in f(zlO) is concave in 0, and E[-lln f(zbO)]] < oo 
for all 0 can be used as replacements for Theorem 2.5, because Theorem 2.7 then 
gives 0 P-~0o. More generally, the MLE will be asymptotically normal if it is 
consistent and the other conditions (i)-(v) of Theorem 3.3 are satisfied. 

It is straightforward to derive a corresponding result for nonlinear least squares, 
by using Lemma 2.4, the law of large numbers, and the Lindberg-Levy central limit 
theorem to provide primitive conditions for Theorem 3.1. The statement of a 
theorem is left as an exercise for the interested reader. The resulting asymptotic 
variance for NLS will be H -  1-rH- 1, for E[ylx] = h(x, 0o), ho(x, O) = Voh(x, 0), H = 
- E[ho(x, Oo)ho(x, 0o)' ] and 22 = E[{y - h(x, Oo)}2ho(x, Oo)ho(x, 0o)']. The variance 
matrix simplifies to a2H - 1 when E[{y -- h(x, 0o)} 2 Ix] is a constant a 2, a well known 
efficiency condition for NLS. 
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As previously stated, M L E  and N L S  will be asymptot ica l ly  linear, with the M L E  
influence function given by J - I V  0 In f(zlOo). The N L S  influence function will have 
a similar form, 

O(z) = {EI-h0(x, Oo)ho(x, 0o)'J } -  lho(x, 0 o ) [ y  - h(x, 0o)3, (3.4) 

as can be shown by expanding the first-order condit ions for NLS.  
The previous examples  provide useful i l lustrations of how the regulari ty condi- 

tions can be verified. 

Example 1.1 continued 

In the Cauchy  location and scale case, f ( z l O ) = c r - l g [ a - l ( z - # ) ]  for g (e )=  
1/[n(1 + e2)]. To  show asymptot ic  normali ty  of the MLE,  the conditions of Theorem 
3.3 can be verified. The hypotheses  of  Theorem 2.5 were shown in Section 2. Fo r  
the pa ramete r  set previously specified for this example,  condi t ion (i) requires that  
#o and ao are interior points  of the al lowed intervals. Condi t ion  (ii) holds by 
inspection. It  is s t ra ightforward to verify the dominance  condit ions for (iii) and (v). 
For  example,  (v) follows by not ing that  Voolnf(z[O) is bounded,  uniformly in 
bounded  # and a, and a bounded  away from zero. To  show condi t ion (iv), consider 
0~ = (0~1, 0~2)* 5; £ 0. Note  that  ao(1 + zZ)[o~tVo In f(z[Oo) ] = ~12z + ccz(1 + z 2) + ccz2z 2 = 
~¢2 + (2~1)z + (3~2) z2 is a po lynomia l  and hence is nonzero  on an interval. Therefore,  
E[{c(Volnf(z[Oo)} 2] = c(Jc¢ > 0. Since this conclusion is true for any c¢ ¢ 0, J must  
be nonsingular.  

Example 1.2 continued 

Existence and nonsingular i ty  of E[xx']  are sufficient for asympto t ic  normal i ty  of 
the probi t  MLE.  Consis tency of 0 was shown in Section 2.6, so that  only condit ions 
(i)-(v) of  Theorem 3.3 are needed (as noted following Theo rem 3.3). Condi t ion  (i) 
holds because O = ~q is an open set. Condi t ion  (ii) holds by inspection of f (z l  0~ = 
yCl)(x'O) + (1 - y ) q ~ ( - x ' O ) .  Fo r  condit ion (iii), it is well known that  qS(v) and qS~(v) 
are uniformly bounded,  implying Vof(zd O) = ( 1 - 2y)$(x'O)x and Voof(z[ 0) = (1 - 2y) x 
(o~(x'O)xx' are bounded  by C(1 + PI x ]j 2) for some constant  C. Also, integrat ion over  
dz is the sum over  y and the expecta t ion over  x {i.e. ~a(y, x)dz  = E[a(0, x) + a(1, x)] }, 
so that ~(1 + HxHe)dz=2+2E[[ IxH  2] < oe. For  (iv), it can be shown that  J =  
E[2(X'Oo)2 ( -x 'Oo)xX'  ], for 200 = O(v)/CI)(v). Existence of J follows by 2 (v )2 ( -  v) 
bounded,  and nonsingular i ty  by 2(v)2( - v) bounded  away from zero on any open 
interval. 29 Condition (v) follows from V00 In f(z[Oo) = [2~(x'Oo)y + ,~v( - X'0o)(1 - y)]xx'  

29 It can be shown that 2(v)2(- v) is bounded using l'H6pital's rule. Also, for any g > 0, J >/-E[ 1([ x'Ool<~ 
v32(x'Oo))~(-x'Oo)xx' ] >~ CE[l(Ix'Ool <~ g)xx'] in the positive semi-definite sense, the last term is positive 
definite for large enough g by nonsingularity of E[xx']. 
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and boundedness of 2v(v ). This example illustrates how conditions on existence 
of moments may be useful regularity conditions for consistency and asymptotic 
normality of an MLE, and how detailed work may be needed to check the 
conditions. 

3.3. Asymptotic normality for GMM 

The conditions on asymptotic normality of minimum distance estimators can be 
specialized to give a result for GMM. 

Theorem 3,4 

Suppose that the hypotheses of Theorem 2.6 are satisfied, I~ ~ W, and (i) 0oeinterior 
of O; (ii) 9(z, O) is continuously differentiable in a neighborhood ~° of 0o, with 
probability approaching one; (iii) E[g(z, Oo)] = 0 and E[ JLg(z, 0o)H 2] is finite; 
(iv) E[sup0~w 11Vog( z, 0)II ] < oe; (v) G'WG is nonsingular for G = E[Vog(Z, 0o)]. Then 
for .Q = E[g(z, Oo)9(z, 0o)'], x/n(0-- 0o) d_~ N[0, (G'WG)G'W~2WG(G'WG) 1]. 

Proof 

The proof will be sketched, although a complete proof like that of Theorem 3.1 
given in Section 3.5 could be given. By (i), (ii), and (iii), the first-order condition 
2G,(0)' WO,(O) = 0 is satisfied with probability approaching one, for (~n(0) = V00,(0). 

Expanding ~,(0) around 0 o, multiplying through by x/n, and solving gives 

, f , ( 0 -  0o) = - [G.(0) wG.(o)] G.(o) w , / - ~ . ( 0 o ) .  (3.5) 

where 0 is the mean value. By (iv), (~,(0")L G and G , ( 0 ) L  G, so that by (v), 
[G,(0)'WG,(0)] I(~,(0)'W L(G'WG)- IG 'W.  The conclusion then follows by the 
Slutzky theorem. Q.E.D. 

The complicated asymptotic variance formula simplifies to (G'-Q- 1G)- 1 when W = 
.Q-1. As shown in Hansen (1982) and further discussed in Section 5, this value for 
W is optimal in the sense that it minimizes the asymptotic variance matrix of the 
GMM estimator. 

The hypotheses of Theorem 2.6 are only used to make sure that 0 P-~ 0o, so that 
they can be replaced by any other conditions that imply consistency. For example, 
the conditions that 0 o is identified, 9(z, O) is linear in 0, and E[ I[ 9(z, O)[i ] < oe for all 
0 can be used as replacements for Theorem 2.6, because Theorem 2.7 then gives 
0P--~0 o. More generally, a G M M  estimator will be asymptotically normal if it is 
consistent and the other conditions (i)-(v) of Theorem 3.4 are satisfied. 
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It is straightforward to derive a corresponding result for classical minimum 

distance, under the conditions that 0 is consistent, ,,/nl-r~ - h(0o) ] ~ N(0, g2) for 
some fl, h(O) is Continuously differentiable in a neighborhood of 0o, and G'WG is 
nonsingular for G = Voh(Oo). The statement of a theorem is left as an exercise for the 
interested reader. The resulting asymptotic variance for CMD will have the same 
form as given in the conclusion of Theorem 3.4. 

By expanding the G M M  first-order conditions, as in eq. (3.5), it is straightforward 
to show that G M M  is asymptotically linear with influence function 

O(z) = - (G 'WG)-  ~G'Wg(z, 0o). (3.6) 

In general CMD need not be asymptotically linear, but will be if the reduced form 
estimator 7t is asymptotically linear. Expanding the first-order conditions for 0 

around the truth gives x f n ( 0 -  0o) = - ((~'WG)-1G' l'i/x/-n(~t - no), where (~ = Voh(O ), 

= Voh(O), and 0 is the mean value. Then , , / n ( ~ -  no) converging in distribution 
and (G'ITV~) - ~ d'ITV P-~ (G' W G ) -  Z G' W implies that x/-n(O- 0o) = - (G' W G ) -  IG' x 

Wxfn(Tt - no) + %(1). Therefore, if r~ is asymptotically linear with influence function 
O~(z), the CMD estimator will also be asymptotically linear with influence function 

~b(z) = - (G' W G ) -  1G' Wt~(z).  (3.7) 

The Hansen-Singleton example provides a useful illustration of how the conditions 
of Theorem 3.4 can be verified. 

Example 1.3 continued 

It was shown in Section 2 that sufficient conditions for consistency are that 
E[x(~wy ~ -  1)] = 0  have a unique solution at 0o~O = [/~,/?,]x[Tt,7,], and that 
E[/I x II] < oo and E[ II x II J wI(IyJ 7, + l yl~.)] < oe. To obtain asymptotic normality, 
impose the additional conditions that 0oEinterior(O), 7~<0, E[IIxII 2] < o% 
El-I[ x ]121w iZy2~O] < o% and El-x(wy ~°, w.ln(y)y~°)] has rank 2. Then condition (i) of 
Theorem 3.4 is satisfied by assumption. Condition (ii) is also satisfied, with Vog(Z, O) = 
x(wy ~, w.ln(y)y~). Condition (iii) is satisfied by the additional, second-moment re- 
strictions, and by the G M M  identification hypothesis. 

To check condition (iv), note that [ln(y)l is bounded above by C(lyl -~ + [yl~) for 
any ~ > 0 and constant C big enough. Let .At be a neighborhood of 0o such that 
7~ + ~ < ~ < 7~ - e for all 0~JV. Then suP0~x II Voo(Z, O)I] ~ C II x IIIw] [1 + In(y)] x 
supylyl '~< CllxfIlwl(1 + ly l -~+ lyl~)supxlyl'~< IlxPllwl(lyV"+ lyV"), so that 
condition (iv) follows by the previously assumed moment condition. Finally, condi- 
tion (v) holds by the previous rank condition and W = (El-xx']) -~ nonsingular. 
Thus, under the assumptions imposed above, the nonlinear two-stage least squares 
estimator will be consistent and asymptotically normal, with asymptotic variance 
as given in the conclusion of Theorem 3.4. 
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3.4. One-step theorems 

A result that is useful, particularly for efficient estimation, pertains to the properties 
of estimators that are obtained from a single iteration of a numerical maximization 
procedure, such as Newton-Raphson.  If the starting point is an estimator that is 
asymptotically normal, then the estimator from applying one iteration will have the 
same asymptotic variance as the maximum of an objective function. This result is 
particularly helpful when simple initial estimators can be constructed, but an 
efficient estimator is more complicated, because it means that a single iteration will 
yield an efficient estimator. 

To describe a one-step extremum estimator, let 0 be an initial estimator a n d / ~  
be an estimator of H = plim [V00(~,(0o) ]. Consider the estimator 

0 = 0 - n -  l v 0 0 . ( g ) .  (3.8) 

If /4 = V00(~,(0-) then eq. (3.8) describes one Newton Raphson iteration. More 
generally it might be described as a modified Newton-Raphson  step with some 
other value of /4  used in place of the Hessian. The useful property of this estimator 
is that it will have the same asymptotic variance as the maximizer of (~,(0), if 

x / n ( f f -  00) is bounded in probability. Consequently, if the extremum estimator is 
efficient in some class, so will be the one-step estimator, while the one-step estimator 
is computationally more convenient than the extremum estimator. 3° 

An important  example is the MLE. In this case the Hessian limit is the negative 
of the information matrix, so that /q = - J is an estimated Hessian. The corre- 
sponding iteration is 

O=O+ J ln-1 ~ Voln f(zilO). (3.9) 
i = 1  

1 n For the Hessian estimator of the information matrix J = - n ~2i= 1V00 In f(zi] 0), 
eq. (3.9) is one Newton Raphson iteration. One could also use one of the other 
information matrix estimators discussed in Section 4. This is a general form of the 
famous linearized maximum likelihood estimator. It will have the same asymptotic 
variance as MLE, and hence inherit the asymptotic efficiency of the MLE. 

For minimum distance estimators it is convenient to use a version that does not 
involve second derivatives of the moments. For G = V00,(0 ), the matrix - 2(~'W(~ 
is an estimator of the Hessian of the objective function - O,(O)'WO,(O) at the true 
parameter value, because the terms that involve the second derivatives of 0,(0) are 
asymptotically negligible. 31 P lugg ing / t  = - 2G'~VG into eq. (3.8) gives a one-step 

3°An alternative one-step estimator can be obtained by maximizing over the step size, rather than 
setting it equal to one, as 0" = 0 +  .~d for d =  -/~-117o (~,(0) and 2 = argmaxx(~,(0+ 2,4). This estimator 
will also have the same asymptotic variance as the solution to eq. (1.1), as shown by Newey (1987). 

31These terms are all multiplied by one or more elements of 0,(0o), which all converge to zero. 
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minimum distance estimator, 

O= 6 -  (8'¢VS)- l S'fVO,(6). (3.1o) 

Alternatively, one could replace (7 by any consistent estimator of plim [V00,(0o) ]. 
This estimator will have the same asymptotic variance as a minimum distance 
estimator with weighting matrix W. In particular, if 13z is a consistent estimator of 
.(2-1, an efficient choice of weighting matrix, then 0" has the same asymptotic 
variance as the minimum distance estimator with an efficient weighting matrix. 

An example is provided by G M M  estimation. Let (~ = n-  1Z~'= 1Vog(zi, 6) and let 
.Q be an estimator of 12 = E[g(z, Oo)g(z, 0o)'], such as .O = n-  1 52~= 1 g(zi, 6)g(21, 0)" 
Then the one-step estimator of eq. (3.10) is 

0" = 6__ (GtQ-1G)-IG,~,¢~ -1 ~ g ( z i ,  O ) / t ' l .  

i=1 
(3.11) 

This is a one-step G M M  estimator with efficient choice of weighting matrix. 
The results showing that the one-step estimators have the same asymptotic 

variances as the maximizing values are quite similar for both extremum and mini- 
mum distance estimators, so it is convenient to group them together in the following 
result: 

Theorem 3.5 

Suppose that x/-n(O-00) is bounded in probability. If 0 satisfies eq.p(3.8), the 
conditions of Theorem 3.1 are satisfied, and e i ther /7  = V00(~,(ff) o r / 7  ~ H, then 

x~n( O_ Oo ) d_~ N(O, H- 1XH 1). If 0" satisfies eq. (3.10), the conditions of Theorem 3.2 

are satisfied, and either G =  V00,(O) or ff~ ~ G, then x/-n(0"-0o) d N[0, (G'WG)-1 x 
G'W12WG(G'WG)- 1]. 

Proof 
A - -  

Using eq. (3.8) and expanding VoQ,(O) around 0 o gives: 

00) = [ i  0o) 

where 0 is the mean value. B y / 7 - 1  P~ H-1  and the Slutzky theorem, the second 

term converges in distribution to N(O, H-1XH-1). By condition (iv) of Theorem 
3.1,/7-1V00(~,(0) ~ H - 1 H =  I, so that the first term is a product of a term that 
converges in probability to zero with a term that is bounded in probability, so that 
the first term converges in probability to zero, giving the conclusion. The result for 
minimum distance follows by a similar argument applied to the expansion of eq. (3.10) 
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given by .,/~(0"- 0o) = [I - ((~'I~G)- ~t~'WV00,(0)],jn(0- 0o) - (t~'I?e't~)-xt~'W. 

~nd,(0o). Q.E.D. 

This result can be specialized to MLE or G M M  by imposing the conditions of 
Theorem 3.3 or 3.4, but for brevity this specialization is not given here. 

The proof of this result could be modified to give the slightly stronger conclusion 

that .,/~(0"- 0 ) ~  0,a  condition that is referred to as "asymptotic equivalence" of 
the estimators 0 and 0. Rothenberg (1984) showed that for MLE, ifa second iteration 
is undertaken, i.e. 0 in eq. (3.8) solves the same equation for some other initial 
estimator, then n(0"- 0) P-~ 0. Thus, a second iteration makes the estimator asympto- 
tically closer to the extremum estimator. This result has been extended to multiple 
iterations and other types of estimators in Robinson (1988a). 

3.5. Technicalities 

A complete proof of Theorem 3.1 

Without loss of generality, assume that JV" is a convex, open set contained in O. 
Let 1 be the indicator function for the event that 0 e X .  Note that 0P--~ 0o implies 

P---* 1. By condition (ii) and the first-order conditions for a maximum, l'VoQ,(0) = 0. 
^ 2 " t Also, by a mean-value expansion theorem, 0 = l'V0(~,(0o)j + 1.VoQ,(0j)j(0 - 0o), 

where O; is a random variable equal to the mean value when 1 = 1 and equal to 0o 
otherwise. Then ffj ~ 0 o. Let /4 denote the matrix with jth row V2(~,(Oj)'~. By 

condition (iv),/t P-~ H. Let T be the indicator for 0 e W  and /4  nonsingular. Then 

by condition (v), 1 ~ 1, and 0 = l'V0(~,(0o) + 1 .H(O - 0o), so that x//n(0 - 0o) = 

1H-lx/nVoQ,(Oo) + (1 - 1 )x /n (0 -  0o). Then since 1/4 -1 P-~H -1 by condition (v), 

xfnV0(~,(0o) ~ U(0, 27) by condition (iii), and (1 - 1 )~fn(0-  0o) P-~ 0 by T P-~ 1, the 

conclusion follows by the Slutzky theorem and the fact that if Y, ~ Yo and Z,  - 
Y, P-~ 0 then Z,  d__. Yo- Q.E.D. 

The proof that the score has zero mean and of the information matrix equality. By the 
proof of Theorem 3.3 it suffices to show that ~f(zlO)dz is twice differentiable and 
that the order of differentiation and integration can be interchanged. The following 
well known lemma, e.g. as found in Bartle (1966, Corollary 5.9), is useful for showing 
that the order of differentiation and integration can be interchanged. 

Lemma 3.6 

If a(z,O) is continuously differentiable on an open set Jff of 0o, a.s. dz, and 
Ssup0~x t] Voa(z, 0)I1 dz < ~ ,  then ~a(z, O)dz is continuously differentiable and 
VoSa(z, O)dz = ~[Voa(z, 0)]dz for 0 e Y .  
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Proof 

Continuity of S [Voa(z, 0)]dz on JV follows bycont inui ty  of Voa(z, O) in 0 and the 
dominated convergence theorem. Also, for all 0 close enough to 0, the line joining 0" 
and 0 will lie in Jff, so a mean-value expansion gives a(z, O) = a(z, O) + Voa(z, 0)'(0 - O) + 
r(z, 0), where, for the mean value 0(z), r(z, O)= {Voa[z, i f (z ) ] -  Voa(z, 0)} ' (0-  0). As 
0 ~  0, [I r(z,O) [I/~ 0"- 0 I[ ~ 11Voa[z, if(z)] - Voa(z, O)[I ~ 0 by continuity of Voa(z, 0). 
Also, Jr(z, 0)l/ll 0 - 0 I1 ~< 2 sup0~x It Voa(z, O)II, so by the dominated convergence 
theorem, Sir(z, O)]dz/II 0"- 0 II ~0 .  Therefore, L[a(z, O) dz-Sa(z, O)dz-  {I[V0a(z, 0)] dz}' x 
(0-- O) l = IS r(z, 0")dz I ~< Sir(z, 0) ldz = o( II 0" - 0 II ). Q.E.D. 

The needed result that S f(zlO)dz is twice differentiable and that f(zlO) can be 
differentiated under the integral then follows by Lemma 3.6 and conditions (ii) and 
(iii) of Theorem 3.3. 

4. Consistent asymptotic variance estimation 

A consistent estimator of the asymptotic variance is important for construction of 
asymptotic confidence intervals, as discussed in the introduction. The basic idea for 
constructing variance estimators is to substitute, or "plug-in', estimators of the 
various components in the formulae for the asymptotic variance. For both extremum 
and minimum distance estimators, derivatives of sample functions can be used to 
estimate the Hessian or Jacobian terms in the asymptotic variance, when the 
derivatives exist. Even when derivatives do not exist, numerical approximations can 
be used to estimate Hessian or Jacobian terms, as discussed in Section 7. The more 

difficult term is the one that results from asymptotic normality of x/~V0(~,(0o) or 

x/-n0,(0o). The form of this term depends on the nature of the estimator and whether 
there is dependence in the data. In this chapter, estimation of this more difficult 
term will only be discussed under i.i.d, data, with Wooldridge's chapter in this 
volume giving results for dependent observations. 

To better describe variance estimation it is helpful to consider separately extremum 
and minimum distance estimators. The asymptotic variance of an extremum estima- 
tor is H-122H -1, where H is the probability limit of V00(~,(0o) and 2; is the 

asymptotic variance of^x~nnV0(~,(0o). Thus, an estimator of the asymptotic variance 
can be formed as H-a22H -a, where H is an estimator of H and 27 is an estimator 
of 2;. An estimator of H can be constructed in afleneral~way,A by substituting 0 for 
0 o in the Hessian of the objective function, i.e. H = VooQ,(O). It is more difficult to 
find a general estimator of 2:, because it depends on the nature of the extremum 
estimator and the properties of the data. 

In some cases, including MLE and NLS, an estimator of 27 can be formed in a 
straightforward way from sample second moments. For  example, for MLE the 
central limit theorem implies that 22 = E[Vo In f(zlOo) {V0 In f(zlOo)}'], so that an 
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estimator can be formed by substituting moments  for expectations and estimators 
for true parameter, i.e. 2 = n-  127= 1 V0 In f ( z  i 10) {V0 In f ( z i  10) }'. More generally, an 
analogous estimator can be constructed whenever the objective function is a sample 
average, (~,(0) - i , = n Z i =  1 q(zi, 0), e.g. where q(z, O) = - [y - h(x, 0)] 2 for NLS. In this 
case xfnV0(~,(00) = n -  1/2Z~= 1Voq(zl, 0o), so the central limit theorem will imply that 

= E [ V o q ( z ,  Oo){Voq(z, Oo)}']? z This second-moment matrix can be estimated 
a s  

2 = n  1 ~ Voq(zi, O){Voq(zi, O)}, ' (~,(0)=n -1 ~ q(zi, O). (4.1) 
i = 1  i = 1  

In cases where the asymptotic variance simplifies it will be possible to simplify 
the variance estimator in a corresponding way. For  example the MLE asymptotic 
variance is the inverse of the information matrix, which can be estimated by J 1, 
for an estimator J of the information matrix. Of  course, this also means that there 
are several ways to construct a variance estimator. For the MLE, J can be estimated 
from the Hessian, the sample second moment  of the score, or even the general 
formula /~-lz~/~-l. Asymptotic distribution theory is silent about  the choice 
between these estimators, when the models are correctly specified (i.e. the assumptions 
that lead to simplification are true), because any consistent estimator will lead to 
asymptotically correct confidence intervals. Thus, the choice between them has to 
be based on other considerations, such as computational  ease or more refined 
asymptotic accuracy and length of the confidence intervals. These considerations 
are inherently specific to the estimator, although many results seem to suggest it is 
better to avoid estimating higher-order moments  in the formation of variance 
estimators. If the model is not correctly specified, then the simplifications may not 
be valid, so that one should use the general f o r m / ~ - 1  ~/~-1 as pointed out by 
Huber  (1967) and White (1982a). This case is particularly interesting when 0 is 
consistent even though the model is misspecified, as for some MLE estimators with 
exponential family likelihoods; see Gourieroux et al. (1984). 

For  minimum distance estimation it is straightforward to estimate the Jacobian 
term G in the asymptotic variance ( G ' W G ) - 1 G ' W 1 2 W G ( G ' W G ) - 1 ,  as (~ = V00,(0). 
Also, by assumption W will be a consistent estimator of W. A general method of 
forming -(2 is more difficult because the form of 12 depends on the nature of the 
estimator. 

For G M M  an estimator of 12 can be formed from sample second moments. By 

the central limit theorem, the asymptotic variance ofxfn0,(0o) n-  1/2 52" = i= 1 g(Zi' 00) 
is 12 = E[g(z ,  O0)g(z, 0o)']. Thus, an estimator can be formed by substituting sample 

3ZThe derivative Voq(z, 0o) can often be shown to have mean zero, as needed for the central limit 
theorem, by a direct argument. Alternatively, a zero mean will follow from the first-order condition for 
maximization of Qo(O) = E[q(z, 0)] at 0 o. 
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moments for the expectation and an estimator of 0 for the true value, as 

.O n-1 ~" g(zi, ^ ^ '  O)g(z~, 0). (4.2) 
i = 1  

As discussed in Section 3, extremum estimators can be considered as special cases 
of minimum distance estimators for analyzing asymptotic normality. More speci- 
fically, an extremum estimator with {0,(0) = n-  1 ZT= lq(zl, O) will be a G M M  estima- 
tor with g(z,O)= Voq(z,O). Consequently, the estimator in eq. (4.1) is actually a 
special case of the one in eq. (4.2). 

For minimum distance estimators, where 0,(0) = ~ - h(O), the asymptotic variance 

12 of ~/n0,(0o) is just the asymptotic variance of ~. Thus, to form -g2 one simply uses 
a consistent estimator of the asymptotic variance of r~. If 7~ is itself an extremum or 
G MM estimator, its asymptotic variance can be estimated in the way described 
above. 

When the asymptotic variance matrix simplifies there will be a corresponding 
simplification for an estimator. In particular, if W =-Q-1 then the asymptotic 
variance is (G'.Q- 1G) -1, so that a corresponding estimator is ((~'~ 1(~)-1. Alter- 
natively, if W is a consistent estimator of ~ 1, a variance estimator is (G'I~G)- 1 

In addition, it may also be possible to estimate -(2 in alternative ways. For  example, 
for linear instrumental variables where g(z, 0) = x(y - Y'O), the estimator in eq. (4.2) 
is n lZ~= 1 xix'i(Yi - Y'iO) 2, which is consistent even if el = Yi - Y'iOo is heteroskedastic. 
An alternative estimator that would be consistent under homoskedasticity (i.e. if 
E[g2lx] is constant) is #2~7= 1 xix'i/n for #2 = n-  1 ~ , _  1 (Yi - -  Y' iO) 2" 

For minimum distance estimators, the choice between different consistent 
variance estimators can be based on considerations such as those discussed for 
extremum estimators, when the model is correctly specified. When the model is 
not correctly specified and there are more elements in 0,(0) than 0, the formula 
(G' WG)-  1G' W.Q WG(G' WG)-  1 is no longer the correct asymptotic variance matrix, 
the reason being that other terms enter the asymptotic variance because 0,(0) need 
not converge to zero. It is possible to show that 0 is asymptotically normal when 
centered at its limit, by treating it as an extremum estimator, but the formula is very 
complicated [e.g. see Maasoumi and Phillips (1982)]. This formula is not used often 
in econometrics, because it is so complicated and because, in most models where 
~),(0) has more elements than 0, the estimator will not be consistent under mis- 
specification. 

4.1. The basic results 

It is easy to state a consistency result for asymptotic variance estimation if E or .0 
is assumed to be consistent. A result for extremum estimators is: 
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Theorem 4.1 

If the hypotheses of Theorem 3.1 are satisfied, /4 = V00Q,(0), and ~ P-~ ~, then 

Proof 

By asymptotic normality, 0 P- P-~ 0 o. By condition (iv) of Theorem 3.1, with probability 
approaching one, II/4-HII ~< II/4-H(0)II + IIH(0)-HII ~<sup0u IlVooO~,(O)-H(O)l] + 
IIH(0)- H II P-~0, so t ha t /~  ~ H .  The conclusion then follows by condition (v) 
of Theorem 3.1 and continuity of matrix inversion and multiplication. Q.E.D. 

A corresponding result for minimum distance estimators is: 

Theorem 4.2 

If the hypotheses of Theorem 3.2 are satisfied, G = V00,(0), and .O ~ O, then 
(G' 17VG)- ~ G' WI2 WG(G' WG)- ~ ~ (G' WG)- ~ G' WO WG(G' WG)- ~ 

Proof 

It follows similarly to the proof of Theorem 4.1 that condition (iv) of Theorem 3.2 
implies G ~ G, while l~V P--P~ W and g2 P-~ 12 hold by hypothesis. The conclusion 
then follows from condition (v) of Theorem 3.2 and continuity of matrix inversion 
and multiplication. Q.E.D. 

As discussed above, the asymptotic variance for MLE, NLS, and G M M  can be 
estimated using sample second moments, with true parameters replaced by estima- 
tors. This type of estimator will be consistent by the law of large numbers, as long 
as the use of estimators in place of true parameters does not affect the limit. The 
following result is useful in this respect. 

Lemma 4.3 

If z~ is i.i.d., a(z, O) is continuous at 0 o with probability one, and there is a neigh- 
borhood JV of 0 o such that E[supo~xIla(z,O)[I]< ~ ,  then for any 0 P-~0 o, 

-1 n O) ~ E[a(z, 0 0 )  ] .  n Z~=la(z,, 

Proof 

By consistency of 0"there is 6, ~ 0 such that I I 0"- 0ol I ~< 6, with probability approach- 
ing one. Let A,(z) = supll0_0o!l ~ a. IL a(z, O) - a(z, 0o)]1. By continuity of a(z, O) at 0 o, 
A,(z) ~ 0 with probability one,.while by the dominance condition, for n large enough 
A,(z) ~< 2 sup0~y LI a(z, 0)]l. Then by the dominated convergence theorem, E[A,(z)]--. 

1 n 0, so by the Markov inequality, P(In- 5Zi_}A,(zl)[ >e)<~E[A,(z)]/e~O for all 
1 n P 1 n e > O, giving n- Zi  = 1A.(zi) ~ O. By Khintchine s law of large numbers, n-  5Z i = 1 a x 
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(zi, 0o) ~ E[a(z, 0o) ]. Also, with probability approaching one, 1[ n-  lY~ 7_ l a(zl, O) - 
n - 1~,~= la(zi, Oo ) II <~ n -  l y~,~= 1 II a(zi, O) - a(z i, 0 o) I[ ~< n-  1 ~2~'= 1A,(zi) ~ O, so  the con- 
clusion follows by the triangle inequality. Q.E.D. 

The conditions of this result are even weaker than those of Lemma 2.4, because 
the conclusion is simply uniform convergence at the true parameter. In particular, 
the function is only required to be continuous at the true parameter. This weak type 
of condition is not very important for the cases considered so far, e.g. for G M M  
where the moment functions have been assumed to be differentiable, but it is very 
useful for the results of Section 7, where some discontinuity of the moments is 
allowed. For  example, for the censored LAD estimator the asymptotic variance 
depends on indicator functions for positivity of x'O and Lemma 4.3 can be used to 
show consistency of asymptotic variance estimators that depend on such indicator 
functions. 

4.2. Variance estimation for  M L E  

The asymptotic variance of the maximum likelihood estimator is J 1, the inverse 
of the Fisher information matrix. It can be consistently estimated from J -  t, where 

is a consistent estimator of the information matrix. There are several ways to 
estimate the information matrix. To describe these ways, let s(z, 0)= V01nf(zl 0) 
denote the score. Then by the information matrix equality, J = E[s(z, Oo)s(z, 0o)'] = 
- E[VoS(Z, 0o)] = J(Oo), where J(O) = - ~ [Vos(z, O)]f(zlO)dz.  That is, J is the expec- 
tation of the outer product of the score and the expectation of the negative of the 
derivative of the score, i.e. of the Hessian of the log-likelihood. This form suggests 
that J might be estimated by the method of moments, replacing expectations by 
sample averages and unknown parameter values by estimates. This yields two 
estimators, 

J1 = - n - 1  ~ S(Zi'O)S(Zi'O)'/l~l' J2=--n-1 ~ Voolnf(zi[O) . (4.3) 
i=1 i=1 

The second estimator is just the negative of the Hessian, and so will be consistent 
under the conditions of Theorem 3.3. Lemma 4.3 can be used to formulate conditions 
for consistency of the first estimator. 

A third estimator could be obtained by substituting 0 in the integrated function 
J(O). This estimator is often not feasible in econometrics, because f ( z l  O) is a condi- 
tional likelihood, e.g. conditioned on regressors, and so the integration in J(O) 
involves the unknown marginal distribution. An alternative estimator that is feasible 
is the sample average of the conditional information matrix. To describe this 
estimator, suppose that z = (y, x) and that f(z[O) = f ( y [x ,  O) is the conditional density 
of y given x. Let J(x,  O) = E[s(z, O)s(z, 0)'1 X, 0] = ~ s(z, O)s(z, O)'f(y [ x, O) dy be the con- 
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ditional information matrix, so that J = E[J(x,  0o) ] by the law of iterated expecta- 
tions. The third estimator of the information matrix is then 

J3 = ~ J(xi, O)/n. (4.4) 
i=1 

Lemma 4.3 can be used to develop conditions for consistency of this estimator. In 
particular, it will often be the case that a(z, O) = J(x, O) is continuous in 0, because 
the integration in J(x, O) tends to smooth out any discontinuities. Consistency will 
then follow from a dominance condition for J(x, 0). 

The following result gives conditions for consistency of all three of these estimators: 

Theorem 4.4 

Suppose that the hypotheses of Theorem 3.3 are satisfied. Then J21 ~ j -1 .  Also, 
if there is a neighborhood o~ of 0 o such that E[supoEy [[ s(z, O)rl 2] < o0 then ff~- 1 
j -  1. Also, if J(x, 0) is continuous at 00 with probability one and E[sup0~ HJ(x, 0)H ] < 
oo then J3  1 ~ j -  1. 

Proof 

It follows as in the proof of Theorem 4.1 that J21 P_E+ j -  1. Also, by s(z, 0) continuously 
differentiable in a neighborhood of 0o, a(z, 0) = s(z, 0)s(z, 0)' so consistency of J~- 
follows from Lemma 4.3. Also, consistency of J~- * follows by Lemma 4.3 with 
a(z, O) = J(x, 0). Q.E.D. 

The regularity conditions for consistency of each of these estimators are quite weak, 
and so typically they all will be consistent when the likelihood is twice differentiable. 
Since only consistency is required for asymptotically correct confidence intervals 
for 0, the asymptotic theory for 0 provides no guide as to which of these one should 
use. However, there are some known properties of these estimators that are useful 
in deciding which to use. First, J1 is easier to compute than J2, which is easier to 
compute than a73 . Because it is easiest to compute, J1 has seen much use in maximum 
likelihood estimation and inference, as in Berndt et al. (1974). In at least some cases 
they seem to rank the opposite way in terms of how closely the asymptotic theory 
approximates the true confidence interval distribution; e.g. see Davidson and 
MacKinnon (1984). Since the estimators are ranked differently according to different 
criteria, none of them seems always preferred to the others. 

One property shared by all inverse information matrix estimators for the MLE 
variance is that they may not be consistent if the distribution is misspecified, as 
pointed out by Huber (1967) and White (1982a). If f(z[Oo) is not the true p.d.f, then 
the information matrix equality will generally not hold. An alternative estimator 
that will be consistent is the general extremum estimator fdrmula J~lJ1J~-x. 
Sufficient regularity conditions for its consistency are that 0 ~ 0 o, In f(z]O) satisfy 
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parts (ii) and (iv) of Theorem 3.3, E[sup0~w II V0 In f(zlO) II z] be finite for a neighbor- 
hood Jff of 0 o, and E[Voo In f ( z t  0o)] be nonsingular. 

Example I.I continued 

It would be straightforward to give the f o r m u l a e  J1 and Jz using the derivatives 
derived earlier. In this example, there are no conditioning variables x, so that J3 
would simply be the information formula evaluated at 0. Alternatively, since it is 
known that the information matrix is diagonal, one could replace J~- 1 and J2 ~ with 
same matrices, except that before the inversion the off-diagonal elements are set 
equal to zero. For example, the matrix corresponding to J ]~  would produce a 
variance estimator for/i of n~2/~'= S~(~), for g~ = ~-  l(z/-/1). Consistency of all of 
these estimators will follow by Theorem 4.4 

Sometimes some extra conditions are needed for consistency of J~ ~ or J f  ~, as 
illustrated by the probit example. 

Example 1.2 continued 

For probit, the three information matrix estimators discussed above are, for 2 ( e )  = 

~(~)/~(~),  

)3 = n-1 ~ XiX~i~(X~iO))~(-- '^ xiO), 
i = 1  

i~  tA  J2 = J3 + n-1 ~ xlx'i[d{ (l)(-  v)- 1)~(v) } /dv] I~_x,O[y , - (x,0)], 
i = 1  -- i 

J 1  ~ n - 1  ~ ' I ~ - 2  ~ 2  x,x,~(-  x,O) ~(x,O) {y , -  c~(x',O)} 2 
i = 1  

Both J31 P j - 1 and J~ 1 P~ j 1 will follow from consistency of 0, E[ II x H 2] finite, 

and J nonsingular. However, consistency of aT~ 1 seems to require that E[ LI x II 4] is 
~ -- 

finite, because the score satisfies II V0 In f(zlO)lL 2 --~ I q~(x 0) 1~(_  x'O)- l ch(x'O)14 Ikx II 2 ~< 
4[C2(1 + II x II II 01[)]2 II x [I 2 ~ C(l  + II x 114). 

The variance of nonlinear least squares has some special features that can be used 
to simplify its calculation. By the conditional mean assumption that E [y}x] = h(x, 0o), 
the Hessian term in the asymptotic variance is 

H = 2{E[ho(x, Oo)ho(x, 0o) ' ] -  E[hoo(X, 0o){ y -  h(x, 0o)} ] } 

= 2E[ho(x, Oo)ho(x, 0o)'], 

where h o denotes the gradient, hoo the Hessian of h(x, 0), and the second equality 
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follows by the law of iterated expectations. Therefore, H can be estimated by 
= 2n-  1~,~= ,ho(x~ ' O)ho(xl, 0)', which is convenient because it only depends on first 

derivatives, rather than first and second derivatives. Under homoskedasticity the 
matrix 22 also simplifies, to 4a2E[ho(x, Oo)ho(x, Oo) '] for cr 2 = E [ { y - h ( x ,  Oo)}2], 
which can be estimated by 2~z/t for ~2 - ix . ,  ~" h(xi, 0)} 2. Combining this H Z-.i=l'tY -- 
estimator of 27 with the one for H gives an asymptotic variance estimator of the 
form V = / 4 - 1 2 / 4 - 1  = 242/4 -1. Consistency of this estimator can be shown by 
applying the conditions of Lemma 4.3 to both a(z, O) = {y  - h(x, 0)} 2 and a(z, O) = 
ho(x, O)ho(x, 0)', which is left as an exercise. 

If there is heteroskedasticity then the variance of y does not factor out of 27, so 
that one must use the estimator 2 = 4n 1327= lho(xl, O)ho(xi, O)'{y i - h(xi, 0)} 2. Also, 
if the conditional expectation is misspecified, then second derivatives of the regression 
function do not disappear from the Hessian (except in the linear case), so that one 
must use the es t imator /4  = 2n- 12~'= 1 [ho(x ~, O)ho(x i, 0)' + hoo(X~, 0)' { y~ - h(xi, 0)}]. 
A variance estimator for NLS that is consistent in spite of heteroskedasticity or 
misspecification i s / I -  *E/4-1, as discussed in White (1982b). One could formulate 
consistency conditions for this estimator by applying Lemma 4.3. The details are 
left as an exercise. 

4.3. Asymptot ic  variance estimation for  G M M  

The asymptotic variance of a G M M  estimator is ( G ' W G ) - 1 G ' W I 2 W G ( G ' W G ) - 1 ,  
which can be estimated by substituting estimators for each of G, W and 12. As 
previously discussed, estimators of G and W are readily available, and are given by 

" 1 Vog(zi, O) and 13/, where l~is the original weighting matrix. To estimate d=n- Zi= 
12 = E[g(z, Oo)g(z, 0o)'], one can replace the population moment by a ~mpleaverage  
and the true parameter by an estimator, to form .Q = n-  ~ ~ =  1 g(zi, O)g(zi, 0)', as in 

A ~ A 
eq. (4.2). The estimator of the asymptotic variance is then given by V = ( G ' W G ) -  1 x 

Consistency of /2  will follow from Lemma 4.3 with a(z, O) = g(z, O)g(z, 0)', so that 
consistency of V will hold under the conditions of Theorem 4.2, as applied to GMM. 
A result that summarizes these conditions is the following one: 

Theorem 4.5 

If the hypotheses of Theorem 3.4 are satisfied, g(z,O) is continuous at 0 o with 
probability one, and for a neighborhood Y of 0 0, E[-sup0~. ]p g(z, O)]] 2 ]  < O0 ,  then 
9 = (G' ITVG)- 1G' Wg2WG(G'  W G ) -  1 P~ (G t W G ) - I  G t W12 W G ( G '  W G ) -  1. 

Proo f  

By Lemma 4.3 applied to a(z, O) = g(z, O)g(z, 0)', [~P_2_~ 12. Also, the proof of Theorem 
3.4 shows that the hypotheses of Theorem 3.2 are satisfied, so the conclusion follows 
by Theorem 4.2. Q.E.D. 
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If I~'is a consistent estimator of .Q- 1, i.e. the probability limit W of Wis equal to 
.Q-1, then a simpler estimator of the asymptotic variance can be formed as V = 
(~,~tZ~)- 1. Alternatively, one could form g)as in eq. (4.2) and use P" = (t~'.O-q~)-1. 
Little seems to be known about the relative merits of these two procedures in small 
samples, i.e. which (if either) of the initial W or the final ~ 1 gives more accurate 
or shorter confidence intervals. 

The asymptotic variance estimator V is very general, in that it does not require 
that the second moment matrix ~ =  E[g(z, Oo)9(z, 0o)'] be restricted in any way. 
Consequently, consistency of ~" does not require substantive distributional restrictions 
other than E[g(z,  0o) ] = 0. 33 For  example, in the context of least squares estimation, 
where g(z, O) = x ( y  - x'O), I?V = I, and (~ = - Z~'- 1 xix'i/n, this G M M  variance esti- 
mator is V = (~-1 [n-lZ~'= lx~x'~(y~ - x t i 0 ) 2 ] G  - l, the Eicker (1967) and White (1980) 
heteroskedasticity consistent variance estimator. Furthermore, the G M M  variance 
estimator includes many heteroskedasticity-robust IV variance estimators, as dis- 
cussed in Hansen (1982). 

When there is more information about the model than just the moment restrictions, 
it may improve the asymptotic confidence interval approximation to try to use this 
information in estimation of the asymptotic variance. An example is least squares, 
where the usual estimator under homoskedasticity is n ( Z ~ = l x ~ x ' ~ ) - l Z ( y l -  x'iO)2/ 
(n - K), where K is the dimension ofx. It is well known that under homoskedasticity 
this estimator gives more accurate confidence intervals than the heteroskedasticity 
consistent one, e.g. leading to exact confidence intervals from the t-distribution 
under normality. 

Example  1.3 continued 

The nonlinear two-stage least squares estimator for the Hansen-Singleton example 
is a G M M  estimator with g(z,O) x{ f lwy  ~ 1} and ^ " ' n = - W =  Zi= i x ix i /  , so that an 
asymptotic variance estimator can be formed by applying the general G MM formula to 
this case. Here an estimator of the variance of the moment functions can be formed 
as described above, with .Q= n-lZ~= 1 x , x i { f l w i y { -  1} 2. The Jacobian estimator is 
CJ = n -  1Z"i= 1 x~(w~y~, flw~ In (yi)y~). The corresponding asymptotic variance esti- 
mator then comes from the general G M M  formula (d'l?~t~)-1(~, ~.Q~(~((~, ~(~)-1. 

Consistency of this estimator will follow under the conditions of Theorem 4.5. It 
was previously shown that all of these conditions are satisfied except the additional 
moment assumption stated in Theorem 4.5. For  this assumption, it suffices that the 
upper and lower limits on 7, namely 7~ and 7u, satisfy E[HxIIZ]wl2([yl 2~' + lylZ~u)] < o0. 
This condition requires that slightly more moments exist than the previous condi- 
tions that were imposed. 

a31f this restriction is not satisfied, then a G M M  estimator may still be asymptotically normal, but  
the asymptotic variance is much more complicated; see Maasoumi and Phillips (1982) for the instrumental 
variables case. 
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5. Asymptotic efficiency 

Asymptotically normal estimators can be compared on the basis of their asymptotic 
variances, with one being asymptotically efficient relative to another if it has at least 
as small an asymptotic variance for all possible true parameter values. Asymptotic 
efficiency is desirable because an efficient estimator will be closer to the true 
parameter value in large samples; if 0 is asymptotically efficient relative to 0 then 

for all constants K, Prob([ 0 -  00[ ~< K/x/n) > Prob([ 0 -  0o[ ~< K/xfn) for all n large 
enough. Efficiency is important in practice, because it results in smaller asymptotic 
confidence intervals, as discussed in the introduction. 

This section discusses general results on asymptotic efficiency within a class of 
estimators, and application of these results to important estimation environments, 
both old and new. In focusing on efficiency within a class of estimators, we follow 
much of the econometrics and statistics literature. 34 Also, this efficiency framework 
allows one to derive results on efficiency within classes of "limited information" 
estimators (such as single equation estimators in a simultaneous system), which are 
of interest because they are relatively insensitive to misspecification and easier to 
compute. An alternative approach to efficiency analysis, that also allows for limited 
information estimators, is through semiparametric efficiency bounds, e.g. see Newey 
(1990). The approach taken here, focusing on classes of estimators, is simpler and 
more directly linked to the rest of this chapter. 

Two of the most important and famous efficiency results are efficiency of maximum 
likelihood and the form of an optimal weighting matrix for minimum distance 
estimation. Other useful results are efficiency of heteroskedasticity-corrected genera- 
lized least squares in the class of weighted least squares estimators and two-stage 
least squares as an efficient instrumental variables estimator. All of these results 
share a common structure that is useful in understanding them and deriving new 
ones. To motivate this structure, and focus attention on the most important results, 
we first consider separately maximum likelihood and minimum distance estimation. 

5.1. Efficiency of maximum likelihood estimation 

Efficiency of maximum likelihood is a central proposition of statistics that dates from 
the work of R.A. Fisher (1921). Although maximum likelihood is not efficient in the 
class of all asymptotically normal estimators, because of"superefficient" estimators, 
it is efficient in quite general classes of estimators. 35 One such general class is the 

34In particular, one of the precise results on efficiency of MLE is the Ha j ek -LeCam representation 
theory, which shows efficiency in a class of regular estimators. See, e.g. Newey (1990) for a discussion of 
regularity. 

35 The word "superefficient" refers to a certain type of estimator, attributed to Hodges, that is used to 
show that there does not exist an efficient estimator in the class of all asymptotically normal  estimators. 
Suppose O is asymptotically normal, and for some number  e and 0 </3 < ½, suppose that 0 has positive 
asymptotic variance when the true.parameter is ~. Let 0"= 0 if halO-ct]> 1 and 0" = 7 if nPlO-c~[< 1. 
Then 0 is superefficient relative to 0, having the same asymptotic variance when the true parameter is 
not  c~ but having a smaller asymptotic variance, of zero, when the true parameter  is e. 
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class of G M M  estimators, which includes method  of  moments ,  least squares, instru- 
mental variables, and other estimators. Because this class includes so m a n y  esti- 
mators  of interest, efficiency in this class is a useful way of  thinking about  M L E  
efficiency. 

Asymptot ic  efficiency of M L E  a m o n g  G M M  estimators is shown by compar ing  
asymptot ic  variances. The asymptot ic  variance of  the M L E  is (E[ss'])-1, where 
s = V0 In f (z l  0o) is the score, with the z and 0 arguments  suppressed for nota t ional  
convenience. The asymptot ic  variance of a G M M  estimator can be written as 
(E[mo])- 1E[mm, ] (E[m0])-  1 where m o = (E[Vog(z, Oo)])'WVog(z, 0o) and m = 
(E[Vog(z, Oo)])'Wg(z, Oo). At this point  the relationship between the G M M  and 
M L E  variances is not  clear. It turns out  that  a relationship can be derived from 
an interpretation of  E[mo] as the covariance of  m with the score. To obtain this 
interpretation, consider the G M M  moment  condi t ion ~g(z, O)f(zlO)dz = 0. This 
condit ion is typically an identity over the parameter  space that  is necessary for 
consistency of a G M M  estimator. If  it did not  hold at a parameter  value, then the 
G M M  estimator may not  converge to the parameter  at that  point, and hence would 
not  be consistent. 36 Differentiating this identity, assuming differentiation under  the 
integral is allowed, gives 

t" 
0 = Vo Jg(z, O)f(zlO) dz l0 =0o 

= g[Vog(z, 0o)] + E[g(z, Oo)Vo In f(zlOo)'], (5.1) 

where the last equality follows by multiplying and dividing V0 f(z]Oo) by f(z]Oo). 
This is the generalized information matrix equality, including the information matrix 
equality as a special case, where g(z, 0 ) =  V01n f(z]O). 37 It implies that  E[mo] + 
Elms'] = 0, i.e. that  E[mo] = - Elms']. Then the difference of  the G M M  and M L E  
asymptot ic  variances can be written as 

( E [ m o ] ) - 1 E [ m m ' ]  (E [m0] ) - 1  - -  (EEss, ] ) - l 

= ( E l m s ' ] ) -  t E [ m m ' ] ( E [ s m ' ] )  - I  -- ( E [ s s ' ] ) -  1 

= ( E [ m s ' ] ) - 1  { E [mm ' ]  - E l m s ' ]  ( E [ s s ' ] ) - l E [ s m ' ]  } ( E [ s m ' ] ) - 1  

= ( E [ m s ' ] ) - I E [ U U ' ] ( E [ s m ' ] )  -1,  U = m -  E [ m s ' ] ( E [ s s ' ] )  -1 s. (5.2) 

36 Recall that consistency means that the estimator converges in probability to the true parameter for 
all possible true parameter values. 

37A similar equality, used to derive the Cramer-Rao bound for the variance of unbiased estimators, 
is obtained by differentiating the identity 0 = SOdFo, where F o is the distribution of the data when 0 is 
the true parameter value. 
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Since E[UU'] is positive semi-definite, the difference of the respective variance 
matrices is also positive semi-definite, and hence the MLE is asymptotically efficient 
in the class of G M M  estimators. 

To give a precise result it is necessary to specify regularity conditions for the 
generalized information matrix equality of eq. (5.1). Conditions can be formulated 
by imposing smoothness on the square root of the likelihood, f(zlO) l/z, similar to 
the regularity conditions for MLE efficiency of LeCam (1956) and Hajek (1970). A 
precise result on efficiency of MLE in the class of G M M  estimators can then be 
stated as:- 

Theorem 5.1 

If the conditions of Theorem 3.4 are satisfied,f (z I 0) 1/2 is continuously differentiable at 
00, J is nonsingular, and for all 0 in a neighborhood JV of 0o, ~ s u p 0 ~  ]l 9(z, O)112 x 
f ( z  I 0) dz and ~ sup0 u II Vof(z[O) 1/2 II 2 dz are bounded and ~ 9(z, O)f(z 10) dz = 0, then 
(G' WG)-  ~ G' WI2WG(G' WG) - J -  ~ is positive semi-definite. 

The proof is postponed until Section 5.6. This result states that J - 1  is a lower 
bound on the asymptotic variance of a G M M  estimator. Asymptotic efficiency of 
MLE among G M M  estimators then follows from Theorem 3.4, because the MLE 
will have J -  1 for its asymptotic variance. 3s 

5.2. Optimal minimum distance estimation 

The asymptotic variance of a minimum distance estimator depends on the limit W 
of the weighting matrix l?V. When W -- .O- 1, the asymptotic variance of a minimum 
distance estimator is (G'L2-1G) -~. It turns out that this estimator is efficient in 
the class of minimum distance estimators. To show this result, let Z be any random 
vector such that t 2=E[ZZ ' ] ,  and let m = G ' W Z  and ff~=G'I2-1Z. Then by 

G'WG = E[mrh'] and G'I2- ~G = E[fftrh'], 

( G ' W G ) -  1G 'W~ '2WG(G 'WG)  -1  - (G' f f2-1G)-  I 

= ( G ' W G ) - I E [ U U ' ] ( G ' W G )  -1,  U = m - E[mrh'](E[rfirh'])-arh. (5.3) 

Since E[UU'] is positive semi-definite, the difference of the asymptotic variances is 
positive semi-definite. This proves the following result: 

3 s It is possible to show this result under the weaker condition thatf(zlO) 112 is mean-square differenti- 
able, which allows for f(zlO) to not be continuously differentiable. This condition is further discussed in 
Section 5.5. 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2165 

Theorem 5.2 

If -(2 is nonsingular, a minimum distance estimator with W = plim(W) = ~ 1 is 
asymptotically efficient in the class of minimum distance estimators. 

This type of result is familiar from efficiency theory for CMD and G M M  estimation. 
For example, in minimum chi-square estimation, where 0(0) = r~ - n(0), the efficient 
weighting matrix W is the inverse of the asymptotic variance of ~, a result given by 
Chiang (1956) and Ferguson (1958). For  GMM, where 0(0)= ~2" i= 1 g(zi, O)/n, the 
efficient weighting matrix is the inverse of the variance of g(zl, 0o), a result derived 
by Hansen (1982). Each of these results is a special case of Theorem 5.2. 

Construction of an efficient minimum distance estimator is quite simple, because 
the weighting matrix affects the asymptotic distribution only through its probability 
limit. All that is required is a consistent estimator ~,  for then W = .0-  a will converge 
in probability t o /2 -1 .  Since an estimator of ~ is needed for asymptotic variance 
estimation, very little additional effort is required to form an efficient weighting 
matrix. An efficient minimum distance estimator can then be constructed by 
minimizing 0(0)'~ - 10(0). Alternatively, the one-step estimator 0=  0 -  (G's')- 1G)- 1 x 
G~-10(0  ) will also be efficient, because it is asymptotically equivalent to the fully 
iterated minimum distance estimator. 

The condition that W = ~ - 1  is sufficient but not necessary for efficiency. A 
necessary and sufficient condition can be obtained by further examination of eq. 
(5.3). A minimum distance estimator will be efficient if and only if the random vector 
U is zero. This vector is the residual from a population regression of m on rh, and 
so will be zero if and only if m is a linear combination of r~, i.e. there is a constant 
matrix C such that G ' W Z  = CG'~2-1Z. Since Z has nonsingular variance matrix, 
this condition is the same as 

G ' W  = CG'K2-1. (5.4) 

This is the necessary and sufficient condition for efficiency of a minimum distance 
estimator. 

5.3. A general efficiency framework 

The maximum likelihood and minimum distance efficiency results have a similar 
structure, as can be seen by comparing eqs. (5.2) and (5.3). This structure can be 
exploited to construct an efficiency framework that includes these and other impor- 
tant results, and is useful for finding efficient estimators. To describe this framework 
one needs notation for the asymptotic variance associated with an estimator. To 
this end, let r denote an "index" for the asymptotic variance of an estimator in some 
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class, where r is an element of some abstract set. A completely general form for r 
would be the sequence of functions of the data that is the sequence of estimators. 
However, since 3 is only needed to index the asymptotic variance, a simpler specifi- 
cation will often suffice. For  example, in the class of minimum distance estimators 
with given 0,(0), the asymptotic variance depends only on W = plim(lT¢), so that it 
suffices to specify that 3 = W. 

The framework considered here is one where there is a random vector Z such 
that for each ~ (corresponding to an estimator), there is D(3) and m(Z, ~) with the 
asymptotic variance V(r) satisfying 

V(z) = D(~)- 1EEm(Z, r)m(Z, v)']D(~)- 1, (5.5) 

Note that the random vector Z is held fixed as -c varies. The function m(Z, ~) can 
often be interpreted as a score or moment  function, and the matrix D(3) as a Jacobian 
matrix for the parameters. For  example, the asymptotic variances of the class of 
G M M  estimators satisfy this formula, with ~ being [9(z, Oo),G, W], Z = z being a 
single observation, m(Z,~)=-G'Wg(z, Oo), and D(~)= G'WG. Another example is 
minimum distance estimators, where Z is any random vector with mean zero and 
variance g2, ~ = W, m(Z, 3) = G'WZ, and D(v) = G'WG. 

In this framework, there is an interesting and useful characterization of an efficient 
estimator. 

Theorem 5.3 

If f satisfies D(3) = Elm(Z, v)m(Z, ~)'] for all ~ then any estimator with variance V(f) 
is efficient. Furthermore,  suppose that for any 31, ~2, and constant square matrices 
C1, C2 such that CaD(~ 1) + C2D(~2) is nonsingular, there is r3 with (i) (linearity of 
the moment  function set) re(Z, %) = Clm(Z, ~1) + C2m(Z, %); (ii) (linearity of D) 
D(z3) = C1D(~I)+ CzD(%). If there is an efficient estimator with Elm(Z, ~)m(Z, ~)'] 
nonsingular then there is an efficient estimator with index f such that D(v)= 
E[m(Z, z)m(Z, ~)'] for all r. 

Proof 

If ~ and f satisfy D(v)= E[m(Z, v)m(Z, f) ']  then the difference of the respective 
asymptotic variances satisfies, for m = m(Z, ~) and rh = m(Z, ~), 

V(3) - V(f)  = ( E [ m r K ] )  X E [ m m ' ] ( E [ r f i m ' ] ) -  1 _ (E[ r f i r f i ' ] ) -  1 

= ( E E m , ~ ' ] ) - I E E U U ' ] ( E E r ~ m ' ] ) - I ,  

U = m - E [ m r h ' ]  ( E [ r h r h ' ] ) -  lrfi, (5.6) 

so the first conclusion follows by E[UU'] positive semi-definite. To show the second 
conclusion, let #4Z, ~) = D(z)- Xm(Z, ~), so that V(r) = E[#I(Z, z)tp(Z, z)']. Consider 
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any constant  matr ix  B, and for 271 and "17 2 let C1 = BD(z0  1 and C 2 = ( 1  - -  B)D(272)- 1 
note that  CID(ZI) + C2D(r2) = I is nonsingular ,  so by (i) and (ii) there is 273 such that  
B~p(Z, r l )  + (I - B)~p(Z, 272) = Clm(Z, 271) + C21TI(Z, 272) = re(Z, 273) = I -  lm(Z, %) = 
[C1O(z0 + C2D(272)] - l m (  Z, 273) = O(273)- ira( Z, 273) = ~b(Z, z3). Thus,  the set {~b(Z, z)} 
is affine, in the sense that  BO(Z, 271) + (I -- B)~(Z, 272) is in this set for any z 1, z 2 and  
constant  matr ix  B. Let ~p(Z, ~) cor respond  to an efficient est imator.  Suppose  that  
there is 27 with E [ ( ~  -- ff)~9'] :~ 0 for ~ = if(Z, 27) and ~ = ~b(Z, f). Then  ff - ~ ¢ 0, so 
there exists a cons tant  matr ix  F such that  e = F(ff - ~) has nons ingular  variance 
and E[e0 ' ]  ~ 0. Let B = - E[ffe'] (E[ee'])- 1F and u = ~ + BOP - ~) = ( I -  B)ff + Bff. 
By the affine p roper ty  of  {tp(Z, 27)} there is ? such that  V(?) = E[uu'] = E[ff~9'] -- 
E[ffe'](E[ee'])-lE[e~ '] = V(g) -  E[~e'](E[ee'-l)-lE[etff'], which is smaller than  
V(g) in the positive semi-definite sense. This conclusion contradicts  the assumed 
efficiency of ?, so that  the assumpt ion  that  E [ ( ~  -- ~b)ff'] ~ 0 contradicts  efficiency. 
Thus,  it follows that  E[0P - ~ )~ ' ]  = 0 for all r, i.e. that  for all ~, 

D(27)- 1Elm(Z, z)rn(Z, ? ) ' ]D( f ) -  1, = D('~)- aE[m(Z, ~)rn(Z, ~) ' ]D(?)-  1,. (5.7) 

By the assumed nonsingular i ty  of  E[m(Z, f)m(Z, ?)'], this equat ion  can be solved 
for D(27) to give D(z)=E[m(Z,27)m(Z,~)'](E[m(Z,i)m(Z,f)'])-lD(i). Since C =  
D(f)'(E[m(Z, f)m(Z, f ) ' ] ) -  1 is a nonsingular  matr ix  it follows by (i) and (ii) that  there 
exists f with re(Z, ~) = Cm(Z, f). Fur thermore ,  by linearity of  D(27) it follows that  
V(f) = V(~), so that  the es t imator  cor responding  to f is efficient. The  second con- 
clusion then follows f rom D(z) = E[m(Z, z)rn(Z, f ) ' ]  for all z. Q.E.D. 

This result states that  

D(r) = Elm(Z, z)m(Z, ?)'], for all ~, (5.8) 

is sufficient for ~ to cor respond to an efficient es t imator  and is necessary for some 
efficient es t imator  if the set of m o m e n t  functions is linear and the Jacob ian  is a linear 
function of the scores. This equali ty is a general izat ion of the informat ion  matr ix  
equality. Hansen  (1985a) formula ted  and used this condi t ion to derive efficient 
ins t rumental  variables est imators,  and gave more  primitive hypotheses  for condi- 
tions (i) and (ii) of Theo rem 5.3. Also, the f r amework  here is a modified version of 
that  of Bates and  White  (1992) for general  classes of est imators.  The sufficiency par t  
of Theorem 5.3 appears  in bo th  of these papers.  The  necessity par t  of Theorem 5.3 
appears  to be new, but  is closely related to R.A. Fisher 's  (1925) necessary condi t ion 
for an efficient statistic, as further discussed below. 

One interpreta t ion of eq. (5.8) is that  the asympto t ic  covar iance between an 
efficient es t imator  and any other  es t imator  is the var iance of the efficient est imator.  
This character izat ion of an efficient es t imator  was discussed in R.A. Fisher (1925), 
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and is useful in constructing Hausman (1978) specification tests. It is derived by 
assuming that the asymptotic covariance between two estimators in the class takes 
the form D(r 0 -  aE[m(Z, rOm(Z, "c2)']O('g2)- 1,, as can usually be verified by "stacking" 
the two estimators and deriving their joint asymptotic variance (and hence asympto- 
tic covariance). For  example, consider two different G M M  estimators 01 and 02, 
with two different moment functions gl(z, O) and g2(z, 0), and r = q for simplicity. 
The vector ~ = (01, 02) can be considered a joint G M M  estimator with moment 
vector g(z,7)= [ga(Z, O0',gz(z, 02)']'. The Jacobian matrix of the stacked moment 
vector will be block diagonal, and hence so will its inverse, so that the asymptotic 
covariance between 01 and 02 will be {E[gogl(Z, Oo)]} 1E[gl(z, Oo)g2(2, Oo)' ] × 
{E[Vog2(z, 0o)] } - 1,. This is exactly of the form O(rl)-  1Elm(Z, r Ore(Z, rz)']D(~2)- 1,, 
where Z = z, m(Z, vl)= gl(z, 0o), etc. When the covariance takes this form, the 
covariance between any estimator and one satisfying eq. (5.8) will be D(r)-1 x 
E[m(Z, r)m(Z, i)']D('g)- 1,= I" D('g)- 1,= D(i) 1E[m(Z, i)m(Z, ~)']D(~)- a, = V(f), the 
variance of the efficient estimator. R.A. Fisher (1925) showed that this covariance 
condition is sufficient for efficiency, and that it is also necessary if the class of 
statistics is linear, in a certain sense. The role of conditions (i) and (ii) is to guarantee 
that R.A. Fisher's (1925) linearity condition is satisfied. 

Another interpretation ofeq. (5.8) is that the variance of any estimator in the class 
can be written as the sum of the efficient variance and the variance of a "noise term". 
Let U(Z) = D(z)- lm(Z, r) - D(~)- 1re(Z, ~), and note that U(Z) is orthogonal to 
D(~)- 1re(Z, ~) by eq. (5.8). Thus, V(z) = V('~) + E[U(Z)U(Z)']. This interpretation 
is a second-moment version of the Hajek and LeCam efficiency results. 

5.4. Solving for the smallest asymptotic variance 

The characterization of an efficient estimator given in Theorem 5.3 is very useful 
for finding efficient estimators. Equation (5.8) can often be used to solve for L by 
following two steps: (1) specify the class of estimators so that conditions (i) and (ii) 
of Theorem 5.3 are satisfied, i.e. so the set of moment functions is linear and the 
Jacobian D is linear in the moment functions; (2) look for ~ such that D(v)= 
Elm(Z, ~)m(Z, f)']. The importance of step (1) is that the linearity conditions guarantee 
that a solution to eq. (5.8) exists when there is an efficient estimator [with the 
variance of re(Z, ~) nonsingular], so that the effort of solving eq. (5.8) will not be in 
vain. Although for some classes of estimators the linearity conditions are not met, 
it often seems to be possible to enlarge the class of estimators so that the linearity 
conditions are met without affecting the efficient estimator. An example is weighted 
least squares estimation, as further discussed below. 

Using eq. (5.8) to solve for an efficient estimator can be illustrated with several 
examples, both old and new. Consider first minimum distance estimators. The 
asymptotic variance has the form given in eq. (5.5) for the score G'WZ and the 
Jacobian term G' WG. The equation for the efficient W is then 0 = G' W G -  G' W ~  WG = 
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G ' W ( 1 -  £2W)G, which holds if .(2 ~z= I, i.e. I4 z = .(2-1. Thus, in this example one 
can solve directly for the optimal weight matrix. 

Another example is provided by the problem of deriving the efficient instruments 
for a nonlinear instrumental variables estimator. Let p(z, O) denote an s x 1 residual 
vector, and suppose that there is a vector of variables x such that a conditional 
moment restriction, 

E[p(z, 0o)lX3 = 0, (5.9) 

is satisfied. Here p(z, O) can be thought of as a vector of residuals and x as a vector 
of instrumental variables. A simple example is a nonlinear regression model y = 
f ( x ,  0o) + E, E[e[x] = 0, where the residual p(z, O) = y - f ( x ,  O) will satisfy the condi- 
tional moment  restriction in eq. (5.9) by e having conditional mean zero. Another 
familiar example is a single equation of a simultaneous equations system, where 
p(z, O) = y - Y'O and Y are the right-hand-side endogenous variables. 

An important  class of estimators are instrumental variable, or G M M  estimators, 
based on eq. (5.9). This conditional moment  restriction implies the unconditional 
moment  restriction that E[A(x)p(z, 0o)] = 0 for any q x s matrix of functions A(x). 
Thus, a G M M  estimator can be based on the moment  functions 9(z, O) = A(x)p(z, 0). 
Noting that Vog(z, O) = A(x)Vop(z, 0), it follows by Theorem 3.4 that the asymptotic 
variance of such a G M M  estimator will be 

V(A ) = { E[ A(x)Vot,(z, 0o)3 }- 1F£ A(x)p(z, Oo)p(z, Oo)'A(x)'] { E[ A(x)VoP(Z, 0o)] }- 1,, 
(5.10) 

where no weighting matrix is present because 9(z,O)= A(x)p(z,O) has the same 
number of components as 0. This asymptotic variance satisfies eq. (5.5), where 

= A(o) indexes the asymptotic variance. By choosing p(z, O) and A(x) in certain 
ways, this class of asymptotic variances can be set up to include all weighted least 
squares estimators, all single equation instrumental variables estimators, or all 
system instrumental variables estimators. In particular, cases with more instru- 
mental variables than parameters can be included by specifying A(x) to be a linear 
combination of all the instrumental variables, with linear combination coefficients 
given by the probability limit of corresponding sample values. For  example, suppose 
the residual is a scalar p(z, O)= y -  Y'O, and consider the 2SLS estimator with 
instrumental variables x. Its asymptotic variance has the form given in eq. (5.10) for 
A(x) = E[Yx ' ] (E[xx ' ] )  ix. In this example, the probability limit of the linear com- 
bination coefficients is E[ Yx'] (E[xx '] ) -1 .  For  system instrumental variables esti- 
mators these coefficients could also depend on the residual variance, e.g. allowing 
for 3SLS. 

The asymptotic variance in eq. (5.10) satisfies eq. (5.5) for Z = z, D(r)= E[A(x) x 
Vop(z, 0o)], and re(Z, ~) = A(x)p(Z,  0o). Furthermore,  both re(Z, ~) and D(r) are linear 
in A(x), so that conditions (i) and (ii) should be satisfied if the set of functions {A(x)} 
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is linear. To be specific, consider the class of all A(x) such that E[A(x)VoP(Z, 0o) ] 
and E[H A(x)il 2 li p(z, 0o)112] exist. Then conditions (i) and (ii) are satisfied with 
l- 3 ---- A3(" ) = C 1 A I ( "  ) d- C 2 A 2 ( ' ) .  39 Thus, by Theorem 5.3, if an efficient choice of 
instruments exist there will be one that solves eq. (5.8). To find such a solution, let 
G(x) = E[Vop(Z, 0o)]X ] and ,Q(x) = EEp(z, Oo)p(z, 0o)'1 x ], so that by iterated expecta- 
tions eq. (5.8) is 0 = E[A(x){G(x)--Q(x) /7 . (x) '}] .  This equation will be satisfied if 
G(x) - O(x)A(x) '  = 0, i.e. if 

A(x) = G(x)'K2(x)- 2. (5.11) 

Consequently, this function minimizes the asymptotic variance. Also, the asympto- 
tic variance is invariant to nonsingular linear transformations, so that ,4(x)= 
CG(x)' f2(x)-1 will also minimize the asymptotic variance for any nonsingular 
constant matrix C. 

This efficient instrument formula includes many important efficiency results as 
special cases. For  example, for nonlinear weighted least squares it shows that the 
optimal weight is the inverse of the conditional variance of the residual: For  
Qn(O) = - n -  1 ~n= 1 w(xi)[Yi -- h(xi, 0)] 2, the conclusion of Theorem 3.1 will give an 
asymptotic variance in eq. (5.10) with A(x) = w(x)ho(x, 0o), and the efficient estimator 
has A(x)= {E[e 2 ix] }-lho(x, 0o), corresponding to weighting by the inverse of the 
conditional variance. This example also illustrates how efficiency in a class that does 
not satisfy assumptions (i) and (ii) of Theorem 5.3 (i.e. the linearity conditions), can 
be shown by enlarging the class: the set of scores (or moments) for weighted least 
squares estimators is not linear in the sense of assumption (i), but by also including 
variances for "instrumental variable" estimators, based on the moment conditions 
9(z, O) = A (x ) [ y  - h(x, 0)-], one obtains a class that includes weighted least squares, 
satisfies linearity, and has an efficient member given by a weighted least squares 
estimator. Of course, in a simple example like this one it is not necessary to check 
linearity, but in using eq. (5.8) to derive new efficiency results, it is a good idea to 
set up the class of estimators so that the linearity hypothesis is satisfied, and hence 
some solution to eq. (5.8) exists (when there is an efficient estimator). 

Another example of optimal instrument variables is the well known result on 
efficiency of 2SLS in the class of instrumental variables estimators with possibly 
nonlinear instruments: If p(z, O)= y -  Y'O, E [ Y I x ]  = Fix, and o -2= E[p(z, 0o)21x] 
is constant, then G ( x ) = -  I l x  and -Q(x)= a 2, and the 2SLS instruments are 
EEYx ' ] (E[xx ' ]  ) -  ax = H x  = - az/i(x), a nonsingular linear combination of A(x). As 
noted above, for efficiency it suffices that the instruments are a nonsingular linear 
combination of ,4(x), implying efficiency of 2SLS. 

This general form/l(x)  for the optimal instruments has been previously derived 
in Chamberlain (1987), but here it serves to illustrate how eq. (5.8) can be used to 

39Existence of the asymptotic variance matrix corresponding to r 3 follows by the triangle and 
Cauchy-Schwartz inequalities. 
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derive the form of an optimal estimator. In this example, an optimal choice of 
estimator follows immediately from the form of eq. (5.8), and there is no need to 
guess what form the optimal instruments might take. 

5.5. Feasible efficient estimation 

In general, an efficient estimator can depend on nuisance parameters or functions. 
For example, in minimum distance estimation the efficient weighting matrix is a 
nuisance parameter that is unknown. Often there is a nuisance function, i.e. an 
infinite-dimensional nuisance parameter, such as the optimal instruments discussed 
in Section 5.4. The true value of these nuisance parameters is generally unknown, 
so that it is not feasible to use the true value to construct an efficient estimator. One 
feasible approach to efficient estimation is to use estimates in place of true nuisance 
parameters, i.e. to "plug-in" consistent nuisance parameter estimates, in the con- 
struction of the estimator. For example, an approach to feasible, optimal weighted 
least squares estimator is to maximize - n-  1 ~,= 1 I~(xi)[Yi - h(xi, 0)]  2, where ~(x) 
is an estimator of 1/E[eZlx]. 

This approach will give an efficient estimator, if the estimation of the nuisance 
parameters does not affect the asymptotic variance of 0. It has already been shown, 
in Section 5.2, that this approach works for minimum distance estimation, where it 
suffices for efficiency that the weight matrix converges in probability to .Q - 1. More 
generally, a result developed in Section 6, on two-step estimators, suggests that 
estimation of the nuisance parameters should not affect efficiency. One can think 
of the "plug-in" approach to efficient estimation as a two-step estimator, where the 
first step is estimating the nuisance parameter or function, and the second is 
construction of 0. According to a principle developed in the next section, the 
first-step estimation has no effect on the second-step estimator if consistency of the 
first-step estimator does not affect consistency of the second. This principle generally 
applies to efficient estimators, where nuisance parameter estimates that converge 
to wrong values do not affect consistency of the estimator of parameters of interest. 
For example, consistency of the weighted least squares estimator is not affected by 
the form of the weights (as long as they satisfy certain regularity conditions). Thus, 
results on two-step estimation suggest that the "plug-in" approach should usually 
yield an efficient estimator. 

The plug-in approach is often easy to implement when there are a finite number 
of nuisance parameters or when one is willing to assume that the nuisance function 
can be parametrized by a finite number of parameters. Finding a consistent estimator 
of the true nuisance parameters to be used in the estimator is often straightforward. A 
well known example is the efficient linear combination matrix H =  E[ Yx'] (E[xx'])- 1 
for an instrumental variables estimator, which is consistently estimated by the 2SLS 
coefficients/I = Z~'= 1 Yix'i(~, n= 1 XiXti) - 1. Another example is the optimal weight for 
nonlinear least squares. If the conditional variance is parametrized as a2(x, ?), then 
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the true 7 can be consistently estimated from the nonlinear least squares regression 
of g~ on a2(xi, v), where gi = Y i -  h(xi, O), (i = 1 . . . . .  n), are the residuals from a 
preliminary consistent estimator 0. 

Of  course, regularity conditions are, useful for showing that estimation of the 
nuisance parameters does not affect the asymptotic variance of the estimator. To 
give a precise statement it is helpful to be more specific about  the nature of the 
estimator. A quite general type of "plug-in" estimator is a G M M  estimator that 
depends on preliminary estimates of some parameters. Let g(z, O, V) denote a q x 1 
vector of functions of the parameters of interest and nuisance parameters ~, and let 

be a first-step estimator. Consider an estimator 0 that, with probability approaching 
one, solves 

n-  1 ~, g(z~, O, ~) = O. (5.12) 
i = 1  

This class is quite general, because eq. (5.12) can often be interpreted as the first- 
order conditions for an estimator. For  example, it includes weighted least squares 
estimators with an estimated weight w(x,~), for which eq. (5.12) is the first-order 
condition with g(z, O, 7) = w(x, 7)ho(x, O)[y - h(x, 0)]. One type of estimator not in- 
cluded is CMD, but the main result of interest here is efficient choice of weighting 
matrix, as already discussed in Section 5.2. 

1 x ' ,  mtz. Suppose also that f is a G M M  estimator, satisfying n -  ~ =  1 , ,, 7) = 0. If this 
equation is "stacked" with eq. (5.12), the pair (0, ~) becomes a joint G M M  estimator, 
so that regularity conditions for asymptotic efficiency can be obtained from the 
assumptions for Theorem 3.4. This result, and its application to more general types 
of two-step estimators, is described in Section 6. In particular, Theorem 6.1 can be 
applied to show that 0 f rom eq. (5.12) is efficient. If the hypotheses of that result are 
satisfied and G~ = E[V~g(z, 0o, 7o)] = 0 then 0 will be asymptotically normal with 
asymptotic variance the same as if ~ = 7o- As further discussed in Section 6, the 
condition G~ = 0 is related to the requirement that consistency of ~ not affect 
consistency of 0. As noted above, this condition is a useful one for determining 
whether the estimation of the nuisance parameters affects the asymptotic variance 
of the feasible estimator 0. 

To show how to analyze particular feasible estimators, it is useful to give an 
example. 

Linear regression with linear heteroskedasticity: Consider a linear model where 
E [ y l x ]  = x'Oo and ~r2(x) = Var(y[x) = w'~ o for some w = w(x) that is a function of 
x. As noted above, the efficient estimator among those that solve n-  1 Z "  A(xi)  × i = 1  

[ Y i -  x'iO] = 0 has A(x) = A(x)  = ( w ' % ) - l x .  A feasible efficient estimator can be 
constructed by using a squared residual regression to form an estimator c2 for ~o, 
and plugging this estimator into the first-order conditions. More precisely, let/? be 
the least squares estimator from a regression of y on x and c2 the least squares 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2173 

estimator from a regression of (y  - X'fl) 2 on w. Suppose that W'~o is bounded below 
and let r(v) be a positive function that is continuously differentiable with bounded 
derivative and r(v) = v for v greater than the lower bound on w'~ o.4° Consider 
obtained from solving Z~'= 1 r(w'~)-l~i(y i -x ' iO)= 0. This estimator is a two-step 
GMM estimator like that given above with 

= ( ~ ' , y ) ' ,  re(z ,7)  = [ ( y  - x 'f l)x ' ,  { (y  - x ' f l )  2 - w ' ~ } w ' ] ' ,  

9(z, 0, 7) = ~(w'~)-  l x ( y  - x ' O ) .  

It is straightforward to verify that the vector of moment functions [re(z, 7)', 9(z, 0, 7)']' 
satisfies the conditions of Theorem 6.1 if w is bounded, x and y have finite fourth 
moments, and E[xx'] and E[ww'] are nonsingular. Furthermore, E[V~g(z, 0o, 7o)] = 

_ E[.c(W,~o )- 2(y _ x,Oo)xw, ] = 0, so that this feasible estimator will be efficient. 

In many cases the efficiency of a "plug-in" estimator may be adversely affected if 
the parametrization of the nuisance functions is incorrect. For  example, if in a 
linear model, heteroskedasticity is specified as exponential, but the true conditional 
variance takes another form, then the weighted least squares estimator based on an 
exponential variance function will not be efficient. Consistency will generally not 
be affected, and there will be only a little loss in efficiency if the parametrization 
is approximately correct, but there could be big efficiency losses if the parametrized 
functional form is far from the true one. This potential problem with efficiency 
suggests that one might want to use nonparametric nuisance function estimators, 
that do not impose any restrictions on functional form. For  the same reasons 
discussed above, one would expect that estimation of the nuisance function does 
not affect the limiting distribution, so that the resulting feasible estimators would 
be efficient. Examples of this type of approach are Stone (1975), Bickel (1982), and 
Carroll (1982). These estimators are quite complicated, so an account is not given 
here, except to say that similar estimators are discussed in Section 8. 

5.6. Technicalities 

It is possible to show the generalized information matrix equality in eq. (5.1) under 
a condition that allows for f(zl 0) 1/2 to not be continuously differentiable and g(z, O) 
to not be continuous. For  the root-density, this condition is "mean-square" differen- 
tiability at 0o with respect to integration over z, meaning that there is 6(z) with 

I1 •(z) [I 2 dz < oo such that ~ [f(zl 0) 1/2 _ f(zl 0o) 1 / 2  - -  t~(Z)t (0 - -  00) ] 2 dz = o( [10 - 0o 112) 

4°The z(v) function is a "tr imming" device similar to those used in the semiparametric estimation 
literature. This specification requires knowing a lower bound on the conditional variance. It is also 
possible to allow r(v) to approach the identity for all v > 0 as the sample size grows, but  this would 
complicate the analysis. 
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as 0 ~ 0  o. As shown in Bickel et at. (1992), it will suffice for this condi t ion that  
f(z]O) is continuously differentiable in 0 (for a lmost  all z) and that  J(O) = o[ V0 In f(z[ O) x 
{V0 In f(zlO)}'f(z[O) dz is nonsingular  and cont inuous  in 0. Here  6(z) is the derivative 
off(z[O)l/2, so by Vof (z lO)  1/2 = l f ( z [ O ) l / Z v  0 In f(zqO), the expression for the infor- 
mat ion  matr ix  in terms of 6(z) is J = 4~6(z)f(z)' dz. A precise result on efficiency of 
M L E  in the class of G M M  est imators  can then be stated as: 

Lemma 5.4 

If (i) f(z] 0) 1/2 is mean-square  differentiable at 0 o with derivative 6(z); (ii) E[g(z, 0)] 
is differentiable at 0 o with derivative G; (iii) g(z, O) is continuous at 0 o with probabil i ty  
one; (iv) there is a ne ighborhood  JV Of 0o and a function d(z) such that  [I g(z, O)[[ ~< d(z) 
and ~d(z)Zf(zl0)dz is bounded  for 0eJV;  then ~g(z, O)f(z[O)dz is differentiable at 
0 o with derivative G + 2~g(z, Oo)6(z)f(zl 0o) 1/2 dz. 

Proof  

The p roof  is similar to that  of L e m m a  7.2 of I b r a g i m o v  and Has 'minski i  (1981). Let 
r(O) = f(z[ 0) 1/2, g(0) = g(Z, 0), (~ = (~(Z), and A(O) = r(O) - r(Oo) - fi'(0 - 0o), suppress- 
ing the z a rgument  for nota t ional  convenience. Also, let m(0",0)= ~g(O)r(O)2dz 
and M = ~g(Oo)fir(Oo) dz. By (ii), re(O, 0o) - m(0 o, 0o) - G(O - 0o) = o( [[ 0 - 0 o [[ ). Also, 
by the triangle inequality, Jl re(O, O) - m(0 o, 0o) - (G + 2M)(0 - 0o)[1 ~< [F re(O, 0o) -- 
m(0 o, 0o) - G(O - 0o)[l + [] re(O, O) - re(O, 0o) - 2M(O - 0o)[[, so that  to show the con- 
clusion it suffices to show [1 re(O, O) - rn(O, 0o) - 2M(O - 0o)[[ = o( [10 - 0o [[ ). To  show 
this, note  by the triangle inequality, 

0o) - 2M(O - 0o)[[ = fg(O)[r(O) 2 - -  ?'(00) 2] d z  - 2 M ( O  - 00) II m(O, O) re(O, I 

< fg(o) rr(o)÷ r(Oo)]  (0)dz + f [ g ( O ) -  g(Oo)] r(Oo)cS' dz 110 - 0 o II 

+ ~[g(O)r(O) -- g(Oo)r(Oo)]6' dz  II o -  Oo H = R~ + R 2 II o -  Oo II + R3 II o -  Oo ]1. 
J 

Therefore,  it suffices to show that  R 1 = o ( [ 1 0 - - 0 o ] 1 )  , R 2 " + 0  , and R 3 ~ 0  as 0--+0 o. 
By (iv) and the tr iangle and  C a u c h y - S c h w a r t z  inequalities, 

Rl<{[fg(Ot2r(O)2dzl'2+[fg(O)2r(Oo)2dzJ'2}[fA(Ol2dzl lj2 

{ff [; <~ d(z)2r(O) 2 dz + d(z)2r(O0) 2 dz o( l] 0 - 0o II) = o( II 0 - 0 o r] ). 

Also, by (iii) and (iv) and the dominated  convergence theorem, E [ ][ g(O)- g(Oo) r[ 2]__.0, 
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so by the Cauchy-Schwartz inequality, R 2 ~ (E[ t1 g(O)- g(Oo) II 2] )1/2(S II 6 II 2 dz)l/2...+0. 
Also, by the triangle inequality, R 3 ~< R2 + ~ II 9(0)II Ir(0) -- r(00)l tl ~ II dz, while for 
K > 0 ,  

f N g( O) ll l r( O) - r( O o) l ll f ll dz <~ f d(z) l r( O) - r( O o) l ll 6 li dz 

<. [ d z)lr O)- r Oo)l ll ll dz + K  l,10)-,/0o)l II lb dz 
Jd (z)>~ K d 

<~ { f d(z)Zlr(O)- r(Oo)t2 dz}l/2 { fa(z)>~Kllb[12 dz t 

r 0o, d ?{f  dz} 
By (iv), ~ d(z) 2 ]r(0) - r(0o) l 2 dz ~< 2 ~ d(z)2r(O) 2 dz + 21 d(z)2r(Oo) 2 dz is bounded. Also, 
by the dominated convergence theorem, ~d(z)~> r II 6 II 2 dz--,0 as K ~  Go, and by (i), 
~ l r (0) -  r(0o)l 2 dz ~ 0, so that the last term converges to zero for any K. Consider 
e > 0 and choose K so ~d~)~ K II ~ li 2 dz < ½~. Then by the last term is less than ½e for 
0 close enough to 00, implying that ~ II 0(0)II Ir(0) - r(0o)l II 6 II dz  < ~ for 0 close 
enough to 0 o. The conclusion then follows by the triangle inequality. Q.E.D. 

Proof of Theorem 5.1 

By condition (iv) of Theorem 3.4 and Lemma 3.5, g(z, O) is continuous on a neighbor- 
hood of 0o and E[g(z, 0)] is differentiable at 0 o with derivative G -- E[Vog(z, 00)]. 
Also, f(z[O)~/2 is mean-square differentiable by the dominance condition in Theorem 
5.1, as can be shown by the usual mean-value expansion argument. Also, by the 

1 conditions of Theorem 5.1, the derivative is equal to ~ 1 [f(z[Oo)> 0]f(zl  0o)-1/1 x 
Vof(zl 0o) on a set of full measure, so that the derivative in the conclusion of Lemma 
5.4 is G + E[g(z, 0o)V 0 in f(z[Oo)]. Also, 11 g(z, O)11 ~< d(z) = sup0~w 11 g(z, 0)U fias 
~d(z)2f(zlO)dz bounded, so that the conclusion of Lemma 5.4 holds. Then for 
u = g(z, 0o) + G J -  iV 0 In f(zlOo), 

(G'WG)- 1G'WI2WG(G'WG)- 1 _ j -  1 

= (G'WG)-1G'W(Suu' dz)WG(G'WG)-1, 

so the conclusion follows by S uu' dz positive semi-definite. Q.E.D. 

6. Two-step estimators 

A two-step estimator is one that depends on some preliminary, "first-step" estimator 
of a parameter vector. They provide a useful illustration of how the previous results 
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can be applied, even to complicated estimators. In particular, it is shown in this 
section that two-step estimators can be fit into the G M M  framework. Two-step 
estimators are also of interest in their own right. As discussed in Section 5, feasible 
efficient estimators often are two-step estimators, with the first step being the 
estimation of nuisance parameters that affect efficiency. Also, they provide a simpler 
alternative to complicated joint estimators. Examples of two-step estimators in 
econometrics are the Heckman (1976) sample selection estimator and the Barro 
(1977) estimator for linear models that depend on expectations and/or corresponding 
residuals. Their properties have been analyzed by Newey (1984) and Pagan (1984, 1986), 
among others. 

An important question for two-step estimators is whether the estimation of the 
first step affects the asymptotic variance of the second, and if so, what effect does 
the first step have. Ignoring the first step can lead to inconsistent standard error 
estimates, and hence confidence intervals that are not even asymptotically valid. 
This section develops a simple condition for whether the first step affects the second, 
which is that an effect is present if and only if consistency of the first-step estimator 
affects consistency of the second-step estimator. This condition is useful because 
one can often see by inspection whether first-step inconsistency leads to the second- 
step inconsistency. This section also describes conditions for ignoring the first 
step to lead to either an underestimate or an overestimate of the standard 
errors. 

When the variance of the second step is affected by the estimation in the first step, 
asymptotically valid standard errors for the second step require a correction for the 
first-step estimation. This section derives consistent standard error estimators by 
applying the general G M M  formula. The results are illustrated by a sample selection 
model. 

The efficiency results of Section 5 can also be applied, to characterize efficient 
members of some class of two-step estimators. For  brevity these results are given 
in Newey (1993) rather than here. 

6.1. Two-step estimators as joint G M M  estimators 

The class of G M M  estimators is sufficiently general to include two-step estimators 
where moment functions from the first step and the second step can be "stacked" 
to form a vector of moment conditions. Theorem 3.4 can then be applied to specify 
regularity conditions for asymptotic normality, and the conclusion of Theorem 3.4 
will provide the asymptotic variance, which can then be analyzed to derive the 
results described above. Previous results can also be used to show consistency, 
which is an assumption for the asymptotic normality results, but to focus attention 
on the most interesting features of two-step estimators, consistency will just be 
assumed in this section. 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2177 

A general type of estimator 0 that has as special cases most examples of interest 
is one that, with probability approaching one, solves an equation 

n -1 ~ g(zi, O,`2)=O, (6.1) 
i=l  

where g(z, 0, 7) is a vector of functions with the same dimension as 0 and '2 is a 
first-step estimator. This equation is exactly the same as eq. (5.12), but here the 
purpose is analyzing the asymptotic distribution of 0in general rather than specifying 
regularity conditions for 2̀ to have no effect. The estimator can be treated as part 
of a joint G M M  estimator if 2̀ also satisfies a moment condition of the form, with 
probability approaching one, 

n- 1 ~ m(zi ' y) = O, (6.2) 
i=1 

where re(z, 7) is a vector with the same dimension as 7- If g(z, 0, Y) and re(z, 7) are 
"stacked" to form O(z, O, y) = [m(z, 0)', g(z, O, j ' ] ' ,  then eqs. (6.1) and (6.2) are simply 
the two components of the joint moment equation n-  1 Z~= 1 0(z~, 0, 4) = 0. Thus, the 
two-step estimator from eq. (6.1) can be viewed as a G M M  estimator. 

An interesting example of a two-step estimator that fits into this framework is 
Heckman's (1976) sample selection estimator. 

Sample selection example: In this example the first step ~ is a probit estimator with 
regressors x. The second step is least squares regression in the subsample where the 
probit-dependent variable is one, i.e. in the selected sample, with regressors given 
by w and 2(x'`2) for 2(v) = c~(v)/cI)(v). Let d be the probit-dependent variable, that is 
equal to either zero or one. This estimator is useful when y is only observed if d = 1, 
e.g. where y is wages and d is labor force participation. The idea is that joint 
normality of the regression y = w'flo + u and the probit equation leads to E[y lw,  
d = 1, x] = w'flo + ~o2(X'7o), where ~o is nonzero if the probit- and regression-depen- 
dent variables are not independent. Thus, 2(x'c%) can be thought of as an additional 
regressor that corrects for the endogenous subsample. 

This two-step estimator will satisfy eqs. (6.1) and (6.2) for 

g(z, O, j = a[ 2(w,j ][y-  w'~-~2(x'j ], 

m(z, 7) = 2 ( x ' 7 ) ~  - 1 ( _  x'y)x[d- ~ ( x ' 7 ) ] ,  (6.3) 

where 0 = (fl', ~)'. Then eq. (6.1) becomes the first-order condition for least squares 
on the selected sample and eq. (6.2) the first-order condition for probit. 
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Regularity conditions for asymptotic normality can be formulated by applying the 
asymptotic normality result for GMM, i.e. Theorem 3.4, to the stacked vector of 
moment conditions. Also, the conclusion of Theorem 3.4 and partitioned inversion 
can then be used to calculate the asymptotic variance of 0, as in the following result. 
Let 

Go = E[Vog(z, 0o, 7o)], G~ = E[V~g(z, 0o, 7o)], 

M=E[V~m(Z,7o)], O(z)= --M-lm(z,7o). 

g(z) = g(z, 0o, ~o), 

(6.4) 

Theorem 6.1 

If eqs. (6.1) and (6.2) are satisfied with probability approaching one, 0 P-~ 0o, ~ ~ 70, 
and O(z, O, 7) satisfies conditions (i) (v) of Theorem 3.4, then 0 and ~ are asymptoti- 
cally normal and x /n (O-  0o) d-d--} N(O, V) where V = Go~E[ {g(z) + G~(z)} {g(z) + 

t - l t  
~,O(z)}  ]~o  - 

Proof 

By eqs. (6.1) and (6.2), with probability approaching one (0,~) is a G M M  estimator 
with moment function O(z, O, 7) = [m(~, 7), g(z, 0, 7) ] and W equal to an identity 
matrix. By ((~,i(~)-1(~,=~-1, the asymptotic variance of the estimator is 
(G'IG)- ~Cr'IE[O(z, 0o, 7o)O(z, 0o, 7o)']I(~(~IG)- ~ = (~- 1E[O(z, 0o, 7o)0(z, 0o, 7o)']G 1,. 
Also, the expected Jacobian matrix and its inverse are given by 

~=E[~O(z, Oo,?o)/~(O,,7,),]=[GoO G~] ~_1=[G001  - G o l G ~ M  1] 
M ' M -1 " 

(6.5) 

Noting that the first row of G-  1 is G o 1 1 1 ,  __ G~M- 1 ]  and that [I, - G~M 1] × 
0(z, 0o, 7o) = g(z) + G~(z),  the asymptotic variance of 0, which is the upper left block 
of the joint variance matrix, follows by partitioned matrix multiplication. Q.E.D. 

An alternative approach to deriving the asymptotic distribution of two-step esti- 
mators is to work directly from eq. (6.1), expanding in 0 to solve for x / n ( 0 -  0o) and 
then expanding the result around the true ?0. To describe this approach, first note 
that p is an asymptotically linear estimator with influence function O(z)= 

- M -  lm(zl, ?o), where x/n(~ - 70) = Y',~'= 1 ~(zi)/x/n + op(l). Then expanding the 
left-hand side of eq. (6.1) around 0 o and solving gives: 

[ J-' . - ,  
i = 1  i = l  [ ]1 

= -- n-1 Vog(z,, ~,~) 
i = 1  
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= - Go 1 ~ {g(z,) + G~tp(zi)}/xfn + or(1 ), (6.6) 
i=1  

where O and ~ are mean values and the third equality follows by convergence of 
and the mean values and the conclusion of Lemma 2.4. The conclusion then follows 

by applying the central limit theorem to the term following the last equality. 
One advantage of this approach is that it only uses the influence function 

representation x/n(~ - 70) = Z~=I ~(zl) /x/n + °p(1) for 4, and not the G M M  formula 
in eq. (6.2). This generalization is useful when ~ is not a G M M  estimator. The G M M  
approach has been adopted here because it leads to straightforward primitive 
conditions, while an influence representation for ~ is not a very primitive condition. 
Also the G M M  approach can be generalized to allow ~ to be a two-step, or even 
multistep, estimator by stacking moment conditions for estimators that affect ,~ with 
the moment conditions for 0 and 7. 

6.2. The effect of  first-step estimation on second-step standard errors 

One important feature of two-step estimators is that ignoring the first step in 
calculating standard errors can lead to inconsistent standard errors for the second 
step. The asymptotic variance for the estimator solving eq. (6.1) with ~) = 7o, i.e. the 
asymptotic variance ignoring the presence of~ in the first stage, is G o 1E[9(z)g(z),]G ° 1,. 
In general, this matrix differs from the asymptotic variance given in the conclusion 
of Theorem 6.1, because it does not account for the presence of the first-step 
estimators. 

Ignoring the first step will be valid if G~ = 0. Also, if G~ ~ 0, then ignoring the first 
step will generally be invalid, leading to an incorrect asymptotic variance formula, 
because nonzero G~ means that, except for unusual cases, E[9(z)9(z)'] will not equal 
E[{9(z  ) + G~k(z)} {9(z) + G~(z)} ' ] .  Thus, the condition for estimation of the first 
step to have no effect on the second-step asymptotic variance is G~ = 0. 

A nonzero G~ can be interpreted as meaning that inconsistency in the first-step 
estimator leads to inconsistency in the second-step estimator. This interpretation is 
useful, because it gives a comparatively simple criterion for determining if first-stage 
estimation has to be accounted for. To derive this interpretation, consider the 
solution 0(7) to E[g(z, 0(7),7)] = 0. Because 0 satisfies the sample version of this 
condition, 0(7) should be the probability limit of the second-step estimator when 
converges to 7 (under appropriate regularity conditions, such as those of Section 2). 
Assuming differentiation inside the expectation is allowed, the implicit function 
theorem gives 

Vr0(70) = - Go ~Gr. (6.7) 
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By nonsingularity of Go, the necessary and sufficient condition for Gr = 0 is that 
V~0(7o) = 0. Since 0(7o)= 0 o, the condition that V~0(Vo)= 0 is a local, first-order 
condition that inconsistency in ~ does not affect consistency of 0. The following 
result adds regularity conditions for this first-order condition to be interpreted as 
a consistency condition. 

Theorem 6.2 

Suppose that the conditions of Theorem 6.1 are satisfied and g(z, 0, j satisfies the 
conditions of Lemma 2.4 for the parameter vector (0,7).  If 0 ~  0 o even when 

~ 7  # Yo, then Gr = 0. Also suppose that E[VTg(z, 0o, 7)] has constant rank on a 
neighborhood of 7o- If for any neighborhood of 7o there is 7 in that neighborhood 
such that 0 does not converge in probability to 0 o when ~ P~* ~, then G~. # 0. 

Proof 

By Lemma 2.4, 0 P---*0o and ~P-~y imply that ~-~,n=l g(zi, O,~)/nP--~E[g(z, Oo, j ] .  
The sample moment conditions (6.1) thus imply E[g(z, Oo, j ]  = 0. Differentiat- 

• 4 1 .  ing this identity with respect to 7 at 7 = 7o gives G 7 = 0. To show the second 
conclusion, let 0(7) denote the limit of 0 when p P-~ 7- By the previous argument, 
E[g(z, 0(7), 7)] = 0. Also, by the implicit function theorem 0(7) is continuous at 7o, 
with 0(7o) = 0o. By the conditions of Theorem 6.1, Go(O, Y) = E[Vog( z, O, 7)] is contin- 
uous in a neighborhood of 0o and 7o, and so will be nonsingular on a small enough 
neighborhood by Go nonsingular. Consider a small enough convex neighborhood 
where this nonsingularity condition holds and E[V~g(z, 0o, 7)] has constant rank. A 
mean-value expansion gives E [g(z, 0o, 7)].= E [g(z, 0(j ,  7)] + G0(if, 7) [0o - 0(7)] ¢ 0. 
Another expansion then gives E[g(z, 0 o, 7)] = E[V~g(z, 0 o, ~7)] (7 - ?o) # 0, implying 
E[V~g(z, 0o, 9)] # 0, and hence G~ 4:0 (by the derivative having constant rank). 

Q.E.D. 

This results states that, under certain regularity conditions, the first-step estimator 
affects second-step standard errors, i.e. G~ # 0, if and only if inconsistency in the 
first step leads to inconsistency in the second step. The sample selection estimator 
provides an example of how this criterion can be applied. 

Sample selection continued: The second-step estimator is a regression where some 
of the regressors depend on 7. In general, including the wrong regressors leads to 
inconsistency, so that, by Theorem 6.2, the second-step standard errors will be 
affected by the first step. One special case where the estimator will still be consistent 
is if ~o = 0, because including a regressor that does not belong does not affect 
consistency. Thus, by Theorem 6.2, no adjustment is needed (i.e. G~ = 0) if ~0 = 0. 
This result is useful for constructing tests of whether these regressors belong, because 

41 Differentiation inside the expectation is allowed by Lemma 3.6. 
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it means that under the null hypothesis the test that ignores the first stage will have 
asymptotically correct size. These results can be confirmed by calculating 

where 2v(v) = d2(v)/dv. By inspection this matrix is generally nonzero, but is zero if 

~o = O. 

This criterion can also be applied to subsets of the second-step coefficients. Let S 
denote a selection matrix such that SA is a matrix of rows of A, so that SO is a 
subvector of the second-step coefficients. Then the asymptotic variance of SO is 
SG ° 1 El- {g(z) + G~(z) } {g(z) + G~(z) }'] G o 1S', while the asymptotic variance that 
ignores the first step is SGolE[g(z)g(z) '] G o 1S'. The general condition for equality 
of these two matrices is 

0 = - -  S G  0 1 G,  t = SVT0(~o)  = VT[-S0(~;o)] ' (6.8) 

where the second equality follows by eq. (6.7). This is a first-order version of the 
statement that asymptotic variance of SO is affected by the first-step estimator if and 
only if consistency of the first step affects consistency of the second. This condition 
could be made precise by modifying Theorem 6.2, but for simplicity this modification 
is not given here. 

Sample selection continued: As is well known, if the correct and incorrect regressors 
are independent of the other regressors then including the wrong regressor only 
affects consistency of the coefficient of the constant. Thus, the second-step standard 
errors of the coefficients of nonconstant variables in w will not be affected by the 
first-step estimation if w and x are independent. 

One can also derive conditions for the correct asymptotic variance to be larger or 
smaller than the one that ignores the first step. A condition for the correct asymptotic 
variance to be larger, given in Newey (1984), is that the first- and second-step 
moment conditions are uncorrelated, i.e. 

E[O(Z, 0o, ~o)m(z, ~o) ' ]  = 0. (6.9) 

In this case E[g(z)~,(z)'] =0 ,  so the correct variance is GoXE[g(z)g(z)']Gol'+ 
Go 1G~E[O(z)O(z),jG, G ° 1,, which is larger, in the positive semi-definite sense, than 
the one G o aE[g(z)g(z)']Go 1, that ignores first-step estimation. 
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Sample selection continued: In this example, E [ y  - w'flo - ~o2(X'7o) 1 w, d = 1, x] = 0, 
which implies (6.9). Thus, the standard error formula that ignores the first-step 
estimation will understate the asymptotic standard error. 

A condition for the correct asymptotic variance to be smaller than the one that 
ignores the first step, given by Pierce (1982), is that 

m(z) = m(z, 70) = V~ In f(zW 0o, 70). (6.10) 

In this case, the identities ~ m(z, 7)f(z I 0o, 7) dz = 0 and ~ g(z, 0o, 7)f(z I 0o, 7) dz = 0 can 
be differentiated to obtain the generalized information matrix equalities M = 
- E[s(z)s(z)'] and G~ = - E[g(z)s(z)']. It then follows that G~ = - E[9(z)m(z)'] = 
--E[g(z)O(z) ']{E[O(z)O(z) ']}  1, so that the correct asymptotic variance is 
Go 1 E [ g ( z ) ~ ( z ) t ] G  0 1 _ GO 1E[g(z)O(z), ] {E[O(z)O(z)'] } - 1E[O(z)9(z)']G o a,. This 
variance is smaller, in the positive semi-definite sense, than the one that ignores the 
first step. 

Equation (6.10) is a useful condition, because it implies that conservative asymp- 
totic confidence intervals can be constructed by ignoring the first stage. Unfortunately, 
the cases where it is satisfied are somewhat rare. A necessary condition for eq. (6.10) 
is that the information matrix for 0 and 7 be block diagonal, because eq. (6.10) 
implies that the asymptotic variance of~ is {E[m(z)m(z)'] } - 1, which is only obtainable 
when the information matrix is block diagonal. Consequently, if 9(z, O, 7) were the 
score for 0, then G.~ = 0 by the information matrix equality, and hence estimation 
of ~ would have no effect on the second-stage variance. Thus, eq. (6.10) only leads 
to a lowering of the variance when 9(z, O, 7) is not the score, i.e. 0 is not an efficient 
estimator. 

One case where eq. (6.10) holds is if there is a factorization of the likelihood 
f(ztO, 7) = f l  (zl O)f2(zlT) and p is the MLE of 7. In particular, if fl(zl0) is a conditional 
likelihood and fz(zlT)= f2(x]7) a marginal likelihood of variables x, i.e. x are 
ancillary to 0, then eq. (6.8) is satisfied when ~ is an efficient estimator of 7o. 

6.3. Consistent asymptotic variance estimation for two-step estimators 

The interpretation of a two-step estimator as a joint G M M  estimator can be used 
to construct a consistent estimator of the asymptotic variance when G~ ¢ 0, by 
applying the general G M M  formula. The Jacobian terms can be estimated by 
sample Jacobians, i.e. as 

a0 = n-1 L a, =n-1 L =.-1 L 
i 1 i = 1  i = 1  

The second-moment matrix can be estimated by a sample second-moment matrix 
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Oi = g(zl, O, ~) and ~i = m(zi, ~), of the form ~ = n-  1 z . . . . . . . .  i= ~(&, m~) (9~, rh'~). An estimator 
of the joint asymptotic variance of 0 and ~ is then given by 

An estimator of the asymptotic variance of the second step 0 can be extracted from 
the upper left block of this matrix. A convenient expression, corresponding to that 
in Theorem 6.1, can be obtained by letting ~ = - ~ t -  lrh~, so that the upper left 
block of V is 

~r 0 = Go 1 l'l-1 {Oi + d,~Z) {0~ -I- G ~ , }  Go 1, (6.11) 
i = 1  

If the moment functions are uncorrelated as in eq. (6.9), so that the first-step 
estimation increases the second-step variance, then for ~'~ = n-lZ~'= 1 ~/~'/, an asymp- 
totic variance estimator for 0 is 

Do = d o  1 n -  1 gigi Go + 
i = 1  

(6.12) 

This estimator is quite convenient, because most of its pieces can be recovered from 
standard output of computer programs. The first of the two terms being summed 
is a variance estimate that ignores the first step, as often provided by computer 
output (possibly in a different form than here). An estimated variance ~'~ is also often 
provided by standard output from the first step. In many cases G o 1 can also be 
recovered from the first step. Thus, often the only part of this variance estimator 
requiring application-specific calculation is dy. This simplification is only possible 
under eq. (6.9). If the first- and second-step moment conditions are correlated then 
one will need the individual observations ~i, in order to properly account for the 
covariance between the first- and second-step moments. 

A consistency result for these asymptotic variance estimators can be obt~iined by 
applying the results of Section 4 to these joint moment conditions. It will suffice to 
assume that the joint moment vector ~(z, 0, ~)= Ira(z, 7)',g(z, 0, ~)']' satisfies the 
conditions of Theorem 4.5. Because it is such a direct application of previous results 
a formal statement is not given here. 

In some cases it may be possible to simplify V0 by using restrictions on the form 
of Jacobians and variance matrices that are implied by a model. The use of such 
restrictions in the general formula can be illustrated by deriving a consistent 
asymptotic variance estimator for the example. 
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Sample selection example continued: Let W/= d~[w' i, 2(x'/7o) ] '  and I7/i = di[w'i, 2(x'i~) ]'. 
Note that by the residual having conditional mean zero given w, d = 1, and x, it is 
the case that G o = -E[d iWiW' i ]  and G~ = -~oE[di2v(X'iTo)Wix'i], where terms in- 
volving second derivatives have dropped out by the residual having conditional 
mean zero. Estimates of these matrices are given by G0 = -  " I~ ^ '  )-~q=l iWi/n and 
G~ = -~ ,7=~2~(x ' /p)Wyjn .  Applying eq. (6.12) to this case, for e~ ~ = y~ - W/(fl,̂ ' ̂ ' ~),̂ ' 
then gives 

P'o=C'o l (  n-1 ,=~ lTl~V'i~)Go~' + Go 1¢~ V , ~ o  

= n ¢v, Cv, ¢v/Cv'/# 
i i = 1  i = 1  

(6.13) 

where V7 is a probit  estimator of the a sym~ot i c  variance of x/n(~ - 7o), e.g. as 
provided by a canned computer program, a n d / 7  = t~ o l~y is the matrix of coefficients 
from a multivariate regression of ~2v(x'i~)x / on l~i. This estimator is the sum of the 
White (1980) variance matrix for least squares and a correction term for the first- 
stage estimation, a / I t  will be a consistent estimator of the asymptotic variance of 

00). `3 

7. Asymptotic normality with nonsmooth objective functions 

The previous asymptotic normality results for MLE and G M M  require that the 
log-likelihood be twice different/able and that the moment functions be once different/- 
able. There are many examples of estimators where these functions are not that 
smooth. These include Koenker  and Bassett (1978), Powell's (1984, 1986) censored 
least absolute deviations and symmetrically trimmed estimators, Newey and Powell's 
(1987) asymmetric least squares estimator, and the simulated moment  estimators, of 
Pakes (1986) and McFadden (1989). Therefore, it is important  to have asymptotic 
normality results that allow for nonsmooth objective functions. 

Asymptotic normality results for nonsmooth functions were developed by Daniels 
(1961), Huber  (1967), Pollard (1985), and Pakes and Pollard (1989). The basic insight 
of these papers is that smoothness of the objective function can be replaced by 
smoothness of the limit if certain remainder terms are small. This insight is useful 
because the limiting objective functions are often expectations that are smoother 
than their sample counterparts. 

42Contrary to a statement given in Amemiya (1985), the correction term is needed here. 
43The normalization by the total sample size means that one can obtain asymptotic confidence 

intervals as described in Section 1, with the n given there equal to the total sample size. This procedure 
is equivalent to ignoring the n divisor in Section 1 and dropping the n from the probit asymptotic variance 
estimator (as is usually done in canned programs) and from the lead term in eq. (6.13). 
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To illustrate how this approach works it is useful to give a heuristic description. 
The basic idea is the approximation 

A t 

Q.(O) - 0~.(8o) ~- D.(8 - 8o) + Oo(8) - Qo(8o) 
A t 

~- D .(8 - 0o) + (0 - Oo)H(8 - 80)/2, 

(7.1) 

where/) ,  is a derivative, or approximate derivative, of (~.(0) at 8o, H = VooQo(8o), 
and the second approximate equality uses the first-order condition VoQo(Oo) = 0 in 
a second-order expansion of Qo(O). This is an approximation of 0.(8) by a quadratic 
function. Assuming that the approximation error is of the right order, the maximum 
of the approximation should be close to the true maximum, and the maximum of 
the approximation is 0" = 8 o - H -  1/~.. This random variable will be asymptotically 
normal i f / ) .  is, so that asymptotic normality of 0 will follow from asymptotic 
normality of its approximate value 0. 

7.1. The  basic results 

In order to make the previous argument precise the approximation error in eq. (7.1) 
has to be small enough. Indeed, the reason that eq. (7.1) is used, rather than some 
other expansion, is because it leads to approximation errors of just the right size. 
Suppose for discussion purpos~ t h a t / ) . ~  V0(~.(0o), where the derivative exists with 
probability one. Then Q.(O) - Q.(Oo) - O'(O - 0o) goes to zero faster than J] 0 - 8 o n 
does, by the definition of a derivative. Similarly, Qo(O) - Qo(8o) goes to zero faster 

than n 0 - 0 o II [since VoQo(Oo) = 0]. Also, assuming that x/n[(~.(8) - Qo(8)] is boun- 
ded in probability for each 8, as would typically be the case when Q.(O) is made 

up of sample averages, and noting that .,/n/). bounded in probability follows by 
asymptotic normality, it follows that the remainder term, 

/~ . (0 )  = x f n E Q . ( 0 )  - Q . ( 0 o )  - / ) . ( 8  - 0o)  - { Q o ( 0 )  - Qo(Oo)}]/Jj 0 - 0o IJ, (7 .2)  

is bounded in probability for each 0. Then, the combination of these two properties 
suggests that R,(O) goes to zero as the sample size grows and 0 goes to 0 o, a stochastic 
equicontinuity property. If so, then the remainder term in eq. (7.1) will be of order 

%(118- 8o i l /xf ~ + I[ 8 - 0o II 2). The next result shows that a slightly weaker condition 
is sufficient for the approximation in eq. (7.1) to lead to asymptotic normality of 0. 

Theorem 7.1 

Suppose that (~,(0 A) >~ sup0~o(~,(0)- %(n-1 ) ,  0P__~ 0o, and (i) Qo(O)is maximized on 
O at 0o; (ii) 0o is an interior point of O;, (iii) Qo(O) is twice differentiable at 0o 
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with nonsingular second derivative H; (iv) x/n/3 d_~ N(0, £2); (v) for any 6,----~0, 

suPll0- 0,11 ~< a, I/~,(0)/[ 1 + ,,/n II 0 - 0o II ]l ~ 0. Then x / n ( 0 -  0o) ~ N(0, H -  1.QH- 1). 

The proof of this result is given in Section 7.4. This result is essentially a version of 
Theorem 2 of Pollard (1985) that applies to any objective function rather than just 
a sample average, with an analogous method of proof. The key remainder condition 
is assumption (v), which is referred to by Pollard as stochastic differentiability. It is 
slightly weaker than /~.(0) converging to zero, because of the presence of the 

denominator term (1 + x/n II 0 - 0o II )- 1, which is similar to a term Huber (1967) 
used. In several cases the presence of this denominator term is quite useful, because it 
leads to a weaker condition on the remainder without affecting the conclusion. 
Although assumption (v) is quite complicated, primitive conditions for it are avail- 
able, as further discussed below. 

The other conditions are more straightforward. Consistency can be shown using 
Theorem 2.1, or the generalization that allows for 0 to be an approximate maximum, 
as suggested in the text following Theorem 2.1. Assumptions (ii) and (iii) are quite 
primitive, although verifying assumption (iii) may require substantial detailed work. 
Assumption (iv) will follow from a central limit theorem in the usual case where 
/), is equal to a sample average. 

There are several examples of G M M  estimators in econometrics where the moments 
are not continuous in the parameters, including the simulated moment estimators 
of Pakes (1986) and McFadden (1989). For these estimators it is useful to have more 
specific conditions than those given in Theorem 7.1. One way such conditions can 
be formulated is in an asymptotic normality result for minimum distance estimators 
where 0,(0) is allowed to be discontinuous. The following is such a result. 

Theorem 7.2 

Suppose that 0,(0)' VV0,(0) ~< inf0~e0,(0)'W0.(0) + op(n-1), OP_~ Oo ' and W ~ W, W is 
positive semi-definite, where there is 9o(0) such that (i) 9o(0o) = 0; (ii) go(0) is differen- 
tiable at 0 o with derivative G such that G'WG is nonsingular; (iii) 0o is an interior 

point of 6); ( iv )x /n0 , (0o)~  U(0, Z); (v)for any b, ~ 0, suPll0_ 0011 ~ ~°x/n t] 0 , (0)-  

0.(0o) - adO)II/[1 + .,/n H 0 - Oo II ] ~ O. Then x/-n(O- 0o) d .  N[O, (G'WG)- 1G' k 
W.SWG (G'WG)- 1"]. 

The proof is given in Section 7.4. For the case where 0,(0) has the same number of 
elements as 0, this result is similar to Huber's (1967), and in the general case is like 
Pakes and Pollard's (1989), although the method of proof is different than either of 
these papers'. The conditions of this result are similar to those for Theorem 7.1. The 
function go(0) should be thought of as the limit of 0,(0), as in Section 3. Most of the 
conditions are straightforward to interpret, except for assumption (v). This assump- 
tion is a "stochastic equicontinuity" assumption analogous to the condition (v) 
of Theorem 7.1. Stochastic equicontinuity is the appropriate term here because 
when go(0) is the pointwise limit of 0,(0), i.e. 0 , ( 0 ) ~  go(0) for all 0, then for all 
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0 ~ 0o, ~ n  I[ 0.(0) - 0.(0o) - go(0)II/[1 + ~ II 0 - 0o II ] ~ 0. Thus, condition (v) can 
be thought of as an additional requirement that this convergence be uniform over 
any shrinking neighborhood of 0 o. As discussed in Section 2, stochastic equicontinuity 
is an essential condition for uniform convergence. 

Theorem 7.2 is a special case of Theorem 7.1, in the sense that the proof proceeds 
by showing that the conditions of Theorem 7.1 are satisfied. Thus, in the nonsmooth 
case, asymptotic normality for minimum distance is a special case of asymptotic 
normality for an extremum estimator, in contrast to the results of Section 3. This 
relationship is the natural one when the conditions are sufficiently weak, because a 
minimum distance estimator is a special case of a general extremum estimator. 

For some extremum estimators where V0(~,(0) exists with probability one it 
is possible to use Theorem 7.2 to show asymptotic normality, by setting 0,(0) 
equal to VoQ,(0). An example is censored least absolute deviations, where 
v00.(0) = . - 1 E L  1 ' lxl (xiO > 0)[1 - 2- l(y < x'O)]. However, when this is done there 
is an additional condition that has to be checked, namely that IlVoQ.(0")lt2~ < 

inf0~ o]l V00,(0)tl z + op(n- 1), for which it suffices to show that ,,fnV0(~,(0) ~ 0. This 
is an "asymptotic first-order condition" for nonsmooth objective functions that 
generally has to be verified by direct calculations. Theorem 7.1 does not take this 
assumption to be one of its hypotheses, so that the task of checking the asymptotic 
first-order condition can be bypassed by working directly with the extremum 
estimator as in Theorem 7.1. In terms of the literature, this means that Huber's 
(1967) asymptotic first-order condition can be bypassed by working directly with 
the extremum formulation of the estimator, as in Pollard (1985). The cost of doing 
this is that the remainder in condition (v) of Theorem 7.1 tends to be more compli- 
cated than the remainder in condition (v) of Theorem 7.2, making that regularity 
condition more difficult to check. 

The most complicated regularity condition in Theorems 7.1 and 7.2 is assumption 
(v). This condition is difficult to check in the form given, but there are more primitive 
conditions available. In particular, for Q,(0) - 1 , = n Zi= 1 q(zi, 0), where the objective 
function is a sample average, Pollard (1985) has given primitive conditions for 
stochastic differentiability. Also, for G M M  where 0.(0) = Z~= 1 g(z~, O)/n and go(O) = 
E[g(z, 0)], primitive conditions for stochastic equicontinuity are given in Andrews' 
(1994) chapter of this handbook. Andrews (1994) actually gives conditions for a 

stronger result, that supllo_ooll<~fn]lO,(O)-O,(Oo)-9o(O)ll ~ 0 ,  i.e. for (v) of 
Theorem 7.2 without the denominator term. The conditions described in Pollard 
(1985) and Andrews (1994) allow for very weak conditions on g(z, 0), e.g. it can even 
be discontinuous in 0. Because there is a wide variety of such conditions, we do not 
attempt to describe them here, but instead refer the reader to Pollard (1985) and 
Andrews (1994). 

There is a primitive condition for stochastic equicontinuity that is not covered in 
these other papers, that allows for g(z, O) to be Lipschitz at 0o and differentiable with 
probability one, rather than continuously differentiable. This condition is simple 
but has a number of applications, as we discuss next. 
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7.2. Stochastic equicontinuity for Lipschitz moment functions 

The following result gives a primitive condi t ion for the stochastic equicontinui ty 
- l ~ ' - ~ n  "2 0) and go(O)= hypothesis of Theorem 7.2 for G M M ,  where ~,(0) = n 2.,~= lgt ~, 

E[g(z, 0)3. 

Theorem 7.3 

Suppose that E[g(z, 0o)] = 0 and there are A(z) and e > 0 such that with probability one, 
r(z, O) = II g(z, O) - g(z, 0o) - A(z)(O - 0o)II/ll 0 - 0o II ~ 0 as 0 ~ 0o, E[supllo_Ool I ~ x 
r(z,O)] < oo, and n- lZ~=lA(z i )  P-~E[A(z)]. Then assumptions (ii) and (v) of 
Theorem 7.2 are satisfied for G = E[A (z)]. 

Proof 

For  any ~ > 0, let r(z, ~) = suPN0_0okl ~<~ i[ r(z, O)[[. With probabil i ty one r(z, ~)--* 0 as 
e-~0, so by the dominated  convergence theorem, E[r(z,e)] ~ 0  as e ~ 0 .  Then  for 
0 ~ 0o and e = II 0 -  0o Ih, /I go(0) -  go(0o)-  G(O- 0o)L[ = [[ E[g(z, O) - 9(z, 0o) - A(z) x 
(0 - 0o) ] t] ~< E[r(z, e)] [] 0 - 0o ]] ~ 0 ,  giving assumption (iii). For  assumption (v), note 
that for all 0 with ][ 0 - 0 o [] ~< 6,, by the definition of r(z, ~) and the Markov inequality, 

x /~  II 0,(0) - 0,(0o) - go(0)el/[1 + ~ Ib 0 - 0o il ] ~< , f n [  H Z7=1 {a(z,) - E[A(z)] } × 

(O--Oo)/n [[ + {Z~= l r (z , ,J , ) /n+E[r(z ,  6.)]} [[ 0 -- 0o I[ ]/(1 + x/nil  0 -  0 o [[ )~< [[ 2n=1 
{A(z,) - E[A(z)] }/n [] + Ov(E[r(z, 3,)])  ~ 0. Q.E.D. 

The condit ion on r(z, O) in this result was formulated by Hansen et al. (1992). The 
requirement  that  r(z, O)~ 0 as 0 ~ 0o means that, with probabil i ty one, 9(z, O) is 
differentiable with derivative A(z) at 0 o. The dominance condit ion further restricts 
this remainder to be well behaved uniformly near the true parameter.  This uniformity 
property requires that g(z, 0) be Lipschitz at 0o with an integrable Lipschitz constant. ~4 

A useful aspect of this result is that  the hypotheses only require that  ~ =  1 A(zi) P-~ 
E[A(z)], and place no other  restriction on the dependence of the observations. This 
result will be quite useful in the time series context,  as it is used in Hansen et al. 
(1992). Another  useful feature is that  the conclusion includes differentiability of go(O) 
at 0o, a "bonus"  resulting from the dominance  condit ion on the remainder.  

The condit ions of Theorem 7.3 are strictly weaker than the requirement  of Section 
3 that g(z, O) be cont inuously differentiable in a ne ighborhood of 0 o with derivative 
that  is dominated  by an integrable function, as can be shown in a s traightforward 
way. An example of a function that  satisfies Theorem 7.3, but  not  the stronger 
cont inuous differentiability condition, is the momen t  condit ions corresponding to 
Huber 's  (1964) robust  locat ion estimator. 

44 For d(z) = sup110-Soil < ~r(z, 0), the triangle and Cauchy Schwarz inequalities imply J] g(z, O) - g(z, 0o)Jp <~ 
[ll/l(z) II + d(z)] hi 0 - 0o II. 
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Huber's  robust  location estimator: The first-order condit ions for this est imator  are 
- - 1  n n Z~=lP(Yl  O ) = O f o r p ( e ) = - l ( e 4 - 1 ) + l ( - l < e < l ) e + l ( e > ~ l ) . T h i s e s t i -  

mator  will be consistent for 0 o where y is symmetrically distributed a round  0 o. The 
motivation for this estimator is that  its first-order condition is a bounded, continuous 
function of the data, giving it a certain robustness property;  see Huber  (1964). This 
est imator is a G M M  estimator with g(z, O) = p(y - 0). The function p(e) is differen- 
tiable everywhere except at - 1 or 1, with derivative p~(e) = 1 ( -  1 < e < 1). Let 
A (z) = - p~(y - 0o). Then for e = y - 0 o and 8 = 0 o - 0, 

r(z, 0) = I g (z ,  0) - g(z,  0o) - zl (z)(O - 0o)  1/I 0 - 0o l  

- -  I p ( e  + 6)  - p ( 0  - p~(e)61/181 

= l [ - l ( ~ + 6 ~ < - 1 ) + l ( e ~ < - l ) l + [ l ( ~ + 6 > ~ 1 ) - 1 ( , e 1 > 1 ) ]  

+ [1( - -  1 < e + 6  < 1)-- 1(-- 1 < e  < 1)-1(~ + 8)1/181. 

F o r 0 < 8 ~ <  1, 

r(z ,O)= [ 1 ( -  1 - 6  <e~< - 1 )+  1(1 - 6 ~ < e <  1)+  [ 1 ( -  1 - 6 < e ~ <  - 1) 

- 1(1 - 6 ~< ~ < 1 ) ] ( e  + 8)1/181 

~< 1 ( - 8  < E +  1 -..<0)(8+ l e +  ll)/16l + 1 ( - 8  ~ e -  1 < 0 ) ( l e -  11 +8)/18[ 

~ < 2 [ 1 ( - 8  < e  + 1 ~<0)+ 1 ( - 0  ~ < e -  1 < 0 ) ]  ~<2. 

Applying an analogous argument  for negative - 1  ~<6 < 0  gives r(z,O)<<, 
2 [ l ( [ e - l [ ~ < [ 6 [ ) + l ( j e + l [ < ~ [ 6 [ ) ] ~ < 4 .  Therefore, if P r o b ( e = l ) = 0  and 
Prob(e = - 1) = 0 then r(z, O) --* 0 with probabil i ty one as 0 --* 0 o (i.e. as 8 --} 0). Also, 
r(z, 0) ~< 4. Thus, the condit ions of  Theorem 7.3 are satisfied. 

Other  examples of  estimators that  satisfy these condit ions are the asymmetr ic  least 
squares est imator of  Newey and Powell (1987) and the symmetrically t r immed 
estimators for censored Tobi t  models of Powell (1986) and Honor6  (1992). All of 
these examples are interesting, and illustrate the usefulness of Theorem 7.3. 

7.3. Asympto t ic  variance estimation 

Just as in the smooth  case the asymptot ic  variance of ext remum and min imum 
distance estimators contain derivative and variance terms. In the smooth  case the 
derivative terms were easy to estimate, using derivatives of the objective functions. 
In the nonsmooth  case these estimates are no longer available, so alternatives must  
be found. One alternative is numerical derivatives. 

For  the general extremum est imator of  Theorem 7.1, the matrix H can be 
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estimated by a second-order numerical derivative of the objective function. Let e~ 
denote the ith unit vector, e, a small positive constant that depends on the sample 
size, and /4  the matrix with i, j th element 

H"~ij = [ Q ( O  + e ie  . + e15.) - Q ( O -  el5 . + b j5 . )  - Q ( O  + ei5 n - e j5 . )  

+ Q ( O -  e,e. - eye.)J/4e 2. 

Under certain conditions on 5,, the hypotheses of Theorem 7.1 will suffice for 
consistency o f / 4  for the H in the asymptotic variance of Theorem 7.1. For  a 
minimum distance estimator a numerical derivative estimator G of G hasjth column 

Gj = [9(0 + eje,) - 0 ( 0 -  eje,)]/2e,. 

This estimator will be consistent under the conditions of Theorem 7.2. The following 
result shows consistency: 

Theorem 7.4 

Suppose that e, ~ 0 and e,xfn ~ oe. If the conditions of Theorem 7.1 are satisfied 
then/~ ~ H. Also, if the conditions of Theorem 7.2 are satisfied then G ~ G. 

This result is proved in Section 7.4. Similar results have been given by McFadden 
(1989), Newey (1990), and Pakes and Pollard (1989). 

A practical problem for both of these estimators is the degree of difference (i.e. 
the magnitude of~,) used to form the numerical derivatives. Our specification of the 
same e, for each component is only good if 0 has been scaled so that its components 
have similar magnitude. Alternatively, different e, could be used for different compo- 
nents, according to their scale. Choosing the size ofs,  is a difficult problem, although 
analogies with the choice of bandwidth for nonparametric regression, as discussed 
in the chapter by H/irdle and Linton (1994), might be useful. One possibility is to 
graph some component as a function of e, and then choose 5, small, but not in a 
region where the function is very choppy. Also, it might be possible to estimate 
variance and bias terms, and choose ~, to balance them, although this is beyond the 
scope of this chapter. 

In specific cases it may be possible to construct estimators that do not involve 
numerical differentiation. For example, in the smooth case we know that a numerical 
derivative can be replaced by analytical derivatives. A similar replacement is often 
possible under the conditions of Theorem 7.3. In many cases where Theorem 7.3 
applies, g(z, O) will often be differentiable with probability one with a derivative 
Vog(Z, O) that is continuous in 0 with probability one and dominated by an integrable 
function. Consistency of G = n- ~Z~= 1Vog(z~, O) will then follow from Lemma 4.3. For 
example, it is straightforward to show that this reasoning applies to the Huber loca- 
tion estimator, with Vog(Z, 0) = - 1 ( -  1 < y -  0 < 1) and G = ZT= 11( -  1 < Yl -  O< 1)/n. 
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Estimation of the other terms in the asymptotic variance of 0 can usually be 
carried out in the way described in Section 4. For example, for G M M  the moment 
function g(z, O) will typically be continuous in 0 with probability one and be 
dominated by a square integrable function, so that Lemma 4.3 will imply the 
consistency of .Q = Z~=1 g(zi, O)g(zi, O)'/n. Also, extremum estimators where (~,(0) = 
n-  ~ =  aq(z, 0), q(z, O) will usually be differentiable almost everywhere, and Lemma 
4.3 will yield consistency of the variance estimator given in eq. (4.1). 

7.4. Technicalities 

Because they are long and somewhat complicated, the proofs of Theorems 7.1, 7.2, 
and 7.4 are given here rather than previously. 

Proof of Theorem 7.1 

Let 8(0) = (~,(0) and Q(O) = Qo(O). First it will be proven that x/~ II 0 -  0o [1 = Op(1), 
i.e. that 0is "x/n-consistent". By Q(O) having a local maximum at 0o, its first derivative 
is zero at 0o, and hence Q(O) = Q(Oo) + (0 - Oo)'H(O - 00)/2 + o( [[ 0 - 0o [[ 2). Also, H 
is negative definite by 0o a maximum and nonsingularity of H, so that there is C > 0 
and a small enough neighborhood of 0 o with (0 - Oo)'H(O -- 0o)/2 + o( j[ 0 - 0 o f[ 2) ~< 
- C  [] 0 -  0o 112. Therefore, by 0P---~ 0o, with probability approaching one (w.p.a.1), 

Q(O) <~ Q(Oo)- C [r 0 -  0o [[ 2. Choose U, so that 0~ U, w.p.a.1, so that by (v) x/n[/~(0)[ ~< 

(1 + ~ I[ O -  0 o II)%(1). 

0 <<. 8(0)  -- 8(00)  + Op(n- 1) = Q(O) - Q(O0) + / ) ' ( 0 -  00) + II 0 -  00 II ~(0) + Op(n- 1) 

< - C FI O -  00 Jl 2 + [I fi  II rl O -  00 II + II O -  00 I1(1 + ~ II 0 -  00 rl)op(n- 1/2) + op(n- 1) 
< - [-C + Op(1)] [[ O - 00 [[ 2 + Op(n- 1/2)[I 0 -  00 [] + o,(n- 1). 

Since C + %(1) is bounded away from zero w.p.a.1, it follows that II 0 - 0 o  ]12~ < 
Or(n- i/2) Ir 0 - 0 o]l + Ov(n- 1), and hence, completing the square, that [ It 0 -  0 o II + 
Op(n-1/z)]Z~Op(n-1). Taking the square root of both sides, it follows that 
Ill 0 -  0 o II + Oo(n- 1/2)1 ~< Op(n- 1/2), so by the triangle inequality, H 0 -  0 o[l ~< Ill 0 -  0 o II + 
Op(n-1/2)1 + 1 -  Ov(n-1/z)l <<. Op(n-1/2). 

Next, let 0 = 0 o - H -  1/~, and note that by construction it is x~-consistent. Then 
by x/n-consistency of 0, twice differentiability of Q(O), and (v) it follows that 

2[(~(0) - 8(00) + Q(0o) ] = ( 0 -  Oo)'H(O - 0o) + 2 / ) ' (0 -  0o) + op(n- 1) 

= ( 0 -  Oo)'H(O- 0o) - 2(0-- Oo)'H(O- 0o) + op(n- 1). 

Similarly, 2[8(0 ) - 8(00) + Q(0o) ] = ( 0 -  Oo)'H(O- 0o) + 2 / ) ' (0 -  0o) + op(n- 1) = 
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- ( 0 -  Oo)'H(O- 0o) + Op(n- 1.). Then since 0" is contained within O w.p.a.1, 
2[Q(0")- Q(0o) + Q(0o)] - 2[Q(0) - Q(0o) + Q(0o)]/> Op(n 1), so by the last equation 
and the corresponding equation for 0, 

op(n- 1) <~ (0-- Oo)'H(O-- 0o) -- 2(0--  Oo)'H(O- 0o) + (0-- Oo)'H(O-- 0o) 

= ( O -  O)'H(O- O) <<. - C II O -  0112 

Therefore, II x/~( 0 -  0o) - ( - H -  tx/~/))II = x/n II 0 -  011 ~ 0, so the conclusion 

follows by - H -  1x/n/) d N(0, H 112/-/- 1) and the Slutzky theorem. Q.E.D. 

Proof of  Theorem 7.2 

Let 0(0) = 0,(0) and 9(0) = go(O). The proof proceeds by verifying the hypotheses of 
Theorem 7.1, for Q(0)=-g(O) 'W9(O)/2,  Q(0 )= -0 (0 ) 'w0(0 ) /2  + A(0), and L](0) 
equal to a certain function specified below. By (i) and (ii), Q(O) = - [G(O - 0o) + 
o( II o - Oo I I ) I 'WEG(0 - 0o) + o( II 0 - 0o 11)2/2 = Q(Oo) + (0 - Oo)'H(O - 00)/2 + 
o( II 0 -  0o II 2), f o r / 4  = - G'WG and Q(Oo) = 0, so that Q(O) is twice differentiable at 
0o. Also, by W positive semi-definite and G'WG nonsingular, H is negative definite, 
implying that there is a neighborhood of 0o on which Q(O) has a unique maximum 
(of zero) at 0 = 0 o. Thus, hypotheses (i)-(ii) of Theorem 7.1 are satisfied. By the 

Slutzky theorem, / )  = - G'lTV,~fnO(Oo) ~ N(0, I2) for .<2 = G'W.SWG,  so that  hypo- 
thesis (v) of Theorem 7.1 is satisfied. It therefore remains to check the initial supposi- 
tion and hypothesis (v) of Theorem 7.1. 

Let ~(0) = [0(0) - O(0o) - 9(0)]/[1 + ~ n  II 0 - 0o II ]. Then 

O(o)'~vo(o) = (l ÷ 2.~n II 0 - Oo Ir + rl 0 - Oo II z)~(O)' ~ ( 0 )  + g(O)'~vg(o) 

+ O(Oo)'l~O(Oo) + 2g(O)'l~O(Oo) 

+ 2Eg(O) + O(Oo)] '~(e) [1  + ~/nl l  e - Oo II]. 

Let Q(O)=-O(O)'ITVO(O)/2+g(O)'I?Vg(O)/2+OiOo)'ITVg(O ). For any &,+0 ,  by 

(v), sup II0- 0o pl ~< 6, I(~(0) - { - 0(0)' 17¢0(0)/2} I ~< Op(1) sup 110- 0o II ~< ~. { II ~(0)II II ~(0)II + 
Op(n- 1/2) } = op(n ~ 1), so that  by (i), (~(0) ~> suPll0_ 0o II ~ 6, Q(0) - Op(n- 1). Thus, 
the initial supposition of Theorem 7.1 is satisfied. To check hypothesis (v), note that  
by ~(0o) = 0, for/~(0) as defined above, 

5 

,,/-nl~(O)/[1 +,,./-nllO-0o11]1 ~< Z Py(O), 
j = l  

/~1(0) ~--- ~ ( 2 ~  II o - Oo/I + II o - 0o/I Z)l ~(0)'Peg(O)l/E II o - 0o I1(1 + . , / n  II 0 - 0o II)], 

eZ(O) = .~/-n ] I-g(0) + a(o -- Oo)] '¢v0(Oo)l/E It o - 0o II (1 + ~ n  II 0 - 0o II)3, 
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/~3(8) = n l D(8) + O(8o)]'Wg(8)l/(1 + v / n  II 8 - 8o II ), 

e4(8) = v/-nl g(8)' (v~(8)1/118- 8o II, 

f5(8) -- x/~l g(8)'[ff" - W]g(8) l/[ II 8 - 8o II (1 + x /~  II 8 - 8o 11)3. 

Then for 6 , + 0  and U = {8: [lS-Snl[ ~<6,}, s u p u P l ( 8 ) < ~ C n . s u p v l l ~ ( 8 ) l l 2 l l ~ v I I  =%(1), 

SUpvez(8)<~w/~SUpv{o(ll8 - 0olt)11 fill  110(8o)II = s u p u o ( l l 8 -  8oll)Op(1)= %(1), 
SUpu/~3(8) ~< {supu,,/~llg(8) ll/v/n II 8 - 8o II) + v /n  11~(8o) 11 } II WII supvv/nllg(8) ll 
{supvO(ll 8 -  8o II) + Op(1)}or(1 ) = Op(1), SUpvt~4(8) ~< SUpv(ilg(8)II/118 -- 8o II)II W II 
supuv/nll~(8)ll -- Op(1), and supvf5(8) ~< supv(llg(8)ll2/ll8 - 8o112)11 W -  WII = %0) .  

Q.E.D. 

P r o o f  o f  T h e o r e m  7.4 

Let a be a constant vector. By the conclusion of Theorem 7.1, II 0 + ae.  - 8 o II = o r ( ~ . ) .  
Then by hypothesis (v), 

I(~(0 + e .a)  - 0(80) - Q(O + ~.a) + Q(8o) l 

<~ 110-4- aE. -- 8o ll [IR(O + ~,a)} + Ilbll I I0+ a ~ . - 8 o l l ]  

~< Op(~0{(1 + , , /n  II 0 +  e.a - 8 o II)op(1/x/n) + Op(~Jx/~)} = %(~2). 

Also, by twice differentiability of Q(O) at 0o, 

le~-=[Q(0+ e . a ) -  Q(0o)] - a'Ha/2l 

= I ~2-21-(0 + e,a - 8 o ) ' H ( O +  e .a  - 80)/2 + o(JI 0 +  e .a  - 8 o 112)3 -- a'Ha/2l 

~< [e~- 1(0 - 8o)'Ha I + I e z ( O  - 8o)'H(O-- 80) I + %(1) = %(1). 

It then follows by the triangle inequality that 

/41a p-£+ [2(e, + e j ) 'H(e i  + ej) - (e, - ea) 'H(e i - ej) - (ej  - -  e i ) 'H(e  j - -  el)I/8 
t t ! 

= 2 [ e ' i H e  i + e j H e j  - e i H e  i - -  e j H e j ] / 8  + e ' iHe  j 

= e ' iHe j = H i  j ,  

giving the first conclusion. For the second conclusion, it follows from hypothesis (v) 
of Theorem 7.2, similarly to the proof for/4, that ]l 0 ( 0  + e .a)  - 0(0o)  - g(O + e .a)  II <<. 

(1 + x / n  II t~+ e .a  - 8o rl )op(n-1/2) = Op(e~-1), and by differentiability of g(8) at 0o that 
II g(8 + e ,a) /e .  - G a  11 <~ II G(O - Oo)/e . 11 + o(e ~ 1 II 0 + e .a  - 0 o II) = Op(1). The second 
conclusion then follows by the triangle inequality. Q.E.D. 
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8. Semiparametric two-step estimators 

Two-step estimators where the first step is a function rather than a finite-dimensional 
parameter, referred to here as semiparametric two-step estimators, are of interest 
in a number of econometric applications. 45 As noted in Section 5, they are useful 
for constructing feasible efficient estimators when there is a nuisance function 
present. Also, they provide estimators for certain econometric parameters of interest 
without restricting functional form, such as consumer surplus in an example discus- 

sed below. An interesting property of these estimators is that they ean be ~fn- 
consistent, even though the convergence rate for the first-step functions is slower 

than xfn. This section discusses how and when this property holds, and gives 
regularity conditions for asymptotic normality of the second-step estimator. The 
regularity conditions here are somewhat more technical than those of previous 
sections, as required by the infinite-dimensional first step. 

The type of estimator to be considered here will be one that solves 

n -1 ~" g(zi, O,~)=O , (8.1) 
i = 1  

where ~ can include infinite-dimensional functions and g(z, 0, 7) is some function of 
a data observation z, the parameters of interest 0, and a function 7. This estimator 
is exactly like that considered in Section 6, except for the conceptual difference that 
7 is allowed to denote a function rather than a finite-dimensional vector. Here, 
g(z, O, ~) is a vector valued function of a function. Such things are usually referred 
to as functionals. 

Examples are useful for illustrating how semiparametric two-step estimators can 
be fit into this framework. 

V-estimators: Consider a simultaneous equations model where the residual p(z, O) 
is independent of the instrumental variables x. Let a(x,p) be a vector of func- 
tions of the instrumental variables and the residual p. Independence implies that 
E[a{x,p(z, Oo)}] =E[~a{x,p(5,0o)}dFo(~)] where Vo(z)is the distribution of a 
single observation. For  example, if a(x, p) is multiplicatively separable, then this 
restriction is that the expectation of the product is the product of the expectations. 
This restriction can be exploited by replacing expectations with sample averages and 
dF(5) with an estimator, and then solving the corresponding equation, as in 

~ m(zi, zj, O)/n z = 0, (8.2) 
i=1 j=l 

where m(z 1, Z2, O) = a[-xl, p(zl, 0)] - a[x 1, p(z2, 0)]. This estimator has the form given 

45This terminology may not be completely consistent with Powell's chapter of this handbook. 
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in eq. (8.1), where 7 is the C D F  of a single observation, g(z, 0, 7 )=  ~ re(z, 5, 0)dT(ff), 
and ~ is the empirical distribution with ~(~) = ~ =  1 l(z~ ~< 5)/n. It is referred to as a 
V-estimator because double averages like that in eq. (8.2) are often referred to as 
V-statistics [Serfling (1980)]. V-statistics are related to U-statistics, which have been 
considered in recent econometric literature [e.g. Powell et al. (1989) and Robinson 
(1988b)] and are further discussed below. 

The general class of V-estimators were considered in Newey (1989). If a(x,p) is 
multiplicatively separable in x and p then these estimators just set a vector of sample 
covariances equal to zero. It turns out though, that the optimal a(x, p) may not be 
multiplicatively separable, e.g. it can include Jacobian terms, making the generaliza- 
tion in eq. (8.2) of some interest. Also, Honor6 and Powell (1992) have recently 
suggested estimators that are similar to those in equation (8.2), and given conditions 
that allow for lack of smoothness of m(z 1, z2, O) in 0. 

Nonparametric approximate consumer surplus estimation: Suppose that the demand 
function as a function of price is given by ho(x ) = E[qlx] ,  where q is quantity 
demanded and x is price. The approximate consumer surplus for a price change 
from a to b is ~]ho(x)dx. A nonparametric  estimator can be constructed by replacing 
the true conditional expectation by a nonparametr ic  estimator. One such is a kernel 
estimator of the form ^ - " h(x) - ~,i = 1 qiK~(x - x i ) / ~ _ ,  i = 1K~(x -- xi), where K~(v) = 
a- 'K(v/a),  r is the dimension of x, K(u) is a function such that ~K(u)du = 1, and a 
is a bandwidth term that is chosen by the econometrician. This estimator is a 
weighted average of ql, with the weight for the ith observation given by K~(x - xi) / 
r,~= 1K~(x -- x j). The bandwidth a controls the amount  of local weighting and hence 
the variance and bias of this estimator. As a goes down, more weight will tend to 
be given to observations with xi close to x, lowering bias, but raising variance by 
giving more weight to fewer observations. Alternatively, h(x) can be interpreted as 
a ratio estimator, with a denominator  f ( x ) =  n-lZ']= 1 K ~ ( x -  xi) that is an esti- 
mator  of the density of x. These kernel estimators are further discussed in Hiirdle 
and Linton (1994). 

A kernel estimator ofh0(x ) can be used to construct a consumer surplus estimator 
of the form 0=~bkt(x)dx. This estimator takes the form given in eq. (8.1), for 
7 = (71,71) where 71(x) is a density for x, 72(x) is the product of a density for x and 
a conditional expectation of y given x, 9(z, 0,7)= I~[T2(x)/71(x)]dx- O, ~l(x)= 
n- 1 ~ =  1 K~(x - xi) and ~2(x) = n-  1Z~= 1 qiK,( x - xi)" This particular specification, 
where 7 consists separately of the numerator  and denominator  of h(x), is convenient 
in the analysis to follow. 

In both of these examples there is some flexibility in the formulation of the estimator 
as a solution to eq. (8.1). For V-estimators, one could integrate over the first 
argument in a[xl ,  p(z 2, 0)] rather than the second. In the consumer surplus example, 
one could set 7 = h rather than equal to the separate numerator  and denominator  
terms. This flexibility is useful, because it allows the estimator to be set up in a way 
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that is most convenient for verifying the regularity conditions for asymptotic 
normality. 

This section will focus on conditions for asymptotic normality, taking consis- 
tency as given, similarly to Section 6. Consistency can often be shown by applying 
Theorem 2.1 directly, e.g. with uniform convergence resulting from application of 
Lemma 2.4. Also, when 9(z, 0, 7) is linear in 0, as in the consumer surplus example, 
then consistency is not needed for the asymptotic normality arguments. 

8.1. Asymptotic normality and consistent variance estimation 

To motivate the precise results to be given, it is helpful to consider an expansion 

for 0. Expanding eq. (8.1) and solving for x / n ( 0 -  0o) gives 

]1 
N~( O -  00) = -- n-1 VoO(Zi, ~, 9) ~ g(zi, ~ ) / ~ ,  

i= i=l 

g(z, j = o(z, 0o, J ,  

(8.3) 

where 0 is the mean value. The usual (uniform) convergence arguments, when 
combined with consistency of ff and ~, suggest that n - 1 ~ , =  1V0g(z~, ~, ~))P_~ 
E[Vog( z, 0o, 7o)] = Go. Thus, the behavior of the Jacobian term in eq. (8.3) is not 
conceptually difficult, only technically difficult because of the presence of non- 

parametric estimates. The score term ~ ' =  19(z~, 9)/x/n is much more interesting and 
difficult. Showing asymptotic normality requires accounting for the presence of the 
infinite-dimensional term 9. Section 6 shows how to do this for the finite- 
dimensional case, by expanding around the true value and using an influence 
function representation for 9- The infinite-dimensional case requires a significant 
generalization. One such is given in the next result, from Newey (1992a). Let [[ 7 [[ 
denote a norm, such as SUPxe[a,b] [1 7(X)el- 

Theorem 8.1 

Suppose that E[9(z, 7o)] = 0, E[ eL 9(z, 7o)H 2"] < 00, and there is 6(z) with E[6(z)] = 0, 
E[tl6(z)li 2] < ~ ,  and (i) (linearization) there is a function G(z,7-To)  that is 
linear in 7 - 7o such that for all 7 with ]i 7 - 7o ]i small enough, me 9(z, 7) - 9(z, 7o) - 
G(z, 7 - 70)[[ ~< b(z)[[ ~ - 7o l[ 2, and E[b(z)]x/n [] 9 - 7o [[ 2 P-~0; (ii) (stochastic equicon- 

tinuity) Z~= 1 [G(zl, 9 - 70) - ~. G(z, 9 -~o)dFo] /x /n  p-~ 0; (iii) (mean-square differen- 
tiability) there is 6(z) and a measure F such that E[6(z)] = 0, E[ [b 6(z)eL 2] < oe and 
for all [[7- 70 I[ small enough, ( G ( z , 9 -  7o)dFo = S6(z)d/?; (iv) for the empirical 
distribution /~ [/~(z) = n-1 Z~'=I l(zl ~ z)], x/~[S 6(z)dff - ~ 6(z)dff] P-P-* 0. Then 

~n=l g(Zi, 9)/%~ ~ N(O, ~2), where D = Var [O(z i, 70) + 6(zl)]. 
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Proof 

It follows by the triangle inequality that ~ "  ,=1 [g(z , ,  9) - g ( z .  70) - a(z,)  ] / . . / ~  P-~ o, 

and by the central limit theorem that Y~"i=x [g(zi, 7o) + 6(zi)]/xf n d_~ N(O, g2). 
Q.E.D. 

n Z ^ / , / _ _  n This result is just a decomposition of the remainder term Z~= x g( i, 7)/,~f ~ ~,i= 1 
[g(zi, 7o)+ 6(z~)]/x~. As will be illustrated for the examples, it provides a useful 
outline of how asymptotic normality of a semiparametric two-step estimator can 
be shown. In addition, the assumptions of this result are useful for understanding 

how Z"i= l g(zl, ?) /x f  n can have a limiting distribution, even though 9 is not x/n- 
consistent. 

Assumption (i) requires that the remainder term from a linearization be small. The 
remainder term in this condition is analogous to g(z, ?) - g(z, 70) - [Vrg(z, 7o)] (V - Vo) 
from parametric, two-step estimators. Here the functional G(z ,?-7o)  takes the 
place of [V~g(z, ?o)] (V - Vo). The condition on this remainder requires either that it 
be zero, where b(z)= 0, or that the convergence rate of 9 be faster than n-1/4, in 
terms of the norm [I 7 [[. Often such a convergence rate will require that the under.. 
lying nonparametric function satisfy certain smoothness restrictions, as further 
discussed in Section 8.3. 

Assumption (ii) is analogous to the requirement for parametric two-step estima- 
tors that {n- 1 ~ =  1V~g(zi, 70) - E[V~g(z, 7o)] } (9 - 7o) converge to zero. It is referred 
to as a stochastic equicontinuity condition for similar reasons as condition (v) of 
Theorem 7.2. Andrews (1990) has recently given quite general sufficient conditions 
for condition (ii). Alternatively, it may be possible to show by direct calculation that 
condition (ii) holds, under weaker conditions than those given in Andrews (1990). 
For example, in the V-estimator example, condition (ii) is a well known projection 
result for V-statistics (or U-statistics), as further discussed in Section 8.2. For kernel 
estimators, condition (ii) will follow from combining a V-statistic projection and a 
condition that the bias goes to zero, as further discussed in Section 8.3. 

Both conditions (i) and (ii) involve "second-order" terms. Thus, both of these 
conditions are "regularity conditions", meaning that they should be satisfied if g(z, 7) 
is sufficiently smooth and 9 sufficiently well behaved. The terms in (iii) and (iv) are 

"first-order" terms. These conditions are the ones that allow ~"~= 1 g(z~, 9)/x/-n to be 
asymptotically normal, even though 9 may converge at a slower rate. The key 
condition is (iii), which imposes a representation of S G(z, 9 - ?o)dFo as an integral 
with respect to an estimated measure. The interpretation of this representation is 
that S G(z, 9 - 7o) dFo can be viewed as an average over some estimated distribution. 
As discussed in Newey (1992a), this condition is essentially equivalent to finiteness 
of the semiparametric variance bound for estimation of ~ G ( z , ? -  7o)dFo- It is 
referred to as "mean-square differentiability" because the representation as an 
integral ~6(z)dF(z,7) means that if dF(z,7) 1/2 has a mean-square derivative then 
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~6(z)dF(z, 7) will be differentiable in 7, as shown in Ibragimov and Has'minskii 
(1981). This is an essential condition for a finite semiparametric variance bound, as 
discussed in Van der Vaart (1991), which in turn is a necessary condition for 

x/~-consistency of ~G(z,~-7o)dF o. If ~G(z,~-~/o)dF o cannot be viewed as an 

average over an estimated distribution, then it will not be x/n-consistent. Thus, 

condition (iii) is the key one to obtaining x/n-consistency. 
Condition (iv) requires that the difference between the estimator /? and the 

empirical distribution be small, in the sense of difference of integrals. This condition 
embodies a requirement tha t /?  be nonparametric, because otherwise it could not 
be close to the empirical measure. For  kernel estimators it will turn out that part 

(iv) is a pure bias condition, requiring that a bias term goes to zero faster than 1/xfn. 
For other estimators this condition may not impose such a severe bias requirement, 
as for the series estimators discussed in Newey (1992a). 

An implication of conditions (iii) and (iv) is that ,~/n~(z)d(/? - Fo) = ~6(z)d~n. 
( / ? - F o )  converges in distribution to a normal random vector, a key result. An 

alternative way to obtain this result is to show that x / n ( / ? -  Fo) is a stochastic 
process that converges in distribution in a metric for which ~6(z)d(.) is continuous, 
and then apply the continuous mapping theorem. 46 This approach is followed in 
Ait-Sahalia (1993). 

One piece of knowledge that is useful in verifying the conditions of Theorem 8.1 
is the form of 6(z). As discussed in Newey (1992a), a straightforward derivative 
calculation is often useful for finding 6(z). Let q denote the parameters of some 
general distribution where qo is equal to the truth, and let ~(~/) denote the true value 
of ~ when q are the true parameters. The calculation is to find 6(z) such that 
V,~g[z, V(q)] dFo = E[f(z)S'], where the derivative is taken at the true distribution. 
The reason that this reproduces the 6(z) of Theorem 8.1 is that condition (i) will 
imply that V~Sg[z, y(q)] dF o = V~ G[z, y(~/) - 7o] dFo [under the regularity condition 
that ]] 7(~/) - 7 ]] is a differentiable function of q], so (iii) implies that V,~.g[z, 7(~/)] dFo = 
V,~ 6(z)dF(~/) = E[g(z)S',]. This calculation is like the Gateaux derivative calculation 
discussed in Huber (1981), except that it allows for the distributions to be continuous 
in some variables. With 6(z) in hand, one can then proceed to check the conditions 
of Theorem 8.1. This calculation is even useful when some result other than Theorem 
8.1 is used to show asymptotic normality, because it leads to the form of the 

remainder term 5Z7= 1 [g(zi,~)-9(zi,7o)- ~(zl)]/xfn that should be small to get 
asymptotic normality. 

Theorem 8.l can be combined with conditions for convergence of the Jacobian 
to obtain conditions for asymptotic normality.of 0, as in the following result. 

46The continuous mapping theorem states that if Y(n) ~ Z  and h(y) is continuous on the support of 
Z then h[Y(n)] ~h(Z). 
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Theorem 8.2 

If 0 P---~00, the conditions of Theorem 8.1 are satisfied, and (i) there are a norm 
[1 ? [[, ~ > 0, and a neighborhood JV of 0o such that for [17- 7o I1 small enough, 
sup0~  11Vog(Z, O, ?) - Vog(zi, 0, 7o)11 ~< b(z)[I ? - 7o 11" and E[b(z)] 11 ~ - 7o 11~ ~ 0; (ii) 
Vog(z i, O, ?o) satisfies the conditions of Lemma 4.3; (iii) Go is nonsingular; then 

, /n(O-  0o) d N(0, O o 'OG;- 1,). 

Proof 

It suffices to show that u- x~n~i= 1Vog(zi, if, 7) ~ Go, because then the conclusion will 
follow from the conclusion of Theorem 8.1, eq. (8.3), and arguments like those of 
Section 3. Condition (i) implies that [521= 1 b(zi)/n] II ~ - 7o II ~ P--' 0 by the Markov 
inequality, s o  n-l~_.n=l[[Vog(zi, O,~)-Vog(zi, O, Yo)ll<~[n-1 n Z ^ Z , = l b (  ,)]ll~-~oll ~ ~ 0 .  

Also, by the conclusion of Lemma 4.3, n-  1 ~ ,  i= 1Vog(zi, O, 7o) ~ Go. The conclusion 
then follows by the triangle inequality. Q.E.D. 

This result provides one set of sufficient conditions for convergence of the Jaeobian 
term. They are specified so as to be similar to those of Theorem 8.1, involving a 
norm for ?. In particular cases it may be useful to employ some other method for 
showing Jacobian convergence, as will be illustrated in Section 8.2. A similar 
comment applies to the consistency condition. Consistency can be shown by impos- 
ing conditions like (i) and (ii) to give uniform convergence of an objective function, 
but this result will not cover all cases. In some cases it may be better to work directly 
with Theorem 2.1 to show consistency. 

The asymptotic variance of a semiparametric two-step estimator is G o ~g2G o 1,. 
As usual, a consistent estimator can be formed by plugging in estimators of the 
different pieces. An estimator of the Jacobian term can be formed in a straight- 
forward way, as 

d O = 11-1 ~ Vog(Zi, O, ~)). (8.4) 
i = 1  

Consistency of G0 for Go will follow under the same conditions as used for asymptotic 
normality of 0, because of the need to show consistency of the Jacobian matrix in 
the Taylor expansion. The more difficult term to estimate is the "score" variance g?. 
One way to estimate this term is to form an estimator $(z) of the function 6(z) that 
appears in the asymptotic variance, and then construct 

= . - 1  {g(zi ,  o, + + A , ~(z3}. 
i = 1  

(8.5) 

An estimator of the asymptotic variance can then be formed as d o l ~ d  o 1,. 
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It is difficult at this level of generality to give primitive conditions for consistency 
of a variance estimator, because these will depend on the nature of $(z). One useful 
intermediate result is the following one. 

Lemma 8.3 

If the conditions of Theorem 8.1 are satisfied, Z~'=. II g(zi, O, 9) - g(zi, 0o, 7o)II 2In 2_, O, 
and ~2~'= 1 I1 ~(Zi)  - -  t~(Zi)1[ 2/n ~ O, then .t') P-~ .(2. 

Proof 

Let ~i = g(zi, O, 9) + 8(z,) and ui = g(z~, 0o, ?o) + 6(z~), so that ~ = E[u~u'J and S) = 
•"i=1 ~iWi/n. By the assumptions and the triangle inequality, Z~= 1 J[ fii - ui [[ Z/n P-P-+ O. 
Also, by the LLN, 52" ' P-P-+ u . . . . . .  i = 1 u i u l / r l  E [  i u i ] .  Also, 11 ZT= 1 u i u i / t l  - -  ~ , i =  1 u i u i / r t  II ~< 

n A At / ~ n n n Z i  = 1 II usu, - usus II/n -~ Z i  = 1 II a ~ -  us II 2/n + 2 Z~ = x II us [I II a i -  u~ II/n ~< Z i =  1 I[ US - -  Ui II 2 /  
2 " 21"]l12(X'n n + (521= i I[ us [I t,v ,~ i= 1 II fii - ui ]12/n) 112 p-p-+ O, because convergence of the diag- 

onal elements of ~27= ~ uiu'/n implies that 52~'= 1 I[ u~ [I Z/n is bounded in probability. 
Q.E.D. 

Powell et al. (1989) use an analogous intermediate result to show consistency of 
their variance estimator. More primitive conditions are not given because it is 
difficult to specify them in a way that would cover all examples of interest. 

These results provide a useful way of organizing and understanding asymptotic 
normality of semiparametric two-step estimators. In the analysis to follow, their 
usefulness will be illustrated by considering V-estimators and estimators where the 
first step is a kernel estimator. These results are also useful in showing asymptotic 
normality when the first step is a series regression estimator, i.e. an estimator 
obtained from least squares regression of some dependent variable on approximat- 
ing functions. The series estimator case is considered in Newey (1992a). 

8.2. V-estimators 

A V-estimator, as in eq. (8.2), is useful as an illustration of the results. As previously 
noted, this estimator has g(z, ?) = S re(z, ~, 0o)d7(:7), and 9 is the empirical distribution 
with 9(z")---~2" l(zi <~z')/n. For this estimator, condition (i) of Theorem 8.l is i = l  
automatically satisfied, with b(z) = 0 because g(z, ?) is linear in 7. Condition (ii) needs 
to be verified. To see what this condition means, let re(z1, z2) = m(z2, z2, 0o), ml(z) = 
Sin(z, ~)dFo(z'0, mz(z)= i'm(:7, z)dro(~), and # = S[m(z, z')dFo(z)dFo(z"). Then 

~, [G(z~, 9 - 7o) - J" G(z, 9 - y o ) d r o ] / ~ f n  
i = i  
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= x /n{n  -2 ~ ~ m(z~, z j ) - I~  - n -~ ~ [ml(z~)+ m2(z~)- 2p] }. 
i = 1  j = l  i = 1  

(8.6) 

It will follow from U- and V-statistic the6ry that this remainder term is small. 
A U-statistic has the form/~ = n-  l(n - 1)- 1Zi<ja(zi ' zj), where a(z 1, z2) = a(z2, Zl). 

A V-statistic has the form ~" = -2 n n n Zi=~Zj=~m(zl ,  zj). A V-statistic is equal to a 
U-statistic plus an asymptotically negligible term, as in V = -2 n n E i :  1 m(zi, z~) + 

A 
= n Zi= 1 m(zi, zi) is a [(n - 1)/n] U, where a(z i, z j) m(zi, z j) + re(z j, zi). The lead term, - 2 , 

negligible "own observations" term, that converges in probability to zero at the rate 
1/n as long as E[m(zi, zi)] is finite. 

The condition that the remainder term in eq. (8.6) have probability limit zero is 
known as the projection theorem for U- or V-statistics. For  a U-statistic, a(z)= 
~a(z, z")dFo( ~, and E[a(z)] = 0, the projection theorem states if the data are i.i.d, and 

a(zl, zz) has finite second moments, t hen  x / n [ t ) - n - l Z ~ = l a ( Z i ) ] P - ~ o ,  where 
n-  ~Z" a(z~) is referred to as the projection of the U-statistic on the basic obser- i = 1  
vations; see Serfling (1980). The V-statistic projection theorem states that the 
remainder in eq. (8.6) converges in probability to zero. The V-statistic projection 
theorem is implied by the U-statistic projection theorem, as can be shown in the 
following way. Let a(zl, Zz) = re(z1, z2) + re(z2, z0  - 2/~, so 

i = 1  j = l  / = 1  

The first term following the equality should be negligible. The second term following 
the equality is a multiple of the U-statistic, where the multiplying constant converges 
to 1. Furthermore, a(z) = m~(z) + mE(z) - 2fl in this case, so the projection of the 
U-statistic on the basic observations is n- lZn=~ [m~(zi)+ m2(zi)- 2#]. The U- 
statistic projection theorem then implies that the remainder in eq. (8.6) is small. 
Thus, it will follow from eq. (8.6) and the U-statistic projection theorem that 
condition (ii) of Theorem 8.1 is satisfied. 

The previous discussion indicates that, for V-estimators, assumption (ii) follows 
from the V-statistic projection theorem. This projection result will also be important 
for assumption (ii) for kernel estimators, although in that case the V-statistic varies 
with the sample size. For  this reason it is helpful to allow for m(zt, Zz) to depend on 
n when stating a precise result. Let m,l(Z ) = ~m,(z, ~dFo(z'), m,2(z) = ~ m,(f, z)dFo(5 ), 
and I1, = Op(r,) mean that II I1, ]l/r, is bounded in probability for the Euclidean norm 

I1"11. 

Lemma 8.4 

If zl, z2 .. . .  are i.i.d, then n-2ZT_ 1Z j= 1 m,(zl, zj) - n-  1 )-'~n _ " , :~ [m.l(z , )  + m.2(z,)]  + ~ = 
O , {  EE II m.(zl ,  z1)II ] /n  + (E[ II m.(z l ,  z2) II 2])~/2/n}. 
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The proof is technical, and so is postponed until Section 8.4. A consequence of this 
result is that condition (ii), the stochastic equicontinuity hypothesis, will be satisfied 
for U-estimators as long as E[ 11 m(zl, zl, 0o)l] ] and E[ II m(zl, z2, 0o)112] are finite. 
Lemma 8.4 actually gives a stronger result, that the convergence rate of the remain- 
der is 1/x/-n, but this result will not be used until Section 8.3. 

With condition (ii) (finally) out of the way, one can consider conditions (iii) and (iv) 
for V-estimators. Assuming that # = 0, note that ~ G(z, ~-- 7o)dFo ~ [~m(z, ~, 0o) x 
dFo(z)] d/7(5) = ~6(z)dF(z) for 6(z) = m2(z ) = ~m(~, z, Oo)dfo(z ) and F(z) equal to the 
empirical distribution. Thus, in this example conditions (iii) and (iv) are automatically 
satisfied because of the form of the estimator, giving all the assumptions of Theorem 
8.1, with 9(Z,0o,7o)+ 6(z)= m~(z)+ m2(z). An asymptotic normality result for V- 
estimators can then be stated by specifying conditions for uniform convergence of 
the Jacobian. The following condition is useful in this respect, and is also useful for 
showing the uniform convergence assumption of Theorem 2.1 and V-estimators. 

Lemma 8.5 

If z~,z2,. . ,  are i.i.d., a(z l , z2 ,0) ,  is continuous at each 0cO with probability one, 
E[supo~ oil a(zl, zl ,  O)II ] < 0% and E[supo ~ 0 II a(zl, z2, O)II ] < oo, then E[a(zl, z2, 0)] 
is continuous in 0cO,  and -2 , , SUpo~olln Z i = l Z j = l a ( z l ,  zj, O ) - E a ( z l , z 2 ,  O)] 11 P--~O. 

The proof is postponed until Section 8.4. 
This result can be used to formulate conditions for asymptotic normality by 

adding a condition for convergence of the Jacobian. 

Theorem 8.6 

Suppose that zl, Z 2 . . . .  are i.i.d., 0 P---+ 0 o, (i) E[m(z l, Z2, 00) ] = 0, E [  II m(zt, zl, 0o)It ] < 
0% E[ li m(zl, Zz, 0o)II 2] < 0% (ii) m(z l, z l, O) and m(z l, z 2, O) are continuously differen- 
tiable on a neighborhood of 0o with probability one, and there is a neighborhood 
oU of 0 o, such that E[suP0~x I I Vom(zl, z l, 0) l] ] < oe and E [suP0~ I I Vom(zl, z z, 0)]l ] < 

0% (iii) Go = E[Vom(zl ,  z2, 0o)] is nonsingular. Then , , /n (0 -  0o) ~ N(0, G o ag2G o 1,) 
for .(2 = Var {~ Ira(z, ~, 0o) + m(:~, z, 0o)] dFo(:~) }. 

Proof  

It follows by Lemma 8.4, assumption (i), and the preceding discussion that conditions 
(i)-(iv) of Theorem 8.1 are satisfied for 9(z, 7o) + 6(z) = [. Ira(z, ~, 0o) + m(~, z, 0o)] dFo(5), 

2 n n so it follows by the conclusion of Theorem 8.1 that x /nn-  ~ i=  a Z j= 1 m(zl, z j, 0o) d ___...+ 

N(0, O). Therefore, it suffices to show that -2 , n Zi=lZ'~=lVom(zi ,  zj, O) P-~Goforany 
6 p-+ 0o. This condition follows by Lemma 8.5 and the triangle inequality. Q.E.D. 

To use this result to make inferences about 0 it is useful to have an asymptotic 
variance estimator. Let (~0 = n r 2  2-,i=1 Z j = ' ~ "  " i Vom(zi, z~, O) be a Jacobian estimator. 
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This estimator wll be consistent for G o under the conditions of Theorem 8.6. An 
estimator of 9(z, 0o, 7o) + 6(z) can be constructed by replacing 0 o by 0 and Fo by/?  
in the expression given in ,(2, to form 

a , - - .  - 1  em(zl, z,,O)+mlzj.z,,O); - 1  
j=l  i=1 

The following result is useful for showing consistency of this estimator. Let 
m,,(z, z2, 0) depend on n and m,l(Z) be as defined above. 

Lemma 8.7 

I fx /n l l0-0ol j=Op( l  ) then n-~E~_ll tn- lZ~._lrn,(z , ,z; ,O)-m,l(z , ) l l2=Op{n-lx  
E[supoeJ¢ II ran(Z1, zl ,  O)IJ 2 _~ s u p 0 j  tlVom,(zl, Z270)l[ 2 @ [I mn(Zl, Z2, 00)II 2] }. 

This result is proved in Section 8.4. Consistency of the variance estimator can now 
be shown, using Lemma 8.7. 

Theorem 8.8 

If the conditions of Theorem 8.6 are satisfied, E[sup0~.~ PI m(zl, zl, 0)II 2] < oo and 
E[sup0~ rl Vom,(zl, z2, 0)[r 2] < OO then Go l~(~o 1 ~ Go 1QGo 1. 

Proof 

It follows by Lemmas 8.7 and 8.3 that ,Q ~ . ( 2 ,  and it follows as in the proof of 
Theorem 8.6 that (~o 1 ~ Go 1, so the conclusion follows by continuity of matrix 
multiplication. Q.E.D. 

8.3. First-step kernel estimation 

There are many examples of semiparametric two-step estimators that depend on 
kernel density or conditional expectations estimators. These include the estimators 
of Powell et al. (1989) and Robinson (1988b). Also, the nonparametric approximate 
consumer surplus estimator introduced earlier is of this form. For these estimators 
it is possible to formulate primitive assumptions for asymptotic normality, based 
on the conditions of Section 8.1. 

Suppose that ? denotes a vector of functions of variables x, where x is an r x 1 
subvector of the data observation z. Let y denote another subvector of the data. 
The first-step estimator to be considered here will be the function of x with 

~(x) = n 1 ~ yiK,,(x _ xl). (8.7) 
i ='l 
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This is a kernel estimator of f o ( x ) E [ y ] x ] ,  where f o ( x )  is the marginal density of x. 
A kernel estimator of the density of x will be a component of ~(x) where the 
corresponding component of y is identically equal to 1. The nonparametric con- 
sumer surplus estimator depends on ~ of this form, where Yi = (1, qi)'- 

Unlike V-estimators, two-step estimators that depend on the ~ of eq. (8.6) will 
often be nonlinear in ?). Consequently, the linearization condition (i) of Theorem 8.1 
will be important for these estimators. For  example, the nonparametric consumer 
surplus estimator depends on a ratio, with g(z,  7 ) =  ~b[Tz(X)/'~l(X)]dx- 0o. In this 
example the linearization G(z,  7 - 7o) is obtained by expanding the ratio inside the 
integral. By 8/b - a/b  = b - l [1  - ~ 3 - 1 ( ~  _ b)][8 - a - (a/b)('b - b)], the lineariza- 
tion of ~i/b around a/b  is b -  114 - a - (a/b)('b - b)]. Therefore, the linear functional 
of assumption (i) is 

G(z,  7) = f o ( x  ) -  1[ _ ho(x),  1]7(x)dx" (8.8) 

If71o(X) = fo (X)  is bounded away from zero, 72o(X) is bounded, and 7 1 ( X )  is uniformly 
close to 7~o(X) on [a, b], then the remainder term will satisfy 

[g(z, ~,) - g(z,  yo) - 6 ( z ,  7 - 7o)1 

<~ 1 7 1 ( x ) f - l f o ( x ) - X [ 1  + ] h o ( x ) J ] [ J T l ( x ) -  fo(X)] 2 + ]72(2)- 7 2 0 ( x ) l Z ] d x  

~< C SUPx~[,,b] I] 7(x) -- 7o(x) I[ 2. (8.9) 

Therefore assumption (i) of Theorem 8.1 will be satisfied if xflnSUPx~f,~,b] P l ~ ( x ) -  

~o(X) I[ 2 ~ 0.47 

One feature of the consumer surplus example that is shared by other cases where 
conditional expectations are present is that the density in the denominator must be 
bounded away from zero in order for the remainder to be well behaved. This 
condition requires that the density only effects the estimator through its values on 
a bounded set, a "fixed trimming" condition, where the word trimming refers to 
limiting the effect of the density. In some examples, such as the consumer surplus 
one, this fixed trimming condition arises naturally, because the estimator only 
depends on x over a range of values. In other cases it may be necessary to guarantee 
that this condition holds by adding a weight function, as in the weighted average 
derivative example below. It may be possible to avoid this assumption, using results 
like those of Robinson (1988b), where the amount of trimming is allowed to decrease 
with sample size, but for simplicity this generalization is not considered here. 

47In this case ~l(x) will be uniformly close to yl0(x), and so will be bounded away from zero with 
probability approaching one if 710(x) is bounded away from zero, on [a, b]. 



Ch. 36: Large Sample Estimation and Hypothesis Testino 2205 

In general, to check the linearization condi t ion (i) of Theorem 8.1 it is necessary 
to specify a norm for the function 7. A norm that  is quite convenient  and applies to 
many examples is a supremum norm on a function and its derivatives. This no rm 
does not  give quite as sharp results as an integral norm,  but  it applies to many  more  
examples, and one does not  lose very much in working with a supremum norm 
rather than an integral norm. 48 

Let ~JT(x)/~ x j denote any vector consisting of  all distinct j th-order  partial deriva- 
tives of  all elements of  7(x). Also, let X denote a set that  is contained in the support  
of x, and for some nonnegative integer d let 

II 7 II ~ maxe .< asup~e-I] UT(X)/~xe II. 

This type of no rm is often referred to as a Sobolev norm. 
With this no rm the n 1/4 convergence rate of  Theorem 8.1 will hold if the kernel 

est imator ~(x) and its derivatives converge uniformly on ~ at a sufficiently fast rate. 
To make sure that  the rate is attainable it is useful to impose some condit ions on 
the kernel, the true function 7o(X), the data  vector y, and the bandwidth.  The first 
assumption gives some useful condit ions for the kernel. 

Assumption 8.1 

K(u) is differentiable of order  d, the derivatives of order  d are bounded,  K(u) is zero 
outside a bounded  set, ~o~(u)du = 1, there is a positive integer m such that  for all 
j < m, ~K(u)[(~=lu]du = O. 

The existence of the dth derivative of  the kernel means that  ]l ~ II will be well defined. 
The requirement that  K(u) is zero outside a bounded  set could probably  be relaxed, 
but is maintained here for simplicity. The other  two condit ions are impor tan t  for 
controlling the bias of the estimator. They can be explained by considering an 
expansion of the bias of ~(x). For  simplicity, suppose that  x is a scalar, and note 
E[~(x)] = ~E[yl2]fo(~)g~(x - ~)d~7 = ~7o(~)g~(x - 2)d~. Making  the change of  
variables u = (x - 2)/o and expanding a round  a = 0 gives 

E[~(x)] = f ?o(X - rru)K(u)du 

= ~ aJ~JTo(X)/~xJfK(u)uJdu+amf~mTo(X+#U)/~xmK(u)u"du 
O~j<m 

= 70(X) + 0 "m f mTo(X + f f u ) /~xmK(u)umdu ,  (8.10) 

4sWith an integral norm, the Inn term in the results below could be dropped. The other terms 
dominate this one, so that this change would not result in much improvement. 
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where ff is an intermediate value, assuming that derivatives up to order m of 7o(X) 
exist. The role of~K(u)du = 1 is to make the coefficient of 7o(X ) equal to 1, in the 
expansion. The role of the "zero moment" condition ~K(u)uJdu = O, (j < m), is to 
make all of the lower-order powers of a disappear, so that the difference between 
E[3)(x)] and 7o(X) is of order am. Thus, the larger m is, with a corresponding number 
of derivatives of 7o(X), the faster will be the convergence rate of E[3)(x)] to 7o(X). 
Kernels with this moment property will have to be negative when j >~ 2. They are 
often referred to as "higher-order" or "bias-reducing" kernels. Such higher-order 
kernels are used to obtain the n 1/4 convergence rate for 3) and are also important 
for assumption (iv) of Theorem 8.1. 

In order to guarantee that bias-reducing kernels have the desired effect, the 
function being estimated must be sufficiently smooth. The following condition 
imposes such smoothness. 

Assumption 8.2 

There is a version Of 7o(X) that is continuously differentiable to order d with bounded 
derivatives on an open set containing ~r. 

This assumption, when combined with Assumption 8.1 and the expansion given 
above produce the following result on the bias of the kernel estimator 3). Let El3)] 
denote E[3)(x)] as a function of x. 

Lemma 8.9 

If Assumptions 8.1 and 8.2 are satisfied then Pt E[3)] - 7  [[ = O(a"). 

This result is a standard one on kernel estimators, as described in H~irdle and Linton 
(1994), so its proof is omitted. 

To obtain a uniform convergence rate for 3) is also helpful to impose the following 
condition. 

Assumption 8.3 

There is p ~> 4 such that E [  [] y imP] < oo and E[ [p y NP[x]fo(x) is bounded. 

Assumptions 8.1 8.3 can be combined to obtain the following result: 

Lemma 8.10 

If Assumptions 8.1-8.3 are satisfied and a = a(n) such that a(n)~O and n 1 (2/p)a(n)r/ 
inn ~ oo then H 3 ) - 7o 11 = Op[(ln n) 1/2 (na r+ 2d)- 1/2 + tim]. 

This result is proved in Newey (1992b). Its proof is quite long and technical, and so 

is omitted. It follows from this result that x /ni l3)-7o ]12 P---*0, as required for as- 
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sumption (i) of Theorem 8.1, if n~-(E/P)a(n)'/ lnn-*~, x / h a 2 " - , 0 ,  and x / n l n n /  
(n~v,+ 2d)_~ O. These conditions will be satisfied for a range of bandwidth sequences 
a(n), if m and p are big enough, i.e. if the kernel is of "high-enough order", the true 
function 7(x) is smooth enough, and there are enough moments ofy. However, large 
values of m will be required if r is large. 

For kernel estimators it turns out that assumption (ii) of Theorem 8.1 will follow 
from combining a V-statistic projection with a small bias condition. Suppose that 
G(z, 7) is linear in 7, and let ~ = E[~]. Then G(z, ~ - ~o) = G(z, ~ - ~) + G(z, ~ - ~o). 
Let rn,(z,, z j) = G[z,, yjK~(" - xj)], m,z(Z ) = S m,(5, z) dFo( D = S G[z, yjK~(. - xj) ] dVo(z ), 
and assume that m,l(z) = Sm,(z, 5)dFo( D = G(z, ~), as should follow by the linearity 
of G(z, 7). Then 

= G(zi, ~/)/n - G(zl, ~)/n - G(z, ~) dFo(z) + G(z, ~) dFo(z) 
i i = 1  

= n-2  ~ mn(Zi, Z j ) _ n - 1  m, l ( z i )_  n 1 m.2(zl)+E[m.a(z) ] , 
t i = 1  j = l  i = l  i = 1  

(8.11t 

where the second equality follows by linearity of G(z, 7). The convergence in prob- 
ability of this term to zero will follow by the V-statistic projection result of Lemma 

8.4. The other term, x/~ {Z7=1 G(zi, ~ -.7o)/n - S G(z, ~ - 71 dFo(z)}, will converge in 
probability to zero if Ell] G(z,~-7o)112] ~ 0 ,  by Chebyshev's inequality, which 
should happen in great generality by ~ ~ 7o as o-~ 0, as described precisely in the 
proof of Theorem 8.1 1 below. Thus, a V-statistic projection result when combined 
with a small bias condition that E[  U G(z, ~ - 7o)412] goes to zero, gives condition (ii) 
of Theorem 8.1. 

For kernel estimators, a simple condition for the mean-square differentiability 
assumption (iii) of Theorem 8.1 is that there is a conformable matrix v(x) of functions 
of x such that 

f G(z, 7) dFo = f v(x)7(x) dx, (8.12) 

for some v(x).This condition says S G(z, 7)dFo can be represented as an integral, i.e. 
as an "average" over values of x. It leads to a simple form for 6(z). As previously 
discussed, in general 6(z) can be calculated by differentiating S G[z, 7(t/)] dF o with 
respect to the parameters r/ of a distribution of z, and finding 6(z) such that 
V~G[z,7(~/)] dFo = E[~(z)S'J for the score S~ and all sufficiently regular parametri- 
zations. Let E , [ . ]  denote the expectation with respect to the distribution at this 
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parametrization. Here, the law of iterated expectations implies that 

f G[z, y(t/)] dF o = Jv(x)7(x, t / ) =  Jv(x)E,[  y [ x ] f ( x [ r l ) =  E,[v(x)y], dx dx 

so differentiating gives V,~ G[z, 7(.t/)] dFo = V,E,[v(x)y] = E[v(x)yS',] = E[6(z)S',], 
for 

,~(z) = v(x)y - E[v(x)y]. (8.13) 

For  example, for the consumer surplus estimator, by eq. (8.8), one has v(x)= 
l(a ~ x ~ b)fo(x )- 1 [_  ho(x),l] and y = (1, q), so that 6(z) = l(a ~ x <~ b)fo(x )- 1 × 
[q -- ho(x)]. 

With a candidate for 6(z) in hand, it is easier to find the integral representation 
for assumption (iii) of Theorem 8.1. Partition z as z = (x, w), where w are the 
components of z other than x. By a change of variables, ~ K~(x -- xi) dx = ~ K(u) du = 1, 
so that 

fG(z ,~--7o)dFo=fV(X)~(x)dx-- fv(x)yo(X)  d x = n - :  ~=l fv(x)y~K~(x-x i )  dx 

-- E[v(x)y] = n-1 ,=1 f 6(x, w,)Ko(x- x,)dx= f 6(z)d;, 
(8.14) 

where the integral of a function a(z) over dF is equal to n-  i Z"i=x ~.a(x, wi)K~,(x - xi)dx. 
The integral here will be the expectation over a distribution when K(u) ~ O, but when 
K(u) can be negative, as for higher-order kernels, then the integral cannot be interpreted 
as an expectation. 

The final condition of Theorem 8.1, i.e. assumption (iv), will follow under straight- 
forward conditions. To verify assumption (iv) of Theorem 8.1, it is useful to note that 
the integral in eq. (8.14) is close to the empirical measure, the main difference being 
that the empirical distribution of x has been replaced by a smoothed version with 
density n-  1 ~7= 1 K.(x  - x~) [for K(u) >~ 0]. Consequently, the difference between the 
two integrals can be interpreted as a smoothing bias term, with 

f 6(z)dP-- f O(z)d = n- l Z= l [ f x,)dx-- v(x,) lY,. (8.15) 

By Chebyshev's inequality, sufficient conditions for x/~ times this term to converge 

in probability to zero are that w/nE[yi{  [ v ( x ) K . ( x -  x i ) d x -  v(x~)}] ~ 0 and that 
El_ [I Y i IJ 2 I1 [. v(x)K.(x - xi) dx - v(xi) II 2 ] ~ 0. As shown below, the bias-reducing kernel 
and smoothness parts of Assumptions 8.1-8.3 are useful in showing that the first 
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condition holds, while continuity of v(x) at "most  points" of v(x) is useful for showing 
the second. In particular,  one can show that  the remainder  term in eq. (8.15) is small, 
even when v(x) is discontinuous,  as is impor tan t  in the consumer  surplus example. 

Putt ing together the various arguments  described above leads to a result on 

asymptotic normal i ty  of the "score" ~ =  1 g(zi, ~)/w/n. 

Theorem 8.11 

Suppose that  Assumptions 8.1-8.3 are satisfied, E[g(z, 7o)] = 0, E [ 1] g(z, 70)II 2] < (Z), 
Y" is a compact  set, a = a(n) with naZ*+ga/(ln n)2--+ oo and na2"~O, and there is 
a vector of functionals G(z, 7) that  is linear in 7 such that  (i) for ]l 7 -  7o 11 small 
enough, 119(z, 7 ) -  g(z, 70) - G(z, 7 -  70)1] <~ b(z) ]17 - 70112, E[b(z) ] < oo; (ii) PI G(z, 7)[1 ~< 
c(z) [[ 7 [[ and E[c(z) 2] < ~ ;  (iii) there is v(x) with ~G(z, 7)dFo(z)=  ~v(x)7(x)dx for 
all ][ y [[ < oo; (iv) v(x) is cont inuous almost everywhere, ~[[ v(x)[[ dx < o% and there 
is ~ > 0 such that  E[supllvfl <~[I v(x + v)[[ 4] < oo. Then for 6(z)=  v(x )y -  E[v(x)y], 

Z" g(z,, d i=t ~ N{0, Var [g(z, Yo) + 6(z)] }. 

Proof 

The proof  proceeds by verifying the condit ions of Theorem 8.1. To  show assump- 

tion (i) it suffices to show .~n  11 ~ - 7o II 2 ~ 0, which follows by the rate condit ions 
on a and Lemma 8.10. To  show assumption (ii), note  that  by K(u) having bounded  
derivatives of order  d and bounded  support ,  11G[z, yK~( . -  x)] [r ~< a-rc(z)I1Y ]I. It 
then follows by Lemma 8.4 that  the remainder  term of eq. (8.11) is Op(n- la- ' x  
{E[-C(Zl) 11Yl I[ ] "4- (E[C(Zl) 21I Y2 l[ 2] )1/2} ) = Op(1) by n -  l a - r  ~ 0. Also, the rate condi- 
tions imply ~ 0 ,  so that  E[  [[ G(z,~ - 70)][2] ~< E[c(z)2] H 7 - 7o [[2 ~ 0 ,  so that  the 
other remainder  term for assumption (ii) also goes to z e r ~  as discussed following 
eq. (8.11). Assumption (iii) was verified in the text, with dF  as described there. To  
show assumption (iv), note that  

(8.16) 
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for some constant C. Therefore, 1t , ,/nE[ { ~ v(x)K~(x - x~) dx  - v(x~)}y,] t1 ~< Cx/~m--+0- 
Also, by almost everywhere continuity of v(x), v(x + ~u) --+ v(x) for almost all x and u. 
Also, on the bounded support of K(u), for small enough a, v(x + ou) <~ suPll~ll ,< ~v(x + v), 
so by the dominated convergence theorem, ~ v(x + cru)K(u) du --+ [. v(x)K(u) du = v(x) 
for almost all x. Another application of the dominated convergence theorem, using 
boundedness of K(u)  gives E[ 11 ~ v ( x ) K , ( x - x i ) d x - v ( x l ) I I  4]__,0, so by the Cauchy 
Schwartz inequality, E[ II Yi I12 II ~ v(x)K~(x - xi) d x  - v(xi)II 2] _+ 0. Condition (iv) 
then follows from the Chebyshev inequality, since the mean and variance of 
n -  1/2 ~,]= 1 [[. v ( x )K , (x  - xi) dx  - v(xl) ]yi go to zero. Q.E.D. 

The assumptions of Theorem 8.11 can be combined with conditions for convergence 
of the Jacobian to obtain an asymptotic normality result with a first-step kernel 
estimator. As before, let ~ = Var [g(z, 7o) + 6(z)]. 

Theorem 8.12 

Suppose that 0 P-~ 0 o E interior(O), the assumptions of Theorem 8.11 are satisfied, 
E(g(z, 7o)] = 0 and E[ II g(z, 70)II 2] < ~ ,  for II ? - 7o tl small enough, g(z, 0, 7) is contin, 
uously differentiable in 0 on a neighborhood X of 0o, there are b(z), e > 0 with 
E[b(z)]  < oo, ][Vog(z ,O,y) -  Vog(z, Oo,?o)]l <<.b(z)[]]O-OoJ]~ + I]?-7o]]~], and 

E[Vog(z,  0o, 7o)] exists and is nonsingular. Then x / n ( 0 -  0o) ~ N(0, G o 1~2G o 1,). 

P r o o f  

It follows similarly to the proof of Theorem 8.2 that Gt~- ~ ~ Go 1, so the conclusion 
follows from Theorem 8.11 similarly to the proof of Theorem 8.2. Q.E.D. 

As previously discussed, the asymptotic variance can be estimated by 2 o 1~2  o 1, 
where 20 = n -1 ~n=l gog(Zi, O, ~) and ~ = n-1 YT= 1 fiu'~ for fig = g(z~, O, ?) + $(z~). The 
main question here is how to construct an estimator of 6(z). Typically, the form of 
6(z) will be known from assumption (iii) of Theorem 8.11, with 6(z) = 6(z, 0o, 7o) for 
some known function 6(z, O, 7). An estimator of 6(z) can then be formed by substituting 

and ~ for 0 o and 7o to form 

6(z) = 6(z, 0, ~). (8.17) 

The following result gives regularity conditions for consistency of the corresponding 
asymptotic variance estimator. 

Theorem 8.13 

Suppose that the assumptions of Theorem 8.12 are satisfied and there are b(z), e > 0, 
such that E[b(z) 2] < oo and for l1 ? - 7o II small enough, I] g(z, O, 7) - g ( z ,  0 o, 7)11 ~< b(z) x 
[ II 0 - 0o II t + [I 7 - 70 II'] and II 6(z, O, ?) - 6(z, 0o, 7o)II ~< b(z)[ II 0 - 0o I] ~ + II ? - 7o II']- 
Then Go t ~ G  o 1, P Go I ~ G  ° 1,. 
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Proof 

It suffices to show that the assumptions of Theorem 8.3 are satisfied. By the 
conditions of Theorem 8.12, f] 0 -  0 o ]6 P-~ 0 and ]J ~ - 70 Dr p-~ 0, so with probability 
approaching one, 

( n )  
Itg(z,,O,~)-g(z~,Oo,7o)ll2/n~ n - X ~  1 b(zO 2 I-I]O-OolP~+ 11~-7o11~]2 P--~O, 

i=1 

because n -~ Z~=z b(zi) 2 is bounded in probability by the Markov inequality. It 
follows similarly that ~7= 1[I cS(zl)- 6(zi)[[2/n P-~0, so the conclusion follows by 
Theorem 8.3. Q.E.D. 

In some cases c~(z, 0, 7) may be complex and difficult to calculate, making it hard to 
form the estimator 6(z, 0, ~). There is an alternative estimator, recently developed in 
Newey (1992b), that does not have these problems. It uses only the form of g(z, O, 7) 
and the kernel to calculate the estimator. For  a scalar ( the estimator is given by 

~(zi)=V~[n -1 ~ g{zj, O,~+~yiK~(.-x~)}l  (8.18) 
j = l  ~=0" 

This estimator can be thought of as the influence of the ith observation through the 
kernel estimator. It can be calculated by either analytical or numerical differentiation. 
Consistency of the corresponding asymptotic variance estimator is shown in Newey 
(1992b). 

It is helpful to consider some examples to illustrate how these results for first-step 
kernel estimates can be used. 

Nonparametric consumer surplus continued: To show asymptotic normality, one can 
first check the conditions of Theorem 8.11. This estimator has g(z, 7o) = S]ho(x) dx - 
0 o = 0, so the first two conditions are automatically satisfied. Let f = [a, b], which 
is a compact set, and suppose that Assumptions 8.1-8.3 are satisfied with m = 2, 
d = 0, and p = 4, so that the norm I] 7 tJ is just a supremum norm, involving no 
derivatives. Note that m = 2 only requires that S uK(u) du = 0, which is satisfied by 
many kernels. This condition also requires that fo(x) and fo(x)E[qJx] have versions 
that are twice continuously differentiable on an open set containing [a, b], and that 
q have a fourth moment. Suppose that na2/(ln n)2~ ~ and no4---~0, giving the 
bandwidth conditions of Theorem 8.11, with r = 1 (here x is a scalar) and d = 0. 
Suppose that fo(X) is bounded away from zero on [a, b]. Then, as previously shown 
in eq. (8.9), assumption (i) is satisfied, with b(z) equal to a constant and G(z, 7)= 
~fo(X )- 1[ _ ho(x), 117(x) dx. Assumption (ii) holds by inspection by fo(x)- 1 and 
ho(x) bounded. As previously noted, assumption (iii) holds with v(x) = l(a ~< x ~< b) × 
fo(x )- 1 [ _ ho(x), 1]. This function is continuous except at the points x -- a and x = b, 
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and is bounded,  so that  a ssumpt ion  (iv) is satisfied. Then  by the conclusion of 
Theo rem 8.11 it follows that  

h ( x ) -  0 o ~ N ( O , E [ I ( a  <~ x <~ b)fo(x)  2{q _ ho(x)}2]), (8.19) 

an asympto t ic  normal i ty  result for a nonpa rame t r i c  consumer  surplus est imator .  
To  estimate the asymptot ic  variance, note that  in this example, 6(z) = l(a ~< x ~ b) x 

)Co(X)-l[q _ ho(x ) ] = 6(z, 7o) for 6(z, 7) = 1 (a ~ x <. b)71(x)- l[q _ 71(x)-17z(X)]. Then 
for S(z) = 6(z, ~), an asympto t ic  var iance es t imator  will be 

{2= ~ ~(z,)2/n=n -1 ~ l(a<~x, <~b)}(x,)-2[q,-h(x,)] z. 
i=1 i=1 

(8.20) 

By the density bounded  away from zero on X = [a, b], for U 7 - 7o [[ small enough 
that 71(x) is also bounded away from zero on X, [ 6(zi, 7) - 6(zi, 7o)1 ~< C(1 + ql)II 7 - 7o  II 

for some cons tant  C, so that  the condit ions of Theo rem 8.13 are satisfied, implying 
consistency of ~ .  

Weighted average derivative estimation: There  are m a n y  examples  of  models  where 
there is a dependent  variable with E[qlx] = ~(x'/3o) for a pa rame te r  vec tor /3  o, as 
discussed in Powell 's  chapter  of this handbook .  When  the condi t ional  expecta t ion 
satisfies this "index" restriction, then VxE[qlx]  = %(x'/3o)flo, where 7v(v) = dr(v)/dv. 
Consequently,  for any bounded  function w(x), E[w(x)VxE[ql x] ] = E [w(x)%(x' flo) ]rio, 
i.e. the weighted average derivative E[w(x)VxE[qlx]  ] is equal  to a scale mult iple of  
the coefficients/3o. Consequent ly,  an est imate of/3 o that  is consistent  up to scale can 
be formed as 

o=n 1 wix,)Vx (X,),  (xt= (821) 
i = 1  i = 1  i = I  

This is a weighted average derivative est imator.  
This es t imator  takes the form given above  where 71o(X) = fo(x),  72o(X) = fo(X) x 

E[qlx],  and 

9(z, o, v) = w ( x ) V x [ 7  2(x)/7 : (x)  ] - o. (8.22) 

The weight w(x) is useful as a "fixed t r imming"  device, that  will al low the appl icat ion 
of Theorem 8.11 even though there is a denomina to r  te rm in g(z, 0,7). Fo r  this 
purpose,  let X be a compac t  set, and suppose that  w(x) is zero outside X and 
bounded.  Also impose  the condi t ion that  fo(x) = 71o(X) is bounded  away  from zero 
on X. Suppose that Assumptions 8.1 8.3 are satisfied, na 2r + 4/(ln n) 2 ~ oo and no'2m---'~0. 



Ch. 36: Large Sample Estimation and Hypothesis Testin9 2213 

These conditions will require that m > r + 2, so that the kernel must be of the 
higher-order type, and 7o(X) must be differentiable of higher order than the dimension 
of the regressors plus 2. Then it is straightforward to verify that assumption (i) of 
Theorem 8.11 is satisfied where the norm II 7 II includes the first derivative, i.e. where 
d = 1, with a linear term given by 

G(z, 7) = w(x)[ao(x)y(x) + V~7(x)'bo(x) ], 

ao(x ) = f o(x )- 1 [ _ ho~(X) + ho(x)s(x), - s(x)], b o ( x ) = f o ( X ) - l [ - h o ( x ) , l ]  ', 
(8.23) 

where an x subscript denotes a vector of partial derivatives, and s(x) = fo~(x)/fo(X) 
is the score for the density of x. This result follows from expanding the ratio 
V~[Tz(x)/71(x)] at each given point for x, using arguments similar to those in the 
previous example. Assumption (ii) also holds by inspection, by fo(x) bounded away 
from zero. 

To obtain assumption (iii) in this example, an additional step is required. In 
particular, the derivatives V~7(x) have to be transformed to the function values 7(x) 
in order to obtain the representation in assumption (iii). The way this is done is by 
integration by parts, as in 

E[w(x)V~7(x)'bo(x) ] = f w(x)Io(x)bo(x)'[Vx (X) ] dx 

= - fVx[w(x)fo(x)bo(x)] '7(x ) dx, 

Vx[w(x) fo(x)bo(x) ] '=  w x ( x ) [ -  ho(x), 1] + w ( x ) [ -  hox(X), 0] 

It then follows that ~ G(z, 7) dFo = ~ v(x)7(x) dx, for 

v(x) = -- wx(x)[-- ho(x), 1] - w ( x ) [ -  hox(X), 0] + w(x)ao(X ) 

= -- {Wx(X ) + w(x)s(x)} [-- ho(x), 1] = ~ ( x ) [ -  ho(x), 1], 

~ ( x )  = - w ~ ( x )  - w ( x ) s ( x ) .  (8.24) 

By the assumption that fo(x) is bounded away from zero on f and that Y" is compact, 
the function t~(x)[- ho(x), 1] is bounded, continuous, and zero outside a compact set, 
so that condition (iv) of Theorem 8.11 is satisfied. Noting that 6(z) = #(x)[q - ho(x)], 
the conclusion of Theorem 8.11 then gives 

x/nln-1 ~= l w(x,)V~O(x,)- Oo] ~ N(O,Var{w(x)Vxho(x) + d(x)[q- ho(x) ] } ). 
(8.25) 
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The asymptot ic  variance of this est imator  can be estimated as 

~ 2 =  n - 1  ~ ail~l;, l~l i = w(x~)V~h(x~) -- O +  ~ ( x , ) [ q , -  h(x,)], (8.26) 
i = 1  

where vT(x) = - Wx(X ) - w ( x ) • ( x ) / f ( x )  for f ( x )  = n - 1  ~,7=1 K ( x  - x~). Consistency 
of this asymptot ic  variance est imator will follow analogously to the consumer  
surplus example. 

One caut ionary note due to Stoker  (1991) is that  the kernel weighted average 
derivative estimators tend to have large small sample biases. Stoker  (1991) suggests 
a corrected estimate of - [ n - 1 ~ ' = 1  #(xi)x ' i]-10,  and shows that  this correct ion 
tends to reduce bias 0 and does not  affect the asymptot ic  variance. Newey et al. 
(1992) suggest an alternative est imator 0 + n -  1 Z~= 1 { (x i ) [q l  - h(xl)], and show that  
this also tends to have smaller bias than 0. Newey et al. (1992) also show how to 
extend this correct ion to any two-step semiparametr ic  est imator with a first-step 
kernel. 

8.4. Techn ica l i t i e s  

P r o o f  o f  L e m m a  8.4 

Let mij = m(zi, zj), rh i. = ml(zl),  and rfi. i = m2(zl). Note  that E[  [[ mll  - / 2  [] ] ~ E[  ][ mll  ][ ] 
-+- (El  [[ m12 [[2-])1/2 and (E[]] m12 - /21[2])  1/2 ~< 2(El  [I m12 [[2])1/2 by the triangle in- 
equality. Thus, by replacing re(z1, ;52) with re(z1, z2) - / 2  it can be assumed that/2 = 0. 
Note  that  [[ Zi j rn i j / n  2 - Zi(rfii. + rfi.i)/n ][ = [I ~ij(rnii  - rni. - rng)/n2 t[ <~ [[ Z i ~  j(rnij - 
rfii. - rfi.j)/n 2 [[ + [[ Z i ( m u  - rhi.--rh.~)/n 2 [] -- T1 + T2. Note  E [ T 2 ]  ~<(E[ [[ ml l  [[ + 2  x 
E [  [] m12 [[]fin. Also, for i :~j, k :~ ~ let Vijk~ -- E [ ( m i j  --  th i. -- rh.j)'(rnkl --  rh k. -- rh.~)]. 
By i.i.d, observations,  if neither k nor  t ~ is equal to i or j, then V~jkC = 0. Also for ~ not  
equal to i or  j, V ijiE = E [  (mi j  - -  rni.)' (mi (  - -  r n i . ) ]  = E [  E [ (mi j - ffli.)' (m i f  - ff'li.) [ z i ,  z j ]  ] = 

E[(rn~j --  ffti .) '(E[mit ]zi, z j ]  - n~i.)] -- 0 -- vljj~. Similarly, V~jk~ = 0 if k equals neither 
i nor  j. Thus, 

E[T21 ] = Z Z Vljk¢/n4= Z (vijij + vijjl)/n4 
i : / : j k ~ (  i # j  

= 2(n 2 -- n)E[  II m l  2 --  ~ f i l . -  rn.2 [I 2]/n4 = E[  ][ m 12 - rnr  - rn.2 ]J 2]O( n -  2), 

and T1 = Or( {El H m12 - rill. - r~.2 I] 2] } 1/2 n -  1) = Ov({E[It rn12 H 2] }1/2 n -  1). The con- 
clusion then follows by the triangle inequality. Q.E.D. 

P r o o f  o f  L e m m a  8.5 

Continui ty  of a(z 1, z 2, O) follows by the dominated  convergence theorem. Without  
changing nota t ion let a(Za, Zz, O) = a(z 1, z2, O) - E [ a ( z l ,  z2, 0)]. This function satisfies 
the same dominance conditions as a(z l ,  z2, 0), so it henceforth suffices to assume that  
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E[a(z 1, z z, 0)] = 0 for all 0. Let 0(0) = n-  l(n - 1)- 1 ~ , i # j a ( z i ,  zj ,  0), and note that 
sup0~o II n -  2 ~ i  ja(z~, z j, 0) - 0(0)  II ~ 0. Then by well known results on U-statistics 
as in Serfling (1980), for each 0, 0(0)P-~ 0. It therefore suffices to show stochastic 
equicontinuity of 0. The rest of the proof proceeds as in the proof of Lemma 2.4, with 
Ao( 0, ~) = supll ~ 0 II -< ~ II a(zl, z j, O) -- a(zi, z., O) II replacing z~i(0, 6), ~.i ~" replacing ~ " . ,  -- ~ J ^ J ~ ^ i= l  
and the U-statistic convergence result n -  X(n - 1)- 1 S~i ¢ j Aij(O, ~) ~ E[ AI 2(0, 6) ] 
replacing the law of large numbers. Q.E.D 

Proof  o f  Lemma 8.7 

Let rhlj = m.(zi, z j, 0), mij = mn(Zi, Z j,/90), and taxi = m.l  (z ). By the triangle inequality, 
we have 

n -1 ~ H n -1 ~ rh i j -ml i l l2<~Cn -2 ~ Ilrh, l[ z 
i=1 j= l  i=1 

- [ - C r / - 1  ~ I[Y/--1 E ( l ~ i j - - m i j ) l l 2 - d r C n - l ~ ,  I[ (F/ - - 1 ) -  I E (mi j - -ml i ) [ I  2 
i=1 j ~ i  i=l j,~i 

÷ C n  - z  ~ IImli[Ie=RI + R 2 + R 3 + R 4  • 
i= l  

for some positive constant C. Let b(zi) = sup0~y II m,(zi, zl, O)II and b(zl, zj) = 
sup0~x [I Vom,(zi, z j, O)I[. With probability approaching one, R x ~< C n -  2 Z~= 1 b(zi) 2 = 
Op{n - 1E[b(zl) 2] }. Also, R 2 ~< Cn-1  Z7=1 II n -  1 Z i ~  i b(zi, z j)II 2 II 0 -  0o II 2 < C n -  2 x 
~icjb(zi ,  z j)2 ]10- 00 [I 2 = Op{n- aE[b(zl,z2)2]}. Also, by the Chebyshev and Cauchy- 
Schwartz inequalities, E[R3] ~< CE[ ][ m12 II 2-1/n and E[R4] <~ CE[ 1I m12112]/n. The 
conclusion then follows by the Markov and triangle inequalities. Q.E.D. 

9. Hypothesis testing with GMM estimators 

This section outlines the large sample theory of hypothesis testing for G M M  
estimators. The trinity of Wald, Lagrange multiplier, and likelihood ratio test 
statistics from maximum likelihood estimation extend virtually unchanged to this 
more general setting. Our treatment provides a unified framework that specializes 
to both classical maximum likelihood methods and traditional linear models esti- 
mated on the basis of orthogonality restrictions. 

Suppose data z are generated by a process that is parametrized by a k × 1 vector 
0. Let E(z, 0) denote the log-likelihood of z, and let 0 o denote the true value of 0 in 
the population. Suppose there is an m × 1 vector of functions of z and 0, denoted 
g(z, 0), that have zero expectation in the population if and only if 0 equals 0o: 

g ( O ) - E m x l  g (Z, k01)=-fg(z, 0)e~(~'°°)dz=0, i f0=0o .  
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Then, Eg(z, O) are moments,  and the analogy principle suggests that an estimator of 
0o can be obtained by solving for 0 that makes the sample analogs of the population 
moments small. Identification normally requires that m >~ k. If the inequality is strict, 
and the moments are not degenerate, then there are overidentifyin9 moments that 
can be used to improve estimation efficiency and/or test the internal consistency of 
the model. 

In this set-up, there are several alternative interpretations of z. It may be the case 
that z is a complete description of the data and ((z, 0) is the "full information" 
likelihood. Alternatively, some components of observations may be margined out, 
and f(z, 0) may be a marginal "limited information" likelihood. Examples are the 
likelihood for one equation in a simultaneous equations system, or the likelihood 
for continuous observations that are classified into discrete categories. Also, there 
may be "exogenous" variables (covariates), and the full or limited information 
likelihood above may be written conditioning on the values of these covariates. 
From the standpoint of statistical analysis, variables that are conditioned out 
behave like constants. Then, it does not matter for the discussion of hypothesis 
testing that follows which interpretation above applies, except that when regularity 
conditions are stated it should be understood that they hold almost surely with 
respect to the distribution of covariates. 

Several special cases of this general set-up occur frequently in applications. First, 
if f(z, 0) is a full or limited information likelihood function, and 9(z, O) = VoE(Z, O) 
is the score vector, then we obtain maximum likelihood estimation. 49 Second, if 
z = (y, x, w) and 9(z, O) = w'(y - xO) asserts orthogonality in the population between 
instruments w and regression disturbances e = - y -  xOo, then G M M  specializes to 
2SLS, or in the case that w = x, to OLS. These linear regression set-ups generalize 
immediately to nonlinear regression orthogonality conditions based on the form 
g(z, O) = w ' [ y  - h(x, 0)]. 

Suppose an i.i.d, sample z l , . . . ,  z, is obtained from the data generation process. 
A G M M  estimator of 0 o is the vector 0, that minimizes the generalized distance of 
the sample moments from zero, where this generalized distance is defined by the 
quadratic form 

- - Q . ( 0 ) = ~ A  , _ ~g,(O) .Q. a0 . (0  ), 

with 0,(0) -= (1/n)Z~= 1 g(zt, O) and 12, an m x m positive definite symmetric matrix that 
defines a "distance metric". Define the covariance matrix of the moments, 12 - 

m x m  
Eg(z, Oo)g(z, 0o)'. Efficient weighting of a given set of m moments requires that 12, 
converge to 12as n--* ~.5o Also, define the Jacobian matrix G - EVog(z,  Oo), and 

m×k 

49If the sample score has multiple roots, we assume that a root is selected that achieves a global 
maximum of the likelihood function. 

5°This weighting is efficient in that it minimizes the asymptotic covariance matrix in the class of all 
estimators obtained by setting to zero k linear combinations of the m moment conditions. Obviously, if 
there are exactly k moments, then the weighting is irrelevant. It is often useful to obtain initial consistent 
asymptotically normal G M M  estimators employing an inefficient weighting that reduces computation, 
and then apply the one-step theorem to get efficient estimators. 
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let G, denote an array that approaches G as n ~ oe. The arrays .Q, and G, may be 
functions of (preliminary) estimates 0. of 0 o. When it is necessary to make this 
dependence explicit, write -Q.(0,) and G,(0,). 

Theorems 2.6, 3.4, and 4.5 for consistency, asymptotic normality, and asymptotic 
covariance matrix estimation, guarantee that the unconstrained G M M  estimator 

O. = argmaxoEoQ,(O) is consistent and asymptotically normal, with x/n(0, - 0o) d_~ 
N(0, B-  1); where B =- G'g2-1G. Further, from Theorem 4.5, the asymptotic covariance 
matrix can be estimated using 

1 
a. = -  L vog(z,, 0.) ~ ~, 

nt=l  

1 
a. = -  ~ 0(z,, 0n)g/z,, 0.)' P~ a, 

n t = l  

where 0, is any x~-consistent  estimator of 0o [i.e., x/n(0", - 0o) is stochastically 
bounded]. A practical procedure for estimation is to first estimate 0 using the 
G M M  criterion with an arbitrary .(2,, such as -(2, = I. This produces an initial 

x/n-consistent estimator 0,. Then use the formulae above to estimate the asympto- 
tically efficient -62,, and use the G M M  criterion with this distance metric to obtain 
the final estimator 0.. Equation (5.1) establishes that F = - - E g ( z ,  Oo)Vo~(z, Oo) ' =  - 
EVog(z, 0o) =- G. It will sometimes be convenient to estimate G by 

1 n 
v - - '  F .  - ,., g(z,, O,)Vot(z,, 0 , ) .  

n t = l  

In the maximum likelihood case g = Vo{, one has -(2 = F = G, and the asymptotic 
covariance matrix of the unconstrained estimator simplifies to Q -  1. 

9.1. The  null hypothesis and the constrained G M M  estimator 

Suppose there is an r-dimensional null hypothesis on the data generation process, 

H0: a (0o) = O. 
r × l  

We will consider alternatives to the null of the form 

Hl:a(Oo) ~ O, 

or asymptotically local alternatives of the form 

u,.: a(Oo)= ~/~f~ # o. 
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Assume that A - Voa(Oo) has rank r. The null hypothesis may be linear or nonlinear. 
r x k  

A particularly simple case is Ho: 0 = 0 °, or a(O) - 0 - 0 °, so the parameter vector 0 
is completely specified under the null. More generally, there will be k - r parameters 
to be estimated when one imposes the null. One can define a constrained G M M  
estimator by optimizing the G M M  criterion subject to the null hypothesis: 

O. = argmaxo~oQ,(O), subject to a(O) = O. 

Define a Lagrangian for 0,: ~a.(0, V) = Q.(O)-  a (0)' v . In this expression, 7 is 
l x r  r x l  

the vector of undetermined Lagrangian multipliers; these will be nonzero when the 
constraints are binding. The first-order conditions for solution of this problem are 

[00] = LF "~/-n V°Q"( O-~)_ -a( O.)V--°a( O--")'w/n T-n J ]" 

A first result establishes that O, is consistent under the null or local alternatives: 

Theorem 9.1 

Suppose the hypotheses of Theorem 2.6. Suppose a(Oo) = 6/v~,  including the 
null when 6 = 0, with a continuously differentiable and A of rank r. Then t~ p 00. 

Proof 

Let 0o, minimize [E0,(0)]'.f2-i[E0,(0)] subject to a(O)= 6/,~/-n. Continuity of this 
objective function and the uniqueness of its minimum imply 0o. ~ 0o. Then Q.(O,) ~< 
Q,(Oo.) P--~O, implying Q, (O, )~0 .  But Q. converges uniformly to [E0,(0)]'O 1 x 
lEO,(0)], so the argument of Theorem 2.6 implies 0, P--~ 0o. Q.E.D. 

The consistency of O. implies 

VoQ,(O,) P-~ - G'I2 - lEg(z, 0o) = O, 

V0a(0.) P-~ A ~ A'~, = - VoQ,(O,) + Op ~ O, 

and since A is of full rank, ~, 2+0. A central limit theorem implies 

- K2- i/Z~nO.(Oo) = ~ ,  ~ ~ ~ N(O, I). 
rex1 

(9.1) 

A Taylor's expansion of the sample moments about 0 o gives 

~,/-nO,(O) = x/-nO,(Oo) + G,,,/n(O - 0o), (9.2) 
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with G, evaluated at points between 0 and 0 o. Substituting this expression for the 

final term in the unconstrained first-order condition 0 = ~//nVoQ.(O,) = G . .  × 

0.(0.) and using the consistency of 0, and uniform convergence of G.(O) yields 

0 : - -  G ' ~ -  1/20ff, ..~ B N ~ ( O n  __ O0 ) ..~ Op 

:::::> ~ ( 0  n - -  00)  : B - 1 G ' ~ ' ~ -  I /2~(  n ~- Op. (9.3) 

Simi la r ly ,  s u b s t i t u t i n g  x / -n0 , (0 , )  = xSn0, (0o)  + G , x / n ( 0  . - 0o) = - G ' O -  1/2q/, + 

Gxfn(O,  - 0o) + Op, a n d  x / n a ( O , ) =  x~_a(Oo) + A x / n ( O  , --  0o) + Op - 6 + A x / n ( O  . - 0o) + 

Op in the first-order conditions for 0. yields 

[~] : [Gt~- i~2~'] -- [ B __ At]  F ~ ( 0 "  -- 0°)]  0 1 l  ~ "  "q- Op. 

From the formula for partitioned inverses, 

= L ( A B _ I A , ) _ ~ A B _  1 _ ( A B - 1 A , )  -1  , 

(9.4) 

(9.5) 

where M = I - B -  i/2A'(AB- 1A') l A B  1/2 is a k x k idempotent matrix of rank 
k - r. Applying this to eq. (9.4) yields 

11 ,o V x / n %  J L ( A B - i A ' )  - i  l L ( A B - 1 A ' ) - I A B  - 

(9.6) 

Then, the asymptotic distribution of x/-n(O. - 0o) under a local alternative, or the 
null with 6 = 0, is N[  - B - i A ' ( A B - i A ' ) - 1 6 , B - 1 / Z M B - 1 / 2 ] .  

Writing out M = I - B -  1 /ZA'(AB-  1A')- l A B -  i/2 yields 

x/n(On - 0o )=  B - 1 G ' 1 2 -  i/2~lin __ B -  i A , ( A B - 1 A , ) -  i A B -  iG,~-2- i/Z~lin 

- B -  1 A ' ( A B -  1A')- 16 + Op. (9.7) 

The first terms on the right-hand side of eq. (9.7) and the right-hand side of eq. (9.3) 
are identical, to order Op. Then, they can be combined to conclude that 

x/n(O. -- if,) = B -  1 A ' (A B -  1A')- l A B -  i G ' ~ -  1/2~1[ n + B - 1 A ' ( A B -  1A')- 16 + Op, 
(9.8) 

so that x / n ( 0 . -  0.) is asymptotically normal with mean B - 1 A ' ( A B  - iA')- lb and 
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Table 1 

Asymptotic 
Statistic Formula covariance matrix 

, , / , ( 0 .  - Oo) 

, / , ( O .  - Oo) 

o.  - o . )  

,javoQ.(0.) 

B - I G ' ~  1/20~ln 4-Op B i ~-C 

- B-  1A'(AB- 1A')- 16 + B 1/ZMB- 1/2G'.Q- 1/2q/n + op B-  I/2MB- 1/2 

B-1A'(AB-1A')-i~+B-iA'(AB-IA')-IAB-1G'aQ-1/2aII.+op B 1A'(AB 1A') 1AB-i  

(AB- 1A')- a3 + (AB- 1A')- lAB-  1G'Q- a/2ql. + Op (AB- aA')- 1 

6+ AB-1G'~2-1/zoll. +op AB 1A' 

A'(AB- aA')- i6 + A'(AB- 1A') lAB-  1G'~- 1/2011 n 4- Op A'(AB- 1A')- 1A 

covariance matrix B - 1 / 2 ( I  --  M)B -i/2 =- B - 1 A ' ( A B - 1 A ' ) - I A B  -1. Note that the 
asymptotic covariance matrices satisfy acov(0, - 0,) = acov 0, - acov 0,, or the vari- 
ance of  the difference equals the difference of the variances. This proposition is familiar 
in a maximum likelihood context where the variance in the deviation between an 
efficient estimator and any other estimator equals the difference of the variances. 
We see here that it also applies to relatively efficient G M M  estimators that use 
available moments and constraints optimally. 

The results above and some of their implications are summarized in Table 1. Each 
statistic is distributed asymptotically as a linear transformation of a common 
standard normal random vector o//. Recall that B = G'-Q-1G is a positive definite 
k x k matrix, and let C = B-  1 _ acov 0,. Recall that M = I - B 1/2A'(AB- iA')-  1 x 
AB - 1/2 is a k x k idempotent matrix of rank k - r. 

9.2. The test statistics 

The test statistics for the null hypothesis fall into three major classes, sometimes 
called the trinity. Wald statistics are based on deviations of the unconstrained 
estimates from values consistent with the null. Lagrange multiplier (LM) or score 
statistics are based on deviations of the constrained estimates from values solving 
the unconstrained problem. Distance metric statistics are based on differences in the 
G M M  criterion between the unconstrained and constrained estimators. In the case 
of maximum likelihood estimation, the distance metric statistic is asymptotically 
equivalent to the likelihood ratio statistic. There are several variants for Wald 
statistics in the case of the general nonlinear hypothesis; these reduce to the same 
expression in the simple case where the parameter vector is completely determined 
under the null. The same is true for the LM statistic. There are often significant 
computational advantages to using one member or variant of the trinity rather than 
another. On the other hand, they are all asymptotically equivalent. Thus, at least to 
first-order asymptotic approximation, there is no statistical reason to choose be- 
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. 

Figure 3. GMM tests. 

tween them. This pattern of first-order asymptotic equivalence for G M M  estimates 
is exactly the same as for maximum likelihood estimates. 

Figure 3 illustrates the relationship between distance metric (DM), Wald (W), and 
score (LM) tests. In the case of maximum likelihood estimation, the distance metric 
criterion is replaced by the likelihood ratio. 

The arguments O n and 0n are the unconstrained G M M  estimator and the G M M  
estimator subject to the null hypothesis, respectively. The G M M  criterion func- 
tion is plotted, along with quadratic approximations to this function through the 
respective arguments 0n and 0n. The Wald statistic (W) can be interpreted as 
twice the difference in the criterion function at the two estimates, using a quad- 
ratic approximation to the criterion function at 0n. The Lagrange multiplier (LM) 
statistic can be interpreted as twice the difference in the criterion function of the 
two estimates, using a quadratic approximation at 0n. The distance metric (DM) 
statistic is twice the difference in the distance metric between the unconstrained 
and constrained estimators. 

We develop the test statistics initially for the general nonlinear hypothesis a(Oo) = 
0; the various statistics we consider are given in Table 2. In this table, recall that 
acov O. = B and acov ft, = B -  t / 2 M B -  1 / 2 .  In the following section, we consider the 
important special cases, including maximum likelihood and nonlinear least squares. 
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Table 2 

Test statistics 

Wald statistics 
Wln 
w~. 

W3n 
Lagrange multiplier statistics 

LM1. 

LM2. 

LM3n 

Distance metric statistic 
DM. 

na(O.)'[ A B -  ' A'] - ~ a(O.) 

n(O. - O.)'{acov(O.)- acov (0,)}-(0, - 0.) 
= n(O. -- On)'B- 1A'(AB- XA')- l A B -  1(0 n -- On) 

n(0. -- 0.)' acov(0.) ~(0. -- 0.) 

n~' AB-1A'~,, 

nVoQ.(O,,)'{A'(AB-1A') IA} VoQ.(0.) 
= nVoQ,,(O,,)'B ~A'(AB- 1A')- I A B -  ~VoQ.(O.) 

nVoQ.(O.)'B- WoQ.(O.) 

- 2nEQ,(0.) - Q.(0.)] 

In particular, when the hypothesis is that a subset of the parameters are constants, 
there are some simplifications of the statistics, and some versions are indistin- 
guishable. 

The following theorem gives the large sample distributions of these statistics: 

T h e o r e m  9.2  

Suppose the conditions of Theorems 2.6, 3.4, and 4.5 are satisfied, and a(O) is contin- 
uously differentiable with A of rank r. The test statistics in Table 2 are asymptotically 
equivalent under the null or under local alternatives. Under the null, the statistics 
converge in distribution to a chi-square with r degrees of freedom. Under a local 

alternative a ( O o ) =  a/x/n, the statistics converge in distribution to a noncentr~al 
chi-square with r degrees of freedom and a noncentrality parameter  6 ' ( A B  - I A ' )  - 16. 

P r o o f  

All of the test statistics are constructed from the expressions in Table 1. If q is an 
expression from the table with asymptotic covariance matrix R = acov q and asymp- 
totic mean R2 under local alternatives to the null, then the statistic will be of the 
form q ' R  ÷ q, where R ÷ is any symmetric matrix that satisfies R R  + R = R .  The matrix 
R ÷ will be the ordinary inverse R-1  if R is nonsingular, and may be the M o o r e -  
Penrose generalized inverse R -  if R is singular. Section 9.8 defines generalized 
inverses, and Lemma 9.7 in that section shows that if q is a normal random vector 
with covariance matrix R of rank r and mean R2, then q ' R  +q is distributed noncentral 
chi-square with r degrees of freedom and noncentrality parameter  2'R2 under local 
alternatives to the null. 
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Consider W1.. Under the local alternative a(Oo) = 6/x/n, row five of Table 1 gives 
q = 6 + AB-1G'I2-1/2ql normal with mean 6 and a nonsingular covariance matrix 
R = A B -  1A'. Let 2 = R -  ab. Then Lemma 9.7 implies the result with noncentrality 
parameter 2'R2 = 6'R-  15 - 6'(AB- 1A') - 1 6 .  

Consider W2,. The generalized inverse R -  ofR = acov 0, - acov O, can be written 
as~ 

R - - { B  1A ' (AB-1A ' ) - IAB-I} -=B+I /Z{B-1 /2A ' (AB-1A ' ) - IAB -1/2} B +1/2 

= B+I/2{B-1/ZA(AB-1A) 1AB-1/2}B+1/2 = A ' (AB-1A' ) - IA .  

The first identity substitutes the covariance formula from row 2 of Table 1. The 
second and third equalities follow from Section 9.8, Lemma 9.5, (5) and (4), 
respectively. One can check that 2 = R - B -  1A'(AB- 1A')- 16 satisfies R2 = B-  1A' x 
(AB-  1A')- 16, so that 2'R2 = 6'(AB- aA')- 16. 

The statistic Ws. is obtained by noting that for R = B -  1A'(AB- 1A')- l A B -  1, the 
matrix R + = B satisfies RR+R = R and 2 = R+B-1A' (AB-1A' ) -16  satisfies R2 = 
B-  1A'(AB- 1A')- 16. 

Similar arguments establish the properties of the LM statistics. In particular, 
the second form of the statistic LM2, follows from previous argument that 
A'(AB- 1A')- 1A' and B-  1A'(AB- 1A')- l A B -  1 are generalized inverses, and the 
statistic LMs,  is obtained by noting that R = A'(AB-  1A')- 1A has RR +R = R when 
R + = B - 1 .  

To demonstrate the asymptotic equivalence of DM,  to the earlier statistics, make 

a Taylor's expansion of the sample moments for O, about 0., x/n0.(0.) = x/n0.(0.) + 

G,x/~(O . - 0,) + %, and substitute this in the expression for D M,  to obtain 

DM,  = - 2n{Q.(O,) - Q.(0.)} 

= 2 x / n ( g . -  0,)'G~,I2~-1 x/n0,(0,)+ x/-n(O,-O,)'G',12; IG, x / n ( f f . -O , )+  op 

= - 0 . ) ' B ( f f .  - 0 . )  + o ,  = w 3 .  + o0,  

with the last equality holding since G'12~l.~fnO,(O.) = O. Q.E.D. 

The Wald statistic Wan asks how close are the unconstrained estimators to 
satisfying the constraints; i.e., how close to zero is a(0.)? This variety of the test is 
particularly useful when the unconstrained estimator is available and the matrix A 
is easy to compute. For  example, when the null is that a subvector of parameters 
equal constants, then A is a selection matrix that picks out the corresponding rows 
and columns of B -  1, and this test reduces to a quadratic form with the deviations 
of the estimators from their hypothesized values in the wings, and the inverse of 
their asymptotic covariance matrix in the center. In the special case Ho: 0 -- 0 °, one 
has A = 1. 
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The Wald test W2, is useful if both the unconstrained and constrained estimators 
are available. Its first version requires only the readily available asymptotic 
covariance matrices of the two estimators, but for r < k requires calculation of a 
generalized inverse. Algorithms for this are available, but are often not as 
numerically stable as classical inversion algorithms because near-zero and exact- 
zero characteristic roots are treated very differently. The second version involves 
only ordinary inverses, and is potentially quite useful for computation in 
applications. 

The Wald statistic W3, treats the constrained estimators as if they were constants 
with a zero asymptotic covariance matrix. This statistic is particularly simple to 
compute when the unconstrained and constrained estimators are available, as no 
matrix differences or generalized inverses are involved, and the matrix A need not 
be computed. The statistic W2, is in general larger than W3, in finite samples, since 
the center of the second quadratic form is (acov 0,)- ~ and the center of the first 
quadratic form is (acov 0 . -  acov 0,)-, while the tails are the same. Nevertheless, 
the two statistics are asymptotically equivalent. 

The approach of Lagrange multiplier or score tests is to calculate the constrained 
estimator 0,, and then to base a statistic on the discrepancy from zero at this 
argument of a condition that would be zero if the constraint were not binding. The 
statistic LM~, asks how close the Lagrangian multipliers ~,, measuring the degree 
to which the hypothesized constraints are binding, are to zero. This statistic is easy 
to compute if the constrained estimation problem is actually solved by Lagrangian 
methods, and the multipliers are obtained as part of the calculation. The statistic 
LM2, asks how close to zero is the gradient of the distance criterion, evaluated at 
the constrained estimator. This statistic is useful when the constrained estimator is 
available and it is easy to compute the gradient of the distance criterion, say using 
the algorithm to seek minimum distance estimates. The second version of the 
statistic avoids computation of a generalized inverse. 

The statistic LM3, bears the same relationship to LM2, that W3, bears to W2n. 
This flavor of the test statistic is particularly convenient to calculate, as it can be 
obtained by auxiliary regressions starting from the constrained estimator 0,: 

Theorem 9.3 

LM3n can be calculated by a 2SLS regression: 
(a) Regress Vof(Zt, ~) '  on 9(z,, 0,), and retrieve fitted values VoW(Z,, 0-,)'. 
(b) Regress 1 on VoE(Zt, 0,), and retrieve fitted values )~. Then LM3, = Z~= 1 - 92. 
For MLE, 9 = V0(, and this procedure reduces to OLS. 

Proof 

Let y be an n-vector of l's, X an n x k array whose rows are V0 E', Z an n x m array 
whose rows are 9'. The first regression yields )~ = Z ( Z ' Z ) - 1 Z ' X ,  and the second 
regression yields 3) = )(()~'J~)- 1)~,y. Then, (1/n)Z'Z = K2., (1/n)Z'X = F. ,  (1/n)Z' y = 
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~)n(0,), and 

y 'y  = y ' X ( X ' X ) -  ' X '  y = y ' Z ( Z ' Z ) -  1 Z ' X [ X ' Z ( Z ' Z ) -  1 Z ' X ]  - I X ' Z ( Z ' Z ) -  i Z '  y. 

Note that VoQ,(ff,) = - G'nf2 ~- 1~),(~,) = _ F,ng-2~- lO.(~n)" Substituting terms, ~'j) = 
LM3,. Q.E.D. 

Another form of the auxiliary regression for computing LM3n arises in the case of 
nonlinear instrumental variable regression. Consider the model y, = h(x,, 0o )+  e, 
with E(e, lw , )=  0 and E ( e Z l w , ) =  a 2, where w, is a vector of instruments. Define 
z, = (y,, x,, wt) and 9(z t, O) = wt[y, - h(x,, 0)]. Then Eg(z, 0o) = 0 and Eg(z, Oo)g(z, 0o)' = 
aZEwrw't. The G M M  criterion Q,(O) for this model is 

2a 2 t=i Lnt=i 

the scalar a 2 does not affect the optimization of this function. Consider the hypo- 
thesis a(Oo) = 0, and let 0, be the G M M  estimator obtained subject to this hypothesis. 
One can compute LM3, by the following method: 
(a) Regress Voh(x ,  On) on wt, and retrieve the fitted values Voh,. 
(b) Regress the residual u t = Y, - h(xt, gin) on Voh t, and retrieve the fitted values fit. 
Then LM3n n ~  n ~2/x;,n R 2 = , : _ , t = l u t / ~ t = l u 2 - n R 2 ,  w i th  t h e u n c e n t e r e d m u l t i p l e c o r r e l a t i o n  
coefficient. Note that this is not in general the same as the standard R 2 produced 
by OLS, since the denominator of that definition is the sum of squared deviations 
of the dependent variable about its mean. When the dependent variable has mean 
zero (e.g. if the nonlinear regression has an additive intercept term), the centered 
and uncentered definitions coincide. 

The approach of the distance metric test is based on the discrepancy between the 
value of the distance metric, evaluated at the constrained estimate, and the minimum 
attained by the unconstrained estimate. This estimator is particularly convenient 
when both the unconstrained and constrained estimators can be computed, and the 
estimation algorithm returns the goodness-of-fit statistics. In the case of linear or 
nonlinear least squares, this is the familiar test statistic based on the sum of squared 
residuals from the constrained and unconstrained regressions. 

The tests based on G M M  estimation with an optimal weight matrix can be 
extended to any extremum estimator. Consider such an estimator, satisfying 
eq. (1.1). Also, let 0 be a restricted estimator, maximizing Qn(0) subject to a(O)= O. 
Suppose that the equality H = - 27 is satisfied, for the Hessian matrix H and the 

asymptotic variance 27 [of x/nVo(~n(00)] from Theorem 3.1. This property is a 
generalization of the information matrix equality to any extremum estimator. For  
GMM estimation with optimal weight matrix, this equality is satisfied if the objective 
function is normalized by ½, i.e. 8,(0) = ½0.(0)'.O- 10.(0). Let Z denote an estimator 
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of 27 based on 0and ~ an estimator based on 0. Consider the following test statistics: 

W = n a ( 8 ) ' [ A ~ - 1 / ~ ' ]  - - l a ( 0 )  ' 

L M  = n V o Q n ( O ) ' z ~ -  1 V o Q n ( O ) ,  

A A A _ 
DM = 2n[Q,(8)  - Q,(8)]. 

2 = Voa(O), 

The statistic W is analogous to the first Wald statistic in Table 2 and the statistic 
LM to the third LM statistic in Table 2. We could also give analogs of the other sta- 
tistics in Table 2, but for brevity we leave these extensions to the reader. Under the 
conditions of Theorems 2.1, 3.1, and 4.1, H = -- 2? and the same conditions on a(O) 
previously given, these three test statistics will all have an asymptotic chi-squared 
distribution, with degrees of freedom equal to the number of components of a(8). 

As we have discussed, optimal G M M  estimation provides one example of these 
statistics. The MLE also provides an example, as does optimal CMD estimation. 
Nonlinear least squares also fits this framework, if homoskedasticity holds and the 
objective function is normalized in the right way. Suppose that Var(yJx)= 0 "2, a 
constant. Consider the objective function (~,(0) = (2~2) - 15-'.7= 1 [Yi - h(xi, 8)] 2, where 
~2 is an estimator of a 2. Then it is straightforward to check that, because of the 
normalization of dividing by 2~ 2, the condition H = - 27 is satisfied. In this example, 
the DM test statistic will have a familiar squared residual form. 

There are many examples of estimators where H = - 27 is not satisfied. In these 
cases, the Wald statistic can still be used, but ~ -  1 must be replaced by a consistent 
estimator of the asymptotic variance of 0. There is another version of the LM 
statistic that will be asymptotically equivalent to the Wald statistic in this case, but 
for brevity we do not describe it here. Furthermore, the DM statistic will not have 
a chi-squared distribution. These results are further discussed for quasi-maximum 
likelihood estimation by White (1982a), and for the general extremum estimator 
case by Gourieroux et al. (1983). 

9.3. One-s tep  versions o f  the tr ini ty  

Calculation of Wald or Lagrange multiplier test statistics in finite samples requires 
estimation of G, £2, and/or A. Any convenient consistent estimates of these arrays 
will do, and will preserve the asymptotic equivalence of the tests under the null and 
local alternatives. In particular, one can evaluate terms entering the definitions of 

A - -  
these arrays at 8,, 8,, or any other consistent estimator of 8o. In sample analogs that 
converge to these arrays by the law of large numbers, one can freely substitute 
sample and population terms that leave the probability limits unchanged. For  
example, if zt = (Yt, xt) and 0", is any consistent estimator of 0o, then -(2 can be 
estimated by (1) an analytic expression for Eg(z,O)9(z,O)',  evaluated at 0",, (2) a 

1 " sample average ( /n) Z , =  1 9 ( z ,  O,)9(z,, ~ ' 0,), or (3) a sample average of conditional 
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expectations (1/n)~t= 1EyI~,g(Y, xt, O~)g(Y, xt, 0~)" These first-order efficiency equiv- 
alences do not hold in finite samples, or even to higher orders of x/n. Thus, there 
may be clear choices between these when higher orders of approximation are taken 
into account. 

The next result is an application of the one-step theorem in Section 3.4, and shows 

how one can start from any initial x/n-consistent estimator of 0o, and in one 
iteration obtain versions of the trinity that are asymptotically equivalent to versions 
obtained when the exact estimators 0. and 0. are used. Further, the required 
iterations can usually be cast as regressions, so their computation is relatively 
elementary. Consider the G M M  criterion Q.(O). Suppose 0, is any consistent esti- 

mator of 0 o such that .,/n(0.-_0o) is stochastically bounded. Let On be the uncon- 
strained maximizer of Q, and 0. be the maximizer of Q subject to the constraint 
a(O) = 0. Suppose the null hypothesis, or a local altern2tive, a(Oo) = cS/x/n, is true. 
The unconstrained one-step estimator from eq. (3.11), 0. = 0". - (G'~2£- 1G.)- 1G' x 

.(2.- 10.(0.), satisfies x/n(~. - 0.) ~ o. Similarly, define one-step constrained estima- 
tors from the Lagrangian first-order conditions: 

L 0 J  LA L -a(O.) J 

Note in this definition that 7 = 0 is a trivial initially consistent estimator of  the 
Lagrangian multipliers under the null or local alternatives, and that the arrays B 
and A can be estimated at 0n. The one-step theorem again applies, yielding 
v/n(0n-  On) p 0 and vrn(~n-  %) p 0. Then, these one-step equivalents can be 
substituted in any of the test statistics of  the trinity without changing their 
asymptotic distribution. 

A regression procedure for calculating the one-step expressions is often useful 
for computation. The adjustment from On yielding the one-step unconstrained 
estimator is obtained by a two-stage least squares regression of the constant one 
on Vo/(zt, On), with 9(zt, On) as instruments; i.e. 

(a) Regress each component  of  Vo/(zt, 5,,), on 9(zt, On) in the sample t = 1 , . . . ,  n, 
and retrieve fitted values Vo./(zt, On). 

(b) Regress 1 on Vo/(zt, 0n); and adjust 0n by the amounts of  the fitted coeffi- 
cients. 

Step (a) yields Vof(z t, 0~)' = g(z,, 0.)12 21F., and step (b) yields coefficients 

[ ]-' A ~ A ~ t 

t = l  t = l  
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This is the adjustment indicated by the one-step theorem. 
Computation of one-step constrained estimators is conveniently done using the 

formulae 

~. = ~. -- B -  1 A ' ( A B -  1A')- la(~.) 
:_ O, + A -- B -  1 A ' ( A B - 1 A ' )  7 l[a(On) -1- AA], 

f,. = - ( A B -  1A' ) -  la(~.)  - - ( A B -  ~A' ) -  X[a(g.) + A / l ] ,  

with A and B evaluated at 0".. To derive these formulae from the first-order conditions 
for the Lagrangian problem, replace VoQ.(0) by the expression - ( F . / 2 ~ I F ' ) x  
(0. - ~.) from the one-step definition of the unconstrained estimator, replace a(0".) 
by a(0".) + A(O. - 0.), and use the formula for a partitioned inverse. 

9.4. Special cases 

M a x i m u m  likelihood. We have noted that maximum likelihood estimation can be 
treated as G M M  estimation with moments equal to the score, g = V0f. The statistics 
in Table 2 remain the same, with the simplification that B = I2(= G = F).  The 
likelihood ratio statistic 2niL,(0,) - L,(ff,)], where L,(O) = (I/n) Z~'= 1 f(zt, 0), is shown 
by a Taylor's expansion about 0, to be asymptotically equivalent to the Wald 
statistic W3., and hence to all the statistics in Table 2. 

Suppose one sets up an estimation problem in terms of a maximum likelihood 
criterion, but that one does not in fact have the true likelihood function. Suppose 
that in spite of this misspecification, optimization of the selected criterion yields 
consistent estimates. One place this commonly arises is when panel data observations 
are serially correlated, but one writes down the marginal  likelihoods of the obser- 
vations ignoring serial correlation. These are sometimes called pseudo-l ikel ihood 
criteria. The resulting estimators can be interpreted as G M M  estimators, so that 
hypotheses can be tested using the statistics in Table 2. Note however that now 
G ~/2 ,  so that B = G'/2-1G must be estimated in full, and one cannot do tests using 
a likelihood ratio of the pseudo-likelihood function. 

Least  squares. Consider the nonlinear regression model y = h(x, O) + e, and suppose 
E(y l x )  = h(x, O) and E [ { y - h(x, 0) } 2]x] = o -2. Minimizing the least squares criterion 
Q,(O) = Z'~= 1 [yt  - h(zt, 0)] 2 is asymptotically equivalent to G M M  estimation with 
O(z, O) = [ y - h(x, O) ]V oh(x, O) and a distance metric 12. = (a2 /n) ~ =  1 [Voh(x, 0o)] × 
[Voh(x, 00)]'. For  this problem, B = / 2  = G. I fh(z .  0) = z,O is linear, one has g(z,, 0) = 
ut(O)zt, where u,(O) = Yt - z f l  is the regression residual, and /2 .  = ( o ' Z / n )  ~2~= 1 ZtZ'r 

Ins trumental  variables. Consider the regression model Yt = h(zt, 0o) + et where et 
may be correlated with Voh(z.Oo).  Suppose there are instruments w such that 
E(etlwt) =0.  For this problem, one has the moment conditions g(yt,  zt, wt, O)= 
[ Yt - h(z,, 0)] f (w , )  satisfying Eg(Yt ,  z.  w,, 0o) = 0 for any vector of functions f ( w )  of 
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the instruments, so the G M M  criterion becomes 

] ] i i {yt-h(z,,O)}I(w,) 
2Ln ,= l  ,=1 

with 12. = (aZ/n)Z~=lf (wt) f (w,)  '. Suppose that it were feasible to construct the 
conditional expectation of the gradient of the regression function conditioned on 
w, qt = E[Voh(z~, 0o)1 wJ. This is the optimal vector of functions of the instruments, 
in the sense that the G M M  estimator based on f ( w )  = q will yield estimators with 
an asymptotic covariance matrix that is smaller in the positive definite sense than 
any other distinct vector of functions of w. A feasible G M M  estimator with good 

efficiency properties may then be obtained by first obtaining a preliminaryxfn- 
consistent estimator 0", employing a simple practical distance metric, second, regres- 
sing Voh(z t, 0,) on a flexible family of functions of wt, such as low-order polynomials 
in w, and, third, using fitted values from this regression as the vector of functions 
f (w,)  in a final G M M  estimation. Note that only one Newton-Raphson step is 
needed in the last stage. Simplifications of this problem result when h(z, O) = zO is 
linear in 0; in this case, the feasible procedure above is simply 2SLS, and no iteration 
is needed. 

Simple hypotheses. An important practical case of the general nonlinear hypothesis 
a(Oo) = 0 is that a subset of the parameters are zero. (A hypothesis that parameters 
equal constants other than zero can be reduced to this case by reparametrization.) 

Assume 0 ' = (  a ' l  x (k-r)' 1 f l ' )  and H°: fl = 0" The first-°rder c°nditi°ns f°r s ° l u t i ° n x r  

of this problem are 0 = x/~V,Q,(O,), 0 = w/nV~Q.(ff,) + x/-n%, and 0 = /~ ,  implying 
V -  

~. = -- Vt~Q.(O.), and A = [ 0 I, ] 
r x (k-r) r x rJ'  Let C - B-  1 be the asymptotic covariance 

matrix of x/-n(O. - 0o), and A B - 1 A '  = C ~  the submatrix of C for ft. Taylor's expan- 

sions about O. of the first-order conditions imply x//n(~. - ~.) = - Bv~Bvp x/ni l .  + Op 
and x/n~. = [n~p - BpvB~lS.~]x/nf i .  + op =/~'.C~-~lfi. + op. Then the Wald statistics 
a r e  

7 -1 

O! n - -  O~n O~n - -  ~ n  

W3n : " ~n B ~ .  . 

One can check the asymptotic equivalence of these statistics by substituting the 
expression for x/n(_~,- ~,). The LM statistic, in any version, becomes LM,  = 

- -  ! 

nV~Q.(0.) C~V~Q,(O,). Recall that B, hence C, can be evaluated at any consistent 
estimator of 0 o. In particular, the constrained estimator is consistent under the null 
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or under local alternatives. The LM testing procedure for this case is then to (a) 
compute the constrained estimator ~. subject to the condition fl = 0, (b) calculate 
the gradient and Hessian of Q. with respect to the full parameter vector, evaluated 
at ~. and fi = 0, and (c) form the quadratic form above for LM.  from the fl part of 
the gradient and the fl submatrix of the inverse of the Hessian. Note that this does 
not require any iteration of the G M M  criterion with respect to the full parameter 
vector. 

It is also possible to carry out the calculation of the LM.  test statistic using 
auxiliary regressions. This could be done using the auxiliary regression technique 
introduced earlier for the calculation of LM3. in the case of any nonlinear hypothesis, 
but a variant is available for this case that reduces the size of the regressions 
required. The steps are as follows: 
(a) Re gress_VJ(z. 0.)" and Vp~(z.0-.)' on g(z .  0.), and retrieve the fitted values 

V~(z~, 0.) and V_p~(z,, 0.).. _ 
(b) Regress V~Y(z t, 0.) on V~#(z,, 0.), and retrieve the residual u(z,, 0.), 
(c) Regress the constant 1 on the residual u(z .  0.), and calculate the sum of squares 

of the f l t t ed  values of 1. This quantity is LM.. 
To justify this method, start from the gradient of the G M M  criterion, 

0 = V.Q.(a., 0) = - G . . ~ .  ~ 0.(~., 0), 

V~Q.(~., 0) = - ~ . ~ -  ~ 0.(~., 0), 

where G. is partitioned into its ~ and fl submatrices. From the formula for the 
partitioned inverses, one has for C = B-  ~ the expression 

= [r a- ' - r , a -  - ' r , ) '  - r , a  - ' ' - r 

The fitted values from step (a) satisfy 

vpZIz,, G.)' = g(z,, 0 - . )a ;  ' ~ '  

and 

Then the residuals from step (b) satisfy 

u(z .O.)  = g(z .  - -1 , _ G.~) G .~I2; 'G .¢ .  0 . ) I 2  G.p g(z,,~)~'2n-'G' (G.~12; '  ' - '  

Then 

t / t = ,  

= v p o . ( ~ . ,  o)', 
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and 

~ - -  - -  ! - -1  - ~ u(z , ,  O . )u(z , ,  0 . )  = C .~  r 
n t = l  
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Then, the step (c) regression yields LM,. In the case of maximum likelihood 
estimation, step (a) is redundant and can be omitted. 

9.5. Tests for overidentifying restrictions 

Consider the G M M  estimator based on moments g(zt, 0), where g is m x 1, 0 is k x 1, 
and m > k, so there are overidentifying moments. The'criterion 

Q . ( o )  = 1 ^  , - 1 ^  - ~gn(O) ~Q. g.(O),  

evaluated at its maximizing argument 0. for any .(2. P--~ ~, has the property that 
^ d 2 -2nO~, =---2nQ,(O,)---~)~,,_k under the null hypothesis that Eg(z, Oo)= 0. This 

statistic then provides a specification test for the overidentifying moments in g. It 
can also be used as an indicator for convergence in numerical search for 0,. 

To demonstrate this result, recall from eqs. (9.1) and (9.2) that - g2- ~/2 x/n0,(0o) = 

~//, ~ o# ,,~ N(0, I) and ~ ( 0 ,  - 0o) = B -  1 G ' ~ -  1/20~, n -'~ Op. Then, a Taylor's ex- 
pansion yields 

v / n 0 . ( 0 . ) =  ~ 1 / 2 ~ t  + 6 . ( 6  . . . . . .  = - o l / 2 n  ~s -- . -- ,  'K2-1G )-IG'-Q-1/ZO~n+°p --n --n--n+Op, 

where R,  = I - g2] 1/2Gn( G',Q ~- 1G,)- 1G'K2~ 1/2 is idempotent of rank m - k. Then 

- 2nQ.(O. )  = °g'.R.~// .  + Op d_~ 2 Zm-k" 

Suppose that instead of estimating 0 using the full list of moments, one uses a 
linear combination Lg(z, 0), where L is r x m with k -%< r < m. In particular, L may 
select a subset of the moments. Let 0, denote the G M M  estimator obtained from 
these moment combinations, and assume the identification conditions are satisfied 
so 0, is x/n-consistent. Then the statistic S nOn(ffn)'ff2nl/ZRn.Qnl/ZOn(ff.) d 2 ~ Xm k 

under Ho, and this statistic is asymptotically equivalent to the statistic - 2nQ,(0,). 

This result holds for any x/-n-consistent estimator 0", of 0o, not necessarily the 
optimal G M M  estimator for the moments Lg(z, 0), or even an initially consistent 
estimator based on only these moments. The distance metric in the center of the 
quadratic form S does not depend on L, so that the formula for the statistic is 
invariant with respect to the choice of the initially consistent estimator. This implies 
in particular that the test statistics S for overidentifying restrictions, starting from 
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different subsets of the moment conditions, are all asymptotically equivalent. How- 
ever, the presence of the idempotent matrix R. in the center of the quadratic form 
S is critical to its statistical properties. Only the G M M  distance metric criterion 
using all moments, evaluated at 0., is asymptotically equivalent to S. Substitution 

of another x/n-consistent estimator 0". in place of O. yields an asymptotically 
equivalent version of S, but - 2nQ.('O.) is not asymptotically chi-square distributed. 

These results are a simple cor~lary of the one-step theorem. Starting from 0., the 
one-step estimator of O n is . ~ ( 0 " . -  0 . )=  - (G' .O;~G.)  1G'g2;'O.(O.). Then, one 

has a one-step estimator x/n0.(~.)= x/n0.(0".) + G. x/-n(~ . - 0 . )=  g2~-'/ZR.g2; ,/2 x 
w/~0.(0.). Substituting this expression in the formula for -2nQ.(O.) yields the 
statistic S. 

The test for overidentifying restrictions can be recast as an LM test by artificially 
embedding the original model in a richer model. Partition the moments 

Fgl(z,O)l 
g(z'O)=~f(z,O)~' 

where g 1 is k x l with G1 =EVogl(z, Oo) of rank k, and 9 2 is ( m - k )  x 1 with 
G2 ~ EVog2(z, 0o). Embed this in the model 

[ gl(z,O) ] 
O, = L f ( z ,  o) + ' 

where ~9 is an (m - k) vector of additional parameters. The first-order condition for 
G M M  estimation of this expanded model is 

- 6 .  0 I . - ~ J L  0 = -  " 

The second block of conditions are satisfied by i#. A2 - -  = g. (0.), no matter what 0., so 
O. is determined by 0 -- G'I.O ~- 10.~(0.). This is simply the estimator obtained from 
the first block of moments, and coincides with the earlier definition of 0.. Thus, 
unconstrained estimation of the expanded model coincides with restricted estimation 
of the original model. 

Next consider G M M  estimation of the expanded model subject to Ho: ~0 = 0. 
This constrained estimation obviously coincides with G M M  estimation using all 
moments in the original model, and yields 0.. Thus, constrained estimation of the 
expanded model coincides with unrestricted estimation of the original model. 

The distance metric test statistic for the constraint ~, = 0 in the expanded model 
is DM.  = - 2n[Q.(0"., 0) - Q.(O., ~.)] -- - 2nQ.(O.), where ~ denotes the criterion 
as a function of the expanded parameter list. One has Q.(O., O) = Q.(O.) from the 
coincidence of the constrained expanded model estimator and the unrestricted 
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original model estimator, and one has Q.(0., ft.) = 0 since the number  of moments  
equals the number  of parameters. Then, the test statistic - 2nQ.(0.) for overidentify- 
ing restrictions is identical to a distance metric test in the expanded model, and 
hence asymptotically equivalent to any of the trinity of tests for H0: qs = 0 in the 
expanded model. 

We give four examples of econometric problems that can be formulated as tests 
for overidentifying restrictions: 

Example 9.1 

If y = xfl + e with E(elx) = 0, E(~ 2 l x) = 0-2, then the moments  

9'(z, f l )=  [ x ( y - x f l )  ] 
(y _ x9)2 _ ] 

can be used to estimate fl and 0 "2. If e is normal, then these G M M  estimators are 
MLE. Normali ty  can be tested via the additional moments  that give skewness and 
kurtosis, 

L (y - -. 3 J" 

Example 9.2 

In the linear model y = xb + ~ with E(~Ix ) = 0 and E(etG[x ) = 0 for t ¢ s, but with 
possible heteroskedasticity of unknown form, one gets the OLS estimates b of B and 
V(b) --- s Z ( x ' x )  - 1 under the null hypothesis of homoskedasticity. A test for homo- 
skedasticity can be based on the population moments  0 = E vecu[x'x(e 2 -  a2)], 
where "vecu" means the vector formed from the upper triangle of the array. The 
sample value of this moment  vector is 

the difference between the White robust estimator and the standard OLS estimator 
of vecu [ X ' f 2 X ] .  

Example 9.3 

If {(z, 0) is the log-likelihood of an observation, and 0, is the MLE, then an addi- 
tional moment  condition that should hold if the model is specified correctly is the 
information matrix equality 

0 = EVoo#(Z, 0o) + EVo[(Z, Oo)Vof(Z, 0o)'. 
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The sample analog is White's information matrix test, which then can be interpreted 
as a G M M  test for overidentifying restrictions. 

Example 9.4 

In the nonlinear model y = h(x, O)+ e with E (e l x )=  0, and 0, a G M M  estimator 
based on moments  w ( x ) [ y -  h(x, 0)], where w(x) is some vector of functions of x, 
suppose one is interested in testing the stronger assumption that e is independent of 
x. A necessary and sufficient condition for independence is E [ w ( x ) -  Ew(x)] x 
f l y  - h(x, 0o) ] = 0 for every function f and vector of functions w for which the 
moments  exist. A specification test can be based on a selection of such moments. 

9.6. Specification tests in linear models 5 ~ 

G M M  tests for overidentifying restrictions have particularly convenient forms in 
linear models; see Newey and West (1988) and Hansen and Singleton (1982). Three 
standard specification tests will be shown to have this interpretation. We summarize 
a few properties of projections that will be used in the following discussion. Let 
~ x  = X ( X ' X ) - X  denote the projection matrix from ~" onto the linear subspace 
spanned by an n x p array X. (We use a Moore-Penrose  generalized inverse in the 
definition of ~ x  to handle the possibility that X is less than full rank; see Section 
9.8.) Let ~x = I - ~ x  denote the projection matrix onto the linear subspace orthog- 
onal to ~.  Note that ~ x  and ~x are idempotent. If ~ is a subspace generated by 
an array X and W is a subspace generated by an array W = [-X Z]  that contains 
X, then ~ x ~ w  = ~ w ~ x  = ~x ;  i.e. a projection onto a subspace is left invariant by 
a further projection onto a larger subspace, and a two-stage projection onto a large 
subspace followed by a projection onto a smaller one is the same as projecting 
directly onto the smaller one. The subspace of W that is orthogonal to ~ is generated 
by ~x W; i.e., it is the set of linear combinations of the residuals, orthogonal to ~ ,  
obtained by regressing W on X. Any y in ~" has a unique decomposition y = ~ x Y  + 
~ x ~ w Y  + ~ w Y  into the sum of projections onto ~,  the subspace of W orthogonal 
to ~ ,  and the subspace orthogonal to W. The projection -~x~w can be rewritten 
~ x ~ w  = ~ w  - ~ x  = ~w-~x = ~ x ~ w ~ x ,  or since ~x W = ~ x [ X  Z]  = [0 ~xZ] ,  
~ x ~ w  = ~ ~xw = ~ ~xz = ~ x Z ( Z ' ~ x Z ) -  Z '~x .  This implies that ~ x ~ w  is idempotent 

since ( ~ x ~ w ) ( ~ x ~ w )  = 9 x ( ~ w ~ x ) ~ w  = ~ x ( ~ x ~ w ) ~ w  = ~ x ~ w .  
Omitted variables test: Consider the regression model y = X/? + e, where y is n x 1, 

X is n x k, E(e lX)= 0, and E(ee ' IX)= azI. Suppose one has the hypothesis Ho: 
/?a = 0, where/71 is a p x 1 subvector of/?. Define u = y - X b  to be the residual 
associated with an estimator b of/?. The G M M  criterion is then 2nQ = u ' X ( X ' X ) -  1. 
X'u/~r a. The projection matrix ~ x  =- X ( X ' X ) -  1X' that appears in the center of this 
criterion can obviously be decomposed as ~ x -  ~x2 + ( ~ x -  ~x2). Under H o, 

51 Paul Ruud contributed substantially to this section. 
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u = y - X z b  z and X ' u  can be interpreted as k = p + q overidentifying moments  for 
the q parameters f12- Then, the G M M  test statistic for overidentifying restrictions 
is the minimum value - 2n(~, in b z of U'~xU/0. 2. But ~ x  u = ~x2U + ( ~ x  - ~x~)Y 
and minb~u'Nx2U= 0 (at the OLS estimator under H 0 that makes u orthogonal to 
X2). Then - 2 n Q ,  = Y ' ( ~ ' x -  ~xz )Y /a2 .  The unknown variance 0 -2 in this formula 
can be replaced by any consistent estimator s 2, in particular the estimated variance 
of the disturbance from either the restricted or the unrestricted regression, without 

z under the null hypothesis. altering the asymptotic distribution, which is Zq 
The statistic - 2nQ, has three alternative interpretations. First, 

- 2 n O . .  = Y '~@x y / 0 . 2  _ Y'~JJx2 Y~ a2 = SSRx2 - SSRx 
0.2 

which is the difference of the sum of squared residuals from the restricted regression 
under H o and the sum of squared residuals from the unrestricted regression, normal- 
ized by o -2. This is a large sample version of the usual finite sample F-test for H o. 
Second, note that the fitted value of the dependent variable from the restricted 
regression is 3)o = Nx2Y,  and from the unrestricted regression is 29, = ~ x Y ,  so that 

- 2 n Q . = ( 2 9 o 2 9 o - y u y u ) /  = (290 - -  Pu)t  (290 - -  29u)/0"2 ]1290 - -  Pu []2/0-2" 

Then, the statistic is calculated from the distance between the fitted values of the 
dependent variable with and without Ho imposed. Note that this computat ion 
requires no covariance matrix calculations. Third, let bo denote the G M M  estimator 
restricted by H o and bu denote the unrestricted G M M  estimator. Then, bo consists 
of the OLS estimator for f12 and the hypothesized value 0 for ill, while b, is the OLS 
estimator for the full parameter  vectofi Note that 29o = X b o  and 29u = Xbu,  so that 
290 - .9u = X(bo  - bu). Then 

- 2nO_. = (bo - b J ( X ' X / 0 . 2 ) ( b o  - bu) = (bo - b.) 'V(bu)-X(bo - bu). 

This is the Wald statistic Wa,. From the equivalent form W2. of the Wald statistic, 
this can also be written as a quadratic form - 2n(~, = b'l,u V ( b l , u ) -  lbl, , ,  where bl,u 
is the subvector of unrestricted estimates for the parameters that are zero under the 
null hypothesis. 

The  Hausman  exogenei ty  test: Consider the regression y = X l f l  I + X2 f l  2 + 
X3f i  3 + ~, and the null hypothesis that X 1 is exogenous, where Xz is known to be 
exogenous, and X3 is known to be endogenous. Suppose N is an array of instruments, 
including X2, that are sufficient to identify the coefficients when the hypothesis is 
false. Let W = IN  X1] be the full set of instruments available when the null hypo- 
thesis is true. Then the best instruments under the null hypothesis are J(o = ~ w  X - 
[Xt  X2 )(3], and the best instruments under the alternative are -~u = ~N X - 
[)(1 X2 )(3]. The test statistic for overidentifying restrictions is - 2n(~, = Y'(N~?o - 
~ 2 u ) y / a  2, as in the previous case. This can be written - 2nQ, = (SSR2u - SSRio ) /a  z, 
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with the numerator the difference in sum of squared residuals from an OLS regression 
ofy  on )fu and an OLS regression o fy  on Xo. Also, - 2n(~, = [[ ~yo - J~u [j2/a2, the 
difference between the fitted values of y from a regression on )fu and a regression 
on 7(o. Finally, 

- 2nQ. = (b2sLs o -- b2sLs~)'[V(b2sLs~) -- V(bzsLso)]- (b2sLs o -- b2sLs.), 

an extension of the Hausman-Taylor  exogeneity test to the problem where some 
variables are suspect and others are known to be exogenous. Newey and West (1988) 
show that the matrix in the center of this quadratic form has rank equal to the rank 
of X1, and that the test statistic can be written equivalently as a quadratic form in 
the subvector of differences of the 2SLS estimates for the X 1 coefficients, with the 
ordinary inverse of the corresponding submatrix of differences of variances in the 
center of the quadratic form. 

Testing for  overidentifying restrictions in a structural system: Consider an equation 
y = Xf l  + e from a system of simultaneous equations, and let W denote the array of 
instruments (exogenous and predetermined variables) in the system. Let _~ = ~ w X  
denote the fitted values of X obtained from OLS estimation of the reduced form. 
The equation is overidentified if the number of instruments W exceeds the number 
of right-hand-side variables X. The G M M  test statistic for overidentification is the 
minimum in fl of 

- 2nQ,(fl) = U'~wU/a 2 = u ' ~ u / a  2 + u ' (~w - ~ ) u / ~  2, 

where u = y - Xfl. As before, - 2n(~, = Y ' (~w - ~Y;)Y/az. Under H o, this statistic 
is asymptotically chi-squared distributed with degrees of freedom equal to the 
difference in ranks of W and );. This statistic can be interpreted as the difference in 
the sum of squared residuals from the 2SLS regression of y on X and the sum of 
squared residuals from the reduced form regression of y on W, normalized by a z. 
A computationally convenient equivalent form is - 2n(~, = I[ )~w - ~9~ ]l 2/O'z, the sum 
of squares of the difference between the reduced form fitted values and the 2SLS 
fitted values of y, normalized by a 2. Finally, -2n(~ ,  = y ' . ~ w ~ y / a Z =  nRZ/r~ 2, 
w h e r e  R 2 is the multiple correlation coefficient from regressing the 2SLS residuals 
on all the instruments; this result follows from the equivalent formulae for the 
projection onto the subspace of W orthogonal to the subspace spanned by )(. This 
test statistic does not have a version that can be written as a quadratic form with 
the wings containing a difference of coefficient estimates from the 2SLS and reduced 
form regressions. 

9.7. Specification testing in multinomial models 

As applications of G M M  testing, we consider hypotheses arising in the context of 
analysis of discrete response data. The first example is a test for omitted variables 
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in multinomial data, which extends to various tests of functional specification by 
introduction of appropriate omitted variables. The second example tests for the 
presence of random effects in discrete panel data. 

Example 9.5 

Suppose J multinomial outcomes are indexed C = {1 . . . . .  J}. Define z =(all , . . . ,  ds, x), 
where dj is one if outcome j is observed, and zero otherwise. The x are exogenous 
variables. The log-likelihood of an observation is 

E(z, O) = ~ d i log Pc(i, x, 0), 
ieC 

where Pc(i, x, O) is the probability that i is observed from C, given x. Suppose 
0 = (~, fl), and the null hypothesis Ho: fl -- O. We derive an LM test starting from the 
maximum likelihood estimates of ~ under the constraint fl = O. Define 

ui = [di - Pc(i, x, O~) ]Pc(i, x, 0,)-  1/2, 

ql = Pc( i, x, 0,)1/2V 0 log Pc(i, x, 0~). 

Then, in a sample t = 1, . . . ,  n, one has ( l / n ) ~ =  1 Vo~(zt, 0 , ) -  (1/n)Z~= l~ i~c  qitUir 
i n  " Also, ( / ) ~,t = 1 ~,i~c q~qi p-~ 12 since 

$2 = - E V o o / =  _ - E V o  ~ [di - P c ( i ,  x ,  Oo)]Vo logPc( i ,  x, 0o) 
icC 

= E ~ Pc(i ,  x, 00)[V0 log P(i, x, 0)] [V0 log P(i, x, 0)]'. 
icC 

Then, 

L M a , =  n 1 qi,ult E q,tq'i, n 2 qltul, • 
L ~'I t = i t =  1 i e C  t =  i ieC 

This statistic can be computed from the sum of squares of the fitted values of u~t 
from an auxiliary regression over i and t of ult on qir If R 2 is the multiple correlation 
coefficient from this regression, and fi is the sample mean of the u~t, then LM3. = 
n(d - 1)R 2 + (1 - R2)ti 2. 

McFadden (1987) shows for the multinomial logit model that the Hausman and 
McFadden (1984) test for the independence from irrelevant alternatives property of 
this model can be calculated as an omitted variable test of the form above, where 
the omitted variables are interactions of the original variables and dummy variables 
for subsets of C where nonindependence is suspected. Similarly, Lagrange multiplier 
tests of the logit model against nested logit alternatives can be cast as omitted 
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variable tests where the omitted variables are interactions of dummy variables for 
suspect subsets A of C and variables of the form log[Pc( i ,  x ,  ff,)/~2j~a Pc(  i, x ,  0,)]. 

E x a m p l e  9.6 

We develop a Lagrange multiplier test for unobserved heterogeneity in discrete 
panel data. A case is observed to be either in state d t = + 1 or d t = - 1 in periods 
t = 1, . . . ,  T. A probability model for these observations that allows unobserved 
heterogeneity is 

P(d 1 . . . .  , d, Ix 1 . . . . .  x T, fl i . . . .  , ft,, 6) = F [dt(xtfl  t + x / 6 v )  ]h(v) dv, 
--  ct3 t = l 

where x I . . . . .  x T are exogenous, fll  . . . . .  f i T  and 6 are parameters, F is a cumulative 
distribution function for a density that is symmetric about  zero, and v is an 
unobserved "case effect" heterogeneity. The density h(v) is normalized so that Ev = 0 
and Ev  z = 1. 

When 6 = 0, this model reduces to a series of independent Bernoulli trials, 

T 

P(dl  . . . . .  d TlXl  . . . .  , XT, f l l  . . . . .  fiT' O) = H F(d, xtflt), 
t = l  

and is easily estimated. For  example, F normal yields binary probits, and F logistic 
yields binary logits. A Lagrange multiplier test for 6 = 0 will detect the presence of 
unobserved heterogeneity across cases. Assume a sample ofn cases, drawn randomly 
from the population. The LM test statistic is 

L M =  

where ~ is the log-likelihood of the case, Vp( = (V~I#,..., Vp~Z), and all the derivatives 
are evaluated at 6 = 0 and the Bernoulli model estimates of ft. The fl derivatives are 
straightforward, 

# pt = d tx , f (d ,x f l*) /F(dtx f l t ) ,  

where f is the density of F. The 6 derivative is more delicate, requiring use of 
l 'H6pital 's rule: 

~ ,= , [_ ~ F(d,xtflt) 2 J + F(d,xtflt)  .J J 
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The reason for introducing 6 in the form above, so x/6v appeared in the probability, 
was to get a statistic where Z V~# was not identically zero. The alternative would 
have been to develop the test statistic in terms of the first non-identically zero higher 
derivative; see Lee and Chesher (1986). 

The LM statistic can be calculated by regressing the constant 1 on V J  and 
Vpl( . . . . .  Vp( ,  where all these derivatives are evaluated at 6 = 0 and the Bernoulli 
model estimates, and then forming the sum of squares of the fitted values. Note that 
the LM statistic is independent of the shape of the heterogeneity distribution h(v), 
and is thus a "robust" test against heterogeneity of any form. 

9.8. Technicalities 

Some test statistics are conveniently defined using generalized inverses. This section 
gives a constructive definition of a generalized inverse, and lists some of its properties. 
A matrix A-  is a Moore -Penrose  generalized inverse of a matrix A if it has three 

k x m  m x k  
properties: 

(i) A A -  A = A,  

(ii) A -  A A -  = A - ,  

(iii) A A -  and A - A  are symmetric. 
There are other generalized inverse definitions that have some, but not all, of these 
properties; in particular A + will denote any matrix that satisfies (i). 

First, a method for constructing a generalized inverse is described, and then some 
of the implications of the definition are developed. The construction is called the 
singular value decomposition (SVD) of a matrix, and is of independent interest as a 
tool for finding the eigenvalues and eigenvectors of a symmetric matrix, and for 
calculation of inverses of moment matrices of data with high multicollinearity; see 
Press et al. (1986) for computational algorithms and programs. 

Lemma 9.4 

Every real m x k matrix A of rank r can be decomposed into a product 

A = U  D V ' ,  
m x k  m x r r x r r x k  

where D is a diagonal matrix with positive nonincreasing elements down the 
diagonal, and U and V are column-orthonormal; i.e. U'U = Ir = V'V.  

Proof  

The m x m matrix AA'  is symmetric and positive semi-definite. Then, there exists an 
rn x m orthonormal matrix W, partitioned W = [W1 W2] with W1 of dimension 
m x r, such that W ' I ( A A ' ) W  ~ = G is diagonal with positive, nonincreasing diagonal 
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elements, and W'2(AA' )W 2 = 0, implying A ' W  2 = 0. Define D from G by replacing the 
diagonal elements of G by their positive square roots. Note that W ' W  = I = W W '  - 
WIW'~ + W z W  2. Define U =  W 1 and V ' = D  ~U'A. Then, U ' U = I r  and V ' V =  
D - 1 U ' A U D  -1 = D - 1 G D  -1 =I~. Further, A = ( I , , -  W2W'g)A = U U ' A  = UDV'.  This 
establishes the decomposition. Q.E.D. 

Note that if A is symmetric, then U is the array of eigenvectors of A corresponding 
to the nonzero roots, sO that A ' U  = UDI, with D 1 the r × r diagonal matrix with the 
nonzero eigenvalues in descending magnitude down the diagonal. In this case, 
V = A ' U D - I =  UD1D -1. Since the elements of D1 and D are identical except 
possibly for sign, the columns of U and V are either equal (for positive roots) or 
reversed in sign (for negative roots). 

Lemma 9.5 

The Moore-Penrose  generalized inverse of an m x k matrix A is the matrix A -  = 
V D -~ U' . Let A + denote any matrix, including A- ,  that satisfies A A + A  = A .  

k x ? "  t ' x r  t ' x m  

These matrices satisfy: 
(1) A + = A -~ i fA is square and nonsingular. 
(2) The system of equations A x  = y has a solution if and only if y = A A  + y, and the 

linear subspace of all solutions is the set of vectors x = A + y + [ I  - A + A]z for all 
z e ~  k. 

(3) A A  + and A + A  are idempotent. 
(4) If A is idempotent, then A = A- .  
(5) If A = BCD with B and D nonsingular, then A -  = D - a C - B - 1 ,  and any matrix 

A + = D -  1C + B -  1 satisfies A A  + A = A. 

Proof  

Elementary; see Pringle and Rayner (1971). 

Lemma 9.6 

If A is square, symmetric, and positive semi-definite of rank r, then 
(1) There exist Q positive definite and R idempotent of rank r such that A = QRQ 

and A - = Q -  1 R Q -  1 

(2) There exists U column-orthonormal  such that U ' A U  = D is nonsingular diag- 

onal and A - k  X=rU (U'A U)-  1U'. 
(3) A has a symmetric square root B = A 1/2, and A -  = B - B - .  

Proof  

Let W = [U W2] be an orthogonal matrix diagonalizing A. Then, U ' A U  = D, a 

d iagona lmatr i xo fpos i t i vee igenva lues ,  a n d A W z = O .  D e f i n e Q = W [ D o / 2  0 ] • 
Im-r  

W " R = W I I ' O o ] W t ' a n d B = U D 1 / 2 U " o  Q.E.D. 
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Lemma 9.7 

Ify ~ N(A2, A), with A of rank r, and A + is any symmetric matr ix satisfying A A  +A = A, 
then y'A +y is noncen t ra l  chi -square  d i s t r ibu ted  with r degrees of f reedom and  
noncent ra l i ty  p a r a m e t e r  2'A2. 

Proof  

Let W = [U Wz] be an o r t h o n o r m a l  ma t r ix  tha t  d iagonal izes  A, as in the p r o o f  of  
Lemma 9.6, wi th  U ' A U  = D, a posi t ive d iagona l  r x r matr ix ,  and  W ' A W  2 = O, 

implying A W2 = 0. Then,  the nons ingu la r  t r ans fo rma t ion  z = W'y  has 

m e a n [ D - 1 / o U ' A 2 ] a n d c o v a r i a n c e m a t r i X [ I o  O o ] , S o t h a t z l = D - 1 / 2 U ' y i s d i s t r i -  

buted N(D-I /ZU'A2, Ir ) ,  z z = Wzy = 0, imply ing  W'y  = [Dt/Zzl 0]. I t  is s t anda rd  
that  z'z has a noncen t ra l  chi -square  d i s t r ibu t ion  with r degrees of  f reedom and  
noncent ra l i ty  p a r a m e t e r  2'A U D - 1  U'A2 = 2'A2. The cond i t ion  A = A A  + A implies  
U'AU = U ' A W W ' A  + W W ' A U ,  or  

D = [D 0] W ' A  + W [ D  0] '  = D(U'A + U)D. 

Hence, U'A + U = D -  1. Then  

y'A + y = y ' W W ' A  + W W ' y  = [z'lD 1/2 0] ( W ' A  + W)[D1/2z11 0] '  

= zllD1/2(U'A + U)D1/2zl = Zt lZ  1. 

Q.E.D. 

References 

Ait-Sahalia, Y. (1993) "Asymptotic Theory for Functionals of Kernel Estimators", MIT Ph.D. thesis. 
Amemiya, T. (1973) "Regression Analysis When the Dependent Variable is Truncated Normal". 

Econometrica, 41, 997-1016. 
Amemiya, T. (1974) "The Nonlinear Two-Stage Least-Squares Estimator", Journal of Econometrics, 2, 

105-110. 
Amemiya, T. (1985) Advanced Econometrics, Cambridge, MA: Harvard University Press. 
Andersen, P.K. and R.D. Gill (1982) "Cox's Regression Model for Counting Processes: A Large Sample 

Study", The Annals of Statistics, 19, 1100-1120. 
Andrews, D.W.K. (1990) "Asymptotics for Semiparametric Econometric Models: I. Estimation and 

Testing", Cowles Foundation Discussion Paper No. 908R. 
Andrews, D.W.K. (1992) "Generic Uniform Convergence", Econometric Theory, 8, 241-257. 
Andrews, D.W.K. (1994) "Empirical Process Methods in Econometrics", in: R. Engle and D. McFadden, 

eds., Handbook of Econometrics, Vol. 4, Amsterdam: North-Holland. 
Barro, R.J. (1977) "Unanticipated Money Growth and Unemployment in the United States", American 

Economic Review, 67, 101-115. 



2242 W.K. Newey and D. McFadden 

Bartle, R.G. (1966) The Elements oflntegration, New York: John Wiley and Sons. 
Bates, C.E. and H. White (1992) "Determination of Estimators with Minimum Asymptotic Covariance 

Matrices", preprint, University of California, San Diego. 
Berndt, E.R., B.H. Hall, R.E. Hall and J.A. Hausman (1974) "Estimation and Inference in Nonlinear 

Structural Models", Annals of Economic and Social Measurement, 3, 653-666. 
Bickel, P. (1982) "On Adaptive Estimation," Annals of Statistics, 10, 647-671. 
Bickel, P., C.A.J. Klaassen, Y. Ritov and J.A. Wellner (1992) "Efficient and Adaptive Inference in 

Semiparametric Models" Forthcoming monograph, Baltimore, MD: Johns Hopkins University Press. 
Billingsley, P. (1968) Convergence of Probability Measures, New York: Wiley. 
Bloomfeld, P. and W.L. Steiger (1983) Least Absolute Deviations: Theory, Applications, and Algorithms, 

Boston: Birkhauser. 
Brown, B.W. (1983) "The Identification Problem in Systems Nonlinear in the Variables", Econometrica, 

51, 175-196. 
Burguete, J., A.R. Gallant and G. Souza (1982) "On the Unification of the Asymptotic Theory of 

Nonlinear Econometric Models", Econometric Reviews, 1, 151-190. 
Carroll, R.J. (1982) "Adapting for Heteroskedasticity in Linear Models", Annals of Statistics, 10,1224-1233. 
Chamberlain, G. (1982) "Multivariate Regression Models for Panel Data", Journal of Econometrics, 18, 

5 -46. 
Chamberlain, G. (1987) "Asymptotic Efficiency in Estimation with Conditional Moment Restrictions", 

Journal of Econometrics, 34, 305-334. 
Chesher, A. (1984) "Testing for Neglected Heterogeneity", Econometrica, 52, 865-872. 
Chiang, C.L. (1956) "On Regular Best Asymptotically Normal Estimates", Annals of Mathematical 

Statistics, 27, 336-351. 
Daniels, H.E. (1961) "The Asymptotic Efficiency of a Maximum Likelihood Estimator", in: Fourth 

Berkeley Symposium on Mathematical Statistics and Probability, pp. 151 163, Berkeley: University of 
California Press. 

Davidson, R. and J. MacKinnon (1984) "Convenient Tests for Probit and Logit Models", Journal of 
Econometrics, 25, 241-262. 

Eichenbaum, M.S., L.P. Hansen and K.J. Singleton (1988) "A Time Series Analysis of Representative 
Agent Models of Consumption and Leisure Choice Under Uncertainty", Quarterly Journal of Econo- 
mics, 103, 51-78. 

Eicker, F. (1967) "Limit Theorems for Regressions with Unequal and Dependent Errors", in: L.M. 
LeCam and J. Neyman, eds., Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics 
and Probability, Berkeley: University of California Press. 

Fair, R.C. and D.M. Jaffee (1972) "Methods of Estimation for Markets in Disequilibrium", Econometrica, 
40, 497-514. 

Ferguson, T.S. (1958) "A Method of Generating Best Asymptotically Normal Estimates with Application 
to the Estimation of Bacterial Densities", Annals of Mathematical Statistics, 29, 1046-1062. 

Fisher, F.M. (1976) The Identification Problem in Econometrics, New York: Krieger. 
Fisher, R.A. (1921) "On the Mathematical Foundations of Theoretical Statistics", Philosophical Trans- 

actions, A, 222, 309-368. 
Fisher, R.A. (1925) "Theory of Statistical Estimation", Proceedings of the Cambridge Philosophical 

Society, 22, 700-725. 
Gourieroux, C., A. Monfort and A. Trognon (1983) "Testing Nested or Nonnested Hypotheses", Journal 

of Econometrics, 21, 83-115. 
Gourieroux, C., A. Monfort and A. Trognon (1984) "Psuedo Maximum Likelihood Methods: Theory", 

Econometrica, 52, 681-700. 
Hajek, J. (1970) "A Characterization of Limiting Distributions of Regular Estimates", Z. Wahrschein- 

lichkeitstheorie verw. Geb., 14, 323 330. 
Hansen, L.P. (1982) "Large Sample Properties of Generalized Method of Moments Estimators", Eco- 

nometrica, 50, 1029-1054. 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2243 

Hansen, L.P. (1985a) "A Method for Calculating Bounds on the Asymptotic Covariance Matrices of 
Generalized Method of Moments Estimators", Journal of Econometrics, 30, 203-238. 

Hansen, L.P. (1985b) "Notes on Two Step GMM Estimators", Discussion, December meetings of the 
Econometric Society. 

Hansen, L.P. and K.J. Singleton (1982) "Generalized Instrumental Variable Estimation of Nonlinear 
Rational Expectations Models", Econometrica, 50, 1269-1286. 

Hansen, L.P., J. Heaton and R. Jagannathan (1992) "Econometric Evaluation of Intertemporal Asset 
Pricing Models Using Volatility Bounds", mimeo, University of Chicago. 

H~irdle, W. (1990) Applied Nonparametric Regression, Cambridge: Cambridge University Press. 
H/irdle, W. and O. Linton (1994) "Nonparametric Regression", in: R. Engle and D. McFadden, eds., 

Handbook of Econometrics, Vol. 4, Amsterdam: North-Holland. 
Hausman, J.A. (1978) "Specification Tests in Econometrics", Econometrica, 46, 1251-1271. 
Hausman, J.A. and D. McFadden (1984) "Specification Tests for the Multinomial Logit Model", 

Econometrica, 52, 1219-1240. 
Heckman, J.J. (1976) "The Common Structure of Statistical Models of Truncation, Sample Selection, 

and Limited Dependent Variables and a Simple Estimator for Such Models", Annals of Economic and 
Social Measurement, 5, 475-492. 

Honor6, B.E. (1992) "Timmed LAD and Least Squares Estimation of Truncated and Censored Models 
with Fixed Effects", Econometrica, 60, 533-565. 

Honor6, B.E. and J i .  Powell (1992) "Pairwise Difference Estimators of Linear, Censored, and Truncated 
Regression Models", mimeo, Northwestern University. 

Huber, P.J. (1964) "Robust Estimation of a Location Parameter", Annals of Mathematical Statistics, 35, 
73-101. 

Huber, P. (1967) "The Behavior of Maximum Likelihood Estimates Under Nonstandard Conditions", 
in: L.M. LeCam and J. Neyman, eds., Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability, Berkeley: University of California Press. 

Huber, P. (1981) Robust Statistics, New York: Wiley. 
Ibragimov, I.A. and R.Z. Has'minskii (1981) Statistical Estimation: Asymptotic Theory, New York: 

Springer-Verlag. 
Jennrich (1969), "Asymptotic Properties of Nonlinear Least Squares Estimators", Annals of Mathematical 

Statistics, 20, 633-643. 
Koenker, R. and G. Bassett (1978) "Regression Quantiles", Econometrica, 46, 33-50. 
LeCam, L. (1956) "On the Asymptotic Theory of Estimation and Testing Hypotheses", in: L.M. LeCam 

and J. Neyman, eds., Proceedings of the Third Berkeley Symposium on Mathematical Statistics and 
Probability, voL 1, pp. 129-156, Berkeley: University of California Press. 

Lee, L F. and A. Chesher (1986) "Specification Testing when the Score Statistics are Identically Zero", 
Journal of Econometrics, 31,121-149. 

Maasoumi, E. and P.C.B. Phillips (1982) "On the Behavior of Inconsistent Instrumental Variables 
Estimators", Journal of Econometrics, 19, 183-201. 

Malinvaud, E. (1970)"The Consistency of Nonlinear Regressions", Annals of Mathematical Statistics, 
41, 956-969. 

Manski, C. (1975) "Maximum Score Estimation of the Stochastic Utility Model of Choice", Journal of 
Econometrics, 3, 205-228. 

McDonald, J.B. and W.K. Newey (1988) "'Partially Adaptive Estimation of Regression Models Via the 
Generalized T Distribution", Econometric Theory, 4, 428-457. 

McFadden, D. (1987) "Regression-Based Specification Tests for the Multinomial Logit Model", Journal 
of Econometrics, 34, 63 82. 

McFadden, D. (1989) "A Method of Simulated Moments for Estimation of Multinomial Discrete 
Response Models Without Numerical Integration", Econometrica, 57, 995-1026. 

McFadden, D. (1990) "An Introduction to Asymptotic Theory: Lecture Notes for 14.381", mimeo, 
MIT. 



2244 W.K. Newey and D. McFadden 

Newey, W.K. (1984) "A Method of Moments Interpretation of Sequential Estimators", Economics 
Letters, 14, 201-206. 

Newey, W.K. (1985) "Generalized Method of Moments Specification Testing", Journal of Econometrics, 
29, 229-256. 

Newey, W.K. (1987) "Asymptotic Properties of a One-Step Estimator Obtained from an Optimal Step 
Size", Econometric Theory, 3, 305. 

Newey, W.K. (1988) "Interval Moment Estimation of the Truncated Regression Model", mimeo, Depart- 
ment of Economics, MIT. 

Newey, W.K. (1989) "Locally Efficient, Residual-Based Estimation of Nonlinear Simultaneous Equa- 
tions Models", mimeo, Department of Economics, Princeton University. 

Newey, W.K. (1990) "Semiparametric Efficiency Bounds", Journal of Applied Econometrics, 5, 99-135. 
Newey, W.K. (1991a) "Uniform Convergence in Probability and Stochastic Equicontinuity", Econo- 

metrica, 59, 1161-1167. 
Newey, W.K. (1991b) "Efficient Estimation of Tobit Models Under Conditional Symmetry", in: W. 

Barnett, J. Powell and G. Tauchen, eds., Semiparametric and Nonparametric Methods in Statistics and 
Econometrics, Cambridge: Cambridge University Press. 

Newey, W.K. (1992a) "The Asymptotic Variance of Semiparametric Estimators", MIT Working Paper. 
Newey, W.K. (1992b) "Partial Means, Kernel Estimation, and a General Asymptotic Variance Estimator", 

mimeo, MIT. 
Newey, W.K. (1993) "Efficient Two-Step Instrumental Variables Estimation", mimeo, MIT. 
Newey, W.K. and J.L. Powell (1987) "Asymmetric Least Squares Estimation and Testing", Econometrica, 

55, 819-847. 
Newey, W.K. and K. West (1988) "Hypothesis Testing with Efficient Method of Moments Estimation", 

International Economic Review, 28, 777-787. 
Newey, W.K., F. Hsieh and J. Robins (1992) "Bias Corrected Semiparametric Estimation", mimeo, 

MIT. 
Olsen, R.J. (1978) "Note on the Uniqueness of the Maximum Likelihood Estimator for the Tobit Model", 

Econometrica, 46, 1211-1216. 
Pagan, A.R. (1984) "Econometric Issues in the Analysis of Regressions with Generated Regressors", 

International Economic Review, 25, 221-247. 
Pagan, A.R. (1986) "Two Stage and Related Estimators and Their Applications", Review of Economic 

Studies, 53, 517-538. 
Pakes, A. (1986) "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks", 

Econometrica, 54, 755-785. 
Pakes, A. and D. Pollard (1989) "Simulation and the Asymptotics of Optimization Estimators", Econo- 

metrica, 57, 1027-1057. 
Pierce, D.A. (1982) "The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types 

of Statistics", Annals of Statistics, 10, 475 478. 
Pollard, D. (1985) "New Ways to Prove Central Limit Theorems", Econometric Theory, 1,295 314. 
Pollard, D. (1989) Empirical Processes: Theory and Applications, CBMS/NSF Regional Conference Series 

Lecture Notes. 
Powell, J.L. (1984) "Least Absolute Deviations Estimation for the Censored Regression Model", Journal 

of Econometrics, 25, 303-325. 
Powell, J.L. (1986) "Symmetrically Trimmed Least Squares Estimation for Tobit Models", Econometrica, 

54, 1435-1460. 
Powell, J.L., J.H. Stock and T.M. Stoker (1989) "Semiparametric Estimation of Index Coefficients", 

Econometrica, 57, 1403-1430. 
Pratt, J.W. (1981) "Concavity of the Log Likelihood", Journal of the American Statistical Association, 76, 

103-106. 
Press, W.H., B.P. Flannery, S.A. Tenkolsky and W.T. Vetterling (1986) Numerical Recipes, Cambridge 

University Press. 



Ch. 36: Large Sample Estimation and Hypothesis Testing 2245 

Pringle, R. and A. Rayner (1971) Generalized Inverse Matrices, London: Griffin. 
Robins, J. (1991) "Estimation with Missing Data", preprint, Epidemiology Department, Harvard School 

of Public Health. 
Robinson, P.M. (1988a) "The Stochastic Difference Between Econometric Statistics", Econometrica, 56, 

531-548. 
Robinson, P. (1988b)"Root-N-Consistent Semiparametric Regression", Econometrica, 56, 931-954. 
RockafeUar, T. (1970) Convex Analysis, Princeton: Princeton University Press. 
Roehrig, C.S. (1989) "Conditions for Identification in Nonparametric and Parametric Models", Econo- 

metrica, 56, 433-447. 
Rothenberg, T.J. (1971) "Identification in Parametric Models", Econometrica, 39, 577-592. 
Rothenberg, T. J. (1973) Efficient Estimation with a priori Information, Cowles Foundation Monograph 

23, New Haven: Yale University Press. 
Rothenberg, T.J. (1984) "Approximating the Distributions of Econometric Estimators and Test Statistics", 

Ch. 15 in: Z. Griliches and M.D. Intriligator, eds., Handbook of Econometrics, Vol 2, Amsterdam, 
North-Holland. 

Rudin, W. (1976) Principles of Mathematical Analysis, New York: McGraw-Hill. 
Sargan, J.D. (1959) "The Estimation of Relationships with Autocorrelated Residuals by the Use of 

Instrumental Variables", Journal of the Royal Statistical Society Series B, 21, 91-105. 
Settling, R.J. (1980) Approximation Theorems of Mathematical Statistics, New York: Wiley. 
Stoker, T. (1991) "Smoothing Bias in the Measurement of Marginal Effects", MIT Sloan School Working 

Paper, WP3377-91-ESA. 
Stone, C. (1975) "Adaptive Maximum Likelihood Estimators of a Location Parameter", Annals of 

Statistics, 3, 267-284. 
Tauchen, G.E. (1985) "Diagnostic Testing and Evaluation of Maximum Likelihood Models", Journal of 

Econometrics, 30, 415-443. 
Van der Vaart, A. (1991) "On Differentiable Functionals", Annals of Statistics, 19, 178-204. 
Wald (1949) "Note on the Consistency of the Maximum Likelihood Estimate", Annals of Mathematical 

Statistcs, 20, 595-601. 
White, H. (1980) "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for 

Heteroskedasticity", Econometrica, 48, 817-838. 
White, H. (1982a)"Maximum Likelihood Estimation of Misspecified Models", Econometrica, 50,1-25. 
White, H. (1982b) "Consequences and Detection of Misspecified Linear Regression Models", Journal of 

the American Statistical Association, 76, 419-433. 


