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Abstract—We investigate optimal resource allocation and [8] formulates this as a feedback control problem and uses
power management in virtualized data centers with time-vaying  tools from adaptive control theory to design online control
workloads and heterogeneous applications. Prior work in tis algorithms. Such techniques use a closed-loop control mode

area uses prediction based approaches for resource provisiing. LT
In this work, we take an alternate approach that makes use where the objective is to converge to a target performance

of the queueing information available in the system to make leével by taking control actions that try to minimize the erro
online control decisions. Specifically, we use the recentlgevel- between the measured output and the reference input. While

oped technique of Lyapunov Optimization to design an online thjs technique is useful as a tracking problem, it cannotdselu
admission control, routing, and resource allocation algoithm for for utility maximization problems where the target optimal

a virtualized data center. This algorithm maximizes a joint utility lue i K Work in [9 id th bl f .
of the average application throughput and energy costs of th value is unknown. Work in [9] considers the problem of maxi-

data center. Our approach is adaptive to unpredictable chages Mizing a joint utility of the profit generated by satisfyinyen
in the workload and does not require estimation and predicton SLA and the power consumption costs. This is formulated as

of its statistics. . . a sequential optimization problem and solved using limited
Index Terms—Data Center Automation, Cloud Computing, |ookahead control. This approach requires building egtma
Virtualization, Resource Allocation, Lyapunov Optimization .
of the future workloads. Much prior work on resource allo-
|. INTRODUCTION AND RELATED WORK cation is based on prediction-based provisioning and gtead

here i L o ina th fici state queueing models [10]-[12]. Here, statistical moétals
There is growing interest in improving the energy efficiency,q qryjoads are first developed using historical tracémef

of large-scale enterprise data centers and cloud computg}gvia online learning. Resource allocation decisions hemt

enviro.nments_. Recent studies [1] [2,] indicat_e that the £0shade to satisfy such predicted demand. This approach is
associated with the power consumption, cooling requiréseny; e by its ability to accurately predict future arrigal

etc., of servers over their lifetime are significant. As autes In this work, we do not take this approach. Instead, we

there have been numerous works in the area of power MAke use of the recently developed technique of Lyapunov
agement for such data centers (see [3] and referencesrthere(bptimization [15] to design an online admission control,

At the data center level, application consolidation hasnbe?outing, and resource allocation algorithm for a virtuatiz
studied for reducing the total power consumption. Virtzai d

o o hni h bl lidati R1’;\ta center. This algorithm makes use of the queueing infor-
tion is a promising technique that enables consolidation ffyiion available in the system to implicitly learn and adapt

hit_(larogenepus appllcatlolns o_ntol;el fewer number_ of Ser\ll_?fﬁpredictable changes in the workload and does not require
while ensuring secure co-location between competing e@pli ¢ gimation and prediction of its statistics. The technigdie

tons. This resultim h|g_her r?fsource ut|I|zat|0nHand m:dxm_ Lyapunov Optimization has been used to develop throughput
In energy CO.StS.( y turning off exra servers). Howevercein and energy optimal cross-layer control algorithms in time-
multiple applications now contend for the same resourceh,po\g(,]lrying wireless networks (see [15] and references). This

It s important to d_evelop sc_h(_adullng algorithms tha}t ailtec technique has certain similarities with the feedback aintr
resources in a fair and efficient manner. At the 'nd'v'dU?Tased approach as it also uses a Lyapunov function based
Server IeSveI,I_techInlques Sucg as Dynamic Voltage_lagld FEﬁiaIysis to design online control algorithms. In additithns
quency Scaling, low power P-stales, etc. are available ﬂf@(t.hnique also allows stability and utility optimization be

allow a tradeoff between performance and power Consumpti?r%ated in the same framework. Unlike works that use steady
Several recent works (€.9., [4] [5]) have studied the prokzé state queueing models, this approach takes into account the

dynamically scaling the CPU speed for energy savings. & tIFﬂJII effects of the queueing dynamics by making use of the

work, we consider the problem of maximizing a J.O'nt UtIIItyqueue backlog information to make online control decisions
of the long-term throughput of the hosted applications dued t

average total power expenditure in a virtualized data cente 1. BASIC VIRTUALIZED DATA CENTER MODEL
Our formulation unifies these two techniques for power auintr We consider a virtualized data center withi servers that
under a common analytical framework. host a set ofV applications. The set of servers is denotedsby

Dynamic resource allocation in virtualized data centers hﬁnd the set of applications is denoted.iyEach servey € S
been studied extensively in recent years. The work in [6fs 4 subset of the applications. It does so by providing

This work was performed when Rahul Urgaonkar worked as a emnft V”‘tuall m?'Ch'ne (VM) for EV(.EI’y a_lpphcatlon hOSt_Ed on it.
intern at DOCOMO USA Labs. An application may have multiple instances running across



R/C 1

available to the Resource Controller are discussed in Idetai

U@ [ m o) in Sec. 1I-C. For simplicity, in the basic model, we assume
g —r1—] that the sets/V; contain only one resource. Specifically, we
. | = focus on case where the CPU is the bottlt_ene_ck resource. This
— can happen, for example, when all applications running on
A0 e M o) RIC 2 the servers are computationally intensive. Examples oh suc
Uso0 [ am) applications include Hadoop, MapReduce and video transcod
3 O] —— ing. Our formulation can be extended to treat the multiple-
i f resource case by representing them as a vector of resources
Un() [ s | and appropriately redefining the control options and exgzbct
3 Server 2 service rates. All servers in the data center are assumee to b
G s Admision Contoler for Application |\ ‘ __ resource constrained. Specifically, in the basig rr!odgl,omesf _
RUC . Resource Contraler for Sorver i} m—_ on CPU frequency and power constraints. This is discussed in
W;(): Router buffer for Application i 2m :l detail in Sec. II-B.
Uij(t): Buffer for Application i on Server j 1 i
A,(1): Request arrivals for Application i Upa(® [ e | B. CPU Power-Frequency Relationship

Server M

Modern CPUs can be operated at different speeds at runtime
Fig. 1. lllustration of the Virtualized Data Center Architere. by using techniques such as Dynamic Frequency Scaling
(DFS), Dynamic \oltage Scaling (DVS), or a combination
different VMs in the data center. We define the fO”OWinq)ynamiC Vo|tage and Frequency Sca"ng (DVFS) These tech-
indicator variables foi € {1,2,...,N},j € {1,2,..., M }: niques result in anon-linear power-frequency relationship.
1 if application is hosted on servef For example, Fig. 2 shows thg power consqmed by a D_eII
Qij = { 0 else PowerEdge R610 server for different operating frequencies
and utilization levels. This curve was obtained by running a
For simplicity, in the basic model, we assume thgt= 1Vi,j, CPU intensive application at different CPU frequencies and
i.e., each server can host all applications. In generali@pp utilization levels and measuring the power consumption. We
tions may be multi-tiered and the different tiers corresping observe that at each utilization level, the power-freqyenc
to an instance of an application may be located on differefglationship is well-approximated by a quadratic mode,, i.
servers and VMs. For simplicity, in the basic model We(f) = P, + a(f — fmin)?. Similar results have been
assume that each application consists of a single tier.eThedserved in recent works [4] . In our model, we assume that
assumptions are relaxed in Sec. V where we discuss extensigPUs follow a similar non-linear power-frequency relation
to the multi-tier as well as inhomogeneous hosting scenarighip that is known to the Resource Controllers. The CPUs
We assume a time-slotted system. Every slot, new requesi® run at a finite number of operating frequencies in an
arrive for each applicatiori according to a random arrivalinterval [f,.in, fmaz) With an associated power consumption
processA;(t) that has a time average rate requests/slot. [P,,;,, Pra.|. This allows a tradeoff between performance and
This process is assumed to be independent of the currpotver costs. All servers in our model are assumed to have
amount of unfinished work in the system and has finiidentical CPU resources.
second moment. However, we do not assume any knowledg@dditionally, the servers may be operated in an inactive
of the statistics ofA;(t). For example,A;(t) could be a mode (such as P-states, CPU hibernation, or turning OFF) in
Markov-modulated process with time-varying instantarseogrder to further save on energy costs. This can be advaniageo
rates where the transition probabilities between diffestates if the workload is low. Indeed, we note from Fig. 2 that the
are not known. This models a scenario withpredictableand minimum powerP,,;, required to maintain the server in the
time-varying workloads. active state is typically substantial. It can be as high#s of
P,.q. as reported in other works [1]. Therefore, turning idle
servers to OFF mode, or to some low power hibernation state,
Our control architecture for the virtualized data centeran yield significant savings in power consumption. While an
consists of three components as shown in Fig. 1. Evenactive server does not consume any power, it also cannot
slot, for each applicatioi € A, an Admission Controller provide any service to the applications hosted on it. We thus
determines whether to admit or decline the new requests. Tdssume that, in any slot, new requests can only be routed to
requests that are admitted are stored in the Router bufferdoe active servers. Inactive servers can be turned active tdldan
being routed to one of the servers hosting that application lcreases in workload.
the Router. Each serverj € S has a set of resourced); Since turning servers ON/OFF frequently may be undesir-
(such as CPU, disk, memory, network resources, etc.) tieat able (for example, due to hardware reliability issues), vile w
allocated to the VMs hosted on it by iResource Controller. In  focus on frame-based control policies in which time is didd
practice, this Resource Controller resides on the host&ipgr into frames of lengthl” slots. The set of active servers is
System (DomO) of each virtualized server. The control aytio chosen at the beginning of each frame and is held fixed for

A. Control Architecture



: : : : : : control options. For example, the Resource Controller may

T ulasion 0% allocate different fractions of the CPU (or different numbé

20| T st e ] cores in case of multi-core processors) to the VMs in that'slo

T g o The Resource Controller may also use available techniques
such as DFS, DVS, DVFS, etc. to modulate the current CPU
speed which affects the CPU power consumption. WeZiise

denote the set of all such control options available at serve

This includes the option of making servginactive (so that no

power is consumed) if the current slot is the beginning of ne

frame. Let/;(t) € Z; denote the particular control decision

‘ ‘ ‘ ‘ ‘ taken at serverj in slot ¢t under any policy and lef;(t)
T be the corresponding power consumption. Then, the queueing
dynamics for the requests of applicatibat server; follows:

Power Consumption (W)
»
3
3

Fig. 2. Power vs CPU frequency for a Dell PowerEdge R610 seifuee
utilization value is the measured CPU utilization at a giv&U frequency Uij(t + 1) = maX[Uij (t) — i (Ij (t))v O] + Rij (t) (5)
and loading level during the experiment. Also note the Sicgmt idle power. . : )

where p;;(1;(t)) denotes the service rate (in units of re-

the duration of that frame. This set can potentially Chamge d}uests/s|ot) provided to app“caum on Serverj in slot ¢

the next frame as workloads change. We note that while th@j{; taking control action/;(t). We assume that, for each
control decision is taken at a slower time-scale, otheres application, the expected value of this service rate as etifom
allocations decisions (such as admission control, rou@RlJ  of the control actiori; () is known for allI;(¢) € Z;. This can
frequency scaling and resource allocation at each activeije pe obtained by application profiling and application mauigli

are made every slot. The choice of an appropriate valu@fortechniques (e.g., [13] [14]). It is important to note that de

is an implementation issue. We do not focus on optimizing thiot need to implement the dynamic (5). We will only require a
parameter in this work. The choice @tfaffects a complexity- measure of the current backlog and knowledge of the expected
utility tradeoff as discussed in Sec. IV-B. service rate as a function of control decisions to implement

C. Queueing Dynamics and Control Decisions our control algorithm.

. Thus, in every slot, a control policy needs to make the
Let A4;(¢t) denote the number of new request arrivals fq; : SN
A ollowing decisions:
application: in slot¢. Let R;(t) be the number of requests out ¢ o beqinni ¢ ¢ q ine th
of A;(¢) that are admitted into the Router buffer for application 1) it =nT (ie. beginning ot a new rame_), etermine the
i by the Admission Controller. We denote this buffer by MW set of active serveiS(t). Else, continue using the
Wi(t). We assume that any new request that is not admitted a((:jtlv_e set alreadyl %Om,pyted for ']Ehe cllljrrenlt. frame.
by the Admission Controller is declined. This can easily be2) A ml_ssmdn contro eas}:on@r:-(t) dor_a ;pp ications..
generalized to the case where arrivals that are not immegiat 5) Routing decisions;;(t) for the admitted requests.

accepted are stored in a buffer for future admission detisio 4) Re_so_urce allocatlon_demsmlf}(t) at each active server
Thus. for alli. . we have: (this includes selecting the CPU frequency that affects

the power consumptiot®; (t) as well as CPU resource
0 < Ry(t) < Ay(t) (1) distribution among different VMs).

Let R;;(t) be the number of requests for applicatiothat are ~ Our goal is to design an online control policy that maxi-
routed from its Router buffer to serverin slot t. Then the Mizes a joint utility of the sum throughput of the applicato

queueing dynamics fol; (¢) is given by: and the energy costs of the servers sul:_)ject_to the ayailable
control options and the structural constraints imposedhixy t
Wit +1) = Wi(t) = Y Rij(t) + Ri(1) (2)  model. Itis desirable to develop a flexible and robust reseur
J allocation algorithm thadutomatically adapts to time-varying

Let S(t) denote the set of active servers in slotFor each Wworkloads. In this work, we will use the technique of Lya-
application:, the admitted requests can only be routed to thogginov Optimization [15] to design such an algorithm.
servers that host applicatiérand are active in slat Thus, the

. o : . . [1l. CoONTROL OBJECTIVE
routing decisionsR;; (t) must satisfy the following constraints

every slot: Consider any policy for this model that takes control
o decisionsS"(t), R (t), R;(t), I} (t) € Z;, P}'(t) for all i,;
Rij(t) =01if j ¢ S(t) ora;; =0 (3) in slot t. Note that under any feasible poliey these control
0< Z ai; Rij(t) < Wi(t) (4) decisions must satisfy the admission control constraift (1
jeS) routing constraints (3), (4), and the resource allocation-c

straint I, (t) € Z; every slot for alli, j.
Every slot, the Resource Controller allocates the resgurce i) €T, y bJ

OT each server among t_he VMs Fhat_hOSt t.he appllcatlon_s FUN:aqditional constraints such as allocating a minimum amatfir@PU share
ning on that server. This allocation is subject to the atddla to all active VMs can be included in this model.



Let r] denote the time average expected rate of admittéehction, it is sufficient to consider only the class of siatry,

requests for applicationh under policyn, i.e., randomized policies that take control decisions indepehde
i1 of the current queue backlog every slot. Specifically, at the
= tlim EZE{R?(T)} (6) beginning of each frame, this_policy c_hopse_s an activc_e_set
-t = of servers according to a stationary distribution in ard..i.
. fashion. Once chosen, other control decisions are likewise
Letr = (r1,...,ry) denote the vector of these time averagg,, ., in an i.i.d. fashion according to stationary distiiios.

rates. Similarly, Iete;.’ denote the time average expected pow

_ ) ) For the basic model of Sec. Il with homogeneous application
consumption of servej under policyn:

hosting and identical CPU resources, in choosing an active

1 =t server set, we do not need to consider all possible subsets of
ej L Jim - Z E{P](r)} (7)  S. Specifically, we define the following collectia of subsets
=0 of S:

The expectations above are with respect to the possibly ran- A { }
domized control actions that poliey might take. O=10. {13, {1,2},{1,2,3}, ... {1,2,3, ... M} ©)
Let ; and 8 be a collection of non-negative weights thatthen we have the following. For brevity, we state this fact
act as normalizing parameters. Then our objective is tagdeshere without proof:
a policy n that solves the followingstochastic optimization  Fact 1: (Optimal Stationary, Randomized Policy) For any
problem: arrival rate vector(\;,...,\y) (inside or outside of the
- data center capacity region), there exists a frame-based
Maximize: s — 7 . X P !
Z aak ﬁzeﬂ stationary randomized control policy that chooses actets s
from O every frame, makes admission control, routing and
resource allocation decisions every slot independent ef th

ieA jes
Subjectto:  0<r! <\ VieA

IJt)e;VjeS, vt queue backlog and yields the following steady state values:
rel (8) =
Here, A represents theapacity region of the data center model tllglo t { Z B {Ri(7)} = 3 Z E{P;(r)} }
as described above. It is defined as the set of all possibie lon T=0 e jes
term throughput values that can be achieved uadgfeasible = Z oy — 3 Z e; (10)
resource allocation strategy. icA J€S

The objective in problem (8) is a general weighted lineaowever, computing the optimal stationary, randomizedcyol
combination of the sum throughput of the applications angkplicitly can be challenging and its implementation impra
the average power usage in the data center. This formuigal as it requires knowledge of all system parameters (lik
tion allows us to consider several scenarios. Specificélly, workload statistics) as well as the capacity region in adean
allows the design of policies that aaglaptive to time-varying Even if this policy can be computed for a given workload,
workloads. For example, if the current workload is inside thit would not be adaptive to unpredictable changes in the
instantaneous capacity region, then this objective ereg®s workload and must be recomputed. In the next section, we

scaling down the instantaneous capacity (by running CPWg present anonline control algorithm that overcomes these

at slower speeds and/or turning OFF some active serverskfallenges.

achieve energy savings. Similarly, if the current worklaad

outside the instantaneous capacity region, then this tigec IV. OPTIMAL CONTROL ALGORITHM

encourages scaling up the instantaneous capacity (byrmginni In this section, we use the framework of Lyapunov Op-

CPUs at faster speeds and/or turning ON some inactitimization to develop an optimal control algorithm for our

servers). Finally, if the workload is so high that it cannet bmodel. Specifically, we present a dynamic control algorithm

supported by using all available resources, this objeetiesvs that can be shown to achieve the optimal solutignand

prioritization among different applications. Furthermpiit ¢f Vi,j to the stochastic optimization problem (8). This

allows us to assign priorities between throughput and gnerglgorithm is similar in spirit to the backpressure algarith

by choosing appropriate values af, 5. proposed in [15] for problems of throughput and energy

A Optimal Stationary, Randomized Policy optimal networking in time varying wireless networks.
Problem (8) is similar to the general stochastic netwotk Data Center Control Algorithm (DCA)

utility maximization problem presented in [15] in the caxite Let V' > 0 be a control parameter that is input to the

of wireless networks with time-varying channels. Supp&e (algorithm. This parameter serves as a control probe thawsll

is feasible and let; ande; Vi, j denote the optimal value of the system administrator to tradeoff average delay forl tota

the objective function, potentially achieved by some asojt average utility as discussed later in Sec. IV-B. Appropriat

policy. Using the techniques developed in [15], it can bensho choice of this parameter depends on the particular system as

that to solve (8) and achieve the optimal value of the objectiwell as the desired tradeoff between performance and power



cost. This parameter may also be varied over time to affestmber of control options such as available DVFS states,
this tradeoff. CPU shares, etc. is small and thus, the above optimization
Let W;(¢),U,;(t)Vi,j be the queue backlog values in slotan be implemented in real time. It is important to note
t. These are initialized t0. Every slot, the DCA algorithm that each server solves its own resource allocation problem
uses the backlog values in that slot to make joint Admissiandependently using the queue backlog values of applieatio
Control, Routing and Resource Allocation decisions. As theosted on it and this can be implemented ifuldy distributed
backlog values evolve over time according to the dynamiésshion.
(2) and (5), the control decisions made by DCA adapt 10 |f ¢ — 7, then a new active set* () for the current frame
these changes. However, we note that this is implemenigtjetermined by solving the following:
using knowledge of current backlog values only and does
not rely on knowledge of statistics governing future atlgva
Thus, DCA solves for the objective in (8) by implementingS*(t) = argmax [ZUilj(t)E{ﬂij(Ij(t))} —VBY_ P(t)
a sequence of optimization problems over time. The queue S(HEO =75 J
backlogs themselves can be viewed as dynamic Lagrange +ZRi»(t)(Wi(t) _ Ui»(t))}
multipliers that enable stochastic optimization [15]. - ’ ’
The DCA algorithm operates as follows. : :
Admission C(g)]ntrol: Forpeach application, choose the num- subject to;j € S(t), 1;(t) € Zj, P (t) = Pnin
ber of new requests to admi;(t) as the solution to the constraintg1), (3), (4) (13)
following problem:

Maximize:  R;(t)[Va; — Wi(t)] The above optimization can be understood as follows. To
Subject to: 0 < Ri(t) < A;(¢) (11) determ|_ne the optimal active s&t (t?, the glg_orlthm computes
the optimal cost for the expression within the brackets for
This problem has a simple threshold-based solution. In p&gery possible active server set in the collection Given
ticular, if the current Router buffer backlog for applicati an active set, the above maximization is separable into-Rout
i, Wi(t) > Vo, then R;(t) = 0 and no new requests areing decisions for each application and Resource Allocation
admitted. Else, ifV;(t) < Vi, then R;(t) = A;(t) and all gecisions at each active server. This computation is easily

new requests are admitted. Note that this admission contidrformed using the procedure described earlier for Rgutin
decision can be performed separately for each application.ang Resource Allocation when nT.

Routing and Resource Allocation: Let S(t) be the active Since O has sizeM, the worst-case complexity of this

server set for the current frame.tlf£ nT', then we continue to . o .
) . step is polynomial inM. However, the computation can be
use the same active set. The Routing and Resource Allocation”. .. o )
L . . significantly simplified as follows. It can be shown that iEth
decisions are given as follows:

! . . . maximum queue backlog over all applications on any sejver
Routing: Given an active server set, routing follows a ;. 9 PP y s&J

simple Join the Shortest Queue policy. Specifically, for any exceeds a finite constafisress, then that server must be part
S . . . of the active set. Thus, only those subset<bthat contain
applicationi, let j/ € S(t) be the active server with the

smallest queue backlog,,. (1). If W(t) > Uy (1), then these servers need to be considered when searching for the

R (t) = Wi(t), i.e., all requests in the Router buffer for()ptImal active sgt.. _ . _ . .
applicationi are routed to servef’. Else, R;;(t) = 0¥j and We note that it is possible for this algorithm to inactivate
no requests are routed to any server for applicatidn order Certain servers even if they have non-zero queue backla (an
to make these decisions, the Router requires the queuedgaclrocess it later when the server is activated again). This ca
information Uy (¢)¥i, j. Given this information, we note thathappen, for example, if the backlog on the server is small
this routing decision can be performed separately for ea@Rd the optimization (13) determines that the energy cost of
application. keeping the server ON (the second term) exceeds the weighted
Resource Allocation: At each active server € S(t), choose Service rate achieved (the first term). While we can show op-

a resource allocatioi; () that solves the following problem: imality of this algorithm in terms of solving the objecti(8),
we also consider a more practical (and potentially subagdjim

Maximize: » " Uy (1)E {5 (; (1))} — VBP;(1) strategy DCA-M that migrates or reroutes such unfinished
. i requests from inactive servers to other active serversen th
Subject tol;(t) € Z;, Pj(t) = Puin (12) next frame. Our simulation results in Sec. VI suggest that th

The above problem is a generalized max-weight prob|e|p@rformance of this strategy is very close to that under DCA.
where the service rate provided to any application is weight Finally, the computation in (13) requires knowledge of the
by its current queue backlog. Thus, the optimal solutionldouvalues of queue backlogs at all servers as well as the router
allocate resources so as to maximize the service rate of thdfers. This can be implemented by a centralized controlle
most backlogged application. (that also implements Routing) that periodically gathédrs t

The complexity of this problem depends on the size dfacklog information and determines the active set for each
the control optionsZ; available at servey. In practice, the frame. See further discussion in Sec. IV-C.



B. Performance Analysis C. Instrumentation Requirements

Theorem 1. (Algorithm Performance) Assume that all The proposed framework does not require explicit modeling
gueues are initialized td. Suppose all arrivals in a slotof the arrival and service processes. However, we require a
A;(t) i.i.d. and are upper bounded by finite constants so thaeasure of job backlogs at each VM and we require a control
A;(t) < Arer for all i,t. Also let . be the maximum signaling to exchange the backlog information from phylsica
service rate (in requests/slot) over all applications ip glot.  servers to controller nodes. The measure of backlog can be
Then, implementing the DCA algorithm every slot for anyglirect or indirect depending on the application environmen
fixed control parameteV’ > 0 and frame sizel" yields the In one extreme, as a direct approach, the datacenter psovide
following performance bounds: an application platform such as MapReduce or Hadoop over

1) The worst case queue backlog for each application Routehich all the applications are written. In such a set up,
buffer W;(t) is upper bounded by a finite constdm™** for there are explicit job monitoring, assignment, and coitect
all ¢ facilities in place that can support backlog measurements.

S max Another direct approach is to require applications (VMs
Wi(t) < W SVas + A; (14) to log job statespznd make themqaccessﬁgle to the (contr)ol
Similarly, the worst case queue backlog for applicatioon framework. Various indirect approaches mainly depend on
any serverj is upper bounded bgWw;** for all i, ¢: monitoring the explicit signals that indicate the job aattvand
Ui (t) < 2WMee = 9(Va, + A7) (15) departures such as client r(_equgs_t _aqd server responsegeessa
(e.g., web services), session initiation and terminatien.(
2) The time average utility achieved by the DCA algorithngideo session), thread creation and termination, etc. The-a

is within BT'/V' of the optimal value: racy and feasibility of indirect approaches highly depend o
= the particular application and hence different instruratoh
liminf — [ZO&ZE {Ri(r)} = B> _E{P; (T)}:| > methods must be used to obtain a measure of backlog. The
tmee 5 i€ A jes optimality properties of our algorithm hold even when the
. . BT backlog values used are different from the actual values (as
Z airy — Z T (16) long as they are off by a bounded value that does not depend

ieA jes on V) making it robust to such noisy backlog estimates.
where B is a finite constant (defined precisely in the Ap-
pendix) that depends on the second moments of the arrival and
service processes. We note that the performance bounds aboyiere, we briefly discuss two extensions to the basic model.
are quite strong. In particular, pdit) establishesleterministic A, |nhomogeneous Placement and CPU Resources

Wor§t case bounds on the maximum backlogs in the system aly this case, thex;; variables need not be equal 14, j

all times. Therefore, by pai®) of the theorem, the achievedgy, vy requests for an applicationean only be routed to
average utility is withinO(1/17) of the optimal value. This can oo of those servers that hosts this application. The rgutin

.constraints in (3), (4) are already general enough to captur

V. EXTENSIONS

be pushed arbitrarily close to the optimal value by incregsi

the control parametdr. Howeve_zr, this i_ncreases the mgximurqhis_ In the case of inhomogeneous CPU resources, the DCA
queue backlog bound4), (15) linearly in V. Thus, by Little’s algorithm needs the following modification. In the active

Theorem, this directly leads to af(1/V, V) utility-delay server determination step, instead of only searching dwer t

tra\t/jveoff. he fi tTh Proof of collectionO of subsets in (9), now it may have to search over
9 € nexrt1 provi t. € |rsft Eart 0 gor_e‘“? roo 25 partd all possible subsets &. This can be computationally intensive
(2) uses the technique of Lyapunov Optimization [15] an Whens is large. It is possible to tradeoff complexity for utility

provided in the Appendix. ootimali . . o
i o . ptimality by resorting to sub-optimum heuristic approash
Proof of part (1) Suppose thal; (t) < W;™** for ?”. ! fqr investigation of which is left out for brevity in this paper.
some timet. This is true fort = 0 as all queues are initialized

to 0. We show that the same holds for time- 1. We have B. Multi-tier Applications

2 cases. IfWW;(t) < Wmer — Ame* then from (2), we have  Modern enterprise applications typically have multiplenco

Wi(t+1) < Wme* (becauseR;(t) < A™ for all t). Else, if ponents working in a tiered structure [12] [14]. An incoming

W;(t) > Wner—Amer thenW,(t) > Vo, +A7**— A7 = request for such a multi-tier application is serviced byhetier

Va;. Then, the flow control part of the algorithm choosem a certain order before departing the system. Our framlewor

R;(t) = 0, so that by (2): can be extended to treat this scenario by modeling the multi-

_ _ maz tier application as aetwork of queues. Specifically, we define

Wit +1) < Wilt) < Wi Uk(t) as the queue backlog for thé" tier of application:

This proves (14). To prove (15), note that new requests asg serverj (wherek > 1). Then, the queueing dynamics for

routed from a Routing buffelV;(¢) to an application queue Uikj(t) are given by:

Ui, (t) only whenW;(t) > U;;(t). SinceW,(t) < W™ and

since the maximum number of arrivals in a slotlig; (1) is  Uij(t +1) = max[Ufj(t) — plj(1;(#)), 0] + > RN

Wmaz U,:(t) cannot excee@W; e, O 1es(t)



Average Total Uilty
Average Delay of Admitted Requests

Fig. 3. Average total utility vs V for different values of. Fig. 4. Average delay of admitted requests vs V for differesities of~.

whereRj;! (t) denotes the arrivals @ () from the(k—1)" 34 converges to a maximum value for larger values/of
tier of application: on serverl. For k = 1, this corresponds 54 predicted by (16). Fig. 4 plots the average delay of the
to (5) where accpeted requests are routed to the first tier gfmitted requests VE. It can be seen that the average delay
applicationi on server; after admission control decisions.jcreases linearly with” as predicted by the bounds in (14),
Using the Lyapunov Optimization framework presented in tI”@S)_ Fig. 5 shows the fraction of declined request&vsnder
prev_ious sections together with the technique of backprt_es_sboth algorithms. This, along with Figs. 3 and 4 shows the
routlng_ [15], DCA can be extended to treat such multl-tle@(l/v’ V') utility-delay tradeoff offered by the DCA algorithm
scenarios. where the average utility achieved can be pushed closeeto th
optimal value with a tradeoff in terms of a linear increase in
average delay.

We simulate the DCA and DCA-M algorithms in an ex- |n the second experiment, we fix the parametérs=
ample virtualized data center consisting f0 servers and 5000, = 1.0 and consider the scenario where the input
hosting 10 applications. Each applicatiohis CPU intensive rate changes in an unpredictable manner. Specifically, for
and receives requests exogenously according to a rand@ first1/3 of the simulation interval, the input rate; =
arrival process of rate;. In the simulation setup, each CPUj(00 requests/slot for all applications. Then the input rate
is assumed to follow a quadratic power-frequency relatiogbruptly increases t8000 requests/slot before dropping to
ship similar to the experimentally obtained quadratic pewe000 requests/slot in the last/3 of the simulation interval.
frequency curve in Fig. 2. Specifically, each CPU is assumegl Fig. 6, we plot the number of active servers vs. frame
to have a discrete set of frequency options in the intervidimber under the DCA algorithm. It can be seen that the
[1.6GHz,...,2.6GHz] at increments of0.2 GHz and the algorithm quickly adapts to the new workload by increasing
corresponding power consumption (in Watts) at frequeficyor decreasing the number of active servers (and hence the
is given by P, + 0(f — 1.6GHz)* where Py, = 120W  instantaneous capacity) even when the workload changes in
andf = 120W/(GHz)?. Thus, the CPU power consumptiorgn unpredictable manner.
at the highest frequency BLOWW. We assume that half of the
servers in the data center are always ON and that decisions to

VI. SIMULATIONS

dynamically turn servers ON/OFF are applied to the remainin VIl. CONCLUSIONS ANDFUTURE WORK

servers. Note that the dynamic operating frequency detssio

are still applied to all servers. The frame siZe= 1000 slots In this paper, we considered the problem of dynamic
and the simulations were run for one million slots. resource allocation and power management in virtualized

The number of new requests generated for an applicatiodata centers. Prior work in this area uses prediction based
in a slot is assumed to be uniformly and randomly distributegpproaches for resource provisioning. In this work, we have
in [0,2)\;]. On average, a server running at the minimurised an alternate approach that makes use of the queueing
(maximum) speed can proce280 (400) requests/slot. In the information available in the system to make online control
simulations, the throughput utility weights are chosen ¢o lslecisions. This approach is adaptive to unpredictablegéman
equal for all applications, so that; = aVi. in workload and does not require estimation and prediction

In the first experiment, we fix the input ratg = 2000 of its statistics. Our approach uses the recently developed
requests/slot for all applications and simulate the DCA ar@chnique of Lyapunov Optimization that allows us to derive
DCA-M algorithms for different choices of the ratio= «/5.  analytical performance guarantees of the algorithm.

Figs. 3 shows the total average utility for different valugds  The main focus of this work was on building an analytical
the input parameteV’ under the two control algorithms. Weframework. As part of future work, we plan to have real system
observe that the performance of DCA-M is very close to DCAmplementation of our algorithm and use standard benchmark
Further, the total average utility achieved increases With workloads and applications to evaluate its performance.



Fraction of Requests Declined

Fig. 5. Fraction of declined requests vs V for different esof.

APPENDIX - PROOF OFTHEOREM 1 PART (2)

Here, we prove par{2) of Theorem1 using the tech-
nigue of Lyapunov Optimization [15]. This technique invess
constructing an appropriate Lyapunov function of the que
backlogs in the system, defining the conditional “Lyapuno
drift” of this function, and then developing a dynamic al-
gorithm that minimizes this drift over all control pohcnesa
The performance bounds for this algorithm are obtained by
comparing the Lyapunov drift under this algorithm with toét
the backlog independent optimal stationary, randomizéidypo 1]
described in Sec. IlI-A.

Let Q(t) = (Un1(t), ..., Unn(t), Wi(t), ..., W (t)) rep-
resent the collection of aII queue backlogs in the system

define a Lyapunov functiont(Q(t))2 3 [ZZGAJGS UZ(t) +
S iea W2 (t)} . Define the conditional Lyapunov drifk (Q(t))

as follows: A(Q(t))2E {L(Q(t + 1)) — L(Q(¢))|Q(¢)}. Us-

ing queueing dynamics (2) and (5), the conditional Lyapund¥
drift A(¢) under any control policy (including DCA) can be[e]
computed as follows:

A(t) <B =Y Usy(t)E {pi; (1; (1)

- Z Wi(t)E Z Rij(t) —

S (AT )+ N My o
whereBé_ o ——tmaz [
For a given control paramet&r > 0, we subtract the reward
metric VIEjZi o Ri(t) — B3, Pj(t)|Q(t)} from both sides
of (17) and rearrange the terms to get the following:

v

(3]

— R;;(1)|Q(1)} (7]
[8]
R;(1)[Q(t) p (A7)

[9]

i

H
\\
\ “‘

0 ED %0
Frame Number

Fig. 6. Number of active servers over time.

From the above, it can be seen that the dynamic control

algorithm DCA described in Sec. IV-A is designed to take
Admission Control, Routing and Resource Allocation deci-
sions thaminimize the right hand side of (18) over all possible
'S tions, including the stationary policy of Sec. IlI-A. Tdrem

part(2) can now be shown using a direct application of the
Lyapunov Optimization Theorem (see Theorém in [15])
long with aT'-slot delayed Lyapunov analysis.
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