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Recommended Books and Resources

• L. Hand and J. Finch, Analytical Mechanics

This very readable book covers everything in the course at the right level. It is similar

to Goldstein’s book in its approach but with clearer explanations, albeit at the expense

of less content.

There are also three classic texts on the subject

• H. Goldstein, C. Poole and J. Safko, Classical Mechanics

In previous editions it was known simply as “Goldstein” and has been the canonical

choice for generations of students. Although somewhat verbose, it is considered the

standard reference on the subject. Goldstein died and the current, third, edition found

two extra authors.

• L. Landau an E. Lifshitz, Mechanics

This is a gorgeous, concise and elegant summary of the course in 150 content packed

pages. Landau is one of the most important physicists of the 20th century and this is

the first volume in a series of ten, considered by him to be the “theoretical minimum”

amount of knowledge required to embark on research in physics. In 30 years, only 43

people passed Landau’s exam!

A little known fact: Landau originally co-authored this book with one of his students,

Leonid Pyatigorsky. They subsequently had a falling out and the authorship was

changed. There are rumours that Pyatigorsky got his own back by denouncing Landau

to the Soviet authorities, resulting in his arrest.

• V. I. Arnold, Mathematical Methods of Classical Mechanics

Arnold presents a more modern mathematical approach to the topics of this course,

making connections with the differential geometry of manifolds and forms. It kicks off

with “The Universe is an Affine Space” and proceeds from there...
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1. Newton’s Laws of Motion

“So few went to hear him, and fewer understood him, that oftimes he did,

for want of hearers, read to the walls. He usually stayed about half an hour;

when he had no auditors he commonly returned in a quarter of that time.”

Appraisal of a Cambridge lecturer in classical mechanics, circa 1690

1.1 Introduction

The fundamental principles of classical mechanics were laid down by Galileo and New-

ton in the 16th and 17th centuries. In 1686, Newton wrote the Principia where he

gave us three laws of motion, one law of gravity and pretended he didn’t know cal-

culus. Probably the single greatest scientific achievement in history, you might think

this pretty much wraps it up for classical mechanics. And, in a sense, it does. Given

a collection of particles, acted upon by a collection of forces, you have to draw a nice

diagram, with the particles as points and the forces as arrows. The forces are then

added up and Newton’s famous “F = ma” is employed to figure out where the par-

ticle’s velocities are heading next. All you need is enough patience and a big enough

computer and you’re done.

From a modern perspective this is a little unsatisfactory on several levels: it’s messy

and inelegant; it’s hard to deal with problems that involve extended objects rather than

point particles; it obscures certain features of dynamics so that concepts such as chaos

theory took over 200 years to discover; and it’s not at all clear what the relationship is

between Newton’s classical laws and quantum physics.

The purpose of this course is to resolve these issues by presenting new perspectives

on Newton’s ideas. We shall describe the advances that took place during the 150

years after Newton when the laws of motion were reformulated using more powerful

techniques and ideas developed by some of the giants of mathematical physics: people

such as Euler, Lagrange, Hamilton and Jacobi. This will give us an immediate practical

advantage, allowing us to solve certain complicated problems with relative ease (the

strange motion of spinning tops is a good example). But, perhaps more importantly,

it will provide an elegant viewpoint from which we’ll see the profound basic principles

which underlie Newton’s familiar laws of motion. We shall prise open “F = ma” to

reveal the structures and symmetries that lie beneath.
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Moreover, the formalisms that we’ll develop here are the basis for all of fundamental

modern physics. Every theory of Nature, from electromagnetism and general relativity,

to the standard model of particle physics and more speculative pursuits such as string

theory, is best described in the language we shall develop in this course. The new

formalisms that we’ll see here also provide the bridge between the classical world and

the quantum world.

There are phenomena in Nature for which these formalisms are not particularly

useful. Systems which are dissipative, for example, are not so well suited to these

new techniques. But if you want to understand the dynamics of planets and stars and

galaxies as they orbit and spin, or you want to understand what’s happening at the

LHC where protons are collided at unprecedented energies, or you want to know how

electrons meld together in solids to form new states of matter, then the foundations

that we’ll lay in in this course are a must.

1.2 Newtonian Mechanics: A Single Particle

In the rest of this section, we’ll take a flying tour through the basic ideas of classical

mechanics handed down to us by Newton. We’ll start with a single particle.

A particle is defined to be an object of insignificant size. e.g. an electron, a tennis

ball or a planet. Obviously the validity of this statement depends on the context: to

first approximation, the earth can be treated as a particle when computing its orbit

around the sun. But if you want to understand its spin, it must be treated as an

extended object.

The motion of a particle of mass m at the position r is governed by Newton’s Second

Law F = ma or, more precisely,

F(r, ṙ) = ṗ (1.1)

where F is the force which, in general, can depend on both the position r as well as

the velocity ṙ (for example, friction forces depend on ṙ) and p = mṙ is the momentum.

Both F and p are 3-vectors which we denote by the bold font. Equation (1.1) reduces

to F = ma if ṁ = 0. But if m = m(t) (e.g. in rocket science) then the form with ṗ is

correct.

General theorems governing differential equations guarantee that if we are given r

and ṙ at an initial time t = t0, we can integrate equation (1.1) to determine r(t) for all

t (as long as F remains finite). This is the goal of classical dynamics.
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Equation (1.1) is not quite correct as stated: we must add the caveat that it holds

only in an inertial frame. This is defined to be a frame in which a free particle with

ṁ = 0 travels in a straight line,

r = r0 + vt (1.2)

Newtons’s first law is the statement that such frames exist.

An inertial frame is not unique. In fact, there are an infinite number of inertial frames.

Let S be an inertial frame. Then there are 10 linearly independent transformations

S → S ′ such that S ′ is also an inertial frame (i.e. if (1.2) holds in S, then it also holds

in S ′). These are

• 3 Rotations: r′ = Or where O is a 3× 3 orthogonal matrix.

• 3 Translations: r′ = r + c for a constant vector c.

• 3 Boosts: r′ = r + ut for a constant velocity u.

• 1 Time Translation: t′ = t+ c for a constant real number c

If motion is uniform in S, it will also be uniform in S ′. These transformations make

up the Galilean Group under which Newton’s laws are invariant. They will be impor-

tant in section 2.4 where we will see that these symmetries of space and time are the

underlying reason for conservation laws. As a parenthetical remark, recall from special

relativity that Einstein’s laws of motion are invariant under Lorentz transformations

which, together with translations, make up the Poincaré group. We can recover the

Galilean group from the Poincaré group by taking the speed of light to infinity.

1.2.1 Angular Momentum

We define the angular momentum L of a particle and the torque τ acting upon it as

L = r× p , τ = r× F (1.3)

Note that, unlike linear momentum p, both L and τ depend on where we take the

origin: we measure angular momentum with respect to a particular point. Let us cross

both sides of equation (1.1) with r. Using the fact that ṙ is parallel to p, we can write
d
dt

(r×p) = r× ṗ. Then we get a version of Newton’s second law that holds for angular

momentum:

τ = L̇ (1.4)
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1.2.2 Conservation Laws

From (1.1) and (1.4), two important conservation laws follow immediately.

• If F = 0 then p is constant throughout the motion

• If τ = 0 then L is constant throughout the motion

Notice that τ = 0 does not require F = 0, but only r × F = 0. This means that F

must be parallel to r. This is the definition of a central force. An example is given by

the gravitational force between the earth and the sun: the earth’s angular momentum

about the sun is constant. As written above in terms of forces and torques, these

conservation laws appear trivial. In section 2.4, we’ll see how they arise as a property

of the symmetry of space as encoded in the Galilean group.

1.2.3 Energy

Let’s now recall the definitions of energy. We firstly define the kinetic energy T as

T = 1
2
m ṙ · ṙ (1.5)

Suppose from now on that the mass is constant. We can compute the change of kinetic

energy with time: dT
dt

= ṗ · ṙ = F · ṙ. If the particle travels from position r1 at time t1
to position r2 at time t2 then this change in kinetic energy is given by

T (t2)− T (t1) =

∫ t2

t1

dT

dt
dt =

∫ t2

t1

F · ṙ dt =

∫ r2

r1

F · dr (1.6)

where the final expression involving the integral of the force over the path is called the

work done by the force. So we see that the work done is equal to the change in kinetic

energy. From now on we will mostly focus on a very special type of force known as a

conservative force. Such a force depends only on position r rather than velocity ṙ and

is such that the work done is independent of the path taken. In particular, for a closed

path, the work done vanishes.∮
F · dr = 0 ⇔ ∇× F = 0 (1.7)

It is a deep property of flat space R3 that this property implies we may write the force

as

F = −∇V (r) (1.8)

for some potential V (r). Systems which admit a potential of this form include gravi-

tational, electrostatic and interatomic forces. When we have a conservative force, we
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necessarily have a conservation law for energy. To see this, return to equation (1.6)

which now reads

T (t2)− T (t1) = −
∫ r2

r1

∇V · dr = −V (t2) + V (t1) (1.9)

or, rearranging things,

T (t1) + V (t1) = T (t2) + V (t2) ≡ E (1.10)

So E = T + V is also a constant of motion. It is the energy. When the energy is

considered to be a function of position r and momentum p it is referred to as the

Hamiltonian H. In section 4 we will be seeing much more of the Hamiltonian.

1.2.4 Examples

• Example 1: The Simple Harmonic Oscillator

This is a one-dimensional system with a force proportional to the distance x to the

origin: F (x) = −kx. This force arises from a potential V = 1
2
kx2. Since F 6= 0,

momentum is not conserved (the object oscillates backwards and forwards) and, since

the system lives in only one dimension, angular momentum is not defined. But energy

E = 1
2
mẋ2 + 1

2
kx2 is conserved.

• Example 2: The Damped Simple Harmonic Oscillator

We now include a friction term so that F (x, ẋ) = −kx−γẋ. Since F is not conservative,

energy is not conserved. This system loses energy until it comes to rest.

• Example 3: Particle Moving Under Gravity

Consider a particle of mass m moving in 3 dimensions under the gravitational pull of

a much larger particle of mass M . The force is F = −(GMm/r2)r̂ which arises from

the potential V = −GMm/r. Again, the linear momentum p of the smaller particle

is not conserved, but the force is both central and conservative, ensuring the particle’s

total energy E and the angular momentum L are conserved.

1.3 Newtonian Mechanics: Many Particles

It’s easy to generalise the above discussion to many particles: we simply add an index

to everything in sight! Let particle i have mass mi and position ri where i = 1, . . . , N

is the number of particles. Newton’s law now reads

Fi = ṗi (1.11)
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where Fi is the force on the ith particle. The subtlety is that forces can now be working

between particles. In general, we can decompose the force in the following way:

Fi =
∑
j 6=i

Fij + Fext
i (1.12)

where Fij is the force acting on the ith particle due to the jth particle, while Fext
i is the

external force on the ith particle. We now sum over all N particles∑
i

Fi =
∑

i,j with j 6=i

Fij +
∑
i

Fext
i

=
∑
i<j

(Fij + Fji) +
∑
i

Fext
i (1.13)

where, in the second line, we’ve re-written the sum to be over all pairs i < j. At this

stage we make use of Newton’s third law of motion: every action has an equal and

opposite reaction. Or, in other words, Fij = −Fji. We see that the first term vanishes

and we are left simply with ∑
i

Fi = Fext (1.14)

where we’ve defined the total external force to be Fext =
∑

i F
ext
i . We now define the

total mass of the system M =
∑

imi as well as the centre of mass R

R =

∑
imiri
M

(1.15)

Then using (1.11), and summing over all particles, we arrive at the simple formula,

Fext = MR̈ (1.16)

which is identical to that of a single particle. This is an important formula. It tells that

the centre of mass of a system of particles acts just as if all the mass were concentrated

there. In other words, it doesn’t matter if you throw a tennis ball or a very lively cat:

the center of mass of each traces the same path.

1.3.1 Momentum Revisited

The total momentum is defined to be P =
∑

i pi and, from the formulae above, it is

simple to derive Ṗ = Fext. So we find the conservation law of total linear momentum

for a system of many particles: P is constant if Fext vanishes.
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Similarly, we define total angular momentum to be L =
∑

i Li. Now let’s see what

happens when we compute the time derivative.

L̇ =
∑
i

ri × ṗi

=
∑
i

ri ×

(∑
j 6=i

Fij + Fext
i

)
(1.17)

=
∑

i,j with i 6=j

ri × Fji +
∑
i

ri × Fext
i (1.18)

The last term in this expression is the definition of total external torque: τ ext =
∑

i ri×
Fext
i . But what are we going to do with the first term on the right hand side? Ideally we

would like it to vanish! Let’s look at the circumstances under which this will happen.

We can again rewrite it as a sum over pairs i < j to get∑
i<j

(ri − rj)× Fij (1.19)

which will vanish if and only if the force Fij is parallel to the line joining to two particles

(ri − rj). This is the strong form of Newton’s third law. If this is true, then we have a

statement about the conservation of total angular momentum, namely L is constant if

τ ext = 0.

Most forces do indeed obey both forms of Newton’s third law: 1

2

Figure 1: The

magnetic field for

two particles.

Fij = −Fji and Fij is parallel to (ri−rj). For example, gravitational

and electrostatic forces have this property. And the total momentum

and angular momentum are both conserved in these systems. But

some forces don’t have these properties! The most famous example

is the Lorentz force on two moving particles with electric charge Q.

This is given by,

Fij = Qvi ×Bj (1.20)

where vi is the velocity of the ith particle and Bj is the magnetic

field generated by the jth particle. Consider two particles crossing

each other in a “T” as shown in the diagram. The force on particle

1 from particle 2 vanishes. Meanwhile, the force on particle 2 from

particle 1 is non-zero, and in the direction

F21 ∼ ↑ ×⊗ ∼ ← (1.21)
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Does this mean that conservation of total linear and angular momentum is violated?

Thankfully, no! We need to realise that the electromagnetic field itself carries angular

momentum which restores the conservation law. Once we realise this, it becomes a

rather cheap counterexample to Newton’s third law, little different from an underwater

swimmer who can appear to violate Newton’s third law if we don’t take into account

the momentum of the water.

1.3.2 Energy Revisited

The total kinetic energy of a system of many particles is T = 1
2

∑
imiṙ

2
i . Let us

decompose the position vector ri as

ri = R + r̃i (1.22)

where r̃i is the distance from the centre of mass to the particle i. Then we can write

the total kinetic energy as

T = 1
2
MṘ2 + 1

2

∑
i

mi
˙̃r
2

i (1.23)

Which shows us that the kinetic energy splits up into the kinetic energy of the centre

of mass, together with an internal energy describing how the system is moving around

its centre of mass. As for a single particle, we may calculate the change in the total

kinetic energy,

T (t2)− T (t1) =
∑
i

∫
Fext
i · dri +

∑
i 6=j

∫
Fij · dri (1.24)

Like before, we need to consider conservative forces to get energy conservation. But

now we need both

• Conservative external forces: Fext
i = −∇iVi(r1, . . . , rN)

• Conservative internal forces: Fij = −∇iVij(r1, . . . , rN)

where∇i ≡ ∂/∂ri. To get Newton’s third law Fij = −Fji together with the requirement

that this is parallel to (ri−rj), we should take the internal potentials to satisfy Vij = Vji
with

Vij(r1, . . . r,N) = Vij(|ri − rj|) (1.25)

so that Vij depends only on the distance between the ith and jth particles. We also

insist on a restriction for the external forces, Vi(r1, . . . , rN) = Vi(ri), so that the force

on particle i does not depend on the positions of the other particles. Then, following

the steps we took in the single particle case, we can define the total potential energy

V =
∑

i Vi +
∑

i<j Vij and we can show that H = T + V is conserved.
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1.3.3 An Example

Let us return to the case of gravitational attraction between two bodies but, unlike

in Section 1.2.4, now including both particles. We have T = 1
2
m1ṙ

2
1 + 1

2
m2ṙ

2
2. The

potential is V = −Gm1m2/|r1− r2|. This system has total linear momentum and total

angular mometum conserved, as well as the total energy H = T + V .
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2. The Lagrangian Formalism

When I was in high school, my physics teacher called me down one day after

class and said, “You look bored, I want to tell you something interesting”.

Then he told me something I have always found fascinating. Every time

the subject comes up I work on it.
Richard Feynman

Feynman’s teacher told him about the “Principle of Least Action”, one of the most

profound results in physics.

2.1 The Principle of Least Action

Firstly, let’s get our notation right. Part of the power of the Lagrangian formulation

over the Newtonian approach is that it does away with vectors in favour of more general

coordinates. We start by doing this trivially. Let’s rewrite the positions of N particles

with coordinates ri as xA where A = 1, . . . 3N . Then Newton’s equations read

ṗA = − ∂V

∂xA
(2.1)

where pA = mAẋ
A. The number of degrees of freedom of the system is said to be 3N .

These parameterise a 3N -dimensional space known as the configuration space C. Each

point in C specifies a configuration of the system (i.e. the positions of all N particles).

Time evolution gives rise to a curve in C.

Figure 2: The path of particles in real space (on the left) and in configuration space (on the

right).

The Lagrangian

Define the Lagrangian to be a function of the positions xA and the velocities ẋA of all

the particles, given by

L(xA, ẋA) = T (ẋA)− V (xA) (2.2)
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where T = 1
2

∑
AmA(ẋA)2 is the kinetic energy, and V (xA) is the potential energy.

Note the minus sign between T and V ! To describe the principle of least action, we

consider all smooth paths xA(t) in C with fixed end points so that

xA(ti) = xAinitial and xA(tf ) = xAfinal (2.3)

Of all these possible paths, only one is the true path t

x

x

x
initial 

final

Figure 3:

taken by the system. Which one? To each path, let us

assign a number called the action S defined as

S[xA(t)] =

∫ tf

ti

L(xA(t), ẋA(t)) dt (2.4)

The action is a functional (i.e. a function of the path which

is itself a function). The principle of least action is the fol-

lowing result:

Theorem (Principle of Least Action): The actual path taken by the system is an

extremum of S.

Proof: Consider varying a given path slightly, so

xA(t)→ xA(t) + δxA(t) (2.5)

where we fix the end points of the path by demanding δxA(ti) = δxA(tf ) = 0. Then

the change in the action is

δS = δ

[∫ tf

ti

Ldt

]
=

∫ tf

ti

δL dt

=

∫ tf

ti

(
∂L

∂xA
δxA +

∂L

∂ẋA
δẋA

)
dt (2.6)

At this point we integrate the second term by parts to get

δS =

∫ tf

ti

(
∂L

∂xA
− d

dt

(
∂L

∂ẋA

))
δxA dt+

[
∂L

∂ẋA
δxA

]tf
ti

(2.7)

But the final term vanishes since we have fixed the end points of the path so δxA(ti) =

δxA(tf ) = 0. The requirement that the action is an extremum says that δS = 0 for all

changes in the path δxA(t). We see that this holds if and only if

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
= 0 for each A = 1, . . . 3N (2.8)
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These are known as Lagrange’s equations (or sometimes as the Euler-Lagrange equa-

tions). To finish the proof, we need only show that Lagrange’s equations are equivalent

to Newton’s. From the definition of the Lagrangian (2.2), we have ∂L/∂xA = −∂V/∂xA,

while ∂L/∂ẋA = pA. It’s then easy to see that equations (2.8) are indeed equivalent to

(2.1). �

Some remarks on this important result:

• This is an example of a variational principle which you already met in the epony-

mous “variational principles” course.

• The principle of least action is a slight misnomer. The proof only requires that

δS = 0, and does not specify whether it is a maxima or minima of S. Since

L = T − V , we can always increase S by taking a very fast, wiggly path with

T � 0, so the true path is never a maximum. However, it may be either a

minimum or a saddle point. So “Principle of stationary action” would be a more

accurate, but less catchy, name. It is sometimes called “Hamilton’s principle”.

• All the fundamental laws of physics can be written in terms of an action principle.

This includes electromagnetism, general relativity, the standard model of particle

physics, and attempts to go beyond the known laws of physics such as string

theory. For example, (nearly) everything we know about the universe is captured

in the Lagrangian

L =
√
g
(
R− 1

2
FµνF

µν + ψ̄ /Dψ
)

(2.9)

where the terms carry the names of Einstein, Maxwell (or Yang and Mills) and

Dirac respectively, and describe gravity, the forces of nature (electromagnetism

and the nuclear forces) and the dynamics of particles like electrons and quarks. If

you want to understand what the terms in this equation really mean, then hang

around for Part III next year!

• There is a beautiful generalisation of the action principle to quantum mechan-

ics due to Feynman in which the particle takes all paths with some probability

determined by S. We will describe this in Section 4.8.

• Back to classical mechanics, there are two very important reasons for working with

Lagrange’s equations rather than Newton’s. The first is that Lagrange’s equations

hold in any coordinate system, while Newton’s are restricted to an inertial frame.

The second is the ease with which we can deal with constraints in the Lagrangian

system. We’ll look at these two aspects in the next two subsections.
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2.2 Changing Coordinate Systems

We shall now show that Lagrange’s equations hold in any coordinate system. In fact,

this follows immediately from the action principle, which is a statement about paths

and not about coordinates. But here we shall be a little more pedestrian in order to

explain exactly what we mean by changing coordinates, and why it’s useful. Let

qa = qa(x1, . . . , x3N , t) (2.10)

where we’ve included the possibility of using a coordinate system which changes with

time t. Then, by the chain rule, we can write

q̇a =
dqa
dt

=
∂qa
∂xA

ẋA +
∂qa
∂t

(2.11)

In this equation, and for the rest of this course, we’re using the “summation convention”

in which repeated indices are summed over. Note also that we won’t be too careful

about whether indices are up or down - it won’t matter for the purposes of this course.

To be a good coordinate system, we should be able to invert the relationship so that

xA = xA(qa, t) which we can do as long as we have det(∂xA/∂qa) 6= 0. Then we have,

ẋA =
∂xA

∂qa
q̇a +

∂xA

∂t
(2.12)

Now we can examine L(xA, ẋA) when we substitute in xA(qa, t). Using (2.12) we have

∂L

∂qa
=

∂L

∂xA
∂xA

∂qa
+

∂L

∂ẋA

(
∂2xA

∂qa∂qb
q̇b +

∂2xA

∂t∂qa

)
(2.13)

while

∂L

∂q̇a
=

∂L

∂ẋA
∂ẋA

∂q̇a
(2.14)

We now use the fact that we can “cancel the dots” and ∂ẋA/∂q̇a = ∂xA/∂qa which we

can prove by substituting the expression for ẋA into the LHS. Taking the time derivative

of (2.14) gives us

d

dt

(
∂L

∂q̇a

)
=

d

dt

(
∂L

∂ẋA

)
∂xA

∂qa
+

∂L

∂ẋA

(
∂2xA

∂qa∂qb
q̇b +

∂2xA

∂qa∂t

)
(2.15)

So combining (2.13) with (2.15) we find

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
=

[
d

dt

(
∂L

∂ẋA

)
− ∂L

∂xA

]
∂xA

∂qa
(2.16)
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Equation (2.16) is our final result. We see that if Lagrange’s equation is solved in the

xA coordinate system (so that [. . .] on the RHS vanishes) then it is also solved in the

qa coordinate system. (Conversely, if it is satisfied in the qa coordinate system, so the

LHS vanishes, then it is also satisfied in the xA coordinate system as long as our choice

of coordinates is invertible: i.e det(∂xA/∂qa) 6= 0).

So the form of Lagrange’s equations holds in any coordinate system. This is in

contrast to Newton’s equations which are only valid in an inertial frame. Let’s illustrate

the power of this fact with a couple of simple examples

2.2.1 Example: Rotating Coordinate Systems

Consider a free particle with Lagrangian given by

L = 1
2
mṙ2 (2.17)

with r = (x, y, z). Now measure the motion of the particle with respect to a coordinate

system which is rotating with angular velocity ω = (0, 0, ω) about the z axis. If

r′ = (x′, y′, z′) are the coordinates in the rotating system, we have the relationship

x′ = x cosωt+ y sinωt

y′ = y cosωt− x sinωt

z′ = z (2.18)

Then we can substitute these expressions into the Lagrangian to find L in terms of the

rotating coordinates,

L = 1
2
m[(ẋ′ − ωy′)2 + (ẏ′ + ωx′)2 + ż2] = 1

2
m(ṙ′ + ω × r′)2 (2.19)

In this rotating frame, we can use Lagrange’s equations to derive the equations of

motion. Taking derivatives, we have

∂L

∂r′
= m(ṙ′ × ω − ω × (ω × r′))

d

dt

(
∂L

∂ṙ′

)
= m(r̈′ + ω × ṙ′) (2.20)

so Lagrange’s equation reads

d

dt

(
∂L

∂ṙ′

)
− ∂L

∂r′
= m(r̈′ + ω × (ω × r′) + 2ω × ṙ′) = 0 (2.21)

The second and third terms in this expression are the centrifugal and coriolis forces

respectively. These are examples of the “fictitious forces” that you were warned about in
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the first year. They’re called fictitious because they’re a consequence of the reference

frame, rather than any interaction. But don’t underestimate their importance just

because they’re “fictitious”! According to Einstein’s theory of general relativity, the

force of gravity is on the same footing as these fictitious forces.

The centrifugal force Fcent = −mω × (ω × r′) points outwards in the plane perpen-

dicular to ω with magnitude mω2|r′⊥| = m|v⊥|2/ |r′⊥| where ⊥ denotes the projection

perpendicular to ω.

Particle Velocity

Force parallel to the Earth’s surface

ω

Figure 4: In the northern hemisphere, a particle is deflected in a clockwise direction; in the

southern hemisphere in an anti-clockwise direction.

The coriolis force Fcor = −2mω × ṙ′ is responsible for the large scale circulation of

oceans and the atmosphere. For a particle travelling on the surface of the rotating

earth, the direction of the coriolis force is drawn in figure 4. We see that a particle

thrown in the northern hemisphere will be seen to rotate in a clockwise direction; a

particle thrown in the southern hemisphere rotates in an anti-clockwise direction. For

a particle moving along the equator, the coriolis force points directly upwards, so has

no effect on the particle.

More details on the effect of the Coriolis force in various circumstances can be found

in the “Dynamics and Relativity” notes. Questions discussed include:

• The coriolis force is responsible for the formation of hurricanes. These rotate

in different directions in the northern and southern hemisphere, and never form

within 500 miles of the equator where the coriolis force is irrelevant. But hur-

ricanes rotate anti-clockwise in the northern hemisphere. This is the opposite

direction from what we deduced above for a projected particle! What did we

miss?
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• Estimate the magnitude of the coriolis force. Do you think that it really affects

the motion of water going down a plughole? What about the direction in which

a CD spins?

• Stand on top of a tower at the equator and drop a ball. As the ball falls, the

earth turns underneath from west to east. Does the ball land

1. At the base of the tower?

2. To the east?

3. To the west?

2.2.2 Example: Hyperbolic Coordinates

A particle moves in the (x, y) plane with a force

−yx2 2 =

x

y

2xy=µ

λ

Figure 5: Hyperbolic coordi-

nates.

directed towards the origin O with magnitude propor-

tional to the distance from O. How does it move? In

Cartesian coordinates, this problem is easy. We have

the Lagrangian

L = 1
2
m(ẋ2 + ẏ2)− 1

2
k(x2 + y2) (2.22)

Let’s set m = k = 1 for simplicity. The equation of

motion for this system is simply

ẍ = −x and ÿ = −y (2.23)

Now suppose we want to know the motion of the system in hyperbolic coordinates

defined as

2xy = µ , x2 − y2 = λ (2.24)

The coordinates µ and λ are curvilinear and orthogonal (i.e. two hyperbolics intersect

at 90o). We could try solving this problem by substituting the change of coordinates

directly into the equations of motion. It’s a mess. (Try if you don’t believe me!).

A much simpler way is to derive expressions for x, y, ẋ and ẏ in terms of the new

coordinates and substitute into the Lagrangian to find,

L = 1
8

λ̇2 + µ̇2√
λ2 + µ2

− 1
2

√
λ2 + µ2 (2.25)
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From which we can easily derive the equation of motion for λ

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
=

d

dt

(
λ̇

4
√
λ2 + µ2

)
+ 1

8
(λ̇2 + µ̇2)

λ

(λ2 + µ2)3/2
− 1

2

λ

(λ2 + µ2)3/2

= 0 (2.26)

Which is also a mess! But it’s a mess that was much simpler to derive. Moreover, we

don’t need to do any more work to get the second equation for µ: the symmetry of the

Lagrangian means that it must be the same as (2.26) with λ↔ µ interchanged.

2.3 Constraints and Generalised Coordinates

Now we turn to the second advantage of the Lagrangian formulation. In writing ṗi =

−∇iV , we implicitly assume that each particle can happily roam anywhere in space

R3. What if there are constraints? In Newtonian mechanics, we introduce “constraint

forces”. These are things like the tension of ropes, and normal forces applied by surfaces.

In the Lagrangian formulation, we don’t have to worry about such things. In this

section, we’ll show why.

An Example: The Pendulum

The simple pendulum has a single dynamical degree of freedom

θ

m

length, l

T

mg

x

y

Figure 6:

θ, the angle the pendulum makes with the vertical. The position of

the mass m in the plane is described by two cartesian coordinates x

and y subject to a constraint x2+y2 = l2. We can parameterise this

as x = l sin θ and y = l cos θ. Employing the Newtonian method

to solve this system, we introduce the tension T as shown in the

diagram and resolve the force vectors to find,

mẍ = −Tx/l , mÿ = mg − Ty/l (2.27)

To determine the motion of the system, we impose the constraints

at the level of the equation of motion, and then easily find

θ̈ = −(g/l) sin θ , T = mlθ̇2 +mg cos θ (2.28)

While this example was pretty straightforward to solve using Newtonian methods,

things get rapidly harder when we consider more complicated constraints (and we’ll

see plenty presently). Moreover, you may have noticed that half of the work of the

calculation went into computing the tension T . On occasion we’ll be interested in this.

(For example, we might want to know how fast we can spin the pendulum before it
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breaks). But often we won’t care about these constraint forces, but will only want to

know the motion of the pendulum itself. In this case it seems like a waste of effort to

go through the motions of computing T . We’ll now see how we can avoid this extra

work in the Lagrangian formulation. Firstly, let’s define what we mean by constraints

more rigorously.

2.3.1 Holonomic Constraints

Holonomic Constraints are relationships between the coordinates of the form

fα(xA, t) = 0 α = 1, . . . , 3N − n (2.29)

In general the constraints can be time dependent and our notation above allows for

this. Holonomic constraints can be solved in terms of n generalised coordinates qi,

i = 1, . . . n. So

xA = xA(q1, . . . , qn) (2.30)

The system is said to have n degrees of freedom. For the pendulum example above,

the system has a single degree of freedom, q = θ.

Now let’s see how the Lagrangian formulation deals with constraints of this form.

We introduce 3N − n new variables λα, called Lagrange multipliers and define a new

Lagrangian

L′ = L(xA, ẋA) + λαfα(xA, t) (2.31)

We treat λα like new coordinates. Since L′ doesn’t depend on λ̇α, Lagrange’s equations

for λα are

∂L′

∂λα
= fα(xA, t) = 0 (2.32)

which gives us back the constraints. Meanwhile, the equations for xA are

d

dt

(
∂L

∂ẋA

)
− ∂L

∂xA
= λα

∂fα
∂xA

(2.33)

The LHS is the equation of motion for the unconstrained system. The RHS is the

manifestation of the constraint forces in the system. We can now solve these equations

as we did in the Newtonian formulation.
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The Pendulum Example Again

The Lagrangian for the pendulum is given by that for a free particle moving in the

plane, augmented by the Lagrange multiplier term for the constraints. It is

L′ = 1
2
m(ẋ2 + ẏ2) +mgy + 1

2
λ(x2 + y2 − l2) (2.34)

From which we can calculate the two equations of motion for x and y,

mẍ = λx and ÿ = mg + λy (2.35)

while the equation of motion for λ reproduces the constraint x2+y2−l2 = 0. Comparing

with the Newtonian approach (2.27), we again see that the Lagrange multiplier λ is

proportional to the tension: λ = −T/l.

So we see that we can easily incorporate constraint forces into the Lagrangian setup

using Lagrange multipliers. But the big news is that we don’t have to! Often we don’t

care about the tension T or other constraint forces, but only want to know what the

generalised coordinates qi are doing. In this case we have the following useful theorem

Theorem: For constrained systems, we may derive the equations of motion directly

in generalised coordinates qi

L[qi, q̇i, t] = L[xA(qi, t), ẋ
A(qi, q̇i, t)] (2.36)

Proof: Let’s work with L′ = L+ λαfα and change coordinates to

xA →

{
qi i = 1, . . . , n

fα α = 1, . . . 3N − n
(2.37)

We know that Lagrange’s equations take the same form in these new coordinates. In

particular, we may look at the equations for qi,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λα

∂fα
∂qi

(2.38)

But, by definition, ∂fα/∂qi = 0. So we are left with Lagrange’s equations purely in

terms of qi, with no sign of the constraint forces. If we are only interested in the

dynamics of the generalised coordinates qi, we may ignore the Lagrange multipliers

and work entirely with the unconstrained Lagrangian L(qi, q̇i, t) defined in (2.36) where

we just substitute in xA = xA(qi, t). �
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The Pendulum Example for the Last Time

Let’s see how this works in the simple example of the pendulum. We can parameterise

the constraints in terms of the generalised coordinate θ so that x = l sin θ and y =

l cos θ. We now substitute this directly into the Lagrangian for a particle moving in

the plane under the effect of gravity, to get

L = 1
2
m(ẋ2 + ẏ2) +mgy

= 1
2
ml2θ̇2 +mgl cos θ (2.39)

From which we may derive Lagrange’s equations using the coordinate θ directly

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= ml2θ̈ +mgl sin θ = 0 (2.40)

which indeed reproduces the equation of motion for the pendulum (2.28). Note that,

as promised, we haven’t calculated the tension T using this method. This has the

advantage that we’ve needed to do less work. If we need to figure out the tension, we

have to go back to the more laborious Lagrange multiplier method.

2.3.2 Non-Holonomic Constraints

For completeness, let’s quickly review a couple of non-holonomic constraints. There’s

no general theory to solve systems of this type, although it turns out that both of the

examples we describe here can be solved with relative ease using different methods. We

won’t discuss non-holonomic constraints for the rest of this course, and include a brief

description here simply to inform you of the sort of stuff we won’t see!

Inequalities

Consider a particle moving under gravity on the outside of a sphere of radius R. It is

constrained to satisfy x2+y2+z2 ≥ R2. This type of constraint, involving an inequality,

is non-holonomic. When the particle lies close to the top of the sphere, we know that

it will remain in contact with the surface and we can treat the constraint effectively as

holonomic. But at some point the particle will fall off. To determine when this happens

requires different methods from those above (although it is not particularly difficult).

Velocity Dependent Constraints

Constraints of the form g(xA, ẋA, t) = 0 which cannot be integrated to give f(xA, t) = 0

are non-holonomic. For example, consider a coin of radius R rolling down a slope as

shown in figure 7. The coordinates (x, y) fix the coin’s position on the slope. But the

coin has other degrees of freedom as well: the angle θ it makes with the path of steepest
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x

y

R

α

φ

θ

Figure 7: The coin rolling down a slope leads to velocity dependant, non-holonomic con-

straints.

descent, and the angle φ that a marked point on the rim of the coin makes with the

vertical. If the coin rolls without slipping, then there are constraints on the evolution

of these coordinates. We must have that the velocity of the rim is vrim = Rφ̇. So, in

terms of our four coordinates, we have the constraint

ẋ = Rφ̇ sin θ , ẏ = Rφ̇ cos θ (2.41)

But these cannot be integrated to give constraints of the form f(x, y, θ, φ) = 0. They

are non-holonomic.

2.3.3 Summary

Let’s review what we’ve learnt so far. A system is described by n generalised coordinates

qi which define a point in an n-dimensional configuration space C. Time evolution is a

curve in C governed by the Lagrangian

L(qi, q̇i, t) (2.42)

such that the qi obey

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.43)

These are n coupled 2nd order (usually) non-linear differential equations. Before we

move on, let’s take this opportunity to give an important definition. The quantity

pi =
∂L

∂q̇i
(2.44)

is called the generalised momentum conjugate to qi. (It only coincides with the real

momentum in Cartesian coordinates). We can now rewrite Lagrange’s equations (2.43)

as ṗi = ∂L/∂qi. The generalised momenta will play an important role in Section 4.
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Note: The Lagrangian L is not unique. We may make the transformation

L′ = αL for α ∈ R

or L′ = L+
df

dt
(2.45)

for any function f and the equations of motion remain unchanged. To see that the last

statement is true, we could either plug L′ into Lagrange’s equations or, alternatively,

recall that Lagrange’s equations can be derived from an action principle and the ac-

tion (which is the time integral of the Lagrangian) changes only by a constant under

the transformation. (As an aside: A system no longer remains invariant under these

transformations in quantum mechanics. The number α is related to Planck’s constant,

while transformations of the second type lead to rather subtle and interesting effects

related to the mathematics of topology).

2.3.4 Joseph-Louis Lagrange (1736-1813)

Lagrange1 started off life studying law but changed his mind and turned to mathematics

after reading a book on optics by Halley (of comet fame). Despite being mostly self-

taught, by the age of 19 he was a professor in his home town of Turin.

He stayed in Italy, somewhat secluded, for the next 11 years although he commu-

nicated often with Euler and, in 1766, moved to Berlin to take up Euler’s recently

vacated position. It was there he did his famous work on mechanics and the calculus of

variations that we’ve seen above. In 1787 he moved once again, now to Paris. He was

just in time for the French revolution and only survived a law ordering the arrest of

all foreigners after the intervention of the chemist Lavoisier who was a rather powerful

political figure. (One year later, Lavoisier lost his power, followed quickly by his head.)

Lagrange published his collected works on mechanics in 1788 in a book called “Mechanique

Analytique”. He considered the work to be pure mathematics and boasts in the intro-

duction that it contains no figures, thereby putting the anal in analytique.

Since I started with a quote about Newton’s teaching, I’ll include here a comment

on Lagrange’s lectures by one of his more famous students:

“His voice is very feeble, at least in that he does not become heated; he

has a very pronounced Italian accent and pronounces the s like z ... The

students, of whom the majority are incapable of appreciating him, give him

little welcome, but the professors make amends for it.”
Fourier analysis of Lagrange

1You can read all about the lives of mathematicians at http://www-gap.dcs.st-and.ac.uk/ his-

tory/BiogIndex.html
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2.4 Noether’s Theorem and Symmetries

In this subsection we shall discuss the appearance of conservation laws in the Lagrangian

formulation and, in particular, a beautiful and important theorem due to Noether

relating conserved quantities to symmetries.

Let’s start with a definition. A function F (qi, q̇i, t) of the coordinates, their time

derivatives and (possibly) time t is called a constant of motion (or a conserved quantity)

if the total time derivative vanishes

dF

dt
=

n∑
j=1

(
∂F

∂qj
q̇j +

∂F

∂q̇j
q̈j

)
+
∂F

∂t
= 0 (2.46)

whenever qi(t) satisfy Lagrange’s equations. This means that F remains constant along

the path followed by the system. Here’s a couple of examples:

Claim: If L does not depend explicitly on time t (i.e. ∂L/∂t = 0) then

H =
∑
j

q̇j
∂L

∂q̇j
− L (2.47)

is constant. WhenH is written as a function of qi and pi, it is known as the Hamiltonian.

It is usually identified with the total energy of the system.

Proof

dH

dt
=
∑
j

(
q̈j
∂L

∂q̇j
+ q̇j

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
q̇j −

∂L

∂q̇j
q̈j

)
(2.48)

which vanishes whenever Lagrange’s equations (2.43) hold. �

Claim: Suppose ∂L/∂qj = 0 for some qj. Then qj is said to be ignorable (or cyclic).

We have the conserved quantity

pj =
∂L

∂q̇j
(2.49)

Proof:

dpj
dt

=
d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
= 0 (2.50)

where we have used Lagrange’s equations (2.43) in the second equality. �
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2.4.1 Noether’s Theorem

Consider a one-parameter family of maps

qi(t)→ Qi(s, t) s ∈ R (2.51)

such that Qi(0, t) = qi(t). Then this transformation is said to be a continuous symmetry

of the Lagrangian L if

∂

∂s
L(Qi(s, t), Q̇i(s, t), t) = 0 (2.52)

Noether’s theorem states that for each such symmetry there exists a conserved quantity.

Proof of Noether’s Theorem:

∂L

∂s
=

∂L

∂Qi

∂Qi

∂s
+

∂L

∂Q̇i

∂Q̇i

∂s
(2.53)

so we have

0 =
∂L

∂s

∣∣∣∣
s=0

=
∂L

∂qi

∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣∣
s=0

=
d

dt

(
∂L

∂q̇i

)
∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣∣
s=0

(By Lagrange)

=
d

dt

(
∂L

∂q̇i

∂Qi

∂s

∣∣∣∣
s=0

)
(2.54)

and the quantity
∑

i(∂L/∂q̇i)(∂Qi/∂s), evaluated at s = 0, is constant for all time. �

Example: Homogeneity of Space

Consider the closed system of N particles discussed in Section 1 with Lagrangian

L = 1
2

∑
i

miṙ
2
i − V (|ri − rj|) (2.55)

This Lagrangian has the symmetry of translation: ri → ri + sn for any vector n and

for any real number s. This means that

L(ri, ṙi, t) = L(ri + sn, ṙi, t) (2.56)

This is the statement that space is homogeneous and a translation of the system by

sn does nothing to the equations of motion. These translations are elements of the
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Galilean group that we met in section 1.2. From Noether’s theorem, we can compute

the conserved quantity associated with translations. It is∑
i

∂L

∂ṙi
· n =

∑
i

pi · n (2.57)

which we recognise as the the total linear momentum in the direction n. Since this

holds for all n, we conclude that
∑

i pi is conserved. But this is very familiar. It is

simply the conservation of total linear momentum. To summarise

Homogeneity of Space ⇒ Translation Invariance of L

⇒ Conservation of Total Linear Momentum

This statement should be intuitively clear. One point in space is much the same as any

other. So why would a system of particles speed up to get over there, when here is just

as good? This manifests itself as conservation of linear momentum.

Example: Isotropy of Space

The isotropy of space is the statement that a closed system, described by the Lagrangian

(2.55) is invariant under rotations around an axis n̂, so all ri → r′i are rotated by the

same amount. To work out the corresponding conserved quantities it will suffice to

work with the infinitesimal form of the rotations

ri → ri + δri

= ri + αn̂× ri (2.58)

where α is considered infinitesimal. To see that this is indeed a rotation, you could

calculate the length of the vector and notice that it’s preserved to linear order in α.

Then we have
n̂

r

s

Figure 8:

L(ri, ṙi) = L(ri + αn̂× ri, ṙi + αn̂× ṙi) (2.59)

which gives rise to the conserved quantity∑
i

∂L

∂ṙi
· (n̂× ri) =

∑
i

n̂ · (ri × pi) = n̂ · L (2.60)

This is the component of the total angular momentum in the direc-

tion n̂. Since the vector n̂ is arbitrary, we get the result

Isotropy of Space ⇒ Rotational Invariance of L

⇒ Conservation of Total Angular Momentum
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Example: Homogeneity of Time

What about homogeneity of time? In mathematical language, this means L is invariant

under t→ t+s or, in other words, ∂L/∂t = 0. But we already saw earlier in this section

that this implies H =
∑

i q̇i(∂L/∂q̇i)−L is conserved. In the systems we’re considering,

this is simply the total energy. We see that the existence of a conserved quantity which

we call energy can be traced to the homogeneous passage of time. Or

Time is to Energy as Space is to Momentum

Recall from your course on special relativity that energy and 3-momentum fit together

to form a 4-vector which rotates under spacetime transformations. Here we see that

the link between energy-momentum and time-space exists even in the non-relativistic

framework of Newtonian physics. You don’t have to be Einstein to see it. You just

have to be Emmy Noether.

Remarks: It turns out that all conservation laws in nature are related to symmetries

through Noether’s theorem. This includes the conservation of electric charge and the

conservation of particles such as protons and neutrons (known as baryons).

There are also discrete symmetries in Nature which don’t depend on a continuous

parameter. For example, many theories are invariant under reflection (known as parity)

in which ri → −ri. These types of symmetries do not give rise to conservation laws in

classical physics (although they do in quantum physics).

2.5 Applications

Having developed all of these tools, let’s now apply them to a few examples.

2.5.1 Bead on a Rotating Hoop

This is an example of a system with a time dependent holonomic constraint. The hoop

is of radius a and rotates with frequency ω as shown in figure 9. The bead, of mass m,

is threaded on the hoop and moves without friction. We want to determine its motion.

There is a single degree of freedom ψ, the angle the bead makes with the vertical. In

terms of Cartesian coordinates (x, y, z) the position of the bead is

x = a sinψ cosωt , y = a sinψ sinωt , z = a− a cosψ (2.61)

To determine the Lagrangian in terms of the generalised coordinate ψ we must substi-

tute these expressions into the Lagrangian for the free particle. For the kinetic energy

T we have

T = 1
2
m(ẋ2 + ẏ2 + ż2) = 1

2
ma2[ψ̇2 + ω2 sin2 ψ] (2.62)
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while the potential energy V is given by (ignoring an overall

φ=ω t

φ

ψ

a

z

y

x

ω

Figure 9:

constant)

V = mgz = −mga cosψ (2.63)

So, replacing x, y and z by ψ, we have the Lagrangian

L = ma2
(

1
2
ψ̇2 − Veff

)
(2.64)

where the effective potential is

Veff =
1

ma2

(
−mga cosψ − 1

2
ma2ω2 sin2 ψ

)
(2.65)

We can now derive the equations of motion for the bead simply from Lagrange’s equa-

tions which read

ψ̈ = −∂Veff

∂ψ
(2.66)

Let’s look for stationary solutions of these equations in which the bead doesn’t move

(i.e solutions of the form ψ̈ = ψ̇ = 0). From the equation of motion, we must solve

∂Veff/∂ψ = 0 to find that the bead can remain stationary at points satisfying

g sinψ = aω2 sinψ cosψ (2.67)

Veff Veff Veff

  g/aω  >

Stable

Unstable

Stable

Unstable

Unstable

Unstable

Stable

ω=0

0 π 0 0π π

ψ ψ ψ

0<ω  < g/a 22

Figure 10: The effective potential for the bead depends on how fast the hoop is rotating

There are at most three such points: ψ = 0, ψ = π or cosψ = g/aω2. Note that the

first two solutions always exist, while the third stationary point is only there if the hoop

is spinning fast enough so that ω2 ≥ g/a. Which of these stationary points is stable

depends on whether Veff(ψ) has a local minimum (stable) or maximum (unstable). This

– 27 –



in turn depends on the value of ω. Veff is drawn for several values of ω in figure 10.

For ω2 < g/a, the point ψ = 0 at the bottom of the hoop is stable, while for ω2 > g/a,

the position at the bottom becomes unstable and the new solution at cosψ = g/aω2 is

the stable point. For all values of ω the bead perched at the top of the hoop ψ = π is

unstable.

2.5.2 Double Pendulum

A double pendulum is drawn in figure 11, consisting of two

θ

θ

m

l

l

m

2
2

1

1

1

2

Figure 11:

particles of mass m1 and m2, connected by light rods of length

l1 and l2. For the first particle, the kinetic energy T1 and the

potential energy V1 are the same as for a simple pendulum

T1 = 1
2
m1l

2
1θ̇

2
1 and V1 = −m1gl1 cos θ1 (2.68)

For the second particle it’s a little more involved. Consider the

position of the second particle in the (x, y) plane in which the

pendulum swings (where we take the origin to be the pivot of the

first pendulum with y increasing downwards)

x2 = l1 sin θ1 + l2 sin θ2 and y2 = l1 cos θ1 + l2 cos θ2 (2.69)

Which we can substitute into the kinetic energy for the second particle

T2 = 1
2
m2(ẋ2 + ẏ2)

= 1
2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
(2.70)

while the potential energy is given by

V2 = −m2gy2 = −m2g (l1 cos θ1 + l2 cos θ2) (2.71)

The Lagrangian is given by the sum of the kinetic energies, minus the sum of the

potential energies

L = 1
2
(m1 +m2)l21θ̇

2
1 + 1

2
m2l

2
2θ̇

2
2 +m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

+(m1 +m2)gl1 cos θ1 +m2gl2 cos θ2 (2.72)

The equations of motion follow by simple calculus using Lagrange’s two equations (one

for θ1 and one for θ2). The solutions to these equations are complicated. In fact, above

a certain energy, the motion is chaotic.
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2.5.3 Spherical Pendulum

The spherical pendulum is allowed to rotate in three dimen-

θ
l

φ

Figure 12:

sions. The system has two degrees of freedom drawn in figure

12 which cover the range

0 ≤ θ < π and 0 ≤ φ < 2π (2.73)

In terms of cartesian coordinates, we have

x = l cosφ sin θ , y = l sinφ sin θ , z = −l cos θ

We substitute these constraints into the Lagrangian for a free

particle to get

L = 1
2
m(ẋ2 + ẏ2 + ż2)−mgz

= 1
2
ml2(θ̇2 + φ̇2 sin2 θ) +mgl cos θ (2.74)

Notice that the coordinate φ is ignorable. From Noether’s theorem, we know that the

quantity

J =
∂L

∂φ̇
= ml2φ̇ sin2 θ (2.75)

is constant. This is the component of angular momentum in the φ direction. The

equation of motion for θ follows from Lagrange’s equations and is

ml2θ̈ = ml2φ̇2 sin θ cos θ −mgl sin θ (2.76)

We can substitute φ̇ for the constant J in this expression to get an equation entirely in

terms of θ which we chose to write as

θ̈ = −∂Veff

∂θ
(2.77)

where the effective potential is defined to be

Veff(θ) = −g
l

cos θ +
J2

2m2l4
1

sin2 θ
(2.78)

An important point here: we must substitute for J into the equations of motion. If

you substitute J for φ̇ directly into the Lagrangian, you will derive an equation that

looks like the one above, but you’ll get a minus sign wrong! This is because Lagrange’s

equations are derived under the assumption that θ and φ are independent.
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Figure 13: The effective potential for the spherical pendulum.

As well as the conservation of angular momentum J , we also have ∂L/∂t = 0 so

energy is conserved. This is given by

E = 1
2
θ̇2 + Veff(θ) (2.79)

where E is a constant. In fact we can invert this equation for E to solve for θ in terms

of an integral

t− t0 =
1√
2

∫
dθ√

E − Veff(θ)
(2.80)

If we succeed in writing the solution to a problem in terms of an integral like this then

we say we’ve “reduced the problem to quadrature”. It’s kind of a cute way of saying

we can’t do the integral. But at least we have an expression for the solution that we

can play with or, if all else fails, we can simply plot on a computer.

Once we have an expression for θ(t) we can solve for φ(t) using the expression for

J ,

φ =

∫
J

ml2
1

sin2 θ
dt =

J√
2ml2

∫
1√

E − Veff(θ)

1

sin2 θ
dθ

which gives us φ = φ(θ) = φ(t). Let’s get more of a handle on what these solutions

look like. We plot the function Veff in figure 13. For a given energy E, the particle is

restricted to the region Veff ≤ E (which follows from (2.79)). So from the figure we

see that the motion is pinned between two points θ1 and θ2. If we draw the motion of

the pendulum in real space, it must therefore look something like figure 14, in which

the bob oscillates between the two extremes: θ1 ≤ θ ≤ θ2. Note that we could make

more progress in understanding the motion of the spherical pendulum than for the
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double pendulum. The reason for this is the existence of two conservation laws for the

spherical pendulum (energy and angular momentum) compared to just one (energy)

for the double pendulum.

There is a stable orbit which lies between the two

θ

θ
1

2

Figure 14:

extremal points at θ = θ0, corresponding to the minimum

of Veff . This occurs if we balance the angular momentum J

and the energy E just right. We can look at small oscilla-

tions around this point by expanding θ = θ0 + δθ. Substi-

tuting into the equation of motion (2.77), we have

δθ̈ = −
(
∂2Veff

∂θ2

∣∣∣∣
θ=θ0

)
δθ +O(δθ2) (2.81)

so small oscillations about θ = θ0 have frequency ω2 =

(∂2Veff/∂θ
2) evaluated at θ = θ0.

2.5.4 Two Body Problem

We now turn to the study of two objects interacting through a central force. The most

famous example of this type is the gravitational interaction between two bodies in

the solar system which leads to the elliptic orbits of planets and the hyperbolic orbits

of comets. Let’s see how to frame this famous physics problem in the Lagrangian

setting. We start by rewriting the Lagrangian in terms of the centre of mass R and

the separation r12 = r1 − r2 and work with an arbitrary potential V (|r12|)

L = 1
2
m1ṙ

2
1 + 1

2
m2ṙ

2
2 − V (|r12|)

= 1
2
(m1 +m2)Ṙ2 + 1

2
µṙ2

12 − V (|r12|) (2.82)

where µ = m1m2/(m1 + m2) is the reduced mass. The Lagrangian splits into a piece

describing the centre of mass R and a piece describing the separation. This is familiar

from Section 1.3.2. From now on we neglect the centre of mass piece and focus on the

separation. We know from Noether’s theorem that L = r12 × p12 is conserved, where

p12 is the momentum conjugate to r12. Since L is perpendicular to r12, the motion of

the orbit must lie in a plane perpendicular to L. Using polar coordinates (r, φ) in that

plane, the Lagrangian is

L = 1
2
µ(ṙ2 + r2φ̇2)− V (r) (2.83)

To make further progress, notice that φ is ignorable so, once again using Noether’s

theorem, we have the conserved quantity

J = µr2φ̇ (2.84)

– 31 –



This is also conservation of angular momentum: to reduce to the Lagrangian (2.83), we

used the fact that the direction of L is fixed; the quantity J is related to the magnitude

of L. To figure out the motion we calculate Lagrange’s equation for r from (2.83)

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= µr̈ − µrφ̇2 +

∂V

∂r
= 0 (2.85)

We can eliminate φ̇ from this equation by writing it in terms of the constant J to get

a differential equation for the orbit purely in terms of r,

µr̈ = − ∂

∂r
Veff(r) (2.86)

where the effective potential is given by

Veff(r) = V (r) +
J2

2µr2
(2.87)

The last term is known as the “angular momentum barrier”. Let me reiterate the

warning of the spherical pendulum: do not substitute J = µr2φ̇ directly into the

Lagrangian – you will get a minus sign wrong! You must substitute it into the equations

of motion.

Veff

r

hyperbolic orbit

elliptic orbit

circular orbit

Figure 15: The effective potential for two bodies interacting gravitationally.

So far, you may recognise that the analysis has been rather similar to that of the

spherical pendulum. Let’s continue following that path. Since ∂L/∂t = 0, Noether

tells us that energy is conserved and

E = 1
2
µṙ2 + Veff(r) (2.88)
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is constant throughout the motion. We can use this fact to “reduce to quadrature”,

t− t0 =

√
µ

2

∫
dr√

E − Veff(r)
(2.89)

Up to this point the analysis is for an arbitrary potential V (r). At this point let’s

specialise to the case of two bodies interacting gravitationally with

V (r) = −Gm1m2

r
(2.90)

where G is Newton’s constant. For this potential, the different solutions were studied

in your Part I mechanics course where Kepler’s laws were derived. The orbits fall into

two categories: elliptic if E < 0 and hyperbolic if E > 0 as shown in figure 15.

It’s worth noting the methodology we used to solve this problem. We started with

6 degrees of freedom describing the positions of two particles. Eliminating the centre

of mass reduced this to 3 degrees of freedom describing the separation. We then used

conservation of the direction of L to reduce to 2 degrees of freedom (r and φ), and

conservation of the magnitude of L to reduce to a single variable r. Finally conservation

of E allowed us to solve the problem. You might now be getting an idea about how

important conservation laws are to help us solve problems!

2.5.5 Restricted Three Body Problem

Consider three masses m1, m2 and m3 interacting gravitationally. In general this prob-

lem does not have an analytic solution and we must resort to numerical methods (i.e.

putting it on a computer). However, suppose that m3 � m1 and m2. Then it is a good

approximation to first solve for the motion of m1 and m2 interacting alone, and then

solve for the motion of m3 in the time dependent potential set up by m1 and m2. Let’s

see how this works.

For simplicity, let’s assume m1 and m2 are in a circular orbit with φ = ωt. We saw

in the previous section that the circular orbit occurs for ∂Veff/∂r = 0, from which we

get an expression relating the angular velocity of the orbit to the distance

ω2 =
G(m1 +m2)

r3
(2.91)

which is a special case of Kepler’s third law. Let’s further assume that m3 moves in the

same plane as m1 and m2 (which is a pretty good assumption for the sun-earth-moon

system). To solve for the motion of m3 in this background, we use our ability to change

coordinates. Let’s go to a frame which rotates with m1 and m2 with the centre of

mass at the origin. The particle m1 is a distance rµ/m1 from the origin, while m2 is a

distance rµ/m2 from the origin.
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Then, from the example of Section 2.2.1, the

m1 m2

m1r µ/ m2r µ/

y

x

Figure 16:

Lagrangian for m3 in the rotating frame is

L = 1
2
m3

[
(ẋ− ωy)2 + (ẏ + ωx)2

]
− V

where V is the gravitational potential for m3 inter-

acting with m1 and m2

V = −Gm1m3

r13

− Gm2m3

r23

(2.92)

The separations are given by

r2
13 = (x+ rµ/m1)2 + y2 , r2

23 = (x− rµ/m2)2 + y2 (2.93)

Be aware that x and y are the dynamical coordinates in this system, while r is the

fixed separation between m1 and m2. The equations of motion arising from L are

m3ẍ = 2m3ωẏ +m3ω
2x− ∂V

∂x

m3ÿ = −2m3ωẋ+m3ω
2y − ∂V

∂y
(2.94)

The full solutions to these equations are interesting and complicated. In fact, in 1889,

Poincaré studied the restricted three-body system and discovered the concept of chaos

in dynamical systems for the first time (and, in the process, won 2,500 krona and lost

3,500 krona). We’ll be a little less ambitious here and try to find solutions of the form

ẋ = ẏ = 0. This is where the third body sits stationary to the other two and the whole

system rotates together. Physically, the centrifugal force of the third body exactly

cancels its gravitational force. The equations we have to solve are

m3ω
2x =

∂V

∂x
= Gm1m3

x+ rµ/m1

r3
13

+Gm2m3
x− rµ/m2

r3
23

(2.95)

m3ω
2y =

∂V

∂y
= Gm1m3

y

r3
13

+Gm2m3
y

r3
23

(2.96)

There are five solutions to these equations. Firstly suppose that y = 0 so that m3 sits

on the same line as m1 and m2. Then we have to solve the algebraic equation

ω2x = Gm1
x+ rµ/m1

|x+ rµ/m1|3
+Gm2

x− rµ/m2

|x− rµ/m2|3
(2.97)

In figure 17, we have plotted the LHS and RHS of this equation to demonstrate the

three solutions, one in each of the regimes:
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Figure 17: The three solutions sitting on y = 0.

x < − rµ
m1

, − rµ
m1

< x <
rµ

m2

, x >
rµ

m2

(2.98)

Now let’s look for solutions with y 6= 0. From (2.96) we have

Gm2

r3
23

= ω2 − Gm1

r3
13

(2.99)

which we can substitute into (2.95) and, after a little algebra, we find the condition for

solutions to be

ω2 =
G(m1 +m2)

r3
13

=
G(m1 +m2)

r3
23

(2.100)

which means that we must have r13 = r23 = r. There are two such points.

In general there are five stationary points drawn

L1

L
5

L
2

m
2m

1

L

L3

4

r r

r r

r

Figure 18: The five Lagrange points.

X marks the spots.

in the figure. These are called Lagrange points. It

turns out that L1, L2 and L3 are unstable, while

L4 and L5 are stable as long as m2 is sufficiently

less than m1.

For the earth-sun system, NASA and ESA make

use of the Lagrange points L2 and L3 to place

satellites. There are solar observatories at L3;

satellites such as WMAP and PLANCK which

measure the cosmic microwave background radi-

ation (the afterglow of the big bang) gather their

data from L2. Apparently, there is a large collec-

tion of cosmic dust which has accumulated at L4 and L5. Other planetary systems (e.g.

the sun-jupiter and sun-mars systems) have large asteroids, known as trojans, trapped

at their L4 and L5.
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2.5.6 Purely Kinetic Lagrangians

Often in physics, one is interested in systems with only kinetic energy and no potential

energy. For a system with n dynamical degrees of freedom qa, a = 1, . . . , n, the most

general form of the Lagrangian with just a kinetic term is

L = 1
2
gab(qc) q̇

aq̇b (2.101)

The functions gab = gba depend on all the generalised coordinates. Assume that

det(gab) 6= 0 so that the inverse matrix gab exists (gabgbc = δac). It is a short exer-

cise to show that Lagrange’s equation for this system are given by

q̈a + Γabcq̇
bq̇c = 0 (2.102)

where

Γabc = 1
2
gad
(
∂gbd
∂qc

+
∂gcd
∂qb
− ∂gbc
∂qd

)
(2.103)

The functions gab define a metric on the configuration space, and the equations (2.102)

are known as the geodesic equations. They appear naturally in general relativity where

they describe a particle moving in curved spacetime. Lagrangians of the form (2.101)

also appear in many other areas of physics, including the condensed matter physics, the

theory of nuclear forces and string theory. In these contexts, the systems are referred

to as sigma models.

2.5.7 Particles in Electromagnetic Fields

We saw from the beginning that the Lagrangian formulation works with conservative

forces which can be written in terms of a potential. It is no good at dealing with friction

forces which are often of the type F = −kẋ. But there are other velocity dependent

forces which arise in the fundamental laws of Nature. It’s a crucial fact about Nature

that all of these can be written in Lagrangian form. Let’s illustrate this in an important

example.

Recall that the electric field E and the magnetic field B can be written in terms of

a vector potential A(r, t) and a scalar potential φ(r, t)

B = ∇×A , E = −∇φ− ∂A

∂t
(2.104)

where c is the speed of light. Let’s study the Lagrangian for a particle of electric charge

e of the form,

L = 1
2
mṙ2 − e (φ− ṙ ·A) (2.105)
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The momentum conjugate to r is

p =
∂L

∂ṙ
= mṙ + eA (2.106)

Notice that the momentum is not simply mṙ; it’s modified in the presence of electric

and magnetic fields. Now we can calculate Lagrange’s equations

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
=

d

dt
(mṙ + eA) + e∇φ− e∇(ṙ ·A) = 0 (2.107)

To disentangle this, let’s work with indices a, b = 1, 2, 3 on the Cartesian coordinates,

and rewrite the equation of motion as

mr̈a = −e
(
∂φ

∂ra
+
∂Aa
∂t

)
+ e

(
∂Ab
∂ra
− ∂Aa
∂rb

)
ṙb (2.108)

Now we use our definitions of the E and B fields (2.104) which, in terms of indices,

read

Ea = − ∂φ
∂ra
− ∂Aa

∂t
, Bc = εcab

∂Aa
∂rb

(2.109)

so the equation of motion can be written as

mr̈a = eEa + eεcabBcṙ
b (2.110)

or, reverting to vector notation,

mr̈ = e (E + eṙ×B) (2.111)

which is the Lorentz force law.

Gauge Invariance: The scalar and vector potentials are not unique. We may make

a change of the form

φ→ φ− ∂χ

∂t
, A→ A +∇χ (2.112)

These give the same E and B fields for any function χ. This is known as a gauge

transformation. Under this change, we have

L→ L+ e
∂χ

∂t
+ eṙ · ∇χ = L+ e

dχ

dt
(2.113)

but we know that the equations of motion remain invariant under the addition of a

total derivative to the Lagrangian. This concept of gauge invariance underpins much

of modern physics.
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2.6 Small Oscillations and Stability

“Physics is that subset of human experience which can be reduced to cou-

pled harmonic oscillators” Michael Peskin

Peskin doesn’t say this to knock physics. He’s just a fan of harmonic oscillators. And

rightly so. By studying the simple harmonic oscillator and its relatives in ever more

inventive ways we understand why the stars shine and why lasers shine and, thanks to

Hawking, why even black holes shine.

In this section we’ll see one reason why the simple harmonic oscillator is so important

to us. We will study the motion of systems close to equilibrium and see that the

dynamics is described by n decoupled simple harmonic oscillators, each ringing at a

different frequency.

Let’s start with a single degree of freedom x. We’ve already seen several examples

where we get an equation of the form

ẍ = f(x) (2.114)

An equilibrium point, x = x0, of this system satisfies f(x0) = 0. This means that if we

start with the initial conditions

x = x0 and ẋ = 0 (2.115)

then the system will stay there forever. But what if we start slightly away from x = x0?

To analyse this, we write

x(t) = x0 + η(t) (2.116)

where η is assumed to be small so that we can Taylor expand f(x) to find

η̈ = f ′(x0) η +O(η2) (2.117)

and we neglect the terms quadratic in η and higher. There are two possible behaviours

of this system

1. f ′(x0) < 0. In this case the restoring force sends us back to η = 0 and the solution

is

η(t) = A cos(ω(t− t0)) (2.118)

where A and t0 are integration constants, while ω2 = −f ′(x0). The system

undergoes stable oscillations about x = x0 at frequency ω.
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2. f ′(x0) > 0. In this case, the force pushes us away from equilibrium and the

solution is

η(t) = Aeλt +Be−λt (2.119)

where A and B are integration constants, while λ2 = f ′(x0). In this case, there

is a very special initial condition A = 0 such that x → x0 at late times. But for

generic initial conditions, η gets rapidly large and the approximation that η is

small breaks down. We say the system has a linear instability.

Now let’s generalise this discussion to n degrees of freedom with equations of motion

of the form,

q̈i = fi(q1, . . . , qn) i = 1, . . . , n (2.120)

An equilibrium point q0
i must satisfy fi(q

0
1, . . . , q

0
n) = 0 for all i = 1 . . . , n. Consider

small perturbations away from the equilibrium point

qi(t) = q0
i + ηi(t) (2.121)

where, again, we take the ηi to be small so that we can Taylor expand the fi, and

neglect the quadratic terms and higher. We have

η̈i ≈
∂fi
∂qj

∣∣∣∣
qk=q0k

ηj (2.122)

where the sum over j = 1, . . . , n is implicit. It’s useful to write this in matrix form.

We define the vector η and the n× n matrix F as

η =


η1

...

ηn

 , F =


∂f1
∂q1

. . . ∂f1
∂qn

...
...

∂fn
∂q1

. . . ∂fn
∂qn

 (2.123)

where each partial derivative in the matrix F is evaluated at qi = q0
i . The equation

now becomes simply

η̈ = Fη (2.124)

Our strategy is simple: we search for eigenvectors of F . If F were a symmetric matrix,

it would have a complete set of orthogonal eigenvectors with real eigenvalues. Unfortu-

nately, we can’t assume that F is symmetric. Nonetheless, it is true that for equations
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of the form (2.124) arising from physical Lagrangian systems, the eigenvalues will be

real. We shall postpone a proof of this fact for a couple of paragraphs and continue

under the assumption that F has real eigenvalues. In general, F will have different left

and right eigenvectors,

Fµa = λ2
aµa , ζTaF = λ2

a ζ
T
a a = 1, . . . , n (2.125)

where there’s no sum over a in these equations. The left and right eigenvectors satisfy

ζa · µb = δab. Note that although the eigenvectors differ, the eigenvalues λ2
a for a =

1, . . . , n are the same. Although λ2
a are real for the physical systems of interest (to be

proved shortly) they are not always positive. The most general solution to η̈ = Fη is

η(t) =
∑
a

µa
[
Aae

λat +Bae
−λat

]
(2.126)

where Aa and Ba are 2n integration constants. Again, we have two possibilities for

each eigenvalue

1. λ2
a < 0 In this case ±λa = iωa for some real number ωa. The system will be stable

in the corresponding direction η = µa.

2. λ2
a > 0. Now ±λa are real and the system exhibits a linear instability in the

direction η = µa

The eigenvectors µa are called normal modes. The equilibrium point is only stable if

λ2
a < 0 for every a = 1, . . . , n. If this is the case the system will typically oscillate

around the equilibrium point as a linear superposition of all the normal modes, each

at a different frequency.

To keep things real, we can write the most general solution as

η(t) =
∑
a,λ2a>0

µa
[
Aae

λat +Bae
−λat

]
+
∑
a,λ2a<0

µaAa cos(ωa(t− ta)) (2.127)

where now Aa, Ba and ta are the 2n integration constants.

The Reality of the Eigenvalues

Finally, let’s show what we put off above: that the eigenvalues λ2
a are real for matrices

F derived from a physical Lagrangian system. Consider a general Lagrangian of the

form,

L = 1
2
Tij(q)q̇iq̇j − V (q) (2.128)
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We will require that Tij(q) is invertible for all q. Expanding about an equilibrium point

as in (2.121), to linear order in ηi the equations read

Tij η̈j = −Vijηj (2.129)

where Tij = Tij(q
0) and Vij = ∂2V/∂qi∂qj, evaluated at qi = q0

i . Then in the ma-

trix notation of (2.124), we have F = −T−1V . Both Tij and Vij are symmetric, but

not necessarily simultaneously diagonalisable. This means that Fij is not necessarily

symmetric. Nevertheless, F does have real eigenvalues. To see this, look at

Fµ = λ2µ ⇒ V µ = −λ2 Tµ (2.130)

So far, both µ and λ2 could be complex. We will now show that they’re not. Take

the inner product of this equation with the complex conjugate eigenvector µ̄. We have

µ̄ ·V µ = λ2 µ̄ ·Tµ. But for any symmetric matrix S, the quantity µ̄ ·Sµ is real. (This

follows from expanding µ in the complete set of real, orthogonal eigenvectors of S, each

of which has a real eigenvalue). Therefore both µ̄ · V µ and µ̄ · Tµ are both real. Since

we have assumed that T is invertible, we know that µ̄ · Tµ 6= 0 so, from (2.130), we

conclude that the eigenvalue λ2 is indeed real.

2.6.1 Example: The Double Pendulum

In section 2.5.2, we derived the Lagrangian for the double pendulum. Restricting to

the case where the two masses are the same m1 = m2 = m and the two lengths are the

same l1 = l2 = l, we derived the Lagrangian (2.72) for arbitrary oscillations

L = ml2θ̇2
1 + 1

2
ml2θ̇2

2 +ml2 cos(θ1 − θ2)θ̇1θ̇2 + 2mgl cos θ1 +mgl cos θ2

The stable equilibrium point is clearly θ1 = θ2 = 0. (You could check mathematically if

you’re dubious). Let’s expand for small θ1 and θ2. If we want to linearise the equations

of motion for θ, then we must expand the Lagrangian to second order (so that after we

take derivatives, there’s still a θ left standing). We have

L ≈ ml2θ̇2
1 + 1

2
ml2θ̇2

2 +ml2θ̇1θ̇2 −mglθ2
1 − 1

2
mglθ2

2 (2.131)

where we’ve thrown away an irrelevant constant. From this we can use Lagrange’s

equations to derive the two linearised equations of motion

2ml2θ̈1 +ml2θ̈2 = −2mglθ1

ml2θ̈2 +ml2θ̈1 = −mglθ2 (2.132)

Or, writing θ = (θ1, θ2)T , this becomes
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Normal Mode 2Normal Mode 1

Figure 19: The two normal modes of the double pendulum

(
2 1

1 1

)
θ̈ = −g

l

(
2 0

0 1

)
θ ⇒ θ̈ = −g

l

(
2 −1

−2 2

)
θ (2.133)

We have two eigenvectors. They are

1. µ1 =

(
1
√

2

)
which has eigenvalue λ2

1 = −(g/l)(2 −
√

2). This corresponds to

the motion shown in figure 19 for the first normal mode.

2. µ2 =

(
1

−
√

2

)
which has eigenvalue λ2

2 = −(g/l)(2 +
√

2). This corresponds to

the motion shown in figure 19 for the second normal mode.

We see that the frequency of the mode in which the two rods oscillate in different

directions should be higher than that in which they oscillate together.

2.6.2 Example: The Linear Triatomic Molecule

Consider the molecule drawn in the figure. It’s a rough
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Figure 20:

approximation of CO2. We’ll only consider motion in the

direction parallel to the molecule for each atom, in which

case the Lagrangian for this object takes the form,

L = 1
2
mẋ2

1 + 1
2
Mẋ2

2 + 1
2
mẋ2

3 − V (x1 − x2)− V (x2 − x3) (2.134)

The function V is some rather complicated interatomic potential. But, the point of this

section is that if we’re interested in oscillations around equilibrium, this doesn’t matter.

Assume that xi = x0
i in equilibrium. By symmetry, we have |x0

1 − x0
2| = |x0

2 − x0
3| = r0.

We write deviations from equilibrium as

xi(t) = x0
i + ηi(t) (2.135)
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Normal Mode 1 Normal Mode 2 Normal Mode 3

Figure 21: The three normal modes of the triatomic molecule

Taylor expanding the potential about the equilibrium point,

V (r) = V (r0) +
∂V

∂r

∣∣∣∣
r=r0

(r − r0) + 1
2

∂2V

∂r2

∣∣∣∣
r=r0

(r − r0)2 + . . . (2.136)

Here the first term V (r0) is a constant and can be ignored, while the second term ∂V/∂r

vanishes since we are in equilibrium. Substituting into the Lagrangian, we have

L ≈ 1
2
mη̇2

1 + 1
2
Mη̇2

2 + 1
2
mη̇2

3 −
k

2

[
(η1 − η2)2 + (η2 − η3)2

]
(2.137)

where k = ∂2V/∂r2 evaluated at r = r0. Then the equations of motion are
mη̈1

Mη̈2

mη̈3

 = −k


η1 − η2

(η2 − η1) + (η2 − η3)

η3 − η2

 (2.138)

or, putting it in the form η̈ = Fη, we have

F =


−k/m k/m 0

k/M −2k/M k/M

0 k/m −k/m

 (2.139)

Again, we must look for eigenvectors of F . There are three:

1. µ = (1, 1, 1)T which has eigenvalue λ2
1 = 0. But this is just an overall translation

of the molecule. It’s not an oscillation.

2. µ2 = (1, 0,−1)T which has eigenvalue λ2
2 = −k/m. In this motion, the outer

two atoms oscillate out of phase, while the middle atom remains stationary. The

oscillation has frequency ω2 =
√
k/m.

3. µ3 = (1,−2m/M, 1)T which has eigenvalue λ2
3 = −(k/m)(1 + 2m/M). This

oscillation is a little less obvious. The two outer atoms move in the same direction,

while the middle atom moves in the opposite direction. If M > 2m, the frequency

of this vibration ω3 =
√
−λ2

3 is less than that of the second normal mode.
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All motions are drawn in figure 21. For small deviations from equilibrium, the most

general motion is a superposition of all of these modes.

η(t) = µ1(A+Bt) + µ2C cos(ω2(t− t2)) + µ3D cos(ω3(t− t3)) (2.140)
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3. The Motion of Rigid Bodies

Figure 22: Wolfgang Pauli and Niels Bohr stare in wonder at a spinning top.

Having now mastered the technique of Lagrangians, this section will be one big

application of the methods. The systems we will consider are the spinning motions of

extended objects. As we shall see, these can often be counterintuitive. Certainly Pauli

and Bohr found themselves amazed!

We shall consider extended objects that don’t have any internal

Figure 23:

degrees of freedom. These are called “rigid bodies”, defined to be

a collection of N points constrained so that the distance between

the points is fixed. i.e.

|ri − rj| = constant (3.1)

for all i, j = 1, . . . , N . A simple example is a dumbbell (two masses

connected by a light rod), or the pyramid drawn in the figure. In both cases, the

distances between the masses is fixed.
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Often we will work with continuous, rather than discrete, bodies simply by replacing∑
imi →

∫
dr ρ(r) where ρ(r) is the density of the object. A rigid body has six degrees

of freedom

3 Translation + 3 Rotation

The most general motion of a free rigid body is a translation plus a rotation about

some point P . In this section we shall develop the techniques required to describe this

motion.

3.1 Kinematics

Consider a body fixed at a point P . The most general allowed motion is a rotation

about P . To describe this, we specify positions in a fixed space frame {ẽa} by embedding

a moving body frame {ea} in the body so that {ea} moves with the body.

~e 1

~e
2

~e
3

~e 1

~e
2

~e
3

e 1
(t 1)

(t 1)e
2

(t 1)e 3

e 1 2
)(t

e 3 2
)(t

e
2 2

)(t

time

Figure 24: The fixed space frame and the moving body frame.

Both axes are orthogonal, so we have

ẽa · ẽb = δab , ea(t) · eb(t) = δab (3.2)

We will soon see that there is a natural choice of the basis {ea} in the body.

Claim: For all t, there exists a unique orthogonal matrix R(t) with components Rab(t)

such that ea(t) = Rab(t)ẽb

Proof: ea · eb = δab ⇒ RacRbdẽc · ẽd = δab ⇒ RacRbc = δab or, in other words,

(RTR)ab = δab which is the statement that R is orthogonal. The uniqueness of R

follows by construction: Rab = ea · ẽb. �.
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So as the rigid body rotates it is described by a time dependent orthogonal 3 × 3

matrix R(t). This matrix also has the property that its determinant is 1. (The other

possibility is that its determinant is −1 which corresponds to a rotation and a reflection

ea → −ea). Conversely, every one-parameter family R(t) describes a possible motion

of the body. We have

C = Configuration Space = Space of 3× 3 Special Orthogonal Matrices ≡ SO(3)

A 3× 3 matrix has 9 components but the condition of orthogonality RTR = 1 imposes

6 relations, so the configuration space C is 3 dimensional and we need 3 generalised

coordinates to parameterise C. We shall describe a useful choice of coordinates, known

as Euler angles, in section 3.5.

3.1.1 Angular Velocity

Any point r in the body can be expanded in either the space frame or the body frame:

r(t) = r̃a(t) ẽa in the space frame

= ra ea(t) in the body frame (3.3)

where r̃b(t) = raRab(t). Taking the time derivative, we have

dr

dt
=
dr̃a
dt

ẽa in the space frame

= ra
dea(t)

dt
in the body frame

= ra
dRab

dt
ẽb (3.4)

Alternatively, we can ask how the body frame basis itself changes with time,

dea
dt

=
dRab

dt
ẽb =

(
dRab

dt
R−1

)
bc

ec ≡ ωacec (3.5)

where, in the last equality, we have defined ωac = Ṙab(R
−1)bc = ṘabRcb using the fact

that RTR = 1.

Claim: ωac = −ωca i.e. ω is antisymmetric.

Proof: RabRcb = δac ⇒ ṘabRcb +RabṘcb = 0⇒ ωac + ωca = 0 �
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Since ωac is antisymmetric, we can use it to define an object with a single index

(which we will also call ω) using the formula

ωa = 1
2
εabcωbc (3.6)

so that ω3 = ω12 and so on. We treat these ωa as the components of a vector in the

body frame, so ω = ωaea. Then finally we have our result for the change of the body

frame basis with time

dea
dt

= −εabcωbec = ω × ea (3.7)

where, in the second equality, we have used the fact that our body frame axis has

a “right-handed” orientation, meaning ea × eb = εabcec. The vector ω is called the

instantaneous angular velocity and its components ωa are measured with respect to the

body frame.

Since the above discussion was a little formal, let’s draw a picture

~
r

n̂
~

φd

θ

P

Figure 25:

to uncover the physical meaning of ω. Consider a displacement of a

given point r in the body by rotating an infinitesimal amount dφ about

an axis n̂. From the figure, we see that |dr| = |r| dφ sin θ. Moreover,

this displacement is perpendicular to r since the distance to P is fixed

by the definition of a rigid body. So we have

dr = dφ× r (3.8)

with dφ = n̂dφ. “Dividing” this equation by dt, we have the result

ṙ = ω × r (3.9)

where ω = dφ/dt is the instantaneous angular velocity. In general, both the axis of

rotation n̂ and the rate of rotation dφ/dt will change over time.

Aside: One could define a slightly different type of angular velocity by looking at

how the space frame coordinates r̃a(t) change with time, rather than the body frame

axes ea. Since we have r̃b(t) = raRab(t), performing the same steps as above, we have

˙̃rb = raṘab = r̃a(R
−1Ṙ)ab (3.10)

which tempts us to define a different type of angular velocity, sometimes referred to as

“convective angular velocity” by Ωab = R−1
ac Ṙcb which has the R−1 and Ṙ in a different

order. Throughout our discussion of rigid body motion, we will only deal with the

original ω = ṘR−1.
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3.1.2 Path Ordered Exponentials

In the remainder of this chapter, we will devote much effort to determine the the angular

velocity vector ω(t) of various objects as they spin and turn. But how do we go from

this to the rotation R(t)? As described above, we first turn the vector ω = waea into a

3× 3 antisymmetric matrix ωab = εabcωc. Then, from this, we get the rotation matrix

R by solving the differential equation

ω =
dR

dt
R−1 (3.11)

If ω and R were scalar functions of time, then we could simply integrate this equation

to get the solution

R(t) = exp

(∫ t

0

ω(t′) dt′
)

(3.12)

which satisfies the initial condition R(0) = 1. But things are more complicated because

both ω and R are matrices. Let’s first describe how we take the exponential of a matrix.

This is defined by the Taylor expansion. For any matrix M , we have

exp(M) ≡ 1 +M + 1
2
M2 + . . . (3.13)

As our first guess for the solution to the matrix equation (3.11), we could try the scalar

solution (3.12) and look at what goes wrong. If we take the time derivative of the

various terms in the Taylor expansion of this putative solution, then problems first

arise when we hit the 1
2
M2 type term. The time derivative of this reads

1

2

d

dt

(∫ t

0

ω(t′) dt′
)2

=
1

2
ω(t)

(∫ t

0

ω(t′) dt′
)

+
1

2

(∫ t

0

ω(t′) dt′
)
ω(t) (3.14)

We would like to show that Ṙ = ωR. The first term on the right-hand side looks

good since it appears in the Taylor expansion of ωR. But the second term isn’t right.

The problem is that we cannot commute ω(t) past ω(t′) when t′ 6= t. For this reason,

equation (3.12) is not the solution to (3.11) when ω and R are matrices. But it does

give us a hint about how we should proceed. Since the problem is in the ordering of

the matrices, the correct solution to (3.11) takes a similar form as (3.12), but with a

different ordering. It is the path ordered exponential,

R(t) = P exp

(∫ t

0

ω(t′) dt′
)

(3.15)
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where the P in front means that when we Taylor expand the exponential, all matrices

are ordered so that later times appear on the left. In other words

R(t) = 1 +

∫ t

0

ω(t′) dt′ +

∫ t′′

0

∫ t

t′
ω(t′′)ω(t′) dt′dt′′ + . . . (3.16)

The double integral is taken over the range 0 < t′ < t′′ < t. If we now differentiate

this double integral with respect to t, we get just the one term ω(t)
(∫ t

0
ω(t′) dt′

)
,

instead of the two that appear in (3.14). It can be checked that the higher terms in the

Taylor expansion also have the correct property if they are ordered so that matrices

evaluated at later times appear to the left in the integrals. This type of path ordered

integral comes up frequently in theories involving non-commuting matrices, including

the standard model of particle physics.

As an aside, the rotation matrix R is a member of the Lie group SO(3), the space of

3× 3 orthogonal matrices with unit determinant. The antisymmetric angular velocity

matrix ω, corresponding to an instantaneous, infinitesimal rotation, lives in the Lie

algebra so(3).

3.2 The Inertia Tensor

Let’s look at the kinetic energy for a rotating body. We can write

T = 1
2

∑
i

miṙ
2
i

= 1
2

∑
i

mi (ω × ri) · (ω × ri)

= 1
2

∑
i

mi

(
(ω · ω)(ri · ri)− (ri · ω)2

)
(3.17)

Or, in other words, we can write the kinetic energy of a rotating body as

T = 1
2
ωaIabωb (3.18)

where Iab, a, b = 1, 2, 3 are the components of the inertia tensor measured in the body

frame, defined by

Iab =
∑
i

mi ((ri · ri)δab − (ri)a(ri)b) (3.19)

Note that Iab = Iba so the inertia tensor is symmetric. Moreover, the components

are independent of time since they are measured with respect to the body frame. For
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continuous bodies, we have the analogous expression

I =

∫
d3r ρ(r)


y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 (3.20)

Since Iab is a symmetric real matrix, we can diagonalise it. This means that there

exists an orthogonal matrix O such that OIOT = I ′ where I ′ is diagonal. Equivalently,

we can rotate the body frame axis {ea} to coincide with the eigenvectors of I (which

are {Oea}) so that, in this frame, the inertia tensor is diagonal. These preferred body

axes, in which I is diagonal, are called the principal axes. In this basis,

I =


I1

I2

I3

 (3.21)

The eigenvalues Ia are called the principal moments of inertia. The kinematical prop-

erties of a rigid body are fully determined by its mass, principal axes, and moments of

inertia. Often the principal axes are obvious by symmetry.

Claim: The Ia are real and positive.

Proof: If c is an arbitrary vector, then

Iabc
acb =

∑
i

mi(r
2
i c

2 − (ri · c)2) ≥ 0 (3.22)

with equality only if all the ri lie on a line. If c is the ath eigenvector of I then this

result becomes Iabc
acb = Ia|c|2 which tells us Ia ≥ 0. �

Example: The Rod

Consider the inertia tensor of a uniform rod of length l and mass M about its centre.

The density of the rod is ρ = M/l. By symmetry, we have I = diag(I1, I1, 0) where

I1 =

∫ l/2

−l/2
ρ x2 dx =

1

12
Ml2 (3.23)

Example: The Disc
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Now consider a uniform disc of radius r and mass M .

e =x1

e3 =z

e =y2

Figure 26:

We take the z axis to be perpendicular to the disc and mea-

sure I about its centre of mass. Again we know that I =

diag(I1, I2, I3). The density of the disc is ρ = M/πr2, so we

have

I1 =

∫
ρy2d2x , I2 =

∫
ρx2d2x

so I1 = I2 by symmetry, while

I3 =

∫
ρ(x2 + y2)d2x

Therefore

I3 = I1 + I2 = 2πρ

∫ r

0

r′ 3 dr′ = 1
2
Mr2 (3.24)

So the moments of inertia are I1 = I2 = 1
4
Mr2 and I3 = 1

2
Mr2.

3.2.1 Parallel Axis Theorem

The inertia tensor depends on what point P in the body is held fixed. In general, if we

know I about a point P it is messy to compute it about some other point P ′. But it

is very simple if P happens to coincide with the centre of mass of the object.

Claim: If P ′ is displaced by c from the centre of mass, then

(Ic)ab = (Ic.of.m)ab +M(c2δab − cacb) (3.25)

Proof:

(Ic)ab =
∑
i

mi

{
(ri − c)2δab − (ri − c)a(ri − c)b

}
(3.26)

=
∑
i

mi

{
r2
i δab − (ri)a(ri)b + [−2ri · cδab + (ri)acb + (ri)bca] + (c2δab − cacb)

}
But the terms in square brackets that are linear in ri vanish if ri is measured from the

centre of mass since
∑

imiri = 0. �

The term M(c2δab − cacb) is the inertia tensor we would find if the whole body was

concentrated at the centre of mass.
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Example: The Rod Again

The inertia tensor of the rod about one of its ends is I1 = 1
12
Ml2 +M(l/2)2 = 1

3
Ml2.

Example: The Disc Again

Consider measuring the inertia tensor of the disc about a point displaced by c = (c, 0, 0)

from the centre. We have

c

Figure 27:

Ic = M


1
4
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1
4
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2
r2

+M



c2

c2

c2

−

c2

0
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


= M


1
4
r2

1
4
r2 + c2

1
2
r2 + c2


3.2.2 Angular Momentum

The angular momentum L about a point P can also be described neatly in terms of

the inertia tensor. We have

L =
∑
i

miri × ṙi

=
∑
i

miri × (ω × ri)

=
∑
i

mi(r
2
iω − (ω · ri)ri)

= Iω (3.27)

In the body frame, we can write L = Laea to get

La = Iabωb (3.28)

where ω = ωaea. Note that in general, ω is not equal to L: the spin of the body and

its angular momentum point in different directions. This fact will lead to many of the

peculiar properties of spinning objects.

3.3 Euler’s Equations

So far we have been discussing the rotation of a body fixed at a point P . In this section

we will be interested in the rotation of a free body suspended in space - for example, a

satellite or the planets. Thankfully, this problem is identical to that of an object fixed

at a point. Let’s show why this is the case and then go on to analyse the motion.
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The most general motion of a body is an overall translation superposed with a ro-

tation. We could take this rotation to be about any point in the body (or, indeed, a

point outside the body). But it is useful to consider the rotation to be about the center

of mass. We can write the position of a particle in the body as

ri(t) = R(t) + ∆ri(t) (3.29)

where ∆ri is the position measured from the centre of mass. Then examining the

kinetic energy (which, for a free body, is all there is)

T = 1
2

∑
i

miṙ
2
i

=
∑
i

mi

[
1
2
Ṙ2 + Ṙ · (ω ×∆ri) + 1

2
(ω ×∆ri)

2
]

= 1
2
MṘ2 + 1

2
ωaIabωb (3.30)

where we’ve used the fact that
∑

imi∆ri = 0. So we find that the dynamics separates

into the motion of the centre of mass R, together with rotation about the centre of

mass. This is the reason that the analysis of the last section is valid for a free object.

3.3.1 Euler’s Equations

From now on, we shall neglect the center of mass and concentrate on the rotation of

the rigid body. Since the body is free, its angular momentum must be conserved. This

gives us the vector equation

dL

dt
= 0 (3.31)
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Let’s expand this in the body frame. we have

0 =
dL

dt
=
dLa
dt

ea + La
dea
dt

=
dLa
dt

ea + Laω × ea (3.32)

This simplifies if we choose the body axes {ea} to coincide with the the principal axes.

Using La = Iabωb, we can then write L1 = I1ω1 and so on. The equations of motion

(3.32) are now three non-linear coupled first order differential equations,

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω3ω1(I1 − I3) = 0 (3.33)

I3ω̇3 + ω1ω2(I2 − I1) = 0

These are Euler’s Equations.

We can extend this analysis to include a torque τ . The equation of motion becomes

L̇ = τ and we can again expand in the body frame along the principal axes to derive

Euler’s equations (3.33), now with the components of the torque on the RHS.

3.4 Free Tops

“To those who study the progress of exact science, the common spinning-top

is a symbol of the labours and the perplexities of men.”
James Clerk Maxwell, no less

In this section, we’ll analyse the motion of free rotating bod-

e
1

e
2

e
3

Figure 29:

ies (known as free tops) using Euler’s equation.

We start with a trivial example: the sphere. For this object,

I1 = I2 = I3 which means that the angular velocity ω is parallel

to the angular momentum L. Indeed, Euler’s equations tell us

that ωa is a constant in this case and the sphere continues to spin

around the same axis you start it on. To find a more interesting

case, we need to look at the next simplest object.

3.4.1 The Symmetric Top

The symmetric top is an object with I1 = I2 6= I3. A typical example is drawn in figure

29. Euler’s equations become

I1ω̇1 = ω2ω3(I1 − I3)

I2ω̇2 = −ω1ω3(I1 − I3) (3.34)

I3ω̇3 = 0
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Figure 30: The precession of the spin: the direction of precession depends on whether the

object is short and fat (I3 > I1) or tall and skinny (I3 < I1)

So, in this case, we see that ω3, which is the spin about the symmetric axis, is a

constant of motion. In contrast, the spins about the other two axes are time dependent

and satisfy

ω̇1 = Ωω2 , ω̇2 = −Ωω1 (3.35)

where

Ω = ω3(I1 − I3)/I1 (3.36)

is a constant. These equations are solved by

(ω1, ω2) = ω0(sin Ωt, cos Ωt) (3.37)

for any constant ω0. This means that, in the body frame, the e
3 L

ω

Figure 31:

direction of the spin is not constant: it precesses about the e3 axis

with frequency Ω. The direction of the spin depends on the sign on

Ω or, in other words, whether I1 > I3 or I1 < I3. This is drawn in

figure 30.

In an inertial frame, this precession of the spin looks like a wobble.

To see this, recall that L has a fixed direction. Since both ω3 and

L3 are constant in time, the e3 axis must stay at a fixed angle with

respect to the L and ω. It rotates about the L axis as shown in figure

31. We’ll examine this wobble more in the next section.
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3.4.2 Example: The Earth’s Wobble

The spin of the earth causes it to bulge at the equator so it is no longer a sphere but can

be treated as a symmetric top. It is an oblate ellipsoid, with I3 > I1, and is spherical

to roughly 1 part in 300, meaning

I1 − I3

I1

≈ − 1

300
(3.38)

Of course, we know the magnitude of the spin ω3: it is ω3 = (1 day)−1. This information

is enough to calculate the frequency of the earth’s wobble; from (3.36), it should be

Ωearth =
1

300
day−1 (3.39)

This calculation was first performed by Euler in 1749 who pre-
e3

ω

z

Equator

North Pole

Figure 32:

dicted that the Earth completes a wobble every 300 days. De-

spite many searches, this effect wasn’t detected until 1891 when

Chandler re-analysed the data and saw a wobble with a period

of 427 days. It is now known as the Chandler wobble. It is

very small! The angular velocity ω intercepts the surface of

the earth approximately 10 metres from the North pole and

precesses around it. More recent measurements place the fre-

quency at 435 days, with the discrepancy between the predicted

300 days and observed 435 days due to the fact that the Earth

is not a rigid body, but is flexible because of tidal effects. Less

well understood is why these same tidal effects haven’t caused

the wobble to dampen and disappear completely. There are various theories about

what keeps the wobble alive, from earthquakes to fluctuating pressure at the bottom

of the ocean.

3.4.3 The Asymmetric Top: Stability

The most general body has no symmetries and I1 6= I2 6= I3 6= I1. The rotational

motion is more complicated but there is a simple result that we will describe here.

Consider the case where the spin is completely about one of the principal axes, say e1.

i.e.

ω1 = Ω , ω2 = ω3 = 0 (3.40)

This solves Euler’s equations (3.33). The question we want to ask is: what happens if

the spin varies slightly from this direction? To answer this, consider small perturbations

about the spin

ω1 = Ω + η1 , ω2 = η2 , ω3 = η3 (3.41)

– 57 –



where ηa, a = 1, 2, 3 are all taken to be small. Substituting this into Euler’s equations

and ignoring terms of order η2 and higher, we have

I1η̇1 = 0

I2η̇2 = Ωη3(I3 − I1) (3.42)

I3η̇3 = Ωη2(I1 − I2) (3.43)

We substitute the third equation into the second to find an equation for just one of the

perturbations, say η2,

I2η̈2 =
Ω2

I3

(I3 − I1)(I1 − I2)η2 ≡ Aη2 (3.44)

The fate of the small perturbation depends on the sign of the quantity A. We have two

possibilities

• A < 0: In this case, the disturbance will oscillate around the constant motion.

• A > 0: In this case, the disturbance will grow exponentially.

Examining the definition of A, we find that the motion is unstable if

I2 < I1 < I3 or I3 < I1 < I2 (3.45)

with all other motions stable. In other words, a body will rotate stably about the axis

with the largest or the smallest moment of inertia, but not about the intermediate axis.

Pick up a tennis racket and try it for yourself!

3.4.4 The Asymmetric Top: Poinsot Construction

The analytic solution for the general motion of an asymmetric top is rather complicated,

involving Jacobian elliptic functions. But there’s a nice geometrical way of viewing the

motion due to Poinsot.

We start by working in the body frame. There are two constants of motion: the

kinetic energy T and the magnitude of the angular momentum L2. In terms of the

angular velocity, they are

2T = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 (3.46)

L2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 (3.47)
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Each of these equations defines an ellipsoid in ω space. The motion of the vector ω is

constrained to lie on the intersection of these two ellipsoids. The first of these ellipsoids,

defined by

I1

2T
ω2

1 +
I2

2T
ω2

2 +
I3

2T
ω2

3 = 1 (3.48)

is known as the inertia ellipsoid (or, sometimes, the inertia quadric). If we fix the

kinetic energy, we can think of this abstract ellipsoid as embedded within the object,

rotating with it.

The inertia ellipsoid is drawn in figure

ω

ω

ω

1

3

2

Figure 33:

33, where we’ve chosen I1 > I2 > I3 so that

the major axis is ω3 and the minor axis is ω1.

The lines drawn on the figure are the inter-

section of the inertia ellipsoid with the other

ellipsoid, defined by (3.47), for various val-

ues of L2. Since this has the same major and

minor axes as the inertia ellipsoid (because

I2
1 > I2

2 > I2
3 ), the intersection lines are small

circles around the ω1 and ω3 axes, but two

lines passing through the ω2 axis. For fixed T and L2, the vector ω moves along one

of the intersection lines. This provides a pictorial demonstration of the fact we learnt

in the previous subsection: an object will spin in a stable manner around the principal

axes with the smallest and largest moments of inertia, but not around the intermediate

axis. The path that ω traces on the inertia ellipsoid is known as the polhode curve. We

see from the figure that the polhode curves are always closed, and motion in the body

frame is periodic.

So much for the body frame. What does all this look like in the space frame? The

vector L is a constant of motion. Since the kinetic energy 2T = L · ω is also constant,

we learn that ω must lie in a fixed plane perpendicular to L. This is known as the

invariable plane. The inertia ellipsoid touches the invariable plane at the point defined

by the angular velocity vector ω. Moreover, the invariable plane is always tangent to

the inertial ellipsoid at the point ω. To see this, note that the angular momentum can

be written as

L = ∇ωT (3.49)

where the gradient operator is in ω space, i.e. ∇ω = (∂/∂ω1, ∂/∂ω2, ∂/∂ω3). But

recall that the inertia ellipsoid is defined as a level surface of T , so equation (3.49) tells
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Figure 34: The inertia ellipsoid rolling around on the invariable plane, with the polhode

and herpolhode curves drawn for a fixed time period.

us that the angular momentum L is always perpendicular to the ellipsoid. This, in

turn, ensures that the invariable plane is always tangent to the ellipsoid. In summary,

the angular velocity traces out two curves: one on the inertia ellipsoid, known as the

polhode curve, and another on the invariable plane, known as the herpolhode curve.

The body moves as if it is embedded within the inertia ellipsoid, which rolls around the

invariable plane without slipping, with the center of the ellipsoid a constant distance

from the plane. The motion is shown in figure 34. Unlike the polhode curve, the

herpolhode curve does not necessarily close.

An Example: The Asteroid Toutatis

Astronomical objects are usually symmetric, but there’s an important exception wan-

dering around our solar system, depicted in figure2 35. This is the asteroid Toutatis. In

September 2004 it passed the earth at a distance of about four times that to the moon.

This is (hopefully!) the closest any asteroid will come for the next 60 years. The orbit

of Toutatis is thought to be chaotic, which could potentially be bad news for Earth

a few centuries from now. As you can see from the picture, its tumbling motion is

complicated. It is aperiodic. The pictures show the asteroid at intervals of a day. The

angular momentum vector L remains fixed and vertical throughout the motion. The

angular velocity ω traces out the herpolhode curve in the horizontal plane, perpendic-

ular to L. The angular momentum vector ω also traces out a curve over the asteroid’s

2This picture was created by Scott Hudson of Washington State University and was taken from

http://www.solarviews.com/eng/toutatis.htm where you can find many interesting facts about the

asteroid.
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Figure 35: By Toutatis! The three principal axes are shown in red, green and blue (without

arrows). The angular momentum L is the vertical, purple arrow. The angular velocity ω is

the circled, yellow arrow.

surface: this is the polhode curve. It has a period of 5.4 days which you can observe

by noting that ω has roughly the same orientation relative to the principal axes every

five to six days.

However, there are further effects at play in a real object like Toutatis which is not

spinning around a principal axis. Various stresses and strains lead to dissipation. This

means that the angular velocity ω does not quite follow the polhode curve in Figure

33. Instead it begins close to the major axis ω3 and slowly spirals towards the minor

axis ω1. This is why we see so few wobbling asteroids.
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3.5 Euler’s Angles

So far we’ve managed to make quite a lot of progress working just with the angular

velocity ωa and we haven’t needed to introduce an explicit parametrization of the

configuration space C. But to make further progress we’re going to need to do this.

We will use a choice due to Euler which often leads to simple solutions.
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1
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2

Figure 36: The rotation from space frame {ẽa} to body frame {ea}.

A general rotation of a set of axis is shown in Figure 36. We’d like to construct a

way of parameterizing such a rotation. The way to do this was first described by Euler:

Euler’s Theorem:

An arbitrary rotation may be expressed as the product of 3 successive rotations about

3 (in general) different axes.

Proof: Let {ẽa} be space frame axes. Let {ea} be body frame axes. We want to find

the rotation R so that ea = Rabẽb. We can accomplish this in three steps

{ẽa}
R3(φ)−→ {e′a}

R1(θ)−→ {e′′a}
R3(ψ)−→ {ea} (3.50)

Let’s look at these step in turn.

Step 1: Rotate by φ about the ẽ3 axis. So e′a = R3(φ)abẽb with

R3(φ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 (3.51)

This is shown in Figure 37.
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Figure 37: Step 1: Rotate around the space-frame axis ẽ3.

Step 2: Rotate by θ about the new axis e′1. This axis e′1 is sometimes called the

“line of nodes”. We write e′′a = R1(θ)e′b with

R1(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (3.52)

This is shown in Figure 38
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Figure 38: Step 2: Rotate around the new axis axis e′1.

Step 3: Rotate by ψ about the new new axis e′′3 so ea = R3(ψ)abe
′′
b with

R3(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.53)

This is shown in Figure 39.
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Figure 39: Step 3: Rotate around the latest axis e′′3.

So putting it all together, we have

Rab(φ, θ, ψ) = [R3(ψ)R1(θ)R3(φ)]ab (3.54)

�
The angles φ, θ, ψ are the Euler angles. If we write out the matrix R(φ, θ, ψ) longhand,

it reads

R =


cosψ cosφ− cos θ sinφ sinψ sinφ cosψ + cos θ sinψ cosφ sin θ sinψ

− cosφ sinψ − cos θ cosψ sinφ − sinψ sinφ+ cos θ cosψ cosφ sin θ cosψ

sin θ sinφ − sin θ cosφ cos θ


Note: Recall that we may expand a vector r either in the body frame r = raea, or in

the space frame r = r̃aẽa. The above rotations can be equally well expressed in terms

of the coordinates ra rather than the basis {ea}: we have r̃b = raRab. Be aware that

some books choose to describe the Euler angles in terms of the coordinates ra which

they write in vector form. In some conventions this can lead to an apparent reversal in

the ordering of the three rotation matrices.

3.5.1 Leonhard Euler (1707-1783)

As is clear from the section headings, the main man for this chapter is Euler, by far the

most prolific mathematician of all time. As well as developing the dynamics of rotations,

he made huge contributions to the fields of number theory, geometry, topology, analysis

and fluid dynamics. For example, the lovely equation eiθ = cos θ + i sin θ is due to

Euler. In 1744 he was the first to correctly present a limited example of the calculus of

variations (which we saw in section 2.1) although he generously gives credit to a rather

botched attempt by his friend Maupertuis in the same year. Euler also invented much

of the modern notation of mathematics: f(x) for a function; e for exponential; π for,

well, π and so on.
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Euler was born in Basel, Switzerland and held positions in St Petersburg, Berlin and,

after falling out with Frederick the Great, St Petersburg again. He was pretty much

absorbed with mathematics day and night. Upon losing the sight in his right eye in

his twenties he responded with: “Now I will have less distraction”. Even when he went

completely blind later in life, it didn’t slow him down much as he went on to produce

over half of his total work. The St Petersburg Academy of Science continued to publish

his work for a full 50 years after his death.

3.5.2 Angular Velocity

There’s a simple expression for the instantaneous angular velocity ω in terms of Euler

angles. To derive this, we could simply plug (3.54) into the definition of angular velocity

(3.5). But this is tedious, and a little bit of thought about what this means physically

will get us there quicker. Consider the motion of a rigid body in an infinitesimal time

dt during which

(ψ, θ, φ)→ (ψ + dψ, θ + dθ, φ+ dφ) (3.55)

From the definition of the Euler angles, the angular velocity must be of the form

ω = φ̇ ẽ3 + θ̇ e′1 + ψ̇ e3 (3.56)

But we can express the first two vectors in terms of the body frame. They are

ẽ3 = sin θ sinψ e1 + sin θ cosψ e2 + cos θ e3

e′1 = cosψ e1 − sinψ e2 (3.57)

from which we can express ω in terms of the Euler angles in the body frame axis

ω = [φ̇ sin θ sinψ + θ̇ cosψ]e1 + [φ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + φ̇ cos θ]e3 (3.58)

By playing a similar game, we can also express ω in the space frame axis.

3.5.3 The Free Symmetric Top Revisited

In section 3.4 we studied the free symmetric top working in the body frame and found a

constant spin ω3 while, as shown in equation (3.37), ω1 and ω2 precess with frequency

Ω = ω3
(I1 − I3)

I1

(3.59)

But what does this look like in the space frame? Now that we have parametrised

motion in the space frame in terms of Euler angles, we can answer this question. This

is simplest if we choose the angular momentum L to lie along the ẽ3 space-axis. Then,

since we have already seen that e3 sits at a fixed angle to L, from the figure we see

that θ̇ = 0. Now we could either use the equations (3.58) or, alternatively, just look at

figure 40, to see that we should identify Ω = ψ̇.
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Figure 40: Euler angles for the free symmetric top when L coincides with ẽ3

But we know from (3.58) that the expression for ω3 (which, remember, is the compo-

nent of ω in the body frame) in terms of Euler angles is ω3 = ψ̇+φ̇ cos θ so, substituting

for Ω = ψ̇, we find the precession frequency

φ̇ =
I3ω3

I1 cos θ
(3.60)

An Example: The Wobbling Plate

The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the

air. As the plate went up in the air I saw it wobble, and I noticed the red

medallion of Cornell on the plate going around. It was pretty obvious to me

that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.

I discover that when the angle is very slight, the medallion rotates twice as

fast as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the

electron orbits start to move in relativity. Then there’s the Dirac equation

in electrodynamics. And then quantum electrodynamics. And before I knew

it....the whole business that I got the Nobel prize for came from that piddling

around with the wobbling plate.”
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Feynman was right about quantum electrodynamics. But what
.
φ

.

ψθ

Figure 41:

about the plate? We can look at this easily using what we’ve learnt.

The spin of the plate is ω3, while the precession, or wobble, rate is φ̇

which is given in (3.60). To calculate this, we need the moments of

inertia for a plate. But we figured this out for the disc in Section 3.2

where we found that I3 = 2I1. We can use this to see that ψ̇ = −ω3

for this example and so, for slight angles θ, have

φ̇ ≈ −2ψ̇ (3.61)

Or, in other words, the wobble rate is twice as fast as the spin of the plate. It’s the

opposite to how Feynman remembers!

There is another elegant and simple method you can use to see that Feynman was

wrong: you can pick up a plate and throw it. It’s hard to see that the wobble to spin

ratio is exactly two. But it’s easy to see that it wobbles faster than it spins.

3.6 The Heavy Symmetric Top
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Figure 42: The heavy top with its Euler angles

The “heavy” in the title of this section means that the top is acted upon by gravity.

We’ll deal only with a symmetric top, pinned at a point P which is a distance l from

the centre of mass. This system is drawn in the figure. The principal axes are e1, e2
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and e3 and we have I1 = I2. From what we have learnt so far, it is easy to write down

the Lagrangian:

L = 1
2
I1(ω2

1 + ω2
2) + 1

2
I3ω

2
3 −Mgl cos θ

= 1
2
I1(θ̇2 + sin2 θφ̇2) + 1

2
I3(ψ̇ + cos θ φ̇)2 −Mgl cos θ (3.62)

A quick examination of this equation tells us that both ψ and φ are ignorable coordi-

nates. This gives us the constants of motion pψ and pφ, where

pψ = I3(ψ̇ + cos θ φ̇) = I3ω3 (3.63)

This is the angular momentum about the symmetry axis e3 of the top. The angular

velocity ω3 about this axis is simply called the spin of the top and, as for the free

symmetric top, it is a constant. The other constant of motion is

pφ = I1 sin2 θ φ̇+ I3 cos θ (ψ̇ + φ̇ cos θ) (3.64)

As well as these two conjugate momenta, the total energy E is also conserved

E = T + V = 1
2
I1(θ̇2 + φ̇2 sin2 θ) + 1

2
I3ω

2
3 +Mgl cos θ (3.65)

To simplify these equations, let’s define the two constants

a =
I3ω3

I1

and b =
pφ
I1

(3.66)

Then we can write

φ̇ =
b− a cos θ

sin2 θ
(3.67)

and

ψ̇ =
I1a

I3

− (b− a cos θ) cos θ

sin2 θ
(3.68)

So if we can solve θ = θ(t) somehow, then we can always integrate these two equations

to get φ(t) and ψ(t). But first we have to figure out what θ is doing. To do this, let’s

define the “reduced energy” E ′ = E − 1
2
I3ω

2
3. Then, since E and ω3 are constant, so is

E ′. We have

E ′ = 1
2
I1θ̇

2 + Veff(θ) (3.69)

where the effective potential is

Veff(θ) =
I1(b− a cos θ)2

2 sin2 θ
+Mgl cos θ (3.70)
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So we’ve succeeded in getting an equation (3.69) purely in terms of θ. To simplify the

analysis, let’s define the new coordinate

u = cos θ (3.71)

Clearly −1 ≤ u ≤ 1. We’ll also define two further constants to help put the equations

in the most concise form

α =
2E ′

I1

and β =
2Mgl

I1

(3.72)

With all these redefinitions, the equations of motion (3.67), (3.68) and (3.69) can be

written as

u̇2 = (1− u2)(α− βu)− (b− au)2 ≡ f(u) (3.73)

φ̇ =
b− au
1− u2

(3.74)

ψ̇ =
I1a

I3

− u(b− au)

1− u2
(3.75)

We could take the square root of equation (3.73) and integrate to reduce the problem

to quadrature. The resulting integral is known as an “elliptic integral”. But, rather

than doing this, there’s a better way to understand the physics qualitatively.

Note that the function f(u) defined in (3.73) is a cubic polynomial that behaves as

f(u)→

{
+∞ as u→∞
−∞ as u→ −∞

(3.76)

and f(±1) = −(b∓ a)2 ≤ 0. So if we plot the function f(u), it looks like figure 43
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Figure 44: The three different types of motion depend on the direction of precession at the

extremal points.

The physical range is u̇2 = f(u) > 0 and −1 ≤ u ≤ 1 so we find that, like in the

spherical pendulum and central force problem, the system is confined to lie between

the two roots of f(u).

There are three possibilities for the motion depending on the sign of φ̇ at the two

roots u = u1 and u = u2 as determined by (3.74). These are

• φ̇ > 0 at both u = u1 and u = u2

• φ̇ > 0 at u = u1, but φ̇ < 0 at u = u2

• φ̇ > 0 at u = u1 and φ̇ = 0 at u = u2

The different paths of the top corresponding to these three possibilities are shown in

figure 44. Motion in φ is called precession while motion in θ is known as nutation.

3.6.1 Letting the Top go

The last of these three motions is not as unlikely as it may first appear. Suppose

we spin the top and let it go at some angle θ. What happens? We have the initial

conditions

θ̇t=0 = 0 ⇒ f(ut=0) = 0

⇒ ut=0 = u2

and φ̇t=0 = 0 ⇒ b− aut=0 = 0

⇒ ut=0 =
b

a
(3.77)
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Remember also that the quantity

pφ = I1φ̇ sin2 θ + I3ω3 cos θ = I3ω3 cos θt=0 (3.78)

is a constant of motion. We now have enough information to figure out the qualitative

motion of the top. Firstly, it starts to fall under the influence of gravity, so θ increases.

But as the top falls, φ̇ must turn and increase in order to keep pφ constant. Moreover,

we also see that the direction of the precession φ̇ must be in the same direction as the

spin ω3 itself. What we get is motion of the third kind.

3.6.2 Uniform Precession

Can we make the top precess with bobbing up and down? i.e. with θ̇ = 0 and φ̇

constant. For this to happen, we would need the function f(u) to have a single root u0

lying in the physical range −1 ≤ u0 ≤ +1. This root must satisfy,

f(u0) = (1− u2
0)(α− βu0)− (b− au0)2 = 0 (3.79)

and f ′(u0) = = −2u0(α− βu0)− β(1− u2
0) + 2a(b− au0) = 0

Combining these, we find 1
2
β = aφ̇ − φ̇2u0. Substitut-

u
0

f(u)

u

−1 +1

Figure 45:

ing the definitions I1a = I3ω3 and β = 2Mgl/I1 into this

expression, we find

Mgl = φ̇(I3ω3 − I1φ̇ cos θ0) (3.80)

The interpretation of this equation is as follows: for a fixed

value of ω3 (the spin of the top) and θ0 (the angle at which

you let it go), we need to give exactly the right push φ̇ to

make the top spin without bobbing. In fact, since equation (3.80) is quadratic in φ̇,

there are two frequencies with which the top can precess without bobbing.

Of course, these “slow” and “fast” precessions only 3
ω

.

φ

slow fast

Figure 46:

exist if equation (3.80) has any solutions at all. Since it is

quadratic, this is not guaranteed, but requires

ω3 >
2

I3

√
MglI1 cos θ0 (3.81)

So we see that, for a given θ0, the top has to be spinning fast

enough in order to have uniform solutions. What happens

if it’s not spinning fast enough? Well, the top falls over!
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Figure 47: The function f(u) for the stable and unstable sleeping top.

3.6.3 The Sleeping Top

Suppose we start the top spinning in an upright position, with

θ = θ̇ = 0 (3.82)

When it spins upright, it is called a sleeping top. The question we want to answer is:

will it stay there? Or will it fall over? From (3.73), we see that the function f(u) must

have a root at θ = 0, or u = +1: f(1) = 0. From the definitions (3.66) and (3.72), we

can check that a = b and α = β in this situation and f(u) actually has a double zero

at u = +1,

f(u) = (1− u)2(α(1 + u)− a2) (3.83)

The second root of f(u) is at u2 = a2/α− 1. There are two possibilities

1: u2 > 1 or ω2
3 > 4I1Mgl/I2

3 . In this case, the graph of f(u) is drawn in first in

figure 47. This motion is stable: if we perturb the initial conditions slightly, we will

perturb the function f(u) slightly, but the physical condition that we must restrict to

the regime f(u) > 0 means that the motion will continue to be trapped near u = 1

2: u2 < 1 or ω2
3 < 4I1Mgl/I2

3 . In this case, the function f(u) looks like the second

figure of 47. Now the top is unstable; slight changes in the initial condition allow a

large excursion.

In practice, the top spins upright until it is slowed by friction to I3ω3 = 2
√
I1Mgl,

at which point it starts to fall and precess.

3.6.4 The Precession of the Equinox

The Euler angles for the earth are drawn in figure 48. The earth spins at an angle of

θ = 23.5o to the plane of its orbit around the sun (known as the plane of the elliptic).
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Figure 48: The precession of the earth.

The spin of the earth is ψ̇ = (day)−1. This causes the earth to bulge at the equator

so it is no longer a sphere, but rather a symmetric top. In turn, this allows the moon

and sun to exert a torque on the earth which produces a precession φ̇. Physically this

means that the direction in which the north pole points traces a circle in the sky and

what we currently call the “pole star” will no longer be in several thousand years time.

It turns out that this precession is “retrograde” i.e. opposite to the direction of the

spin.

One can calculate the precession φ̇ of the earth due to the moon and sun using the

techniques described in the chapter. But the calculation is rather long and we won’t go

over it in this course (see the book by Hand and Finch if you’re interested). Instead,

we will use a different technique to calculate the precession of the earth: astrology!3

To compute the precession of the earth, the first fact we need to know is that Jesus

was born in the age of Pisces. This doesn’t mean that Jesus looked up Pisces in his

daily horoscope (while scholars are divided over the exact date of his birth, he seems to

exhibit many traits of a typical Capricorn) but rather refers to the patch of the sky in

which the sun appears during the first day of spring. Known in astronomical terms as

the “vernal equinox”, this day of the year is defined by the property that the sun sits

directly above the equator at midday. As the earth precesses, this event takes place

at a slightly different point in its orbit each year, with a slightly different backdrop of

stars as a result. The astrological age is defined to be the background constellation in

which the sun rises during vernal equinox.

3I learnt about this fact from John Baez’ website where you can find lots of well written explanations

of curiosities in mathematical physics: http://math.ucr.edu/home/baez/README.html.
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It is easy to remember that Jesus was born in the age of Pisces since the fish was

used as an early symbol for Christianity. The next fact that we need to know is

that we’re currently entering the age of Aquarius (which anyone who has seen the

musical Hair will know). So we managed to travel backwards one house of the zodiac

in 2,000 years. We’ve got to make it around 12 in total, giving us a precession time of

2, 000 × 12 = 24, 000 years. The actual value of the precession is 25, 700 years. Our

calculation is pretty close considering the method!

The earth also undergoes other motion. The value of θ varies from 22.1o to 24.5o

over a period of 41, 000 years, mostly due to the effects of the other planets. These also

affect the eccentricity of the orbit over a period of 105,000 years.

3.7 The Motion of Deformable Bodies

Take a lively cat. (Not one that’s half dead like Schrödinger’s). Hold it upside down and

drop it. The cat will twist its body and land sprightly on its feet. Yet it doesn’t do this

by pushing against anything and its angular momentum is zero throughout. If the cat

were rigid, such motion would be impossible since a change in orientation for a rigid

body necessarily requires non-vanishing angular momentum. But the cat isn’t rigid

(indeed, it can be checked that dead cats are unable to perform this feat) and bodies

that can deform are able to reorient themselves without violating the conservation of

angular momentum. In this section we’ll describe some of the beautiful mathematics

that lies behind this. I should warn you that this material is somewhat more advanced

than the motion of rigid bodies. The theory described below was first developed in the

late 1980s in order to understand how micro-organisms swim4.

3.7.1 Kinematics

We first need to describe the configuration space C of a deformable body. We factor

out translations by insisting that all bodies have the same center of mass. Then the

configuration space C is the space of all shapes with some orientation.

Rotations act naturally on the space C (they simply rotate each shape). This allows

us to define the smaller shape space C̃ so that any two configurations in C which are

related by a rotation are identified in C̃. In other words, any two objects that have the

same shape, but different orientation, are described by different points in C, but the

same point in C̃. Mathematically, we say C̃ ∼= C/SO(3).

4See A. Shapere and F. Wilczek, “Geometry of Self-Propulsion at Low Reynolds Number”, J. Fluid

Mech. 198 557 (1989) . This is the same Frank Wilczek who won the 2004 Nobel prize for his work

on quark interactions.
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Figure 49: Three possible shapes of a deformable object.

We can describe this in more detail for a body consisting of N point masses, each with

position ri. Unlike in section 3.1, we do not require that the distances between particles

are fixed, i.e. |ri − rj| 6= constant. (However, there may still be some restrictions on

the ri). The configuration space C is the space of all possible configurations ri. For

each different shape in C, we pick a representative r̃i with some, fixed orientation. It

doesn’t matter what representative we choose — just as long as we pick one. These

variables r̃i are coordinates on the space shape C̃. For each ri ∈ C, we can always find

a rotation matrix R ∈ SO(3) such that

ri = R r̃i (3.84)

As in section 3.1, we can always do this to continuous bodies. In this case, the con-

figuration space C and the shape space C̃ may be infinite dimensional. Examples of

different shapes for a continuously deformable body are shown in figure 49.

We want to understand how an object rotates as it changes shape keeping its angular

momentum fixed (for example, keeping L = 0 throughout). The first thing to note is

that we can’t really talk about the rotation between objects of different shapes. (How

would you say that the the third object in figure 49 is rotated with respect to the first

or the second?). Instead, we should think of an object moving through a sequence

of shapes before returning to its initial shape. We can then ask if there’s been a net

rotation. As the object moves through its sequence of shapes, the motion is described

by a time dependent r̃i(t), while the corresponding change through the configuration

space is

ri(t) = R(t) r̃(t) (3.85)

where the 3 × 3 rotation matrix R(t) describes the necessary rotation to go from our

fixed orientation of the shape r̃ to the true orientation. As in section 3.1.1, we can define

the 3 × 3 anti-symmetric matrix that describes the instantaneous angular velocity of
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the object. In fact, it will for once prove more useful to work with the “convective

angular velocity” defined around equation (3.10)

Ω = R−1 dR

dt
(3.86)

This angular velocity is non-zero due to the changing shape of the object, rather than

the rigid rotation that we saw before. Let’s do a quick change of notation and write

coordinates on the shape space C̃ as xA, with A = 1, . . . , 3N instead of in vector

notation r̃i, with i = 1, . . . , N . Then, since Ω is linear in time derivatives, we can write

Ω = ΩA(x) ẋA (3.87)

The component ΩA(x) is the 3×3 angular velocity matrix induced if the shape changes

from xA to xA + δxA. It is independent of time: all the time dependence sits in

the ẋA factor which tells us how the shape is changing. The upshot is that for each

shape x ∈ C̃, we have a 3 × 3 anti-symmetric matrix ΩA associated to each of the

A = 1, . . . , 3N directions in which the shape can change.

However, there is an ambiguity in defining the angular velocity Ω. This comes about

because of our arbitrary choice of reference orientation when we picked a representative

r̃i ∈ C̃ for each shape. We could quite easily have picked a different orientation,

r̃i → S(xA) r̃i (3.88)

where S(xA) is a rotation that, as the notation suggests, can vary for each shape xA. If

we pick this new set of representative orientations, then the rotation matrix R defined

in (3.85) changes: R(t)→ R(t)S−1(xA). Equation (3.86) then tells us that the angular

velocity also change as

ΩA → S ΩA S
−1 + S

∂S−1

∂xA
(3.89)

This ambiguity is related to the fact that we can’t define the meaning of rotation

between two different shapes. Nonetheless, we will see shortly that when we come to

compute the net rotation of the same shape, this ambiguity will disappear, as it must.

Objects such as ΩA which suffer an ambiguity of form (3.89) are extremely important

in modern physics and geometry. They are known as non-abelian gauge potentials to

physicists, or as connections to mathematicians.
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3.7.2 Dynamics

So far we’ve learnt how to describe the angular velocity Ω of a deformable object. The

next step is to see how to calculate Ω. We’ll now show that, up to the ambiguity

described in (3.89), the angular velocity Ω is specified by the requirement that the

angular momentum L of the object is zero.

L =
∑
i

mi ri × ṙi

=
∑
i

mi

[
(Rr̃i)× (R ˙̃ri) + (Rr̃i)× (Ṙr̃i)

]
= 0 (3.90)

In components this reads

La = εabc
∑
i

mi

[
RbdRce(r̃i)d( ˙̃ri)e +RbdṘce(r̃i)d(r̃i)e

]
= 0 (3.91)

The vanishing L = 0 is enough information to determine the following result:

Claim: The 3× 3 angular velocity matrix Ωab = R−1
ac Ṙcb is given by

Ωab = εabc Ĩ
−1
cd L̃d (3.92)

where Ĩ is the instantaneous inertia tensor of the shape described by r̃i,

Ĩab =
∑
i

mi((r̃i · r̃i)δab − (r̃i)a(r̃i)b) (3.93)

and L̃a is the apparent angular momentum

L̃a = εabc
∑
i

mi (r̃i)b( ˙̃ri)c (3.94)

Proof: We start by multiplying La by εafg. We need to use the fact that if we

multiply two ε-symbols, we have εabcεafg = (δbfδcg − δbgδcf ). Then

εafgLa =
∑
i

mi

[
RfdRge(r̃i)d( ˙̃ri)e −RgdRfe(r̃i)d( ˙̃ri)e

−RgdṘfe(r̃i)d(r̃i)e +RfdṘge(r̃i)d(r̃i)e

]
= 0 (3.95)

Now multiply by RfbRgc. Since R is orthogonal, we known that RfbRfd = δbd which,

after contracting a bunch of indices, gives us

RfbRgcεafgLa =
∑
i

mi

[
(r̃i)b( ˙̃ri)c − (r̃i)c( ˙̃ri)b − Ωbd(r̃i)c(r̃i)d + Ωcd(r̃i)b(r̃i)d

]
= 0
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This is almost in the form that we want, but the indices aren’t quite contracted in the

right manner to reproduce (3.92). One can try to play around to get the indices working

right, but at this stage it’s just as easy to expand out the components explicitly. For

example, we can look at

L̃1 =
∑
i

mi

[
(r̃i)2( ˙̃ri)3 − ((r̃i)3( ˙̃ri)2

]
=
∑
i

mi [Ω21(r̃i)3(r̃i)1 + Ω23(r̃i)3(r̃i)3 − Ω31(r̃i)2(r̃i)1 − Ω32(r̃i)2(r̃i)2]

= Ĩ11Ω23 + Ĩ12Ω31 + Ĩ13Ω12 = 1
2
εabcĨ1aΩbc (3.96)

where the first equality is the definition of L̃1, while the second equality uses our result

above, and the third equality uses the definition of Ĩ given in (3.93). There are two

similar equations, which are summarised in the formula

L̃a = 1
2
εbcdĨabΩcd (3.97)

Multiplying both sides by Ĩ−1 gives us precisely the claimed result (3.92). This con-

cludes the proof. �.

To summarise: a system with no angular momentum that can twist and turn and

change its shape has an angular velocity (3.92) where r̃i(t) is the path it chooses to take

through the space of shapes. This is a nice formula. But what do we do with it? We

want to compute the net rotation R as the body moves through a sequence of shapes

and returns to its starting point at a time T later. This is given by solving (3.86) for

R. The way to do this was described in section 3.1.2. We use path ordered exponentials

R = P̃ exp

(∫ T

0

Ω(t) dt

)
= P̃ exp

(∮
ΩA dx

A

)
(3.98)

The path ordering symbol P̃ puts all matrices evaluated at later times to the right.

(This differs from the ordering in section 3.1.2 where we put later matrices to the left.

The difference arises because we’re working with the angular velocity Ω = R−1Ṙ instead

of the angular velocity ω = ṘR−1). In the second equality above, we’ve written the

exponent as an integral around a closed path in shape space. Here time has dropped

out. This tells us an important fact: it doesn’t matter how quickly we perform the

change of shapes — the net rotation of the object will be the same.

In particle physics language, the integral in (3.98) is called a “Wilson loop”. We can

see how the rotation fares under the ambiguity (3.87). After some algebra, you can

find that the net rotation R of an object with shape xA is changed by

R→ S(xA)RS(xA)−1 (3.99)
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This is as it should be: the S−1 takes the shape back to our initial choice of standard

orientation; the matrix R is the rotation due to the change in shape; finally S puts us

back to the new, standard orientation. So we see that even though the definition of the

angular velocity is plagued with ambiguity, when we come to ask physically meaningful

questions — such as how much has a shape rotated — the ambiguity disappears.

However, if we ask nonsensical questions — such as the rotation between two different

shapes — then the ambiguity looms large. In this manner, the theory contains a rather

astonishing new ingredient: it lets us know what are the sensible questions to ask!

Quantities for which the ambiguity (3.87) vanishes are called gauge invariant.

In general, it’s quite hard to explicitly compute the integral (3.98). One case where

it is possible is for infinitesimal changes of shape. Suppose we start with a particular

shape x0
A, and move infinitesimally in a loop in shape space:

xA(t) = x0
A + αA(t) (3.100)

Then we can Taylor expand our angular velocity components,

ΩA(x(t)) = ΩA(x0) +
∂ΩA

∂xB

∣∣∣∣
x0
αB (3.101)

Expanding out the rotation matrix (3.98) and taking care with the ordering, one can

show that

R = 1 +
1

2
FAB

∮
αAα̇B dt+O(α3)

= 1 +
1

2

∫
FAB dAAB +O(α3) (3.102)

where FAB is anti-symmetric in the shape space indices A and B, and is a 3× 3 matrix

(the a, b = 1, 2, 3 indices have been suppressed) given by

FAB =
∂ΩA

∂xB
− ∂ΩB

∂xA
+ [ΩA,ΩB] (3.103)

It is known as the field strength to physicists (or the curvature to mathematicians). It is

evaluated on the initial shape x0
A. The second equality in (3.102) gives the infinitesimal

rotation as the integral of the field strength over the area traversed in shape space. This

field strength contains all the information one needs to know about the infinitesimal

rotations of objects induced by changing their shape.

One of the nicest things about the formalism described above is that it mirrors very

closely the mathematics needed to describe the fundamental laws of nature, such as

the strong and weak nuclear forces and gravity. They are all described by “non-abelian

gauge theories”, with an object known as the gauge potential (analogous to ΩA) and

an associated field strength.
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4. The Hamiltonian Formalism

We’ll now move onto the next level in the formalism of classical mechanics, due initially

to Hamilton around 1830. While we won’t use Hamilton’s approach to solve any further

complicated problems, we will use it to reveal much more of the structure underlying

classical dynamics. If you like, it will help us understands what questions we should

ask.

4.1 Hamilton’s Equations

Recall that in the Lagrangian formulation, we have the function L(qi, q̇i, t) where qi
(i = 1, . . . , n) are n generalised coordinates. The equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (4.1)

These are n 2nd order differential equations which require 2n initial conditions, say

qi(t = 0) and q̇i(t = 0). The basic idea of Hamilton’s approach is to try and place qi
and q̇i on a more symmetric footing. More precisely, we’ll work with the n generalised

momenta that we introduced in section 2.3.3,

pi =
∂L

∂q̇i
i = 1, . . . , n (4.2)

so pi = pi(qj, q̇j, t). This coincides with what we usually call momentum only if we

work in Cartesian coordinates (so the kinetic term is 1
2
miq̇

2
i ). If we rewrite Lagrange’s

equations (4.1) using the definition of the momentum (4.2), they become

ṗi =
∂L

∂qi
(4.3)

The plan will be to eliminate q̇i in favour of the momenta pi, and then to place qi and

pi on equal footing.

Figure 50: Motion in configuration space on the left, and in phase space on the right.
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Let’s start by thinking pictorially. Recall that {qi} defines a point in n-dimensional

configuration space C. Time evolution is a path in C. However, the state of the system

is defined by {qi} and {pi} in the sense that this information will allow us to determine

the state at all times in the future. The pair {qi, pi} defines a point in 2n-dimensional

phase space. Note that since a point in phase space is sufficient to determine the future

evolution of the system, paths in phase space can never cross. We say that evolution

is governed by a flow in phase space.

An Example: The Pendulum

Consider a simple pendulum. The configuration space is clearly a circle, S1, parame-

terised by an angle θ ∈ [−π, π). The phase space of the pendulum is a cylinder R×S1,

with the R factor corresponding to the momentum. We draw this by flattening out the

cylinder. The two different types of motion are clearly visible in the phase space flows.

θ=0

p
θ

θ=πθ=−π

identify

θ

Oscillating Motion

(libration)

Rotating anti−clockwise

Rotating clockwise

Separatix

Figure 51: Flows in the phase space of a pendulum.

For small θ and small momentum, the pendulum oscillates back and forth, motion

which appears as an ellipse in phase space. But for large momentum, the pendulum

swings all the way around, which appears as lines wrapping around the S1 of phase

space. Separating these two different motions is the special case where the pendulum
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starts upright, falls, and just makes it back to the upright position. This curve in phase

space is called the separatix.

4.1.1 The Legendre Transform

We want to find a function on phase space that will determine the unique evolution

of qi and pi. This means it should be a function of qi and pi (and not of q̇i) but must

contain the same information as the Lagrangian L(qi, q̇i, t). There is a mathematical

trick to do this, known as the Legendre transform.

To describe this, consider an arbitrary function f(x, y) so that the total derivative is

df =
∂f

∂x
dx+

∂f

∂y
dy (4.4)

Now define a function g(x, y, u) = ux − f(x, y) which depends on three variables, x, y

and also u. If we look at the total derivative of g, we have

dg = d(ux)− df = u dx+ x du− ∂f

∂x
dx− ∂f

∂y
dy (4.5)

At this point u is an independent variable. But suppose we choose it to be a specific

function of x and y, defined by

u(x, y) =
∂f

∂x
(4.6)

Then the term proportional to dx in (4.5) vanishes and we have

dg = x du− ∂f

∂y
dy (4.7)

Or, in other words, g is to be thought of as a function of u and y: g = g(u, y). If we

want an explicit expression for g(u, y), we must first invert (4.6) to get x = x(u, y) and

then insert this into the definition of g so that

g(u, y) = ux(u, y)− f(x(u, y), y) (4.8)

This is the Legendre transform. It takes us from one function f(x, y) to a different func-

tion g(u, y) where u = ∂f/∂x. The key point is that we haven’t lost any information.

Indeed, we can always recover f(x, y) from g(u, y) by noting that

∂g

∂u

∣∣∣∣
y

= x(u, y) and
∂g

∂y

∣∣∣∣
u

=
∂f

∂y
(4.9)

which assures us that the inverse Legendre transform f = (∂g/∂u)u− g takes us back

to the original function.
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The geometrical meaning of the Legendre transform ux 

f(x)

g(u)

x

Figure 52:

is captured in the diagram. For fixed y, we draw the two

curves f(x, y) and ux. For each slope u, the value of g(u)

is the maximal distance between the two curves. To see

this, note that extremising this distance means

d

dx
(ux− f(x)) = 0 ⇒ u =

∂f

∂x
(4.10)

This picture also tells us that we can only apply the Legen-

dre transform to convex functions for which this maximum

exists. Now, armed with this tool, let’s return to dynamics.

4.1.2 Hamilton’s Equations

The Lagrangian L(qi, q̇i, t) is a function of the coordinates qi, their time derivatives q̇i
and (possibly) time. We define the Hamiltonian to be the Legendre transform of the

Lagrangian with respect to the q̇i variables,

H(qi, pi, t) =
n∑
i=1

piq̇i − L(qi, q̇i, t) (4.11)

where q̇i is eliminated from the right hand side in favour of pi by using

pi =
∂L

∂q̇i
= pi(qj, q̇j, t) (4.12)

and inverting to get q̇i = q̇i(qj, pj, t). Now look at the variation of H:

dH = (dpi q̇i + pi dq̇i)−
(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt

)
= dpi q̇i −

∂L

∂qi
dqi −

∂L

∂t
dt (4.13)

but we know that this can be rewritten as

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt (4.14)

So we can equate terms. So far this is repeating the steps of the Legendre transform.

The new ingredient that we now add is Lagrange’s equation which reads ṗi = ∂L/∂qi.

We find

ṗi = −∂H
∂qi

q̇i =
∂H

∂pi
(4.15)

−∂L
∂t

=
∂H

∂t
(4.16)
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These are Hamilton’s equations. We have replaced n 2nd order differential equations by

2n 1st order differential equations for qi and pi. In practice, for solving problems, this

isn’t particularly helpful. But, as we shall see, conceptually it’s very useful!

4.1.3 Examples

1) A Particle in a Potential

Let’s start with a simple example: a particle moving in a potential in 3-dimensional

space. The Lagrangian is simply

L =
1

2
mṙ2 − V (r) (4.17)

We calculate the momentum by taking the derivative with respect to ṙ

p =
∂L

∂ṙ
= mṙ (4.18)

which, in this case, coincides with what we usually call momentum. The Hamiltonian

is then given by

H = p · ṙ− L =
1

2m
p2 + V (r) (4.19)

where, in the end, we’ve eliminated ṙ in favour of p and written the Hamiltonian as a

function of p and r. Hamilton’s equations are simply

ṙ =
∂H

∂p
=

1

m
p

ṗ = −∂H
∂r

= −∇V (4.20)

which are familiar: the first is the definition of momentum in terms of velocity; the

second is Newton’s equation for this system.

2) A Particle in an Electromagnetic Field

We saw in section 2.5.7 that the Lagrangian for a charged particle moving in an elec-

tromagnetic field is

L = 1
2
mṙ2 − e (φ− ṙ ·A) (4.21)

From this we compute the momentum conjugate to the position

p =
∂L

∂ṙ
= mṙ + eA (4.22)
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which now differs from what we usually call momentum by the addition of the vector

potential A. Inverting, we have

ṙ =
1

m
(p− eA) (4.23)

So we calculate the Hamiltonian to be

H(p, r) = p · ṙ− L

=
1

m
p · (p− eA)−

[
1

2m
(p− eA)2 − eφ+

e

m
(p− eA) ·A

]
=

1

2m
(p− eA)2 + eφ (4.24)

Now Hamilton’s equations read

ṙ =
∂H

∂p
=

1

m
(p− eA) (4.25)

while the ṗ = −∂H/∂r equation is best expressed in terms of components

ṗa = −∂H
∂ra

= −e ∂φ
∂ra

+
e

m
(pb − eAb)

∂Ab
∂ra

(4.26)

To show that this is equivalent to the Lorentz force law requires some rearranging of

the indices, but it’s not too hard.

An Example of the Example

Let’s illustrate the dynamics of a particle moving in a magnetic field by looking at a

particular case. Imagine a uniform magnetic field pointing in the z-direction: B =

(0, 0, B). We can get this from a vector potential B = ∇×A with

A = (−By, 0, 0) (4.27)

This vector potential isn’t unique: we could choose others related by a gauge transform

as described in section 2.5.7. But this one will do for our purposes. Consider a particle

moving in the (x, y)-plane. Then the Hamiltonian for this system is

H =
1

2m
(px + eBy)2 +

1

2m
p2
y (4.28)

From which we have four, first order differential equations which are Hamilton’s equa-

tions

ṗx = 0
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ẋ =
1

m
(px + eBy)

ṗy = −eB
m

(px + eBy)

ẏ =
py
m

(4.29)

If we add these together in the right way, we find that

x

y

B

Figure 53:

py + eBx = a = const. (4.30)

and

px = mẋ− eBy = b = const. (4.31)

which is easy to solve: we have

x =
a

eB
+R sin (ω(t− t0))

y = − b

eB
+R cos (ω(t− t0)) (4.32)

with a, b, R and t0 integration constants. So we see that the particle makes circles in

the (x, y)-plane with frequency

ω =
eB

m
(4.33)

This is known as the cyclotron frequency.

4.1.4 Some Conservation Laws

In Section 2, we saw the importance of conservation laws in solving a given problem.

The conservation laws are often simple to see in the Hamiltonian formalism. For ex-

ample,

Claim: If ∂H/∂t = 0 (i.e. H does not depend on time explicitly) then H itself is

a constant of motion.

Proof:

dH

dt
=
∂H

∂qi
q̇i +

∂H

∂pi
ṗi +

∂H

∂t

= −ṗiq̇i + q̇iṗi +
∂H

∂t
(4.34)

=
∂H

∂t
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Claim: If an ignorable coordinate q doesn’t appear in the Lagrangian then, by con-

struction, it also doesn’t appear in the Hamiltonian. The conjugate momentum pq is

then conserved.

Proof

ṗq =
∂H

∂q
= 0 (4.35)

4.1.5 The Principle of Least Action

Recall that in section 2.1 we saw the principle of least action from the Lagrangian

perspective. This followed from defining the action

S =

∫ t2

t1

L(qi, q̇i, t) dt (4.36)

Then we could derive Lagrange’s equations by insisting that δS = 0 for all paths with

fixed end points so that δqi(t1) = δqi(t2) = 0. How does this work in the Hamiltonian

formalism? It’s quite simple! We define the action

S =

∫ t2

t1

(piq̇i −H)dt (4.37)

where, of course, q̇i = q̇i(qi, pi). Now we consider varying qi and pi independently. Notice

that this is different from the Lagrangian set-up, where a variation of qi automatically

leads to a variation of q̇i. But remember that the whole point of the Hamiltonian

formalism is that we treat qi and pi on equal footing. So we vary both. We have

δS =

∫ t2

t1

{
δpi q̇i + piδq̇i −

∂H

∂pi
δpi −

∂H

∂qi
δqi

}
dt

=

∫ t2

t1

{[
q̇i −

∂H

∂pi

]
δpi +

[
−ṗi −

∂H

∂qi

]
δqi

}
dt+ [piδqi]

t2
t1

(4.38)

and there are Hamilton’s equations waiting for us in the square brackets. If we look

for extrema δS = 0 for all δpi and δqi we get Hamilton’s equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(4.39)

Except there’s a very slight subtlety with the boundary conditions. We need the last

term in (4.38) to vanish, and so require only that

δqi(t1) = δqi(t2) = 0 (4.40)

– 87 –



while δpi can be free at the end points t = t1 and t = t2. So, despite our best efforts,

qi and pi are not quite symmetric in this formalism.

Note that we could simply impose δpi(t1) = δpi(t2) = 0 if we really wanted to and

the above derivation still holds. It would mean we were being more restrictive on the

types of paths we considered. But it does have the advantage that it keeps qi and pi
on a symmetric footing. It also means that we have the freedom to add a function to

consider actions of the form

S =

∫ t2

t1

(
piq̇i −H(q, p) +

dF (q, p)

dt

)
(4.41)

so that what sits in the integrand differs from the Lagrangian. For some situations this

may be useful.

4.1.6 William Rowan Hamilton (1805-1865)

The formalism described above arose out of Hamilton’s interest in the theory of optics.

The ideas were published in a series of books entitled “Theory of Systems of Rays”, the

first of which appeared while Hamilton was still an undergraduate at Trinity College,

Dublin. They also contain the first application of the Hamilton-Jacobi formulation

(which we shall see in Section 4.7) and the first general statement of the principal of

least action, which sometimes goes by the name of “Hamilton’s Principle”.

Hamilton’s genius was recognised early. His capacity to soak up classical languages

and to find errors in famous works of mathematics impressed many. In an unprece-

dented move, he was offered a full professorship in Dublin while still an undergraduate.

He also held the position of “Royal Astronomer of Ireland”, allowing him to live at

Dunsink Observatory even though he rarely did any observing. Unfortunately, the

later years of Hamilton’s life were not happy ones. The woman he loved married an-

other and he spent much time depressed, mired in drink, bad poetry and quaternions.

4.2 Liouville’s Theorem

We’ve succeeded in rewriting classical dynamics in terms of first order differential equa-

tions in which each point in phase space follows a unique path under time evolution.

We speak of a flow on phase space. In this section, we’ll look at some of the properties

of these flows

Liouville’s Theorem: Consider a region in phase space and watch it evolve over

time. Then the shape of the region will generically change, but Liouville’s theorem

states that the volume remains the same.
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Figure 54: An infinitesimal volume element of phase space evolving in time.

Proof: Let’s consider an infinitesimal volume moving for an infinitesimal time. We

start in a neighbourhood of the point (qi, pi) in phase space, with volume

V = dq1 . . . dqndp1 . . . dpn (4.42)

Then in time dt, we know that

qi → qi + q̇idt = qi +
∂H

∂pi
dt ≡ q̃i (4.43)

and

pi → pi + ṗidt = pi −
∂H

∂qi
dt ≡ p̃i (4.44)

So the new volume in phase space is

Ṽ = dq̃1 . . . dq̃ndp̃1 . . . dp̃n = (detJ )V (4.45)

where detJ is the Jacobian of the transformation defined by the determinant of the

2n× 2n matrix

J =

(
∂q̃i/∂qj ∂q̃i/∂pj

∂p̃i/∂qj ∂p̃i/∂pj

)
(4.46)

To prove the theorem, we need to show that detJ = 1. First consider a single degree

of freedom (i.e. n = 1). Then we have

detJ = det

(
1 + (∂2H/∂p∂q)dt (∂2H/∂p2) dt

−(∂2H/∂q2) dt 1− (∂2H/∂q∂p) dt

)
= 1 +O(dt2) (4.47)

which means that

d(detJ )

dt
= 0 (4.48)
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so that the volume remains constant for all time. Now to generalise this to arbitrary

n, we have

detJ = det

(
δij + (∂2H/∂pi∂qj)dt (∂2H/∂pi∂pj) dt

−(∂2H/∂qi∂qj) dt δij − (∂2H/∂qi∂pj) dt

)
(4.49)

To compute the determinant, we need the result that det(1 + εM) = 1 + εTrM +O(ε2)

for any matrix M and small ε. Then we have

detJ = 1 +
∑
i

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi

)
dt+O(dt2) = 1 +O(dt2) (4.50)

and we’re done. �

4.2.1 Liouville’s Equation

So how should we think about the volume of phase space? We could consider an

ensemble (or collection) of systems with some density function ρ(p, q, t). We might

want to do this because

• We have a single system but don’t know the exact state very well. Then ρ is

understood as a probability parameterising our ignorance and∫
ρ(q, p, t)

∏
i

dpidqi = 1 (4.51)

• We may have a large number N of identical, non-interacting systems (e.g. N =

1023 gas molecules in a jar) and we really only care about the averaged behaviour.

Then the distribution ρ satisfies∫
ρ(q, p, t)

∏
i

dqidpi = N (4.52)

In the latter case, we know that particles in phase space (i.e. dynamical systems)

are neither created nor destroyed, so the number of particles in a given “comoving” vol-

ume is conserved. Since Liouville tells us that the volume elements dpdq are preserved,

we have dρ/dt = 0. We write this as

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

=
∂ρ

∂t
+
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
= 0 (4.53)
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Rearranging the terms, we have,

∂ρ

∂t
=

∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi

∂H

∂pi
(4.54)

which is Liouville’s equation.

Notice that Liouville’s theorem holds whether or not the system conserves energy.

(i.e. whether or not ∂H/∂t = 0). But the system must be described by a Hamiltonian.

For example, systems with dissipation typically head to regions of phase space with

q̇i = 0 and so do not preserve phase space volume.

The central idea of Liouville’s theorem – that volume of phase space is constant –

is somewhat reminiscent of quantum mechanics. Indeed, this is the first of several oc-

casions where we shall see ideas of quantum physics creeping into the classical world.

Suppose we have a system of particles distributed randomly within a square ∆q∆p in

phase space. Liouville’s theorem implies that if we evolve the system in any Hamil-

tonian manner, we can cut down the spread of positions of the particles only at the

cost of increasing the spread of momentum. We’re reminded strongly of Heisenberg’s

uncertainty relation, which is also written ∆q∆p = constant.

While Liouville and Heisenberg seem to be talking the same language, there are very

profound differences between them. The distribution in the classical picture reflects

our ignorance of the system rather than any intrinsic uncertainty. This is perhaps best

illustrated by the fact that we can evade Liouville’s theorem in a real system! The

crucial point is that a system of classical particles is really described by collection of

points in phase space rather than a continuous distribution ρ(q, p) as we modelled it

above. This means that if we’re clever we can evolve the system with a Hamiltonian

so that the points get closer together, while the spaces between the points get pushed

away. A method for achieving this is known as stochastic cooling and is an important

part of particle collider technology. In 1984 van der Meer won the the Nobel prize for

pioneering this method.

4.2.2 Time Independent Distributions

Often in physics we’re interested in probability distributions that don’t change explicitly

in time (i.e. ∂ρ/∂t = 0). There’s an important class of these of the form,

ρ = ρ(H(q, p)) (4.55)

To see that these are indeed time independent, look at

∂ρ

∂t
=

∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi

∂H

∂pi
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=
∂ρ

∂H

∂H

∂pi

∂H

∂qi
− ∂ρ

∂H

∂H

∂qi

∂H

∂pi
= 0 (4.56)

A very famous example of this type is the Boltzmann distribution

ρ = exp

(
−H(q, p)

kT

)
(4.57)

for systems at a temperature T . Here k is the Boltzmann constant.

For example, for a free particle with H = p2/2m, the Boltzmann distribution is

ρ = exp(−mṙ2/2kT ) which is a Gaussian distribution in velocities.

An historically more interesting example comes from looking at a free particle in a

magnetic field, so H = (p − eA)2/2m (where we’ve set the speed of light c = 1 for

simplicity). Then the Boltzmann distribution is

ρ = exp

(
−H(q, p)

kT

)
= exp

(
−mṙ2

2kT

)
(4.58)

which is again a Gaussian distribution of velocities. In other words, the distribution

in velocities is independent of the magnetic field. But this is odd: the magnetism of

solids is all about how the motion of electrons is affected by magnetic fields. Yet we’ve

seen that the magnetic field doesn’t affect the velocities of electrons. This is known as

the Bohr-van Leeuwen paradox: there can be no magnetism in classical physics! This

was one of the motivations for the development of quantum theory.

4.2.3 Poincaré Recurrence Theorem

We now turn to work of Poincaré from around 1890. The following theorem applies to

systems with a bounded phase space (i.e. of finite volume). This is not an uncommon

occurrence. For example, if we have a conserved energy E = T + V with T > 0 and

V > 0 then the accessible phase space is bounded by the spatial region V (r) ≤ E.

With this in mind, we have

D
0

D
1

Figure 55: The Hamiltonian map in a time step T .
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Theorem: Consider an initial point P in phase space. Then for any neighbourhood

D0 of P , there exists a point P ′ ∈ D0 that will return to D0 in a finite time.

Proof: Consider the evolution of D0 over a finite time

k
D

k’
D

Figure 56:

interval T . Hamilton’s equations provide a map D0 7→ D1

shown in figure 55. By Liouville’s theorem, we know that

V ol(D0) = V ol(D1), although the shapes of these two regions

will in general be different. Let Dk be the region after time kT

where k is an integer. Then there must exist integers k and k′

such that the intersection of Dk and Dk′ is not empty:

Dk ∩Dk′ 6= φ (4.59)

(If this isn’t true then the total volume
⋃∞
k=0Dk → ∞ but,

k’−k
D

D
0

Figure 57:

by assumption, the phase space volume is finite). Take k′ > k

such that ωk,k′ = Dk ∩ Dk′ 6= φ. But since the Hamiltonian

mapping Dk → Dk+1 is invertible, we can track backwards to

find ω0,k′−k = D0 ∩ Dk′−k 6= 0. So some point P ′ ∈ D0 has

returned to D in k′ − k time steps T . �

What does the Poincaré recurrence theorem mean? Consider

gas molecules all in one corner of the room. If we let them go,

they fill the room. But this theorem tells us that if we wait long enough, they will all

return once more to the corner of the room. The trick is that the Poincaré recurrence

time for this to happen can easily be longer than the lifetime of the universe!

Figure 58: Eventually all the air molecules in a room will return to one corner.

Question: Where’s your second law of thermodynamics now?!

4.3 Poisson Brackets

In this section, we’ll present a rather formal, algebraic description of classical dynamics

which makes it look almost identical to quantum mechanics! We’ll return to this

analogy later in the course.
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We start with a definition. Let f(q, p) and g(q, p) be two functions on phase space.

Then the Poisson bracket is defined to be

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(4.60)

Since this is a kind of weird definition, let’s look at some of the properties of the Poisson

bracket to get a feel for it. We have

• {f, g} = −{g, f}.

• linearity: {αf + βg, h} = α{f, h}+ β{g, h} for all α, β ∈ R.

• Leibniz rule: {fg, h} = f{g, h} + {f, h}g which follows from the chain rule in

differentiation.

• Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0. To prove this you

need a large piece of paper and a hot cup of coffee. Expand out all 24 terms and

watch them cancel one by one.

What we’ve seen above is that the Poisson bracket { , } satisfies the same algebraic

structure as matrix commutators [ , ] and the differentiation operator d. This is related

to Heisenberg’s and Schrödinger’s viewpoints of quantum mechanics respectively. (You

may be confused about what the Jacobi identity means for the derivative operator d.

Strictly speaking, the Poisson bracket is like a ”Lie derivative” found in differential

geometry, for which there is a corresponding Jacobi identity).

The relationship to quantum mechanics is emphasised even more if we calculate

{qi, qj} = 0

{pi, pj} = 0 (4.61)

{qi, pj} = δij

We’ll return to this in section 4.8.

Claim: For any function f(q, p, t),

df

dt
= {f,H}+

∂f

∂t
(4.62)

Proof:

df

dt
=

∂f

∂pi
ṗi +

∂f

∂qi
q̇i +

∂f

∂t
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= − ∂f
∂pi

∂H

∂qi
+
∂f

∂qi

∂H

∂pi
+
∂f

∂t
(4.63)

= {f,H}+
∂f

∂t

Isn’t this a lovely equation! One consequence is that if we can find a function I(p, q)

which satisfy

{I,H} = 0 (4.64)

then I is a constant of motion. We say that I and H Poisson commute. As an example

of this, suppose that qi is ignorable (i.e. it does not appear in H) then

{pi, H} = 0 (4.65)

which is the way to see the relationship between ignorable coordinates and conserved

quantities in the Poisson bracket language.

Note that if I and J are constants of motion then {{I, J}, H} = {I, {J,H}} +

{{I,H}, J} = 0 which means that {I, J} is also a constant of motion. We say that the

constants of motion form a closed algebra under the Poisson bracket.

4.3.1 An Example: Angular Momentum and Runge-Lenz

Consider the angular momentum L = r× p which, in component form, reads

L1 = r2p3 − r3p2 , L2 = r3p1 − r1p3 , L3 = r1p2 − r2p1 (4.66)

and let’s look at the Poisson bracket structure. We have

{L1, L2} = {r2p3 − r3p2, r3p1 − r1p3}
= {r2p3, r3p1}+ {r3p2, r1p3}
= −r2p1 + p2r1 = L3 (4.67)

So if L1 and L2 are conserved, we see that L3 must also be conserved. Or, in other

words, the whole vector L is conserved if any two components are. Similarly, one can

show that

{L2, Li} = 0 (4.68)

where L2 =
∑

i L
2
i . This should all be looking familiar from quantum mechanics.
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Another interesting object is the (Hermann-Bernoulli-Laplace-Pauli-) Runge-Lenz

vector, defined as

A =
1

m
p× L− r̂ (4.69)

where r̂ = r/r. This vector satisfies A · L = 0. If you’re willing to spend some time

playing with indices, it’s not hard to derive the following expressions for the Poisson

bracket structure

{La, Ab} = εabcAc , {Aa, Ab} = − 2

m

(
p2

2m
− 1

r

)
εabcLc (4.70)

The last of these equations suggests something special might happen when we consider

the familiar Hamiltonian H = p2/2m− 1/r so that the Poisson bracket becomes

{Aa, Ab} = −2H

m
εabcLc (4.71)

Indeed, for this choice of Hamiltonian is a rather simple to show that

{H,A} = 0 (4.72)

So we learn that the Hamiltonian with−1/r potential has another constant of motion A

that we’d previously missed! The fact that A is conserved can be used to immediately

derive Kepler’s elliptical orbits: dotting A with r̂ yields r̂ ·A + 1 = L2/r which is the

equation for an ellipse. Note that the three constants of motion, L, A and H form a

closed algebra under the Poisson bracket.

Noether’s theorem tells us that the conservation of L and H are related to rotational

symmetry and time translation respectively. One might wonder whether there’s a

similar symmetry responsible for the conservation of A. It turns out that there is: the

Hamiltonian has a hidden SO(4) symmetry group. You can read more about this in

Goldstein.

4.3.2 An Example: Magnetic Monopoles

We’ve seen in the example of section 4.1.3 that a particle in a magnetic field B = ∇×A

is described by the Hamiltonian

H =
1

2m
(p− eA(r))2 =

m

2
ṙ2 (4.73)

where, as usual in the Hamiltonian, ṙ is to be thought of as a function of r and p. It’s

a simple matter to compute the Poisson bracket structure for this system: it reads

{mṙa,mṙb} = e εabcBc , {mṙa, rb} = −δab (4.74)
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Let’s now use this to describe a postulated object known as a magnetic monopole. It’s

a fact that all magnets ever discovered are dipoles: they have both a north and south

pole. Chop the magnet in two, and each piece also has a north and a south pole.

Indeed, this fact is woven into the very heart of electromagnetism when formulated in

terms of the gauge potential A. Since we define B = ∇×A, we immediately have one

of Maxwell’s equations,

∇ ·B = 0 (4.75)

which states that any flux that enters a region must also leave. Or, in other words,

there can be no magnetic monopole. Such a monopole would have a radial magnetic

field,

B = g
r

r3
(4.76)

which doesn’t satisfy (4.75) since it gives rise to a delta function on the right-hand side.

So if magnetic monopoles have never been observed, and are forbidden by Maxwell’s

equations, why are we interested in them?! The point is that every theory that goes

beyond Maxwell’s equations and tries to unify electromagnetism with the other forces

of Nature predicts magnetic monopoles. So there’s reason to suspect that, somewhere

in the universe, there may be particles with a radial magnetic field given by (4.76).

What happens if an electron moves in the background of a monopole? It’s tricky

to set up the Lagrangian as we don’t have a gauge potential A. (Actually, one can

work with certain singular gauge potentials but we won’t go there). However, we can

play with the Poisson brackets (4.74) which contain only the magnetic field. As an

application, consider the generalised angular momentum,

J = mr× ṙ− ger̂ (4.77)

where r̂ = r/r. For g = 0, this expression reduces to the usual angular momentum. It is

a simple matter to show using (4.74) that in the background of the magnetic monopole

the Hamiltonian H = 1
2
mṙ2 and J satisfy

{H,J} = 0 (4.78)

which guarantees that J is a constant of motion. What do we learn from this? Since

J is conserved, we can look at r̂ · J = −eg to learn that the motion of an electron in

the background of a magnetic monopole lies on a cone of angle cos θ = eg/J pointing

away from the vector J.
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4.3.3 An Example: The Motion of Vortices

The formal structure of Poisson brackets that we’ve introduced here can be employed

even when it’s not obvious that we’re talking about coordinates and momenta. To

illustrate this, consider the rather odd motion of line vortices moving in a plane. For n

vortices with positions ri = (xi, yi), each with strength γi, the equations of motion are

γiẋi = −
∑
j 6=i

γiγj
yi − yj
|ri − rj|2

γiẏi = +
∑
j 6=i

γiγj
xi − xj
|ri − rj|2

(4.79)

where there is no sum over i on the left hand side of

Figure 59:

these equations. Notice that these are first order equa-

tions for the position variables, rather than for position

and momentum. How can we cast this dynamics in a

Hamiltonian framework? The trick is to consider one of

the positions as a “canonical momentum”. We consider

the Hamiltonian

H = −
∑
i<j

γiγj log |ri − rj| (4.80)

which is endowed with the Poisson bracket structure

{f, g} =
n∑
i=1

1

γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
(4.81)

In particular, we have

{xi, yj} =
δij
γi

(4.82)

Using this, we can check that Hamilton’s equations reproduce the equations of motion,

ẋi = {xi, H} =
1

γi

∂H

∂yi

ẏi = {yi, H} = − 1

γi

∂H

∂xi
(4.83)

The system has a number of conserved quantities. Firstly, there is the “total momen-

tum”,

Px =
∑
i

γiyi , Py = −
∑
i

γixi (4.84)
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which satisfy {Px, H} = {Py, H} = 0, ensuring that they are conserved quantities.

We also have {Px, Py} =
∑

i γi and the right hand side, being constant, is trivially

conserved.

The other conserved quantity is the “total angular momentum”,

J = −1
2

n∑
i=1

γi(x
2
i + y2

i ) (4.85)

which again satisfies {J,H} = 0, ensuring it is conserved. The full algebra of the

conserved quantities includes {Px, J} = −Py and {Py, J} = Px, so the system closes

(meaning we get back something we know on the right hand side). In fact, one can

show that H, J and (P 2
x + P 2

y ) provide three mutually Poisson commuting conserved

quantities.

So what is the resulting motion of a bunch of vortices? For two vortices, we can

simply solve the equations of motion to find,

x1 − x2 = R sin
( ω
R2

(t− t0)
)

y1 − y2 = R cos
( ω
R2

(t− t0)
)

(4.86)

where R is the separation between the vortices and ω = (γ1 + γ2)/R2. So we learn

that two vortices orbit each other with frequency inversely proportional to the square

of their separation.

For three vortices, it turns out that there is a known solution which is possible

because of the three mutually Poisson commuting conserved quantities we saw above.

We say the system is “integrable”. We’ll define this properly shortly. For four or more

vortices, the motion is chaotic5.

You may think that the Poisson bracket structure {x, y} 6= 0 looks a little strange.

But it also appears in a more familiar setting: a charged particle moving in a magnetic

field B = (0, 0, B). We saw this example in section 4.1.3, where we calculated

px = mẋ− eB

mc
y (4.87)

For large magnetic fields the second term in this equation dominates, and we have

px ≈ −eBy/mc. In this case the Poisson bracket is

{x, px} = 1 ⇒ {x, y} ≈ −mc
eB

(4.88)

5For more details on this system, see the review H. Aref, “Integrable, Chaotic, and Turbulent Vortex

Motion in Two-Dimensional Flows”, Ann. Rev. Fluid Mech. 15 345 (1983).

– 99 –



This algebraic similarity between vortices and electrons is a hot topic of current re-

search: can we make vortices do similar things to electrons in magnetic fields? For

example: will vortices in a Bose-Einstein condensate form a fractional quantum Hall

state? This is currently an active area of research.

4.4 Canonical Transformations

There is a way to write Hamilton’s equations so that they look even more symmetric.

Define the 2n vector x = (q1, . . . , qn, p1, . . . , pn)T and the 2n× 2n matrix J ,

J =

(
0 1

−1 0

)
(4.89)

where each entry is itself an n×nmatrix. Then with this notation, Hamilton’s equations

read

ẋ = J
∂H

∂x
(4.90)

Now remember that in the Lagrangian formalism we made a big deal about the fact that

we could change coordinates qi → Qi(q) without changing the form of the equations.

Since we’ve managed to put qi and pi on an equal footing in the Hamiltonian formalism,

one might wonder if its possible to make an even larger class of transformations of the

form,

qi → Qi(q, p) and pi → Pi(q, p) (4.91)

The answer is yes! But not all such transformations are allowed. To see what class of

transformations leaves Hamilton’s equations invariant, we use our new symmetric form

in terms of x and write the transformation as

xi → yi(x) (4.92)

Note that we’ll continue to use the index i which now runs over the range i = 1, . . . , 2n.

We have

ẏi =
∂yi
∂xj

ẋj =
∂yi
∂xj

Jjk
∂H

∂yl

∂yl
∂xk

(4.93)

or, collating all the indices, we have

ẏ = (J J J T )
∂H

∂y
(4.94)
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where Jij = ∂yi/∂xj is the Jacobian that we met in section 4.2. We see that Hamilton’s

equations are left invariant under any transformation whose Jacobian J satisfies

J J J T = J ⇒ ∂yi
∂xj

Jjk
∂yl
∂xk

= Jil (4.95)

The Jacobian J is said to be symplectic if this holds. A change of variables with a

symplectic Jacobian is said to be a canonical transformation.

There is a nice method to construct canonical transformations using “generating

functions” which we will mention in section 4.4.3. Before we get to this, let’s look

at some uses. We start by proving a theorem relating canonical transformations with

Poisson brackets.

Theorem: The Poisson bracket is invariant under canonical transformations. Con-

versely, any transformation which preserves the Poisson bracket structure so that

{Qi, Qj} = {Pi, Pj} = 0 and {Qi, Pj} = δij (4.96)

is canonical.

Proof: Let’s start by showing that the Poisson bracket is invariant under canonical

transformations. Consider two functions f(xi) and g(xi). Then,

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

=
∂f

∂xi
Jij

∂g

∂xj
(4.97)

So if x→ y(x), we have

∂f

∂xi
=

∂f

∂yk
Jki (4.98)

and, assuming the transformation is canonical, the Poisson bracket becomes

{f, g} =
∂f

∂yk
Jki Jij Jlj

∂g

∂yl
=

∂f

∂yk
Jkl

∂g

∂yl
(4.99)

This means that we can compute our Poisson brackets in any coordinates related by a

canonical transformation. Now let’s show the converse. Go back to the notation (qi, pi)

and the new coordinates (Qi(q, p), Pi(q, p)). The Jacobian is given by

Jij =

(
∂Qi/∂qj ∂Qi/∂pj

∂Pi/∂qj ∂Pi/∂pj

)
(4.100)
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If we now compute J JJ T in components, we get

(J JJ T )ij =

(
{Qi, Qj} {Qi, Pj}
{Pi, Qj} {Pi, Pj}

)
(4.101)

So whenever the Poisson bracket structure is preserved, the transformation is canonical.

�

Example

In the next section we’ll see several non-trivial examples of canonical transformations

which mix up q and p variables. But for now let’s content ourselves with reproducing

the coordinate changes that we had in section 2. Consider a change of coordinates of

the form

qi → Qi(q) (4.102)

We know that Lagrange’s equations are invariant under this. But what transformation

do we have to make on the momenta

pi → Pi(q, p) (4.103)

so that Hamilton’s equations are also invariant? We write Θij = ∂Qi/∂qj and look at

the Jacobian

Jij =

(
Θij 0

∂Pi/∂qj ∂Pi/∂pj

)
(4.104)

in order for the transformation to be canonical, we require J JJ T = J . By expanding

these matrices out in components, we see that this is true if

Pi = (Θ−1)jipj (4.105)

This is as we would expect, for it’s equivalent to Pi = ∂L/∂Q̇i. Note that although

Qi = Qi(q) only, Pi 6= Pi(p). Instead, the new momentum Pi depends on both q and p.

4.4.1 Infinitesimal Canonical Transformations

Consider transformations of the form

qi → Qi = qi + αFi(q, p)

pi → Pi = pi + αEi(q, p) (4.106)
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where α is considered to be infinitesimally small. What functions Fi(q, p) and Ei(q, p)

are allowed for this to be a canonical transformation? The Jacobian is

Jij =

(
δij + α ∂Fi/∂qj α ∂Fi/∂pj

α ∂Ei/∂qj δij + α ∂Ei/∂pj

)
(4.107)

so the requirement that J JJ T = J gives us

∂Fi
∂qj

= −∂Ei
∂pj

(4.108)

which is true if

Fi =
∂G

∂pi
and Ei = −∂G

∂qi
(4.109)

for some function G(q, p). We say that G generates the transformation.

This discussion motivates a slightly different way of thinking about canonical trans-

formations. Suppose that we have a one-parameter family of transformations,

qi → Qi(q, p;α) and pi → Pi(q, p;α) (4.110)

which are canonical for all α ∈ R and have the property that Qi(q, p;α = 0) = qi and

Pi(q, p;α = 0) = pi. Up until now, we’ve been thinking of canonical transformations in

the “passive” sense, with the (Qi, Pi) labelling the same point in phase space as (qi, pi),

just in different coordinates. But a one-parameter family of canonical transformations

can be endowed with a different interpretation, namely that the transformations take

us from one point in the phase space (qi, pi) to another point in the same phase space

(Qi(q, p;α), Pi(q, p;α)). In this “active” interpretation, as we vary the parameter α

we trace out lines in phase space. Using the results (4.106) and (4.109), the tangent

vectors to these lines are given by,

dqi
dα

=
∂G

∂pi
and

dpi
dα

= −∂G
∂qi

(4.111)

But these look just like Hamilton’s equations, with the Hamiltonian replaced by the

function G and time replaced by the parameter α. What we’ve found is that every

one-parameter family of canonical transformations can be thought of as “Hamiltonian

flow” on phase space for an appropriately chosen “Hamiltonian” G. Conversely, time

evolution can be thought of as a canonical transformation for the coordinates

(qi(t0), pi(t0))→ (qi(t), pi(t)) (4.112)

generated by the Hamiltonian. Once again, we see the link between time and the

Hamiltonian.
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As an example, consider the function G = pk. Then the corresponding infinitesimal

canonical transformation is qi → qi + αδik and pi → pi, which is simply a translation.

We say that translations of qk are generated by the conjugate momentum G = pk.

4.4.2 Noether’s Theorem Revisited

Recall that in the Lagrangian formalism, we saw a connection between symmetries and

conservation laws. How does this work in the Hamiltonian formulation?

Consider an infinitesimal canonical transformation generated by G. Then

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi

= α
∂H

∂qi

∂G

∂pi
− α ∂H

∂pi

∂G

∂qi
+O(α2)

= α {H,G} (4.113)

The generator G is called a symmetry of the Hamiltonian if δH = 0. This holds if

{G,H} = 0 (4.114)

But we know from section 4.3 that Ġ = {G,H}. We have found that if G is a symmetry

then G is conserved. Moreover, we can reverse the argument. If we have a conserved

quantity G, then we can always use this to generate a canonical transformation which

is a symmetry.

4.4.3 Generating Functions

There’s a simple method to construct canonical transformations between coordinates

(qi, pi) and (Qi, Pi). Consider a function F (q,Q) of the original qi’s and the final Qi’s.

Let

pi =
∂F

∂qi
(4.115)

After inverting, this equation can be thought of as defining the new coordinate Qi =

Qi(q, p). But what is the new canonical momentum P? We’ll show that it’s given by

Pi = − ∂F
∂Qi

(4.116)

The proof of this is a simple matter of playing with partial derivatives. Let’s see how

it works in an example with just a single degree of freedom. (It generalises trivially to

the case of several degrees of freedom). We can look at the Poisson bracket

{Q,P} =
∂Q

∂q

∣∣∣∣
p

∂P

∂p

∣∣∣∣
q

− ∂Q

∂p

∣∣∣∣
q

∂P

∂q

∣∣∣∣
p

(4.117)
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At this point we need to do the playing with partial derivatives. Equation (4.116)

defines P = P (q,Q), so we have

∂P

∂p

∣∣∣∣
q

=
∂Q

∂p

∣∣∣∣
q

∂P

∂Q

∣∣∣∣
q

and
∂P

∂q

∣∣∣∣
p

=
∂P

∂q

∣∣∣∣
Q

+
∂Q

∂q

∣∣∣∣
p

∂P

∂Q

∣∣∣∣
q

(4.118)

Inserting this into the Poisson bracket gives

{Q,P} = − ∂Q

∂p

∣∣∣∣
q

∂P

∂q

∣∣∣∣
Q

=
∂Q

∂p

∣∣∣∣
q

∂2F

∂q∂Q
=
∂Q

∂p

∣∣∣∣
q

∂p

∂Q

∣∣∣∣
q

= 1 (4.119)

as required. The function F (q,Q) is known as a generating function of the first kind.

There are three further types of generating function, related to the first by Leg-

endre transforms. Each is a function of one of the original coordinates and one of

the new coordinates. You can check that the following expression all define canonical

transformations:

F2(q, P ) : pi =
∂F2

∂qi
and Qi =

∂F2

∂Pi
(4.120)

F3(p,Q) : qi = −∂F3

∂pi
and Pi = −∂F3

∂Qi

F4(p, P ) : qi = −∂F4

∂pi
and Qi =

∂F4

∂Pi

4.5 Action-Angle Variables

We’ve all tried to solve problems in physics using the wrong coordinates and seen

what a mess it can be. If you work in Cartesian coordinates when the problem really

requires, say, spherical polar coordinates, it’s always possible to get to the right answer

with enough perseverance, but you’re really making life hard for yourself. The ability

to change coordinate systems can drastically simplify a problem. Now we have a much

larger set of transformations at hand; we can mix up q’s and p’s. An obvious question

is: Is this useful for anything?! In other words, is there a natural choice of variables

which makes solving a given problem much easier. In many cases, there is. They’re

called “angle-action” variables.

4.5.1 The Simple Harmonic Oscillator

We’ll start this section by doing a simple example which will illustrate the main point.

We’ll then move on to the more general theory. The example we choose is the simple

harmonic oscillator. Notice that as our theory gets more abstract, our examples get

easier!
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We have the Hamiltonian

q

p

Figure 60:

H =
p2

2m
+

1

2
mω2q2 (4.121)

so that Hamilton’s equations are the familiar

ṗ = −mω2q and q̇ =
p

m
(4.122)

which has the rather simple solution

q = A cos(ω(t− t0)) and p = −mωA sin(ω(t− t0)) (4.123)

where A and t0 are integration constants. The flows in phase space are ellipses as shown

in the figure.

Now let’s do a rather strange change of variables in which we use our freedom to mix

up the position and momentum variables. We write

(q, p)→ (θ, I) (4.124)

where you can think of θ is our new position coordinate and I our new momentum

coordinate. The transformation we choose is:

q =

√
2I

mω
sin θ and p =

√
2Imω cos θ (4.125)

It’s an odd choice, but it has advantages! Before we turn to these, let’s spend a minute

checking that this is indeed a canonical transformation. There’s two ways to do this

and we’ll do both:

1) We can make sure that the Poisson brackets are preserved. In fact, it’s easier to

work backwards and check that {q, p} = 1 in (θ, I) coordinates. In other words, we

need to show that

{q, p}(θ,I) ≡
∂q

∂θ

∂p

∂I
− ∂q

∂I

∂p

∂θ
= 1 (4.126)

To confirm this, let’s substitute the transformation (4.125),

{q, p}(θ,I) =

{√
2I

mω
sin θ,

√
2Imω cos θ

}
(θ,I)

= 2
{√

I sin θ,
√
I cos θ

}
(θ,I)

= 1 (4.127)

where the final equality follows after a quick differentiation. So we see that the trans-

formation (4.125) is indeed canonical.
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2) The second way to see that the transformation is canonical is to prove that the

Jacobian is symplectic. Let’s now check it this way. We can calculate

J =

(
∂θ/∂q ∂θ/∂p

∂I/∂q ∂I/∂p

)
=

(
(mω/p) cos2 θ −(mωq/p2) cos2 θ

mωq p/mω

)
(4.128)

from which we can calculate J JJ T and find that it is equal to J as required.

So we have a canonical transformation in (4.125). But what’s the point of doing

this? Let’s look at the Hamiltonian in our new variables.

H =
1

2m
(2mωI) sin2 θ +

1

2
mω2 2I

mω
cos2 θ = ωI (4.129)

so the Hamiltonian doesn’t depend on the variable θ! This means

θ=2πθ=0

I

Figure 61:

that Hamilton’s equations read

θ̇ =
∂H

∂I
= ω and İ = −∂H

∂θ
= 0 (4.130)

We’ve managed to map the phase space flow onto a cylinder param-

eterised by θ and I so that the flows are now all straight lines as

shown in the figure. The coordinates (θ, I) are examples of angle-

action variables.

4.5.2 Integrable Systems

In the above example, we saw that we could straighten out the flow lines of the simple

harmonic oscillator with a change of variables, so that the motion in phase space became

trivial. It’s interesting to ask if we can we do this generally? The answer is: only for

certain systems that are known as integrable.

Suppose we have n degrees of freedom. We would like to find canonical transforma-

tions

(qi, pi)→ (θi, Ii) (4.131)

such that the Hamiltonian becomes H = H(I1, . . . , In) and doesn’t depend on θi. If we

can do this, then Hamilton’s equations tell us that we have n conserved quantities Ii,

while

θ̇i =
∂H

∂Ii
= ωi (4.132)

where ωi is independent of θ (but in general depends on I) so that the solutions are

simply θi = ωit. Whenever such a transformation exists, the system is said to be

integrable. For bounded motion, the θi are usually scaled so that 0 ≤ θi < 2π and the

coordinates (θi, Ii) are called angle-action variables.
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Liouville’s Theorem on Integrable Systems: There is a converse statement.

If we can find n mutually Poisson commuting constants of motion I1, . . . , In then this

implies the existence of angle-action variables and the system is integrable. The re-

quirement of Poisson commutation {Ii, Ij} = 0 is the statement that we can view the

Ii as canonical momentum variables. This is known as Liouville’s theorem. (Same

Liouville, different theorem). A proof can be found in the book by Arnold.

Don’t be fooled into thinking all systems are integrable. They are rather special and

precious. It remains an active area of research to find and study these systems. But

many – by far the majority – of systems are not integrable (chaotic systems notably

among them) and don’t admit this change of variables. Note that the question of

whether angle-action variables exist is a global one. Locally you can always straighten

out the flow lines; it’s a question of whether you can tie these straight lines together

globally without them getting tangled.

Clearly the motion of a completely integrable system is restricted to lie on Ii =

constant slices of the phase space. A theorem in topology says that these surfaces must

be tori (S1 × . . .× S1) known as the invariant tori.

4.5.3 Action-Angle Variables for 1d Systems

Let’s see how this works for a 1d system with Hamil-

1
q

2
q

V(q)

q

E

Figure 62:

tonian

H =
p2

2m
+ V (q) (4.133)

Since H itself is a constant of motion, with H = E for

some constant E throughout the motion, the system is

integrable. We assume that the motion is bounded so that

q1 ≤ q ≤ q2 as shown in the figure. Then the motion is

periodic, oscillating back and forth between the two end points, and the motion in phase

space looks something like the figure 63. Our goal is to find a canonical transformation

to variables θ and I that straightens out this flow to look like the second figure in the

diagram.

So what are I and θ? Since I is a constant of motion, it should be some function of

the energy or, alternatively,

H = H(I) = E (4.134)
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θ=2πθ=0

I

q

p

Figure 63: Can we straighten out the flow lines in phase space?

But which choice will have as its canonical partner θ ∈ [0, 2π) satisfying

θ̇ =
∂H

∂I
=
∂E

∂I
≡ ω (4.135)

for a constant ω which is the frequency of the orbit?

Claim: The correct choice for I is

I =
1

2π

∮
p dq (4.136)

which is the area of phase space enclosed by an orbit (divided by 2π) and is a function

of the energy only.

Proof: Since the Hamiltonian is conserved, we may write the momentum as a function

of q and E:

p =
√

2m
√
E − V (q) (4.137)

We know that for this system p = mq̇ so we have

dt =

√
m

2

dq√
E − V (q)

(4.138)

Integrating over a single orbit with period T = 2π/ω, we have

2π

ω
=

√
m

2

∮
dq√

E − V (q)

=

∮ √
2m

(
d

dE

√
E − V (q)

)
dq (4.139)
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At this point we take the differentiation d/dE outside the integral. This isn’t obviously

valid since the path around which the integral is evaluated itself changes with energy

E. Shortly we’ll show that this doesn’t matter. For now, let’s assume that this is valid

and continue to find

2π

ω
=

d

dE

∮ √
2m
√
E − V (q) dq

=
d

dE

∮
p dq

= 2π
dI

dE
(4.140)

where in the last line, we’ve substituted for our putative action variable I. Examining

our end result, we have found that I does indeed satisfy

dE

dI
= ω (4.141)

where ω is the frequency of the orbit. This is our re-
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Figure 64:

quired result, but it remains to show that we didn’t

miss anything by taking d/dE outside the integral.

Let’s think about this. We want to see how the area

enclosed by the curve changes under a small shift in

energy δE. Both the curve itself and the end points

q1 ≤ q ≤ q2 vary as the energy shifts. The latter

change by δqi = (dV (qi)/dq) δE. Allowing the dif-

ferential d/dE to wander inside and outside the in-

tegral is tantamount to neglecting the change in the

end points. The piece we’ve missed is the small white

region in the figure. But these pieces are of order δE2. To see this, note that order δE

pieces are given by∫ qi

qi+δqi

√
2m
√
E − V (q) dq ≈

√
2m
√
E − V (q)

∂V

∂q
δE (4.142)

evaluated at the end point q = qi. They vanish because E = V (qi) at the end points.

This completes the proof. �

This tells us that we can calculate the period of the orbit ω by figuring out the area

enclosed by the orbit in phase space as a function of the energy. Notice that we can

do this without ever having to work out the angle variable θ (which is a complicated

function of q and p) which travels with constant speed around the orbit (i.e. satisfies

θ = ωt).
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In fact, it’s not too hard to get an expression for θ by going over the above analysis

for a small part of the period. It follows from the above proof that

t =
d

dE

∫
p dq (4.143)

but we want a θ which obeys θ = ωt. We see that we can achieve this by taking the

choice

θ = ω
d

dE

∫
p dq =

dE

dI

d

dE

∫
p dq =

d

dI

∫
p dq (4.144)

Because E is conserved, all 1d systems are integrable. What about higher dimen-

sional systems? If they are integrable, then there exists a change to angle-action vari-

ables given by

Ii =
1

2π

∮
γi

∑
j

pj dqj

θi =
∂

∂Ii

∫
γi

∑
j

pj dqj (4.145)

where the γi are the periods of the invariant tori.

4.5.4 Action-Angle Variables for the Kepler Problem

Perhaps the simplest integrable system with more than one degree of freedom is the

Kepler problem. This is a particle of mass m moving in three dimensions, subject to

the potential

V (r) = −k
r

We solved this already back in the Dynamics and Relativity course. Recall that we can

use the conservation of the (direction of) angular momentum to restrict dynamics to

a two-dimensional plane. We’ll work in polar coordinates (r, φ) in this spatial plane.

The associated momenta are pr = mṙ and pφ = mr2φ̇. The Hamiltonian is

H =
1

2m
p2
r +

1

2mr2
p2
φ −

k

r
(4.146)

There are two action variables, one associated to the radial motion and one associated

to the angular motion. The latter is straightforward: it is the angular momentum itself

Iφ =
1

2π

∫ 2π

0

pφdφ = pφ
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The action variable for the radial motion is more interesting. We can calculating it

by using the fact that the total energy, E, and the angular momentum Iφ are both

conserved. Then, rearranging (4.146), we have

p2
r = 2m

(
E +

k

r

)
−
I2
φ

r2

and the action variable is

Ir =
1

2π

∮
prdr =

1

2π
2

∫ rmax

rmin

prdr =
1

2π
2

∫ rmax

rmin

√
2m

(
E +

k

r

)
−
I2
φ

r2
dr

Here rmin and rmax are, respectively, the closest and furthest distance to the origin.

(If you try to picture this in space, you’ll need to recall that in the Kepler problem

the origin sits on the focus of the ellipse, rather than the centre; this means that the

smallest and furthest distance are opposite each other on the orbit).The factor of 2 in

the second equality comes because a complete cycle goes from rmin to rmax and back

again. To do this integral, you’ll need the result∫ rmax

rmin

√(
1− rmin

r

)(rmax

r
− 1
)

=
π

2
(rmin + rmax)− π

√
rminrmax

Using this, we find

Ir =

√
m

2|E|
k − Iφ

Or, re-arranging,

E = − mk2

2(Ir + Iφ)2
(4.147)

There’s something rather nice lurking in this result. The energy is the same as the

Hamiltonian in this case and we can use it to compute the speed at which the angular

variables change. This follows from Hamilton’s equations,

θ̇r =
∂H

∂Ir
and θ̇φ =

∂H

∂Iφ

Here θφ = φ while θr is some complicated function of r. But we see from (4.147) that

the Hamiltonian is symmetric in Ir and Iφ. This means that the frequency at which the

particle completes a φ cycle is the same frequency with which it completes a θr cycle.

But that’s the statement that the orbit is closed: when you go around 2π in space, you

come back to the same r value. The existence of closed orbits is a unique feature of

the 1/r potential. The calculation reveals the underlying reason for this.
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4.6 Adiabatic Invariants

Consider a 1d system with a potential V (q) that de- V(q)

q

E

Figure 65:

pends on some parameter λ. If the motion is bounded by

the potential then it is necessarily periodic. We want to

ask what happens if we slowly change λ over time. For

example, we may slowly change the length of a pendulum,

or the frequency of the harmonic oscillator.

Since we now have λ = λ(t), the energy is not conserved.

Rather E = E(t) where

Ė =
∂H

∂λ
λ̇ (4.148)

But there are combinations of E and λ which remain (approximately) constant. These

are called adiabatic invariants and the purpose of this section is to find them. In fact,

we’ve already come across them: we’ll see that the adiabatic invariants are the action

variables of the previous section.

For the 1d system, the Hamiltonian is

H =
p2

2m
+ V (q;λ(t)) (4.149)

and we claim that the adiabatic invariant is

I =
1

2π

∮
p dq (4.150)

where the path in phase space over which we integrate now depends on time and is

given by p =
√

2m
√
E(t)− V (q;λ(t)). The purpose of this section is to show that I

is indeed an adiabatic invariant. At the same time we will also make clearer what we

mean when we say that λ must change slowly.

Let’s start by thinking of I as a function of the energy E and the parameter λ. As

we vary either of these, I will change. We have,

İ =
∂I

∂E

∣∣∣∣
λ

Ė +
∂I

∂λ

∣∣∣∣
E

λ̇ (4.151)

where the subscripts on the partial derivatives tell us what variable we’re keeping fixed.

For an arbitrary variation of E and λ, this equation tells us that I also changes. But,

of course, E and λ do not change arbitrarily: they are related by (4.148). The point of

the adiabatic invariant is that when Ė and λ̇ are related in this way, the two terms in

(4.151) approximately cancel out. We can deal with each of these terms in turn. The

first term is something we’ve seen previously in equation (4.141) which tells us that,
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q

p

λ

λ

1

2

Figure 66:

∂I

∂E

∣∣∣∣
λ

=
1

ω(λ)
=
T (λ)

2π
(4.152)

where T (λ) is the period of the system evaluated at fixed λ.

The second term in (4.151) tells us how the path changes

as λ is varied. For example, two possible paths for two

different λ’s are shown in the figure and the change in I is

the change in the area of under the two curves. We have

∂I

∂λ

∣∣∣∣
E

=
1

2π

∂

∂λ

∣∣∣∣
E

∮
pdq =

1

2π

∮
∂p

∂λ

∣∣∣∣
E

dq =
1

2π

∫ T (λ)

0

∂p

∂λ

∣∣∣∣
E

∂H

∂p

∣∣∣∣
λ

dt′ (4.153)

where, in the second equality, we have neglected a contribution arising from the fact

that the path around which we integrate changes as λ changes. But this contribution

can be safely ignored by the same argument given around (4.142).

We can get a simple expression for the product of partial derivatives by differentiating

the Hamiltonian and remembering what depends on what. We have the expression

H(q, p, λ) = E where, in the left-hand side we substitute p =
√

2m
√
E(t)− V (q;λ(t)).

Then differentiating with respect to λ, keeping E (and q) fixed, we have

∂H

∂λ

∣∣∣∣
p

+
∂H

∂p

∣∣∣∣
λ

∂p

∂λ

∣∣∣∣
E

= 0 (4.154)

So substituting this into (4.153) we have

∂I

∂λ

∣∣∣∣
E

= − 1

2π

∫ T (λ)

0

∂H

∂λ

∣∣∣∣
E

dt′ (4.155)

So putting it all together, we have the time variation of I given by

İ =

[
T (λ)

∂H

∂λ

∣∣∣∣
E

−

(∫ T (λ)

0

∂H

∂λ

∣∣∣∣
E

dt′

)]
λ̇

2π
(4.156)

where, in the first term, we’ve replaced Ė with the expression (4.148). Now we’re

almost done. So far, each term on the right-hand side is evaluated at a given time t or,

correspondingly for a given λ(t). The two terms look similar, but they don’t cancel!

But we have yet to make use of the fact that the change in λ is slow. At this point

we can clarify what we mean by this. The basic idea is that the speed at which the

particle bounces backwards and forwards in the potential is much faster than the speed
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at which λ changes. This means that the particle has performed many periods before

it notices any appreciable change in the potential. This means that if we compute

averaged quantities over a single period,

〈A(λ)〉 =
1

T

∫ T

0

A(t, λ) dt (4.157)

then inside the integral we may treat λ as if it is effectively constant. We now consider

the time averaged motion 〈İ〉. Since λ can be taken to be constant over a single period,

the two terms in (4.156) do now cancel. We have

〈İ〉 = 0 (4.158)

This is the statement that I is an adiabatic invariant: for small changes in λ, the

averaged value of I remains constant6.

The adiabatic invariants played an important role in the early history of quantum

mechanics. You might recognise the quantity I as the object which takes integer values

according to the old 1915 Bohr-Sommerfeld quantisation condition

1

2π

∮
p dq = n~ n ∈ Z (4.159)

The idea that adiabatic invariants and quantum mechanics are related actually predates

the Bohr-Somerfeld quantisation rule. In the 1911 Solvay conference Einstein answered

a question of Lorentz: if the energy is quantised as E = ~nω where n ∈ Z then what

happens if ω is changed slowly? Lorentz’ worry was that integers cannot change slowly

– only by integer amounts. Einstein’s answer was not to worry: E/ω remains constant.

These days the idea of adiabatic invariants in quantum theory enters into the discussion

of quantum computers.

An Example: The Simple Harmonic Oscillator

We saw in section 4.5 that for the simple harmonic oscillator we have I = E/ω. So

if we change ω slowly, then the ratio E/ω remains constant. This was Einstein’s 1911

point. In fact, for the SHO it turns out that there is an exact invariant that remains

constant no matter how quickly you change ω and which, in the limit of slow change,

goes over to I. This exact invariant is

J =
1

2

[
q2

g(t)2
+ (g(t)q̇ − qġ(t))2

]
(4.160)

6The proof given above is intuitive, but begins to creak at the seams when pushed. A nice descrip-

tion of these issues, together with a more sophisticated proof using generating functions for canonical

transformations is given in in the paper “The Adiabatic Invariance of the Action Variable in Classical

Dynamics” by C.G.Wells and S.T.Siklos which can be found at http://arxiv.org/abs/physics/0610084.
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where g(t) is a function satisfying the differential equation

g̈ + ω2(t)g − 1

g3
= 0 (4.161)

4.6.1 Adiabatic Invariants and Liouville’s Theorem

There’s a way to think of adiabatic invariants using Li-

q

p

Figure 67:

ouville’s theorem. Consider first a series of systems, all

described by a Hamiltonian with fixed parameter λ. We

set off each system with the same energy E or, equiva-

lently, the same action I, but we start them with slightly

different phases θ. This means that their dynamics is de-

scribed by a series of dots, all chasing each other around a

fixed curve as shown in the figure. Now let’s think about

how this train of dots evolves under the Hamiltonian with

time dependent λ(t). Recall that Liouville’s theorem states

that the area of phase space is invariant under any Hamiltonian evolution. This holds

whether or not ∂H/∂t = 0, so is still valid for the time dependent Hamiltonian with

λ(t). One might be tempted to say that we’re done since all the words sound right:

Liouville’s theorem implies that the area is conserved which is also the statement that

our adiabatic invariant I doesn’t change with time. But this is a little too fast! Liou-

ville’s theorem says the area of a distribution of particles in phase space is conserved,

not the area enclosed by a perimeter ring of particles. Indeed, Liouville’s theorem holds

for any variation λ(t), not just for adiabatic variations. For a fast change of λ(t), there

is nothing to ensure that the particles that had the same initial energy, but different

phases, would have the same final energy and we lose the interpretation of a ring of

dots in phase space enclosing some area.

The missing ingredient is the “adiabatic principle”. In this context it states that for

a suitably slow change of the parameter λ, all the systems in the same orbit, with the

same energy, are affected in the same manner. If this holds, after some time the dots

in phase space will still be chasing each other around another curve of constant energy

E ′. We can now think of a distribution of particles filling the area I inside the curve.

As λ varies slowly, the area doesn’t change and the outer particles remain the outer

particles, all with the same energy. Under these circumstances, Liouville’s theorem

implies the adiabatic invariant I is constant in time.

4.6.2 An Application: A Particle in a Magnetic Field

We saw in Section 4.1 that a particle in a constant magnetic field B = (0, 0, B) makes

circles with Larmor frequency ω = eB/mc and a radius R, which depends on the energy
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of the particle. But what happens if B is slowly varying over space? i.e. B = B(x, y),

but with

∂iB � R (4.162)

so that the field is roughly constant over one orbit.

In this example, there is no explicit time dependence of the Hamiltonian so we know

that the Hamiltonian itself is an exact constant of motion. For a particle in a constant

magnetic field we can calculate H of an orbit by substituting the solutions (4.32) into

the Hamiltonian (4.28). We find

H =
1

2
mω2R2 =

e2R2B2

2mc2
(4.163)

This quantity is conserved. But what happens to the particle? Does it drift to regions

with larger magnetic field B, keeping H constant by reducing the radius of the orbit?

Or to regions with smaller B with larger orbits?

We can answer this by means of the adiabatic invariant. We can use this because the

motion of the particle is periodic in space so the particle sees a magnetic field which

varies slowly over time. The adiabatic invariant is

I =
1

2π

∮
p dq (4.164)

which is now to be thought of as a path integral along the orbit of the electron. We

evaluate this on the solution for the uniform magnetic field (4.32)

I =
1

2π

∫ T

0

(pxẋ+ pyẏ) dt

=
1

2π

∫ T

0

(
bRω cosωt+mω2R2 sin2 ωt

)
dt

=
mωR2

2π

∫ 2π

0

sin2 θ dθ (4.165)

Setting ω = eB/mc, we see that the adiabatic invariant I is proportional to (e/c)BR2.

Since the electric charge e and the speed of light c are not things we can change, we find

that BR2 is constant over many orbits. But as H ∼ B2R2 is also conserved, both the

magnetic field B seen by the particle and the radius of the orbit R must be individually

conserved. This means the particle can’t move into regions of higher or lower magnetic

fields: it must move along constant field lines7.

7For results that go beyond the adiabatic approximations, see the paper by the man: E. Witten

“A Slowly Moving Particle in a Two-Dimensional Magnetic Field”, Annals of Physics 120 72 (1979).
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Finally, there’s a simple physical way to see that the particle indeed drifts along lines

of constant magnetic field. As the particle makes its little Larmor circles, it feels a

slightly stronger force when it’s, say, at the top of its orbit where the field is slightly

larger, compared to when its at the bottom. This net force tends to push the particle

to regions of weaker or stronger magnetic field. But we’ve seen through the use of

adiabatic invariants that this isn’t possible. The slow drift of the particle acts such

that it compensates for this small force, keeping the particle on constant field lines.

There’s a slight variant of the above set-up which allows you to trap charged particles

using magnetic fields. Consider the particle making its little Larmor circles in the (x, y)

plane, but also moving in the z direction and take a magnetic field that’s constant in

the (x, y)-plane, but ever increasing in the z-direction. The energy of the particle is

given by,

H =
1

2
mż2 +

e2R2B2

2mc2
=

1

2
mż2 +

IemB

mc
(4.166)

Both H > 0 and I > 0 are constant in time. This ensures that there exists a value of

the magnetic field B > 0 at which we necessarily have ż = 0 and the particle can go

no further. At this stage it turns round and goes back again. By creating a magnetic

field that increases at two ends, charged particles can be made to bounce back and

forth in the z direction, while executing their little circles in the (x, y)-plane. It is this

mechanism that traps charged particles in magnetic loops emitted from the sun and is

ultimately responsible for solar flares.

4.6.3 Hannay’s Angle

Consider a particle bouncing around, with periodic motion, in an arbitrary potential.

There are many parameters λa describing the shape of the potential. As we slowly vary

the λa the path in phase space changes although, as we have seen, the area enclosed

by the path remains the same. After some time tlong (which, by the assumption of

adiabiticity, is much longer than the period T of a single orbit) we return to the original

parameters so that λa(tlong) = λa(0). The question we want to ask is: how has the

phase angle θ changed?

For any fixed λa, the velocity of the angle variable is θ̇ = ∂H/∂I = ω(I, λa). As

we slowly vary the parameters, the particle is spinning around its phase space orbits.

When we return we therefore expect that the phase has been shifted by
∫
ωdt. Which

is true. But it turns out that there is another, more subtle, contribution to the phase

shift as well. We’ll now see where this comes from.
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As the parameters change, we can write the change in the angle θ as

θ̇ =
∂H

∂I
+

∂θ

∂λa
λ̇a (4.167)

Which looks simple enough. But there’s a problem. The second term is not well defined.

For each set of parameters λa we have different action angle variables I(λa) and θ(λa).

But there’s nothing that stops choosing a different origin θ = 0 for each choice of the

parameters. In other words, we could always redefine

θ(λa)→ θ(λa) + β(λa) (4.168)

where we shift by a different constant β for each λa. What this means is that it doesn’t

really make any sense to compare the angle variable for different parameters λa. This

makes the second term — which tells us how the angle variable changes as we change

the parameters — ambiguous. One might think this means that we can just ignore it.

Or, more precisely, we could choose the shifts β so that the angle variables are defined

in such a way that the second term vanishes. But it turns out that this isn’t possible.

Let’s see why. The point is that it does make sense to compare the angle variable for

the same parameters λa. After such a time tlong, we have

θ(tlong) = θ(0) +

∫ tlong

0

ω dt+ ∆θ (4.169)

The term
∫
ωdt is the dynamic term that we anticipated above, arising from the fact

that θ is continually making orbits around the curve in phase space. It depends on the

time tlong that we took to make the change. The other term that we call ∆θ is more

interesting. From (4.167) it is given by

∆θ =

∫ tlong

0

〈
∂θ

∂λa

〉
λ̇i dt =

∮
C

〈
∂θ

∂λa

〉
dλa (4.170)

where we’ve used the fact that the change in λa is adiabatic to replace the integrand

with its average over one period of the orbit. The final expression above means an

integration over the curve C that the system traces in parameter space. We see that

∆θ is independent of the time tlong taken to make the change. However, it does depend

on the path that we took through the space of all possible potentials. It is known as

the ”Hannay angle”. Note that the Hannay angle is invariant under the ambiguity

(4.169) even though the quantity ∂θ/∂λa that appears in the integrand isn’t. This

idea of integrating quantities around loops is an example of ”holonomy”, an important

concept in modern physics.

– 119 –



Rather surprisingly, the Hannay angle was first discovered only in 1984. The history

is interesting. First Berry discovered a similar phase for the wavefunction in quantum

mechanics (now known as the Berry phase). Many physicists were shocked that such

a simple and profound idea as Berry’s phase had lain hidden in the formulation of

quantum mechanics for 50 years and it set off a flurry of theoretical and experimental

research. Soon after this, Hannay showed that an analogous phase had lain undis-

covered in classical mechanics for 150 years! Although, in certain examples in celestial

mechanics, the phase ∆θ had been correctly calculated, the general theory lying behind

it had not been appreciated. We now describe this theory.

The first step is to use a higher dimensional version of Stokes’ theorem to express

the contour integral (4.170) as a surface integral

∆θ =

∫
S

(
∂

∂λa

〈
∂θ

∂λb

〉
− ∂

∂λb

〈
∂θ

∂λa

〉)
dAab (4.171)

where S is a surface in parameter space bounded by the curve C and dAab is the in-

finitesimal surface element.

Claim: The Hannay angle can be written as

∆θ =
d

dI

∫
S

Wab dAab (4.172)

where the anti-symmetric matrix Wab (known mathematically as a 2-form) is given by

Wab =

〈
∂θ

∂λa

∂I

∂λb
− ∂θ

∂λb

∂I

∂λa

〉
(4.173)

Proof: To start with let’s think about the averaging procedure a little more. In

equation (4.157) we wrote 〈A〉 as a time average, integrating over a single period. We

could equally as well write it as an angle average,

〈A〉 =

∮
A(I, θ) dθ =

∫
A(q′, p′) δ(I ′ − I)

dq′dp′

2π
(4.174)

where in the second equality we integrate over all of phase space and insert the delta

function δ(I ′− I) to restrict the integral to the orbit over the curve with action I. It’s

this latter formula that we’ll use. This allows us to write,

∂

∂λa

〈
∂θ

∂λb

〉
− ∂

∂λb

〈
∂θ

∂λa

〉
=

[
∂

∂λa

∫
∂θ

∂λb
− ∂

∂λ b

∫
∂θ

∂λa

]
δ(I ′ − I)

dq′dp′

2π

– 120 –



=

∫ [
∂θ

∂λb

∂δ

∂λa
− ∂θ

∂λa

∂δ

∂λb

]
dq′dp′

2π

=

∫ [
∂θ

∂λb

∂I ′

∂λa
− ∂θ

∂λa

∂I ′

∂λb

]
∂δ

∂I ′
dq′dp′

2π

= − d

dI

∫ [
∂θ

∂λb

∂I ′

∂λa
− ∂θ

∂λa

∂I ′

∂λb

]
δ(I ′ − I)

dq′dp′

2π

=
d

dI
Wab (4.175)

which completes the proof. I haven’t included any examples here of the Hannay angle:

some simple ones can be found in the original literature8 and more advanced applica-

tions can be found by googling ”Hannay angles”. For the pendulum example, in which

the length of the pendulum varies, the Hannay angle vanishes. This is because there is

only one parameter to vary, while a non-trivial ∆θ occurs only if we make a non-trivial

loop C in parameter space.

4.7 The Hamilton-Jacobi Equation

In this section we will describe yet another viewpoint on t

initial 

final

q

q

q

Figure 68:

classical dynamics, known as Hamilton-Jacobi theory. It will

tie together several concepts that we’ve met so far. Recall

from section 2.1 the principle of least action. We define the

action

S =

∫ T

0

L(qi, q̇i, t) dt (4.176)

which we evaluate for all paths q(t) with fixed end points

qi(0) = qinitial
i , qi(T ) = qfinal

i (4.177)

Then the true path taken is an extremum of the action: δS = 0.

Now let’s change perspective a little. Consider the action evaluated only along the

true path qclassical
i (t) and define

W (qinitial
i , qfinal

i , T ) = S[qclassical
i (t)] (4.178)

While S is a functional on any path, W is to be considered as a function of the initial

and final configurations qinitial
i and qfinal

i as well as the time T it takes to get between

them.
8J. Hannay, ”Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian” J.

Phys A, 18 221 (1985); M. Berry, ”Classical Adiabatic Angles and Quantal Adiabatic Phase” J. Phys

A, 18 15 (1985).
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Now let’s ask what happens if we keep qinitial
i fixed but vary the end point qfinal

i . We

can go back to the analysis of section 2.1 to see that when the action is varied it looks

like

δS =

∫ T

0

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi(t) +

[
∂L

∂q̇i
δqi(t)

]T
0

(4.179)

If we evaluate this on the classical path the first term vanishes. We’re left with

∂W

∂qfinal
i

=
∂L

∂q̇i

∣∣∣∣
t=T

= pfinal
i (4.180)

The next thing we want to compute is ∂W/∂T . Let’s start by considering a classical

path with fixed initial configuration qinitial
i . We’ll let the path run on a little longer

than before, so T → T + δT . Then we have

dW

dT
=
∂W

∂T
+

∂W

∂qfinal
i

q̇final
i =

∂W

∂T
+ pfinal

i q̇final
i (4.181)

But this total derivative is easily calculated since dS/dT = L, or

dW

dT
= L(qclassical

i (T ), q̇classical
i (T ), T ) = L(qfinal

i , q̇final
i , T ) (4.182)

So we arrive at the equation,

∂W

∂T
= −

(
pfinal
i q̇final

i − L(qfinal
i , q̇final

i , T )
)

= −H(qfinal
i , pfinal

i , T ) (4.183)

At this stage, the only time in the game is T and the only position in the game is qfinal
i .

So we can simply drop the word “final”, and relabel T → t. We have found ourselves

a time dependent function on configuration space W = W (qi, t) which satisfies

∂W

∂qi
= pi and

∂W

∂t
= −H(qi, pi, t) (4.184)

or, substituting the first into the second, we have

∂W

∂t
= −H(qi, ∂W/∂qi, t) (4.185)

This is the Hamilton-Jacobi Equation.

We’ve shown how a solution to the Hamilton-Jacobi equation can be constructed

by looking at the classical action of paths which reach a point qi at time T starting

from some initial reference point qinitial
i . The starting point qinitial

i can be considered

integration constants. In fact, there are more general solutions to the Hamilton-Jacobi

equation, although all are related to the classical action in a similar way.
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Suppose we find a solution to (4.185). What do we do with it? We’re now armed

with some time-dependent function W (qi, t) on configuration space. We combine this

with the first of Hamilton’s equations which reads

q̇i =
∂H

∂pi

∣∣∣∣
pi=∂W/∂qi

(4.186)

where, on the right-hand-side, we’ve replaced every appearance of the momenta pi by

a function of the coordinates using pi = ∂W/∂qi. What we’re left with is n first-order

differential equations for the evolution of qi. In this manner the function W determines

the path of the classical system: start it off at a point in configuration space and W

can be considered as a real valued classical wavefunction which tells it how to evolve.

What we need to show is that the evolution dictated by (4.186) does indeed satisfy the

equations of motion. In other words, we should prove that the second of Hamilton’s

equations, ṗi = −∂H/∂qi, is satisfied. We have

ṗi =
d

dt

(
∂W

∂qi

)
=

∂2W

∂qi∂qj
q̇j +

∂2W

∂t∂qi
(4.187)

But differentiating the Hamilton-Jacobi equation (4.185) with respect to qi, we see that

we can rewrite the right-hand-side of this equation using

∂2W

∂t∂qi
= −∂H

∂qi
− ∂H

∂pj

∂2W

∂qi∂qj
= −∂H

∂qi
− q̇j

∂2W

∂qi∂qj
(4.188)

So that (4.187) becomes ṗi = −∂H/∂qi as required.

Let’s see what we’ve done. We’re used to dealing with second order differential equa-

tions for the time evolution on configuration space (i.e. Lagrange’s equations) and

first order differential equations for time evolution on phase space (Hamilton’s equa-

tions). But the Hamilton-Jacobi approach allows us to incorporate n of the integration

constants in the function W (qi, t) so that we’re left solely with first order differential

equations on configuration space given by (4.186).

When we have conservation of the Hamiltonian, so ∂H/∂t = 0, there is solution of

the Hamilton-Jacobi equation of a particularly simple form. Define

W (qi, t) = W 0(qi)− Et (4.189)

for some constant E. Then the time dependence drops out and we get the equation

H(qi, ∂W
0/∂qi) = E (4.190)
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W 0 is known as Hamilton’s principal function. The spe-

i
r

level surfaces of W

Figure 69:

cial property of this solution to the Hamilton-Jacobi

equation is that every path in configuration space de-

termined by the function W0 has the same energy E.

With a little thought, we can envisage how to construct

solutions to (4.190). Start with a co-dimension one sur-

face in configuration space which we will specify to be a

surface of constant W0. (Co-dimension one means that

the surface has dimension (n−1): it splits the configura-

tion space in two). At any point in this surface, the potential energy V (q) is determined.

Since pi = ∂W0/∂qi, the momentum is perpendicular to the surface and in the direc-

tion of increasing W0. Its magnitude is fixed by requiring that the total energy is E.

But this magnitude then tells us the position of the next surface of constant W0 (with

incremental increase). In this manner, it should be clear that, in multi-dimensional

configuration spaces there are many solutions to (4.190). It should also be clear that

something singular happens to W0 in regions where V (qi) = 0. Finally, we note that

even when ∂H/∂t = 0, there exist other solutions W to (4.185) which encode families

of trajectories on configuration space which have different energies.

4.7.1 Action and Angles from Hamilton-Jacobi

For the majority of examples the Hamilton-Jacobi approach doesn’t give a particularly

useful way for solving a problem; its utility really lies in the structure it reveals about

classical dynamics. So rather than go through the gymnastics of solving a complicated

problem using this method, let us focus on a rather simple example which which il-

lustrates connections between the different ideas we’ve seen. A system with a single

degree of freedom has Hamiltonian

H =
p2

2m
+ V (q) (4.191)

Since the Hamiltonian is time independent, energy is conserved and the solution to

the Hamilton-Jacobi equation has a single integration constant, let’s call it β, which

is necessarily some function of the energy. In the above discussion we were a little lax

about showing these integration constants explicitly, but let’s do it now: we’ll write

W = W (q, t; β) with β = β(E). Now we ask a somewhat strange question: suppose we

try to perform a canonical transformation from (q, p) to new coordinates (α, β) such

that β is the new momentum. What is the new coordinate α?
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Since we wish the change of coordinates to be canonical, we must be able to write

q = q(α, β) and p = p(α, β) such that

{q, p}(α,β) ≡
∂q

∂α

∂p

∂β
− ∂q

∂β

∂p

∂α
= 1 (4.192)

Using p = ∂W/∂q and remembering what all depends on what all (W = W (q, β) and

q = q(α, β) and p = p(α, β)) we can write this as,

{q, p}(α,β) =
∂q

∂α

(
∂2W

∂β∂q
+
∂2W

∂q2

∂q

∂β

)
− ∂q

∂β

∂2W

∂q2

∂q

∂α
=
∂q

∂α

∂

∂q

(
∂W

∂β

)
(4.193)

and we find that the transformation is canonical if we take α = ∂W/∂β. Note the nice

symmetry here: we have a solution W (q, t; β) to the Hamilton Jacobi equation and we

can think in terms of canonical coordinates (q, p) or alternatively (α, β) where

p =
∂W

∂q
, α =

∂W

∂β
(4.194)

The function W is an example of a generating function of the second kind (4.120).

So what to do with this? Let’s look at some examples. Take β = E, so that our new

momentum variable is the energy itself. What is the canonical coordinate? If we write

W (q, t;E) = W0(q, E)− Et then the coordinate canonically dual to E is

α =
∂W0

∂E
(q, E)− t (4.195)

Taking the time dependence over the left-hand-side, we see that α has the interpretation

of −t0, the initial starting time. This tells us that we may parameterise every trajectory

in a one-dimensional system in terms of the energy and starting time of the path, and

that these are canonical variables. Again we see the dual relationship between energy

and time. Note that both E and t0 are independent of time; we’ve found canonical

variables for which neither the coordinate nor the momentum vary along the path.

As another example consider the case of β = I, our action variable of Section 4.5.

What is the canonical coordinate α in this case? We expect that it will be related to

the angle variable θ. To see this, we use the fact that W is the classical action to write

W0 =

∫
Ldt+ Et =

∫
(L+H)dt =

∫
q̇p dt =

∫
p dq (4.196)

So we have that

α =
∂W

∂β
=

d

dI

∫
p dq − dE

dI
t = θ − ωt (4.197)
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where we’ve used our expression (4.144) for the angle variable, as well as the equation

(4.141) for the frequency of motion ω. So we see that α is not quite equal to θ,

but is shifted by a term linear in time. In fact this means that α itself does not

change in time. Once again, we’ve arrived at a way to parameterise the orbits of

motion by canonical variables which do not themselves change with time. In fact, in

most presentations, this is the starting motivation for the Hamilton-Jacobi approach

to classical dynamics and, even for higher dimensional systems, the function W can

be thought of as a way to generate new, time independent, canonical variables. More

discussion on the relationship between canonical transformations, angle-action variables

and the Hamilton-Jacobi formulation can be found in the book by Hand and Finch, or

deep within Goldstein.

4.8 Quantum Mechanics

One of the primary reasons for studying the rather formal aspects of classical mechanics

discussed in this course is to make contact with quantum mechanics. For this reason,

in this last section of the course we will illustrate the connection between the classical

and quantum world and point out a few analogies that might just make the quantum

behaviour look a little less weird. (Just a little less: after all, it really is weird!)

In classical mechanics the state of a system is described by a point (qi, pi) in phase

space. In quantum mechanics the state is described by a very different object: a

complex valued wavefunction ψ(q) over the configuration space. The observables are

operators on the space of wavefunctions. The standard representations of the position

operator q̂i and momentum operator p̂i are

q̂iψ(q) = qiψ(q)

p̂iψ(q) = i~
∂ψ

∂qi
(4.198)

which leads to the well known Heisenberg commutation relations

[p̂i, p̂j] = 0

[q̂i, q̂j] = 0 (4.199)

[q̂i, p̂j] = i~ δij

Of course, we’ve already seen something very familiar in section 4.3 on Poisson brackets

as summarised in equation (4.61). Although the bilinear, antisymmetric operators

[ , ] and { , } act on very different spaces, they carry the same algebraic structure.

Heuristically the relations (4.61) and (4.199) both represent the mathematical fact
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that momentum pi generates infinitesimal translations of qi: in classical mechanics we

saw this in when we studied infinitesimal canonical transformations in section 4.4.1; in

quantum mechanics it follows from the representation (4.198) and Taylor’s expansion.

In general the map between a classical system and a quantum system goes via the

Poisson brackets and was formulated by Dirac:

{ , }classical ↔ −
i

~
[ , ]quantum (4.200)

This prescription for going between the classical and quantum theories is known as

canonical quantisation. It also gives rise to the quantum equations of motion. In the

Poisson bracket language, we have seen that the classical equation of motion for an

arbitrary function f(q, p) is

ḟ = {f,H} −→ i~ ˙̂
f = [f̂ , Ĥ] (4.201)

which is the equation of motion in the Heisenberg picture, in which the time dependence

is assigned to the operator rather than the state.

While a great physicist, Dirac was never much of a storyteller. It shows in the

following anecdote recounting his graduate student days:

“I went back to Cambridge at the beginning of October 1925, and resumed

my previous style of life, intense thinking about these problems during the

week and relaxing on Sunday, going for a long walk in the country alone.

The main purpose of these long walks was to have a rest so that I would

start refreshed on the following Monday.

It was during one of the Sunday walks in October 1925, when I was think-

ing about this (uv − vu), in spite of my intention to relax, that I thought

about Poisson brackets. I remembered something which I had read up previ-

ously, and from what I could remember, there seemed to be a close similarity

between a Poisson bracket of two quantities and the commutator. The idea

came in a flash, I suppose, and provided of course some excitement, and

then came the reaction “No, this is probably wrong”.

I did not remember very well the precise formula for a Poisson bracket,

and only had some vague recollections. But there were exciting possibilities

there, and I thought that I might be getting to some big idea. It was really

a very disturbing situation, and it became imperative for me to brush up on
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my knowledge of Poisson brackets. Of course, I could not do that when I

was right out in the countryside. I just had to hurry home and see what I

could find about Poisson brackets.

I looked through my lecture notes, the notes that I had taken at various

lectures, and there was no reference there anywhere to Poisson brackets.

The textbooks which I had at home were all too elementary to mention them.

There was nothing I could do, because it was Sunday evening then and the

libraries were all closed. I just had to wait impatiently through that night

without knowing whether this idea was really any good or not, but I still

think that my confidence gradually grew during the course of the night.

The next morning I hurried along to one of the libraries as soon as it

was open, and then I looked up Poisson brackets in Whitackers Analytical

Dynamics, and I found that they were just what I needed.”

4.8.1 Hamilton, Jacobi, Schrödinger and Feynman

While the Poisson bracket structure of quantum mechanics dovetails nicely with Heisen-

berg’s approach, the Hamilton-Jacobi equation is closely tied to Schrödinger’s wave

equation. Let’s first recall what Schrödinger’s equation looks like for a one-dimensional

system with a Hamiltonian operator Ĥ = p̂2/2m+ V (q̂) acting on wavefunctions ψ(q),

i~
∂ψ

∂t
= Ĥψ = − ~2

2m

∂2ψ

∂q2
+ V (q)ψ (4.202)

where we have used the representation (4.198) for the position and momentum opera-

tors. To see the relationship of this equation to classical dynamics we decompose the

wavefunction into the modulus and phase,

ψ(q, t) = R(q, t) eiW (q,t)/~ (4.203)

where R and W are both real functions. We know that R is related to the probability

P for finding a particle at position q at time t: P (q, t) = |ψ(q, t)|2 = R(q, t)2. But what

is the interpretation of the phase W? Let’s substitute this decomposition of ψ into the

Schrödinger equation to find

i~
[
∂R

∂t
+
iR

~
∂W

∂t

]
= − ~2

2m

[
∂2R

∂q2
+

2i

~
∂R

∂q

∂W

∂q
− R

~2

(
∂W

∂q

)2

+
iR

~
∂2W

∂q2

]
+ V R
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At this stage, we take the classical limit ~ → 0. Or, more precisely, we consider a

situation with

~
∣∣∣∣∂2W

∂q2

∣∣∣∣� ∣∣∣∣∂W∂q
∣∣∣∣ (4.204)

which can be understood physically as the requirement that the de Broglie wavelength

of the particle is much smaller than any other length scale around. Either way, collecting

together the terms above to leading order in ~ we find

∂W

∂t
+

1

2m

(
∂W

∂q

)2

+ V (q) = O(~) (4.205)

which we recognise as the Hamilton-Jacobi equation (4.185). So in the classical limit

the phase of the wavefunction is understood as the classical action of the path taken

by the particle.

Finally, let us finish on the same topic that we started: the principle of least action.

Recall from section 2.1 that we can determine the true path of a system by assigning a

number, called the action S, to every possible path. The equations of motion are then

equivalent to insisting that the true path is an extremum of S. But what about all the

other paths? Do they play any role in Nature? The answer is that, in the quantum

world, they do. Suppose a particle is observed to be at position qi at time t = 0. Then

the probability P that it will later be observed to be at position qf at time t = T is

encapsulated in the wavefunction ψ(qf , T ). The Feynman path integral formula for the

wavefunction is

ψ(qf , T ) = N

∫ qf

qi

Dq(t) eiS[q(t)]/~ (4.206)

The N here is just a normalisation constant to ensure that probabilities add up to one:

i.e.
∫
|ψ(q)|2dq = 1. The tricky part of this formula is the integral: it is a sum over all

possible paths from q = qi at time 0 to q = qf at time T . These paths are weighted

with their action. It’s as if the particle really does take every possible path, but with

a particular phase. In the limit ~ → 0, the phases oscillate wildly for any path away

from the classical equation of motion δS = 0 and they cancel out in the integral. But

for situations where ~ is important, the other paths are also important.

Let’s prove that the wavefunction defined by (4.206) satisfies the Schrödinger equa-

tion. Firstly we need to understand this integral over paths a little better. We do this

by splitting the path into n small segments, each ranging over a small time δt = t/n.
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Figure 70: Discretising the paths.

Then we define ∫
Dq(t) = lim

n→∞

n∏
k=1

∫ +∞

−∞

dqk
C

(4.207)

where qk is the position of the particle at time t = kδt. In this expression C is a

constant that we’re going to figure out shortly that will be required to make sense of

this infinite number of integrals. In any given segment, we treat the path as straight

lines as shown in the figure and replace the action with the appropriate quantity,

S =

∫ T

0

dt

(
1

2
mq̇2 − V (q)

)
→

n∑
k=1

(
m

2

(qk+1 − qk)2

δt
− δt V

(
qk+1 + qk

2

))
Then to prove that ψ defined in (4.206) satisfies Schrödinger’s equation, let’s consider

adding a single extra time step to look at the wavefunction at time t + δt. We can

Taylor expand the left hand side of (4.206) happily

ψ(qf , T + δt) = ψ(qf , T ) +
∂ψ

∂T
δt+O(δt2) (4.208)

while the right hand side requires us to do one extra integral over the penultimate posi-

tion of the path q′. But the first n integrals simply give back the original wavefunction,

now evaluated at q′. We get∫ +∞

−∞

dq′

C
exp

[
im

2~
(qf − q′)2

δt
− i

~
δt V

(
qf + q′

2

)]
ψ(q′, t) (4.209)

The term in the exponent means that the integral oscillates wildly whenever q′ is far

from qf and these regions of the integral will all cancel out. We can therefore Taylor

expand around (qf − q′) to rewrite this as∫ +∞

−∞

dq′

C
exp

[
im

2~
(qf − q′)2

δt

](
1− iδt

~
V (qf ) + . . .

)
(

1 + (q′ − qf )
∂

∂qf
+ 1

2
(q′ − qf )2 ∂

2

∂q2
f

+ . . .

)
ψ(qf , T ) (4.210)
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At this stage we do the integral over q′. We’ll use the formulae for Gaussian integration∫
dy e−ay

2

=

√
π

a
,

∫
dy ye−ay

2

= 0 ,

∫
dy y2e−ay

2

=
1

2a

√
π

a
(4.211)

Then equating the lefthand side (4.208) with the righthand side (4.210), we have

ψ(qf , T ) +
∂ψ

∂T
δt =

1

C

√
2π~δt
−im

[
1− iδt

~
V (qf ) +

i~δt
2m

∂2

∂q2
f

+O(δt2)

]
ψ(qf , T )

At this stage we see what the constant C has to be to make sense of this whole calcu-

lation: we should take

C =

√
2π~δt
−im

(4.212)

so that C → 0 as δt→ 0. Then the terms of order O(δt0) agree. Collecting the terms

of order O(δt), and replacing the time T at the end point with the general time t, we

see that we have

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂q2
f

+ V (qf )ψ = Ĥψ (4.213)

and we recover Schrödinger’s equation as promised.

4.8.2 Nambu Brackets

Throughout this section, we’ve seen that several of the structures appearing in quantum

mechanics were anticipated, in some form, within the framework of classical dynamics.

You just need to know where to look. One might wonder whether classical mechanics

also contains other structures which will prove to be important in future discoveries.

Or, alternatively, whether there are ways to extend the framework of classical dynamics

that hints at new ways to formulate the laws of physics. In this section, I’ll briefly

describe such an extension due to Nambu in 1973. I should confess immediately that

there’s no known use for Nambu’s formalism! And it’s not at all clear that one will be

found! But then again, maybe it holds the clue that will prove crucial in the search for

the ideas beyond the known laws of Nature.

We’ve seen that the Hamiltonian framework deals with canonical pairs of coordinates

and momenta (qi, pi) with i = 1, . . . , n. Nambu’s idea was to extend this to triplets of

objects (qi, pi, ri) with i = 1, . . . , n. We don’t say what this extra variable ri is: just

that it is necessary to define the state of a system. This means that the phase space
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has dimension 3n. The Nambu bracket, which replaces the Poisson bracket, acts on

three functions f, g and h in phase space,

{f, g, h} =
∑
i

∂f

∂qi

∂g

∂pi

∂h

∂ri
− ∂f

∂qi

∂g

∂ri

∂h

∂pi
+
∂f

∂ri

∂g

∂qi

∂h

∂pi

− ∂f

∂ri

∂g

∂pi

∂h

∂qi
+
∂f

∂pi

∂g

∂ri

∂h

∂qi
− ∂f

∂pi

∂h

∂qi

∂h

∂ri
(4.214)

This satisfies similar properties to the Poisson bracket, including linearity and

• Anti-symmetry: {f, g, h} = −{g, f, h} = {g, h, f}.

• Leibniz: {fg, h, l} = f{g, h, l}+ {f, h, l}g.

• “Jacobi”: {{f, g, h}, l,m}+ {h, {f, g, l},m}+ {h, l, {f, g,m}} = {f, g, {h, l,m}}.

In order to specify time evolution, we need two ”Hamiltonians”. We call them H(q, p, r)

and G(q, p, r). Then any function f over phase space evolves as

df

dt
= {f,G,H} (4.215)

In particular, the new version Hamilton’s equations read

q̇i =
∂G

∂pi

∂H

∂ri
− ∂G

∂ri

∂H

∂pi

ṗi =
∂G

∂ri

∂H

∂qi
− ∂G

∂qi

∂H

∂ri
(4.216)

ṙi =
∂G

∂qi

∂H

∂pi
− ∂G

∂pi

∂H

∂qi

where there’s no sum over i on the right-hand side of these equations. By the anti-

symmetry of the Nambu bracket, we learn that both H and G are conserved (as long

as neither have explicit time dependence).

Many of the key features of classical dynamics are retained in Nambu’s formalism.

For example, Liouville’s theorem still holds. (This was Nambu’s original motivation

for suggesting this framework). Similarly, canonical transformations can be defined as

a change of variables qi → Qi(q, p, r) and pi → Pi(q, p, r) and ri → Ri(q, p, r) such that

the Nambu bracket structure is preserved, for example

{Qi, Pj, Rk} =

{
1 if i = j = k

0 otherwise
(4.217)

together with similar equations involving other combinations of Q’s, P ’s and R’s.

”Hamilton’s” equations (4.216) are invariant under these canonical transformations.
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The Nambu bracket provides a generalisation of classical dynamics. But can we

quantise it? In other words, can we find some operators which reproduce the Nambu

bracket structure (up to a factor of ~ and perhaps an i) in much the same way that the

usual quantum theory ties in with the Poisson bracket? This turns out to be pretty

tricky. In particular, it seems difficult to keep all three conditions: anti-symmetry,

Leibniz and Jacobi. Perhaps this suggests that the correct mathematical structure has

not yet been uncovered. Perhaps it suggests that the Nambu bracket is just not useful!

Chances are that you won’t ever have any use for the Nambu bracket. But you never

know. Perhaps one day, like Dirac, you’ll return from wandering the fields around

Cambridge and desperately need to recall this concept. But, unlike Dirac, you’ll be

able to find a reference in your lecture notes (the notes you had taken at various

lectures).
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