
The
Tiny
Book
of
Rules

Tiny Drupal Books #1

CreaTive Commons LiCense

3

The Tiny Book
of Rules

This is Rules
Rules is a module usually used to automate
actions on your Drupal site. Rules can react
on events occurring on your site – such as a
user logging in or a node being created – and
perform customized follow-up actions such as
redirecting to a certain page or setting field
values. Optionally, Rules can evaluate condi-
tions before executing any actions.

Rules is also a framework to use by other
modules, allowing them to evaluate user-con-
figured Rules components, such as action and
condition sets, or expose data about variables
and entities to other parts of Drupal.

This book was written by Johan Falk (Itangalo)
with the help of Wolfgang Ziegler (fago),
and layout by Leander Lindahl (leanderl).

It is available under Creative Commons license at
http://www.archive.org/details/TheTinydrupalBookOfRules

Feel free to use, study, share and improve.

Published in March 2012

5

Rules in site building

Using actions
Rules actions are reactions that Rules may
perform. Some actions return new data that
Rules can work with – such as loading the most
recent comment written by a user – but most
actions only deal with the data already avail-
able to Rules.

Some common actions are:

•	Add a variable: This adds a new variable into
your configuration, which then can be ma-
nipulated and used.

•	Calculate a value: This allows you to perform
basic arithmetics with numbers.

•	Create a new entity: This asks for required
data for an entity, and then creates it.

•	Fetch entity by id: This allows for fetching
nodes and other entities by id.

•	Fetch entity by property: This allows for fetch-
ing all entities matching selected criteria, for
example a selected field value.

6 7

Data in Rules
Actions, and other plugins in Rules, act on
specified data types. These data can be simple,
such as text, integers and dates; or complex
like nodes – which in turn have properties rep-
resented by data, such as node id (integer), title
(text), or creation date (date). Complex data
types may have properties which are complex,
too – each node has, for example, an author
represented by a user account (which in turn
has a number of properties).

Some properties are writable, which means
that you can alter these with Rules actions. The
action Set a data value is particularly useful,
and can be used to set any writable data.

For most action parameters, it is possible to
switch between direct input, meaning manu-
ally written input, and data selection, a tool
for drilling down into the nested properties of
complex data types.

The data object site is always available in Rules,
containing global site data such as the account
for the acting user, the site name, and some
other information.

•	Show a message on the site: This displays an
on-site message.

•	Publish/unpublish content.

•	Create or delete any URL alias.

•	Send an e-mail.

•	Set a data value (described below).

Actions can be combined in chains, which al-
lows for rules loading new objects and then
acting on them. Contributed modules may pro-
vide more actions to Rules.

8 9

A reaction rule may have more than one trig-
gering event. If they provide different vari-
ables, only the variables provided by all events
may be used in the configuration, assuring that
the rule may be evaluated properly regardless
of which of the events is acting as trigger.

Using conditions
When a reaction rule is fired, or in other oc-
casions where rules are used, you have the
options to check a number of conditions and
abort any actions if the conditions aren’t met.
Conditions can be pretty specific, such as Con-
tent is promoted to front page, Data value is
empty or the comparison between two text
strings – but the most used condition is called
Data comparison. This one is used to compare
two variables available to Rules, or to compare
a data variable to a manually entered value
– for example to check if a field has a certain
value or if the node author is the same as the
acting user.

Conditions can be logically grouped to create
and and or groups. These groups may in turn
contain other logical groups.

Finally, it should be noted that field values are
read- and writable only if Rules can be certain
that the relevant entity has that field. If work-
ing with a node, for example, a field will only
appear if conditions have been set that limits
the rule to selected content types. (See using
conditions for more information.) If the entity
doesn’t have separate bundles – such as users –
Rules can access the fields right away.

Using events
Rules provides a number of events – places in
a Drupal page load that can be used to fire off
actions. Rules that trigger on events are called
reaction rules (in contrast to stand-alone rule
components that must be triggered by other
means – see the section about components).

Each event may provide some associated vari-
ables, which can be used in the rule configura-
tion. For example, the event After saving new
content provides the saved content as a node
variable while After updating existing content
provides both the updated and original content
as variables – thereby allowing comparison be-
tween the two.

10 11

The most useful thing with lists, though, is the
ability to loop through them. By adding a loop
to your set of actions, you have each action
inside the loop being evaluated once for every
item in the list you select. This can for example
be used to send an e-mail to all users in a multi-
ple-value user reference field.

It is possible to use loops within loops, though
you should be aware that evaluation may be-
come performance heavy if there are many
items to loop over

Components
Reaction rules are the simplest and usually
most common Rules configurations. But you
can also create Rules components – re-usable
condition sets, action sets, single rules or sets
of rules. These components can then be called
by reaction rules, saving you the work of re-
peating the same conditions in three different
reaction rules.

Apart from avoiding repetitive work, compo-
nents may also be invoked by other modules.
Views Bulk Operations, for example, can make
use of Rules components as actions; Rules

There are two conditions that are particularly
important when working with fields: Content is
of type and Entity has field. These conditions al-
lows Rules to know that an entity has a particu-
lar field, and subsequently makes the field data
available in configuration. The condition Entity
is of type has a similar role to provide entity-
specific data, but is used much less frequently.
(You can also use the Data comparison condi-
tion to check the entity bundle.)

Lists and loops
Each data type declared to Rules automati-
cally gets a sibling data type, being a list of this
particular data. Thus, Rules cannot only handle
nodes, text strings and dates, but also lists of
nodes, strings and dates. This is very useful
when working with multiple-value fields, but
also for a few multiple-value entity properties,
such as the roles of a user.

Rules provides a few actions and conditions
that are handy when working with lists: List con-
tains item, Add a value to a list and Remove a
value from a list. The latter two can for example
be used to add/remove a user from a multiplev-
alue user reference field.

12 13

time. The module can for example be used to
schedule content deletion, upgrading of user
accounts, or managing recurring e-mails.

•	Views Bulk Operations (VBO). This module
extends Views and allows users to perform
actions on selected rows. Apart from some
base-level actions, Rules components may
be used as actions by VBO. An equally useful
feature of VBO is that it allows calling Views
from Rules configuration, to load a list of enti-
ties listed by Views.

•	Rules Bonus Pack. This module serves as an
experimental lab for new Rules functional-
ity, and provides a number of new actions
and conditions. It also allows using condition
components as CTools access plugins, as well
as providing a new component type used for
validating and modifying arguments (contex-
tual filter values) in Views.

•	Rules Link. This module can be used to attach
links to entities, and firing rule sets when
these links are clicked. Links can also be ren-
dered using Views, and link visibility can be
controlled by condition sets.

Scheduler can schedule the evaluation of any
component for a future point in time; and with
the help of Rules Bonus Pack, CTools can use
condition components as access plugins in
modules like Page manager and Panels.

Components are mainly created and edited like
reaction rules – but they have no triggers. They
also have configurable variables that are either
parameters or provided (or both). Parameters
are required input data for the component
– variables that have to be specified when call-
ing the component. Provided variables are re-
turned to the caller after evaluation.

Components are very useful both in site build-
ing and coding.

Useful additional modules
There are a number of modules taking advan-
tage of Rules as a framework, or providing new
actions, conditions and plugins. The most no-
table are:

•	Rules Scheduler. This module is included in
the Rules project, and allows scheduling com-
ponents to be evaluated at a future point in

14 15

Coding for Rules
Normally, extensions of Rules are put into the
file mymodule.rules.inc. This way, the file is
only loaded when Rules is actually used on a
page load, which is good for performance. In
this section of the book, all code examples as-
sume that your module is called mymodule.

The following sections only contain the very
basics of extending Rules. More detailed
documentation can be found at the online
documentation (http://www.drupal.org/
node/878720) and in rules.api.php included in
the Rules project.

Writing conditions
Conditions are the least complex Rules exten-
sion. To provide new conditions to Rules, you
need two things – a function returning TRUE or
FALSE, and an implementation of hook_rules_
condition_info() to tell Rules about your condi-
tion. The info hook should return an array on
the following form:

Debugging Rules configuration
Rules is to a great tool for automation config-
ured in a point-and-click web interface. Just as
when automating things with code, you will
be happy for a debugger every once in a while.
The Rules debugger is found at the Rules con-
figuration page – you will want to write out
the debug messages directly on the web pages
to easily follow what rules are executed, what
conditions are evaluated TRUE or FALSE, and
how long time each step takes.

If variables are not behaving as you expect, you
will find the Rules action Debug value useful
(provided by the Devel module). It prints out
a krumo dump of a variable that you choose,
making it available for inspection.

16 17

ber of parameters – including none – for a con-
dition callback. These are used by the callback
function, which returns TRUE or FALSE:

function mymodule_rules_condition_check_a_
node_value($var_1, $var_2) {
 // Condition logic goes here...
 return $result;
}

Writing actions
Conditions are very similar to conditions in
their structure: a function carrying out the
action, and an info hook implementation to
tell Rules about it – in this case hook_rules_ac-
tions_info(). An important difference is that
while conditions return TRUE or FALSE, actions
may return new data objects to Rules. See ex-
ample below.

$actions = array(
 ‘mymodule_rules_action_fetch_user_recent_
content’ => array(
 ‘group’ => t(‘My module’),
 ‘label’ => t(‘My action’),

 ‘parameter’ => array(
 ‘var_1’ => array(
 ‘type’ => ‘user’,

$conditions = array(
 ‘mymodule_rules_condition_check_a_node_
value’ => array(
 ‘group’ => t(‘My module’),
 ‘label’ => t(‘My condition’),

 ‘parameter’ => array(
 ‘var_1’ => array(
 ‘type’ => ‘node’,
 ‘label’ => t(‘Condition parameter 1
(node)’),
),
 ‘var_2’ => array(
 ‘type’ => ‘text’,
 ‘label’ => t(‘Condition parameter 2
(text)’),
),
),

),
);

return $conditions;

The outermost key in the array above is by de-
fault the name of the callback function for the
condition – more than one condition can be
declared by adding more keys. As usual, make
sure to prefix your functions with your module
name. Especially note the property parameter,
used for telling Rules which type of data the
condition uses as input. There can be any num-

18 19

 return array(
 ‘var_1’ => $account,
 ‘var_2’ => $node,
);
}

Declaring and invoking events
Events are declared with an info hook – hook_
rules_event_info() – very similar to the previous
ones. An important difference is the key used
to declare event variables:

$events = array(
 ‘mymodule_rules_event_id’ => array(
 ‘group’ => t(‘My module’),
 ‘label’ => t(‘My event’),

 ‘variables’ => array(
 ‘var_1’ => array(
 ‘type’ => ‘node’,
 ‘label’ => t(‘Node provided by the
event’),
),
),

),
);

return $events;

Events are not invoked by their own callbacks.

 ‘label’ => t(‘Fetch latest content
from this user’),
 ‘save’ => TRUE,
),
),

 ‘provides’ => array(
 ‘var_2’ => array(
 ‘type’ => ‘node’,
 ‘label’ => t(‘Most recent content’),
),
),

),
);

return $actions;

Especially note the provides property, describ-
ing the variable(s) returned from the action.
When writing the action callback, make sure it
returns an array containing the variable(s) that
Rules expects. The keys for the return array
must match the keys in the info hook. The save
property for the var_1 parameter means that
Rules saves the passed variable if the action
was successfully executed. Rules will normally
wait with saving the changed entities and other
data until execution is finished, to avoid mul-
tiple saves.

function mymodule_rules_action_fetch_user_
recent_content ($var_1) {
 // Code to fetch a node object goes here...

20 21

Invoking components
programmatically
Rules components are handy tools for allow-
ing site builders to customize their own actions
and conditions. If you are writing a module that
allows site builders to set custom conditions
(or actions), you can let them set these up as
Rules components and then evaluate selected
components programmatically. This works in
a way analogous to invoking events, by using
rules_invoke_component().

The first argument is the (machine) name of
the component, and any subsequent argu-
ments are variables sent to the component.

// Included somewhere in your custom module.
$component_name = $settings[‘rules_compo-
nent_name’];
// Any variables provided from the component
are returned from its evaluation.
$result = rules_invoke_component($component_
name, $var_1, $var_2);

Rather, they are invoked by adding the rules_in-
voke_event() function somewhere in the execu-
tion cycle. The first parameter used with this
function is the name of the event to call, and
any subsequent parameters are being passed
as variables to the Rules event:

// Placed in your custom module to react in
the execution cycle
rules_invoke_event(‘mymodule_rules_event_id’,
$node);

An alternative to rules_invoke_event is the
rules_invoke_event_by _args() function. It takes
two parameters only, the first being the name
of the event and the second being an array of
variables to pass to the event.

22 23

ample shows how a site-wide list of blacklisted
words can be added to the site variable, to be
used in Rules configuration.

function mymodule_entity_property_info_
alter(&$info) {
 $info[‘site’][‘properties’][‘mymodule_black-
listed’] = array(
 ‘type’ => ‘list<text>’,
 ‘label’ => t(‘Blacklisted words’),
 ‘description’ => t(‘Disallowed words on
the site’),
 ‘getter callback’ => ‘mymodule_get_black-
listed_words’,
);
}

function mymodule_get_blacklisted_words() {
 return variable_get(‘mymodule_blacklisted’,
array());
}

Extending and altering
data types
Rules relies on information from the Entity API
module to declare data types for each entity
on your site. These are complemented by a
number of other data types, which are (with
machine names in parenthesis): date, decimal
number (decimal), duration, formatted text
(text_formatted), integer, text (text), text to-
ken (token), truth value (boolean), URI (uri) and
watchdog log entry (log_entry). As previously
mentioned, all data types and known entity
types are also represented by lists being arrays
of the data values.

The formatted text, watchdog log entry and all
entities are complex data types, having a num-
ber of properties – each property being one
of the declared data types. These properties
can be altered and extended by modifying the
properties array for the data type with help of
hook_entity _property _info_alter() and hook_
rules_data_info_alter().

It should be noted that the globally available
data is made available under the key site found
in hook_entity _property(). The following ex-

24 25

Especially note the wrap property, which
makes Rules wrap the passed object and make
it available for data selection. It is required for
any complex data type. Two properties are
declared in the property info array, which will
make it possible to read these properties in
Rules. Also, the args property has a setter call-
back – meaning that Rules cannot only read but
also write the arguments of the view object.

It so happens that the properties’ machine
names correspond directly to properties in
the view object. If this wasn’t the case, a get-
ter callback would have been required to tell
Rules how to read the property, just as it works
for entity properties. Now the default callback
entity _property _verbatim_get() is used, which
like its setter sibling simply writes to the data
object using the declared machine name as
property name.

New entity types are declared using hook_en-
tity_info. Its usage is not documented here,
but if your entities are declared properly for
the Entity API modules, Rules will know about
them too.

Providing new entities and
data types
Just as existing data types can be altered, new
ones can be added. This is done by implement-
ing hook_rules_data_info(). An example of this
is displayed below, where views are being intro-
duced as a data type in Rules.

Function mymodule_rules_data_info() {
 $data_types = array(
 ‘mymodule_view’ => array(
 ‘label’ => t(‘view object’),
 ‘wrap’ => TRUE,

 ‘property info’ => array(
 ‘machine_name’ => array(
 ‘type’ => ‘text’,
 ‘label’ => t(‘Machine name’),
),
 ‘args’ => array(
 ‘type’ => ‘list<text>’,
 ‘label’ => t(‘Arguments’),
 ‘setter callback’ => ‘entity_prop-
erty_verbatim_set’
),
),

),
);
}

28

The Tiny Book of Rules is	tiny	and	it’s	
about	the	Rules	module	for	Drupal.	

Rules	is	a	module	usually	used	to	auto-
mate	actions	on	your	Drupal	site.	Rules	
can	react	on	events	occurring	on	your	site	
–	such	as	a	user	logging	in	or	a	node	being	
created	–	and	perform	customized	follow-
up	actions	such	as	redirecting	to	a	certain	
page	or	setting	field	values.	Optionally,	
Rules	can	evaluate	conditions	before	
executing	any	actions.

Rules	is	also	a	framework	to	use	by	other	
modules,	allowing	them	to	evaluate	user-
configured	Rules	components,	such	as	
action	and	condition	sets,	or	expose	data	
about	variables	and	entities	to	other	parts	
of	Drupal.

Tiny Drupal Books #1

CreaTive Commons LiCense

