TOPOLOGICAL TYPES OF ALGEBRAIC STACKS(FINAL DRAFT)

CHANG-YEON CHOUGH

ABSTRACT. In developing homotopy theory in algebraic geometry, Michael Artin and Barry
Mazur studied the étale homotopy types of schemes. Later, Eric Friedlander generalized
them to the étale topological types of simplicial schemes. The aim of this paper is to extend
further these theories to algebraic stacks. To achieve this goal, we exploit the derived func-
tor approach of étale homotopy types by Ilan Barnea and Tomer Schlank, and use Daniel
Isaksen’s model category structure on pro-simplicial sets.
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1. INTRODUCTION

1.1. Motivation.

1.1.1. The étale homotopy theory was invented by Michael Artin and Barry Mazur [1] in
1969. Associated to a scheme is their étale homotopy type which is a pro-object in the
homotopy category of simplicial sets. This object not only recovers the étale cohomology
and Grothendieck’s étale fundamental group of the scheme, but also enables one to define
homotopical invariants, like higher homotopy groups, of the scheme.

Artin-Mazur’s étale homotopy theory has many important applications. They include étale
K-theory and the proofs of Adam’s conjecture by Quillen-Friedlander and by Sullivan. More
recently, people including Kestutis Cesnavicius, Yonatan Harpaz, Ambrus Pal, Tomer M.
Schlank, Alexei N. Sokorobogatov use the étale homotopy theory to study rational points of
algebraic varieties.

1.1.2. The main goal of this paper is to modify and extend Artin-Mazur’s étale homotopy
theory. In fact, their theory has two drawbacks. One is that it can be only applied to schemes
and more generally to Deligne-Mumford stacks. This is due to the use of the small étale

topology, which is not suitable for algebraic stacks. In 1982, Eric Friedlander [8] extended
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the theory to simplicial schemes, not just schemes. Moreover, his work lifts the étale homotopy
types, pro-objects in the homotopy category of simplicial sets, to étale topological types, pro-
objects in the category of simplicial sets. However, his theory still cannot not be applied to
algebraic stacks (sometimes called Artin stacks). The main issue is again the use of the small
étale topology. In this paper, we show that the big étale topology can replace the small étale
topology in order to recover Artin-Mazur’s and Friedlander’s theories. In fact, the big étale
topology behaves better and enables us to develop a homotopy theory of algebraic stacks.
For instance, we can discuss the étale homotopy type of the classifying stack BG,,, where G,
is the multiplicative group scheme over the complex numbers C.

Of course, one can define a homotopy type of an algebraic stack to be the étale topological
type of any hypercover which is a simplicial algebraic space. In this way, one can discuss
the homotopy type of algebraic stacks. However, we seek for an own definition of homotopy
types of algebraic stacks, not depending on hypercovers. As a result, this new approach
provides a general frame work for a homotopy theory of algebraic stacks. Furthermore, this
general frame work puts the homotopy theory of schemes, algebraic spaces, and algebraic
stacks altogether in one place.

1.1.3. On the other hand, the subtlety in the notion of weak equivalence of étale homotopy
types results in another drawback of Artin-Mazur’s theory. Indeed, étale homotopy types
are objects of the pro-category associated to the homotopy category of simplicial sets, rather
than the homotopy category associated to the pro-category of simplicial sets, which is more
natural. In order to remedy this issue, we put Daniel Isaksen’s model category structure [12]
on the category of pro-simplicial sets.

1.1.4. In order to develop homotopy theory of algebraic stacks, we use the recent machinery
developed by Tlan Barnea and Tomer Schlank [2]. Let X be the small étale topos of a scheme
X. Consider the category X£* of simplicial objects in the topos, and then the pro-category
pro — X2" associated to it. They defined model category structures to the pro-category and
to the category of pro-simplicial sets so that the connected component functor induces a left
Quillen functor:
IT: pro — X5 — pro — SSet

They proved that one can recover Artin-Mazur’s étale homotopy type of X by deriving a final
object in Xy along the left Quillen functor.

Using Barnea-Schlank machinery, we extend the scope of étale homotopy theory from
schemes or simplicial schemes to algebraic stacks. The main strength of our approach is that
one can systematically deal with étale homotopy types of algebraic stacks thanks to the use
of model category theory.

1.1.5. After setting up fundamentals, we provide two main applications of our theory. One is
the generalization of Artin-Mazur’s comparison theorem. The classical comparison theorem
[1, 12.9] says that for a connected finite type scheme X over C, its étale topological type
is isomorphic to the underlying complex topological space X (C) of its analytification, after
profinite completion. For example, for the multiplicative group scheme G,, over C, its étale
homotopy type is the profinite completion of the unit circle S'. The comparison theorem is
useful because in general étale homotopy types are hard to compute. We generalize t the
comparison theorem to the case of algebraic stacks (see [5.2.17| and [5.2.23)). For instance, the
étale homotopy type of BG,, is the profinite completion of K (Z,2) (see [5.2.18)).
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Another main application of our work is the study of étale homotopy types with respect
to group actions. David Cox [5, 6.1] showed that for a variety X over R, its étale homotopy
type is the homotopy orbit space of the étale homotopy type of X := X xgpecr Spec C with
respect to the Galois action Gal(C/R). This theorem is useful at it provides a cohomological
criterion for the existence of R-points of X; The set of R-points is non-empty if and only if
H{ (X,Z/2) is non-zero for some i > 2n where n = dim X. Later Gereon Quick |28, 5.3]
generalized the theorem to an arbitrary base field but with some subtle issue on the Galois
action. That is, for a variety X over a field k, it is not clear whether the étale homotopy
type of X admits a continuous action from the profinite group Gal(k*P/k) where kP is a
separable closure of k. Later he showed that for a geometrically connected quasi-projective
variety X over k, one can use Friedlander’s rigid Cech étale topological types (|7, 3.1]) to
avoid the continuity issue (|31, p.13]). In this paper, we take an alternative approach which
can be applied to every scheme over k. For this, we first recover Quick’s result at the level
of pro-simplicial sets and then show that it generalizes the theorems by Cox and Quick (see

F1.70).

1.2. Statement of the main results.

1.2.1. Fix a locally noetherian base scheme S. Define a site LFE(S) to be the full subcategory
of the category of schemes over S, whose objects are locally of finite type morphisms to S
with coverings induced by coverings in the big étale topology on S. Note from that its
associated topos LFE(S)™ is locally connected in a sense that the left adjoint I'* of the global
section functor admits a left adjoint denoted by IIg. By the work of Ilan Barnea and Tomer
Schlank [2], the category of simplicial objects in the topos LFE(S)™ has a weak fibration
category structure |2, 7.11| and thus induces a model category structure on its pro-category
|2l 4.8]. Moreover, there is a Quillen adjunction |2, 8.1] (see also

(Ilg,I"*) : pro — SSet — pro — (LFE(S)~)~™

where pro — (LFE(S)~)2” is endowed with Barnea-Schlank’s model category structure and
the category of pro-simplicial sets, pro — SSet, is equipped with Isaksen’s model category
structure |12, 6.4]. Now consider the left derived functor

LIl : Ho(pro — (LFE(S)™)*") — Ho(pro — SSet)

between the homotopy categories. We define topological types of simplicial algebraic spaces
as follows:

Definition 1.2.2 (Definition [3.4.2)). The topological type of a simplicial algebraic space X,
over S is the pro-simplicial set
h(X./S) := Lllg(X,)

Remark 1.2.3. Our definition is compatible with that of Artin-Mazur for schemes (see |2,
8.3] and [3.3.5)) and of Friedlander for simplicial schemes (see [3.3.7)).

1.2.4. Let X be an algebraic stacks. Note that one cannot use the topos LFE(S)™ because
algebraic stacks cannot be viewed as sheaves. Nonetheless, we can still apply the same ma-
chinery to the big étale topos on X'. More precisely, we apply the Barnea-Schlank machinery
to the topos associated to the site LFE(X) which is the full subcategory of the big étale site
of the algebraic stack X with the induced topology (see for more detail).
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Definition 1.2.5 (Definition [3.5.5). The topological type of an algebraic stack X over S is
the pro-simplicial set

h(X/S) = LHX(*LFE(X)~)
where Iy : LFE(X)~ — Set is the connected component functor.

1.2.6. We can compute the topological types of algebraic stacks via smooth coverings by
schemes:

Theorem 1.2.7 (Definition [3.5.9). Let X /S be an algebraic stack. For any smooth surjection
X — X with X a scheme, there is an isomorphism

h(cosko(X/X))—— h(X)

between pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

1.2.8. After building basics on topological types in our own language, we provide a compu-
tational tool for topological types. That is, we generalize Artin-Mazur’s comparison theorem
|1, 12.9] from schemes to algebraic stacks.

Theorem 1.2.9. (Simplicial Comparison)|Theorem [5.2.17| Let X, be a pointed finite type
simplicial scheme over C. Then the map

—

Xo(C) — h(X,)
of the profinite completions of topological types is a weak equivalence of profinite spaces.

Theorem 1.2.10. (Stacky Comparison)[Theorem [5.2.23] Let X be a finite type algebraic
stack over C. Then the map

—

R(XP) — h(X)

of the profinite completions of topological types is a weak equivalence of profinite spaces.

1.2.11. For example, we can compute the topological type of the classifying stack BG,, where
G,, is the multiplicative group scheme over C. After profinite completion, the topological
type h(BG,,) is weakly equivalent to the classifying space BS! of the unit circle, which is in
turn weakly equivalent to CP> which is well-known as K(Z, 2).

1.2.12. One of main contents of this paper is the study of topological types with respect
to group actions. Recall the notion of relative topological types by Barnea-Schlank [2, 8.5,
which encodes the action of Galois group G' = Gal(k*P/k) where k*P is a separable closure
of the field k. The following shows the relationship between the relative topological type and
the usual topological type:

Proposition 1.2.13 (Proposition{4.1.6). The pro-simplicial set hy(X)/G which is the relative
topological type of X over k taken quotient by G, and the topological type h(X/k) of X are

strictly weakly equivalent (see .

1.2.14. Note that the underlying pro-simplicial set of the relative topological type is the usual
topological type of the base change X5 = X x; kP (see . So the above proposition
leads to a generalization, at the level of pro-simplicial sets, of Gereon Quick’s result [28| 5.3|
which in turn generalizes David Cox’s result |5, 1.1] :
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Theorem 1.2.15 (Theorem [5.1.26)). Let X be a scheme over a field k. Then the completion
h(X) of the topological type h(X) of X is weakly equivalent to the Borel construction

h/(?)G’ Xa EG
of the G-equivariant completion of the relative topological type hy(X) with respect to
the Galois group G = Gal(k*P /k).

1.3. Connection to earlier works.

1.3.1. As mentioned earlier, we develop a homotopy theory of algebraic stacks by using
Barnea-Schlank’s derived functor definition of étale topological types. They defined topologi-
cal realizations for topoi [2, 8.2] which we refer to topological types in this paper. We exploit
their approach by studying relationship among various topoi. Especially, localized topoi play
a pivotal role.

While we develop a theory of homotopy types, we use topoi rather than sites. Sites are
more restricted than topoi which enjoy various categorical properties like the existence of
limits and colimits. On top of that, we can deal with more objects like algebraic spaces when
working with topoi.

1.3.2. Fix a topos T'. For simplicity, assume it has enough points. Remark that a local weak
equivalence (resp. a local fibration) between simplicial objects in T" is a weak equivalence
(resp. a Kan fibration) at stalks. The category T2 of simplicial objects in T forms a
model category structure whose class of weak equivalences (resp. cofibrations) is the class
of local weak equivalences (resp. monomorphisms). The class of fibrations is automatically
determined by lifting property and is called global fibrations. This model category structure
is due to Joyal 23|, and later generalized to the category of simplicial presheaves by Jardine.
One problem lying in the Joyal-Jardine’s model category is that the class of fibrations is
not equal to that of local fibrations. In fact, a global fibration is a local fibration, but not
vice versa (see [2.1.14)). However, it is a morphism which is simultaneously a local fibration
and a local weak equivalence that generalizes Artin-Mazur’s notion of hypercovers |1, 8.4].
Indeed, a morphism X, — Y, of simplicial sheaves is both a local fibration and a local weak
equivalence if and only if the following morphisms are epimorphisms (see [2.1.10)):

(i) Xnq1 — (cosky skn Xe)ni1 X (cosky skn Yo)nis Yn+1 for each n > 0.

n+1

Consequently it will become much easier to deal with hypercovers if we have all local
fibrations in the class of fibrations in a model category. Unfortunately, this is impossible in
most cases (see . However, Barnea-Schlank showed [2, p.55] that one can remedy this
issue after enlarging the category to the associated pro-category. Indeed, they proved that
there is a model category structure on the pro-category of simplicial objects in 7" where a
local weak equivalence (resp. a local fibration) of simplicial sheaves is a weak equivalence
(resp. a fibration) as a morphism in the pro-category.

1.3.3. The key feature of Barnea-Schlank’s model category structure is that one can under-
stand Artin-Mazur’s étale homotopy types as derived objects. To be more concrete, recall
their definition of topological realization |2, 8.2]. Assume the topos T is locally connected. i.e.,
the pull-back of the 2-categorical unique morphism I' : T' — Set admits a left adjoint. Denote
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it by II and call it the connected component functor. In geometric situations, this functor
plays the role of the connected component functor. Barnea-Schlank proved |2, p.59| that the
adjoint pair (IT, ") induces a Quillen adjunction with respect to their model category struc-
tures. Note that the Barnea-Schlank model category structure in the case of pro-simplicial
sets is simply the strict model category structure [15, 4.15] on the pro-category induced by
the classical model category on SSet (see . We refer to weak equivalences in the strict
model category structure as strict weak equivalences. However, what we want is a model
category on pro-simplicial sets whose weak equivalences are equivalent to those which induce
isomorphisms on all homotopy groups. Since there are not enough weak equivalences in the
strict model category structure, we should enlarge the class of weak equivalences. This is
accomplished by Isaksen |12, 6.4]. Hence we make a variant of Barnea-Schlank’s topological
realization by adopting Isaksen’s model category structure on pro-simplicial sets. This does
no harm in using Barnea-Schlank’s method and gives us a notion of topological type of the
topos T

Definition 1.3.4 (Definition [2.3.9)). A topological type h(T') of a topos T is the pro-simplicial
set

LLp«(x)

where * is a final object of 74" and LLp- : Ho(pro — T2™) — Ho(pro — SSet) is the left
derived functor of L« between the homotopy categories associated to model categories. More
generally, a topological type h(F,) (or hp(F,) if we wish to make the reference to T" explicit)
of a simplicial object F, in T' is the pro-simplicial set

LLp(x)(F,)

Remark 1.3.5. The main improvement compared to Barnea-Schlank’s original definition is
the definition of the topological types of simplicial objects in T, which comes from the weak
equivalence between the topological type h(F') of F'in T and the topological type h(T/F') of

the localized topos T'/F (see [2.3.30)).

1.3.6. Isaksen [14] also showed that one can take the derived functor approach for étale
topological types. Let S be a noetherian scheme. Consider the category Sm/S of schemes
of finite type over S. By endowing the étale local or the Nisnevich local projective model
category structure to the category of simplicial presheaves on Sm/S (see |14} §2]| for details),
he proved |14, 2.2| that there is a left Quillen functor from the category of simplicial presheaves
on Sm/S to the category of pro-simplicial sets

Et : (Sm//\S)Aop — pro — SSet

where the category of pro-simplicial sets is equipped with Isaksen’s model category structure
[12, 6.4]. Furthermore, for any scheme X € Sm/S, the pro-simplicial set LEt(X) is the usual
topological type of X in the sense of Friedlander (|14, 2.4]).

Since the class of weak equivalence in the local model category coincides with the class of
local weak equivalences, it follows immediately that Isaksen’s approach is compatible with
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ours. Indeed, there is a factorization

A°P

Ho(pro — LFE(S) ) - Ho(pro — SSet)

T LEt

Ho((Sm/S)>”)

Therefore, our topological type functor can be viewed as a generalization of Isaksen.

1.4. Outline of the paper.

1.4.1. In Section 2 we develop a basic theory of topological types. We first review a variety of
homotopy theoretical ingredients for pro-simplicial sheaves. Then define topological types in
a general context of topoi and provide elementary properties of them. Especially, we obtain
a series of descent results (see [2.3.41] [2.3.51} and [2.3.53). In the last subsection, we discuss a
connection to cohomology theory.

1.4.2. In Section 3 we apply the general construction to algebro-geometric objects like
schemes, algebraic spaces, and algebraic stacks. Also, we prove the compatibility with the
classical theories by Artin-Mazur and by Friedlander.

1.4.3. In Section 4 we study topological types with respect to group actions. For this we
revisit Barnea-Schlank’s notion of relative topological types |2, 8.5] and see its behavior with

respect to our topological types [4.1.10]

1.4.4. In Section 5 we have concrete computations on topological types of algebraic stacks
over C via their associated topological stacks. For this we establish a relationship between
topological types and profinite completion introduced by Gereon Quick [27]. Finally we prove
that our theorem that relates topological types to relative topological types (see 4.1.10)) is a
generalization of earlier results by David Cox and by Gereon Quick (see |5.1.26)).

1.5. Convention.

1.5.1. In this paper, an algebraic space X over a scheme S is a functor X : (Sch/S)°? — Set
such that the following holds:

(i) X is a sheaf with respect to the big étale topology.
(ii) The diagonal
A X — X xgX
is representable by schemes.
(iii) There exists a S-scheme U and an étale surjection U — X.

1.5.2. An algebraic stack X over a scheme S is a stack in groupoids over the big étale site
(Sch/S)¢ of S-schemes such that the following holds:

(i) The diagonal
AX X xgX

is representable by algebraic spaces.
(ii) There exists a S-scheme X and a smooth surjection 7 : X — X.
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Remark 1.5.3. These two definitions only assume minimum conditions compared to those
in the literature. For example, we do not assume quasi-compactness of the diagonal.

1.5.4. In what follows, for schemes, algebraic spaces, and algebraic stacks, we work over a
fixed base scheme S unless stated otherwise. Moreover, we assume that S is locally noetherian
throughout the paper.

1.5.5. Most interesting model categories are equipped with a functorial cofibrant replacement
functor |11, 8.1.15]. In this paper, however, we work with those model categories not neces-
sarily admitting functorial cofibrant replacement. So when we say a cofibrant replacement of
X, it only means a chosen trivial fibration C'(X) — X with H cofibrant. On the other hand,
a cofibrant approzimation |11, 8.1.2] of X is any weak equivalence C' — X with C cofibrant.

1.5.6. Ilan Barnea pointed out a set-theoretical issue on the site LFE(S) (cf. [3.2.1)). For
example, the Barnea-Schlank model category structure [2.2.17]is applied to small sites. When-
ever this issue arises, we invoke [22, Tag 020M] so that we can assume the smallness on the

site LFE(S).

1.5.7. Throughout this paper T is a topos and, if necessary, C is a site whose associated
topos is T" unless otherwise specified. Also, we assume that C is small.

1.6. Acknowledgements. TO BE ADDED LATER

2. TOPOLOGICAL TYPES

In this section we develop a general theory of topological types of topoi.

2.1. Review on simplicial (pre)sheaves. In their paper, Barnea-Schlank defined weak
fibration categories |2, 1.2] and used it to construct étale homotopy types as derived functors
in the sense of Quillen. In this subsection, we recall basic model categories that are necessary
to define topological types of topoi. The main references are |2], [19], and [21].

2.1.1. Recall that forn > 1 and 0 < k£ < n, the k£ th horn Afﬁ of the standard n-simplex A[n]
is the sub-simplicial set generated by the image of the face maps d; : Ajn — 1] — A[n] where
0<i<nand:i#k.

2.1.2. (The classical model category structure on SSet |32, 11.§3]) There is a model category
structure on the category SSet of simplicial sets; if f : X, — Y, is a morphism of simplicial
sets,

(i) f is a weak equivalence if the induced map on geometric realizations
[f1 X = [

is a weak equivalence of topological spaces,
(ii) f is a cofibration if it is a monomorphism, and


http://stacks.math.columbia.edu/tag/020M

TOPOLOGICAL TYPES OF ALGEBRAIC STACKS(FINAL DRAFT) 9

(iii) f is a fibration if it has the right lifting property with respect to all horn inclusions; for
all k th horn A¥ — A[n] for n > 1,0 < k < n and for every commutative diagram

Afl — X,
Aln] —= Y.
there exists a dotted arrow that fills in the diagram. These fibrations are called Kan

fibrations.

2.1.3. For a simplicial set X,, we can consider homotopy groups with all base points at once:
m(Xe) = [ ml(1Xa],2)
rzeXo

Note that a map X, — Y, of simplicial sets is a weak equivalence if and only if the following

holds:

(1) mo(Xe) — mo(Ys) is a bijection,
(ii) For each n > 1, the commutative diagram

Tn(Xe) — mu(Ys)

)

Xo Yo

1S cartesian.

2.1.4. This re-interpretation of weak equivalences of simplicial sets enables us to generalize
the notion of weak equivalences from simplicial sets to simplicial presheaves. Indeed, let X,
be a simplicial presheaf on C, or equivalently, a functor C°*» — SSet. For each n > 0, one can
associate a presheaf

Tn(Xe) : C? — Set : U — m, (X, (U))

Definition 2.1.5. (|20, p.64]) A morphism f : X, — Y, of simplicial (pre)sheaves is a local
weak equivalence if the following holds:

(i) The morphism 7y X, — mY, induces an isomorphism of associated sheaves,
(ii) For each n > 1, the commutative diagram

TnXe —= T Ys

L

Xo Yo

induces a cartesian diagram of associated sheaves.

Definition 2.1.6. A morphism f : X, — Y, of simplicial (pre)sheaves is a global fibration
if it has the right lifting property with respect to morphisms which are both local weak
equivalence and monomorphism.
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Definition 2.1.7. A morphism f : X, — Y, of simplicial (pre)sheaves is a local fibration if
it has the local right lifting property with respect to all horn inclusions; for all £ th horn
A% — Aln] for n > 1,0 < k < n and for every commutative diagram

A — X, (U)

L

Aln]| —=Y,(U)

with U € C, there exists a covering {U; — U} such that for each ¢ there exists a dotted arrow
that fills in the diagram below:

A —— X,(U) —= X.(U;)

Aln] —= Y, (U) — Y. (U))

Remark 2.1.8. If 7" has enough points, then local weak equivalences (resp. local fibrations)
can be checked at stalks.

2.1.9. The following proposition shows the meaning of having local trivial fibrations rather
than global fibrations in a model category structure on simplicial sheaves. Indeed, the equiv-
alent conditions in the statement is a generalization of the classical notion of hypercovers (see

[T, 8.4]).

Proposition 2.1.10. A morphism X, — Y, of simplicial sheaves is both a local weak equiva-
lence and a local fibration if and only if the following morphisms of sheaves are epimorphisms;

(11) Xpi1 — (cosky, sky Xe)nt1 X (coskn skn Ya)nys Ynt1 for each n > 0.

Proof. The morphisms above are epimorphisms if and only if the local lifting property of
Xo. — Y, with respect to the n-boundary inclusion dA[n] — Aln] for all n > 0 holds. See
[20, 4.32| for further details. O

2.1.11. The following model category structure on the category of simplicial sheaves is due
to Joyal from his letter to Alexander Grothendieck, and to Jardine in the case of presheaves.

2.1.12. (The Joyal-Jardine’s model category structure on the category of simplicial (pre)sheaves
[25], [21, 2.8]) There is a model category structure on the category C2” of simplicial
presheaves on C; if f : X, — Y, is a morphism of simplicial presheaves,

(i) f is a weak equivalence if it is a local weak equivalence,
(ii) fis a cofibration if it is a monomorphism, and
(iii) f is a fibration if it is a global fibration.

Remark 2.1.13. The classical model category structure SSet is a simplicial model category
[11, 9.1.6]. In particular, it is equipped with these notions; a tensoring Se ® (—) with a
simplicial set S, which is a product of simplicial sets, and for two simplicial sets X, and Y,
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a simplicial mapping space Map(X,, Ys) which is a simplicial set whose degree n is given by
Morgset(Xe X A[n],Y,). There is an adjunction

Map(So ® X, Y;) = Map(Sn Map(X., K))

This simplicial model category structure naturally induces a simplicial model category struc-
ture on Joyal-Jadine’s model category structure on the category of simplicial (pre)sheaves.
Indeed, a tensoring S, ® X, of a simplicial presheaf X, with a simplicial set S, is defined
by section-wise tensoring: (U € C) — Xo(U) ® S,. A mapping space Map(X,, Y,) between
two simplicial presheaves is the simplicial set defined by Morsaer (A[n] ® X, Y,) in degree n.
There is an induced adjunction

Morgaor (Se @ X, Ye) = Morgget(Se, Map(Xa, Ys))

Proposition 2.1.14. A global fibration X, — Y, of simplicial (pre)sheaves on a site C is a
section-wise fibration of simplicial sets (i.e., Xo(U) — Yo(U) is a fibration of simplicial sets
for all U € C) and thus is a local fibration.

Proof. That a section-wise fibration is a local fibration follows from the definitions of Kan
fibrations and local fibrations. To prove the first assertion, we may assume X, and Y, are
simplicial presheaves because the same argument with sheafification does the job. So consider
a lifting problem

for U € C. By [2.1.13] for a simplicial set S, we have an adjunction
Morgacr (Se ® hiy, Xo) = Morgget (Se, Map(hy, X))
Note also that there is a bijection of simplicial sets
Map(hy, Xe) = Xo(U)
So the lifting problem is equivalent to the lifting problem
A @ hy —— X,

The left vertical arrow is a section-wise weak equivalence of simplicial sets and thus is a weak
equivalence of simplicial presheaves. Moreover, it is a monomorphism. Therefore, the lift
exists by the definition of global fibrations. O

2.2. Review on pro-simplicial (pre)sheaves. In this subsection we recall basic back-
ground materials about pro-categories and model category structures on them. Then re-
view two different model category structures on the pro-category of simplicial (pre)sheaves:
Edwards-Hastings and Barnea-Schlank. We compare these two model category structures
and discuss why Barnea-Schlank’s model category structure is more suitable when it comes

to topological types [2.3.9,
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Definition 2.2.1. (|1, A.§1]) A category I is cofiltered if it satisfies the following conditions:

(i) For every two objects i and j, there exists an object k and two morphisms k& — i and
k=7,

(ii) For every two morphisms a,b:i=—=j, there exists an object k and a morphism
c¢:k —isuch that aoc=boec.

More generally, a functor ¢ : I — J between categories is cofinal if the following conditions

hold:

(i) For every two objects ji,jo € J, there exists an object i € I and two morphisms
@(Z) — jl and gb(l) — jg,
(ii) For every two morphisms a,b : ¢(i) === j , there exists an object ¢’ € I and a morphism
¢:i"— i in I such that a o ¢(c) = bo ¢(c).
Definition 2.2.2. (|1, A.§2|) Let C be a category. A pro-object in C is a functor
I—-¢C

from a cofiltered category I to C. The pro-category associated to C, denoted by pro — C, is
the category whose objects are pro-objects in C and whose morphisms are defined by

Morpro—c(X, Y) = lim colim More (X, Y;)

jed el

2.2.3. Let F' and G be pro-object in C indexed by the same category I. If there is a morphism
of functors a : F' — G, then there is an induced morphism of pro-objects. A level presentation
of morphisms in pro — C replaces a morphism of pro-objects by a morphism of pro-objects
induced by a morphism between functors:

Definition 2.2.4. A level presentation of a morphism X — Y in pro — C is a cofiltered
category K, pro-objects X and Y indexed by K, a morphism X — Y of functors, and
isomorphisms X — X and Y — Y such that the diagram

X—Y

!

l
X
commutes.
Lemma 2.2.5 (|1, A.3.2]). Every morphism in pro — C admits a level presentation.
Definition 2.2.6. (|15, p.4]) A directed set (I, <) is cofinite if for every t in I, the set
{sel:s<t}
is finite. Note that a direct set can be regarded as a cofiltered category.

Lemma 2.2.7 (|34, Expose 1.8.1.6]). Let I be a cofiltered category. Then there exists a cofinite
directed set J and a cofinal functor J — I. In particular, every morphism in a pro-category
has a cofinite directed level representation in a sense that it has a level representation with
the index category cofinite directed.
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Definition 2.2.8 (|15, 2.3]). Let f : X — Y be a cofinite directed, indexed by I, level
representation of a morphism in the pro-category of simplicial (pre)sheaves. For each t € I,
the relative matching map M, f is the canonical map

Xt — I&DXS Xl'glyt YS

s<t s<t

Definition 2.2.9. A morphism f : X — Y of pro-simplicial (pre)sheaves is a special global
fibration (resp. special local fibration) if it has a cofinite directed level representation for
which every relative matching map is a global fibration (resp. local fibration).

2.2.10. (Edwards-Hastings’ model category structure on the pro-category of simplicial (pre)sheaves
|6, §3.5], |19, 14]|) There is a model category structure on the pro-category of simplicial
(pre)sheaves on C; if f: X — Y is a morphism of pro-simplicial (pre)sheaves,

(i) f is a weak equivalence if it is isomorphic to a level-wise weak equivalence,
(ii) f is a cofibration if it is a monomorphism, and
(iii) f is a fibration if it is a retract of a special global fibration.

Denote this model category structure by pro®™™ — €A% (resp. pro®™H — TA").
Remark 2.2.11.

(i) As pointed out in [19, 20|, Edwards-Hastings’ model category structure is the strict
model category structure |15} 4.15] on the pro-category of simplicial (pre)sheaves induced
by Joyal-Jardine’s model category structure on the category of simplicial (pre)sheaves.

(ii) Originally, Edwards-Hastings constructed [EH]| a model category on the category of pro-
simplicial sets. After then Jardine generalized |19, 14] it to the category of pro-simplicial
sheaves. He also introduced the terminology Edwards-Hastings’ model category struc-
ture, which we follow in this paper.

2.2.12. Barnea-Schlank noticed that local weak equivalences and local fibrations are enough
to define a model category structure on the pro-category of simplicial sheaves [2, p.55|. They
define weak fibration categories |2} 1.2] which is roughly a category with classes of weak equiv-
alences and fibrations that are enough to define model category structure on the associated
pro-category:

Definition 2.2.13. (Barnea-Schlank’s weak fibration category |2, 1.2]) A weak fibration cate-
gory is a category C equipped with two subcategories F, W satisfying the following conditions:

(i) F and W contain all isomorphisms,
ii) C has all finite limits,

(i)

(iii) F has the 2-out-of-3 property,

(iv) The subcategories F and F N W are closed under base change,
)

(v) Every morphism A — B in C can be factored as A N c—21-B , where f is in W
and ¢ is in F.

The morphisms in F (resp. W) are called fibrations (resp. weak equivalences).

2.2.14. The main example of weak fibration category is:



14 CHANG-YEON CHOUGH

Definition 2.2.15. (Barnea-Schlank’s weak fibration category structure on the category of
simplicial (pre)sheaves |2, 7.7|, [2, 7.11]) There is a weak fibration category structure |2} 1.2]
on the category of simplicial (pre)sheaves on C; if f : X — Y is a morphism of pro-simplicial
presheaves,

(i) f is a weak equivalence if it is a local weak equivalence, and
(ii) f is a fibration if it is a local fibration.

2.2.16. Here is a justification for introducing weak fibration categories and passing to pro-
categories. Beginning with local fibrations and local weak equivalences to endow a model
category structure on simplicial (pre)sheaves does not work in general. Assume for conve-
nience that 7" has enough points. If there is a model category structure on the category of
simplicial sheaves with local fibrations and local weak equivalences, the class of cofibrations
ought to be the class of monomorphisms. Indeed, as every morphism of simplicial sheaves is
factored by a cofibration followed by a trivial fibration, by looking at stalks, cofibration at
each point must be a monomorphism of sets. However, such a model category structure is
precisely Joyal-Jardine’s one in which fibrations are global fibrations, but not local fi-
brations. (see[2.3.20)). Nevertheless, the classes of local fibrations and local weak equivalences
still define a model category structure on the associated pro-category:

Definition 2.2.17. (Barnea-Schlank’s model category structure on the pro-category of sim-
plicial (pre)sheaves |2, p.55]) There is a model category structure on the pro-category of
simplicial (pre)sheaves on C; if f: X — Y is a morphism of pro-simplicial presheaves,

(i) f is a weak equivalence if it is isomorphic to a level-wise weak equivalence,
(ii) f is a fibration if it is a retract of a special local fibration, and
(iii) f is a cofibration if it has the left lifting property with respect to all trivial fibrations.

Denote this model category structure by pro — CA™ (resp. pro — T2™).

2.2.18. At this point, we have two different model category structures on the pro-category
of simplicial (pre)sheaves. Note that they have the same class of weak equivalences, but not
for fibrations and cofibrations.

Remark 2.2.19.

(i) In what follows, we use Barnea-Schlank’s model category structure on the category
of pro-simplicial (pre)sheaves unless otherwise stated. Barnea-Schlank called it the
projective model category structure since every local fibration of simplicial sheaves is a
fibration as a morphism of pro-simplicial sheaves.

(ii) Joyal-Jardine’s model category structure on simplicial (pre)sheaves induces Edwards-
Hastings’ model category structure on the pro-category of simplicial (pre)sheaves. Barnea-
Schlank called it the injective model category structure since every cofibration of sim-
plicial sheaves is a cofibration as a morphism of pro-simplicial sheaves.

(iii) We do not follow Barnea-Schlank’s terminologies to avoid any confusions. There is a
definition of the projective model category structure for a given indexed category. The
case of pro-simplicial (pre)sheaves is different from this because there is no uniform
index category.

2.2.20. Of course, two model category structures on the pro-category of simplicial (pre)sheaves
are closely related to each other:
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Proposition 2.2.21 (|2, §7.4|). The adjunction
(id,id) : pro®# — T2™ — pro — T4™

between the Edwards-Hastings’ and Barnea-Schlank’s model category structures is a Quillen
equivalence.

Proof. Every fibration in Edwards-Hastings’ model category structure is a fibration in the
Barnea-Schlank model category structure because every global fibration is a local fibration
of simplicial (pre)sheaves . Since those two model category structures share the same
class of weak equivalences, the adjunction induces a Quillen adjunction. This turns out to be
a Quillen equivalence as the adjunction is given by the identities. U

2.3. Definition and Properties of Topological types.

2.3.1. In case of the punctual topos, the model category structure on pro-simplicial sets
induced by Barnea-Schlank is nothing but the strict model category structure [15, 4.15]
induced by the classical model category structure on simplicial sets. In the strict model cate-
gory structure, weak equivalences (resp. cofibrations) are those isomorphic to level-wise weak
equivalences (resp. monomorphisms) of simplicial sets. In particular, this structure coincides
with Edwards-Hastings’ model structure Consequently, the three model category
structures-Edwards-Hastings’, Barnea-Schlank’s, and the strict model category structure-on
the pro-category of simplicial sets all coincide.

However, these equivalent ones are not adequate for developing a theory of topological
types. For a morphism between connected pointed pro-simplicial sets, we hope it to be a
weak equivalence if and only if it induces an isomorphism of homotopy groups in every degree.
Although every weak equivalence in the strict model category structure on pro-simplicial sets
induces an isomorphism of homotopy groups, but not vice versa. In other words, the class of
weak equivalence is not big enough, which is why Artin-Mazur introduced f-isomorphisms |1,
§4]. The desired model category structure was achieved by Isaksen [12]. The class of weak
equivalence is a bit involved and it does have the property that a map of connected pointed
pro-spaces is a weak equivalence if and only if it induces an isomorphism of all homotopy
pro-groups |12} 7.5].

2.3.2. (Isaksen’s model category structure on pro-simplicial sets |12, 6.4]) There is a model
category structure on the pro-category of simplicial sets; if f : X — Y is a morphism of
pro-simplicial sets,

(i) f is a weak equivalence if mof is an isomorphism of pro-sets and I, X — f*II,Y is an
isomorphism in pro — £LS(X) for all n > 1 (see |12, 6.1] for details),
(ii) f is a cofibration if it is isomorphic to a level-wise cofibration, and
(iii) f is a fibration if it has the right lifting property with respect to all trivial cofibrations.

Denote this model category structure by pro — SSet and the strict one by pro®™ — SSet
Remark 2.3.3.

(i) Both the strict and Isaksen’s model category structures have the same class of cofibra-
tions which are exactly the class of monomorphisms.
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(ii) A weak equivalence in the strict model category structure, called a strict weak equiva-
lence, is also a weak equivalence in Isaksen.

2.3.4. In what follows, the model category structure on pro-simplicial sets is always that of
[saksen unless otherwise specified.

2.3.5. Consider the (2-categorical) unique morphism of topoi:
[ =(I*I.): T — Set

According to Barnea-Schlank [2, 8.2|, the pull-back functor T'* admits a left adjoint Ly« for
the associated pro-categories, and moreover there is a Quillen adjunction

(Lp+,T*) : pro®™ — SSet — pro — T2

where the pro-category of simplicial sets is endowed with the strict model category structure.
In particular, Ly« preserves cofibrations and trivial cofibrations. It then follows from
that there is still a Quillen adjunction

(Lp-,T*) : pro — SSet — pro — T2

Remark 2.3.6. If T is locally connected in a sense that ['* admits a left adjoint, denote the
left adjoint by II and call the connected component functor. In this case, Lp« is simply the
connected functor induced on the pro-categories.

2.3.7. The locally connectedness condition is a topos-theoretic generalization of the connected
components of a topological space. For instance, the small étale topos X of a locally
noetherian scheme X is locally connected. If YV is étale over X, then II applied to the sheaf
represented by Y over X is the set of connected components of the underlying topological
space of the scheme Y.

2.3.8. In what follows, we do not assume the locally connectedness condition on 7'. Even if
the condition is necessary for the comparison with Artin-Mazur’s étale homotopy types (see
3.3.5)), we can still develop a general theory of topological types without it:

Definition 2.3.9. A topological type h(T) of a topos T is the pro-simplicial set
LLF* (*)

where * is a final object of 72" and LLp- : Ho(pro — T2*") — Ho(pro — SSet) is the left
derived functor of Lr-. More generally, a topological type h(F,) (or hr(F,) if we wish to make
the reference to T' explicit) of a simplicial object F, in T is the pro-simplicial set

LLr(F.)
The topological type h(T) of T is the topological type h(x) of a final object in TA™.
Remark 2.3.10.

(i) Though we use Isaksen’s model category structure on pro-simplicial sets, most weak
equivalences of topological types in this paper are strict weak equivalences. Indeed,
most weak equivalence are induced by weak equivalences in pro — T2” and so they
are strict weak equivalences of pro-simplicial sets(see . In particular, a choice of
cofibrant approximation makes a difference only up to strict weak equivalence.
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(ii) We could have developed the theory of topological types with the strict model category
structure on pro-simplicial sets. However, we allow more weak equivalences to compare
our definition with Friedlander’s étale topological types

2.3.11. The main goal of this paper is to build a theory of topological types for algebraic
stacks. Since stacks cannot be thought as sheaves, extra cares are needed.

Definition 2.3.12. Let X be a stack over C. A site C/X is defined as following. An object
is a pair (U,u), where u : U — X is a morphism of fibered categories over C. A morphism
(V,v) = (U, u) is a pair (h, h®) where f:V — U is a morphism in C and h’ : v — uo f is a
2-morphism of functors. A collection of maps

is a covering if the underlying collection {h; : U; — U} of morphisms in C is a covering of U.
Denote by T'/X the associated topos.

Remark 2.3.13. For a fibered category in groupoids p : F' — C, there is an inherited topology
on F' from C. Namely, a family {z; — 2} of morphisms in F' with fixed target is defined to be
the covering if the family {p(z;) — p(x)} is a covering in C (see |22, Tag 06NU]| for details).
Under the 2-Yoneda lemma, the site applied to the fibered category X' /C is equivalent to the
site C/X defined above.

Definition 2.3.14. A topological type of a stack X over C is the pro-simplicial set
h(X) = LLF;/X(*T/X)

where I', X Set — T'/X is the constant sheaf functor and 7,y is a final object in the topos
T/X.

2.3.15. After developing a general theory of topological types of simplicial sheaves, we will
related the topological types of stacks to the topological types of simplicial schemes/algebraic
spaces. Before that, we provide a couple of examples of topological types of topoi.

Definition 2.3.16.

(i) Two objects in a model category are weakly equivalent if there is a zig-zag of weak
equivalences between them |11} 7.9.2].

(ii) Two pro-simplicial sets are strictly weakly equivalent if there is a zig-zag of strict weak
equivalences between them.

Example 2.3.17. Let BG be the classifying topos of a discrete group GG. Recall that it is
the category of presheaves on the category C with one object * and

Hom(x,*) =G

Let us endow C the trivial topology so that BG is also the category of sheaves on C. Note
that BG is locally connected with its connected component functor the colimit functor. In
fact, BG is equivalent to the category of G-sets.

To compute the topological type of BG, we follow the same argument in Barnea-Schlank
|2, Example 6]. Their argument works verbatim despite the different choice of model category
structures on pro-simplicial sets. Let us work in general. For any given category C, endowed
the trivial topology on it. Denote by T the associated category of sheaves, or equivalently,


http://stacks.math.columbia.edu/tag/06NU

18 CHANG-YEON CHOUGH

presheaves. It is locally connected with the colimit functor as the connected component
functor. In the weak fibration category structure on the category of simplicial sheaves, weak
equivalences (resp. fibrations) are exactly section-wise weak equivalences (resp. section-wise
Kan fibrations) of simplicial sets. Notice that these two classes are exactly those classes in
the model category structure on simplicial sheaves viewed as the the category SSet®” of C°P-
diagrams of simplicial sets, induced by the model category structure on simplicial sets |11,
11.6.1]. So in this case, Barnea-Schlank’s model category structure on pro — T2” is nothing
but the strict model category structure |15, 10.4] induced by the model category structure
on SSet®”. This enables us to compute the topological type because cofibrations in the
strict model category structure are exactly morphisms isomorphic to level-wise cofibrations
of simplicial sheaves. Now consider the C°P-diagram of simplicial sets

N(=/C):C® - SSet : U — N(U/C)
where N(U/C) is the nerve of the undercategory U/C. It follows from |11, 14.8.9] that
N(=/C) — x

is a cofibrant approximation of a final object * in 7", which then becomes a cofibrant
approximation in pro — T2". Therefore, we have a strict weak equivalence

colimgep N(—/C) =II(N(—/C)) — h(T)

of pro-simplicial sets. Again, it follows from |11, 14.7.5] that colimeer N(—/C) is isomorphic
to the nerve NC of the category C. To sum up, the topological type h(T) is strictly weakly
equivalent to the simplicial set NC viewed as a pro-simplicial set. In particular, the topological
type of BG is the classifying space K(G,1).

2.3.18. Let us take a close look at the projective model category structure on (BG)2™ which
is the category of simplicial G-sets. A morphism of simplicial G-sets is a weak equivalence
(resp. fibration) if and only if its underlying morphism of simplicial sets is a weak equivalence
(resp. fibration). On the other hand, it follows from |10, 5.2.10] that a simplicial G-set X, is
cofibrant if and only if X, is a free G-set for each n. Also, the map G — * is an epimorphism
in BG and hence cosky(G) — * is a trivial fibration. Now let X, be a simplicial G-set. Then
there is an induced trivial fibration

cosky(G) x Xo — X,

in (BG)2™. Moreover, coskq(G) x X, is a cofibrant object in (BG)2" as G-action on coskg(G)
is free. Recall from the previous example that the Barnea-Schlank model category structure
on pro — (BG)?" is the strict model category structure induced by the model category
structure on (BG)A". Therefore, cosko(G) x X, — X, is a cofibrant approximation of X, in
pro — (BG)2™ as well. Consequently, there is a strict weak equivalence

(cosko(G) x X,)/G = T(coske(G) x X,) — h(X,)
As a result,
LII : pro — (BG)*™ — pro — SSet

can be understood as a generalization of the Borel construction. Finally, note that cosky(G)/G
is the classifying space K (G, 1) of the discrete group G and hence we can recover the previous

result that h(BG) is K (G, 1).
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Example 2.3.19. Let us extend the result to profinite groups. So let G = {G,}ic; be an
inverse system of finite groups with surjective transition maps. Denote by K; the kernel of
@ie ; G; — G;. Consider the classifying topos BG which is the category of discrete G-sets.
As in the discrete case, BG is locally connected. Remark that for each i < j, there is a
commutative diagram of topoi

BG, BG,;
BG

To compute the topological type h(BG), we use its compatibility with Artin-Mazur. Consider
a cofibrant replacement H — * of * in pro — (BG)2™. Say

H:A— (BG)A™

It then follows from |2}, 8.3] that there is a commutative diagram

A— HR(BG) —L—~ SSet

N |

7HR(BG) — Ho(SSet)

where THR(BG) is the simplicial homotopy category |2, 6.15] of the category HR(BG) of
objects X, with X, — * a trivial fibration in (BG)2"". Since 7THR(BG) is cofiltered and the
composition A — THR(BG) — Ho(SSet) is cofinal |2 §6.2],

mHR(BG) — Ho(SSet)

computes h(BG) as an object in pro— Ho(SSet). Further, we can restrict the index category
to the full subcategory mHR™P"(BG) consisting of representable objects by using a similar
argument as in [3.2.8, Note that BG is equivalent to the topos associated to the discrete
finite G-sets. So X, being representable means that each X, is a finite discrete G-set. Fix a
non-negative integer n. A morphism between cofiltered categories

I — 7HR™"(BG) : i — p; EG;

induces a morphism of nth homotopy pro-groups. We claim that it is an isomorphism. We
need to prove that for any given representable simplicial discrete G-set X,, there exists some
t € I such that one can choose a morphism from p; EG; to X,. Since we are looking at nth
homotopy groups, we may assume X, is isomorphic to cosk, sk, 11 X,. Consider the finite
intersection of open stabilizers:

N é

CEGUﬁj—:lO Xm

Since { K }ies forms a fundamental system of neighborhood of the identity, K; is a subgroup
of the finite intersection for some 7. This implies that p;, X, = X,Ki is equal to X, itself and
thus p} applied to a trivial fibration X, — * in (BG)2" is still a trivial fibration in (BG;)*™.
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Then via adjunction we can solve the lifting problem

) —— X,

P EG; — x

in (BG;)~™ where the lift exists because EG is cofibrant. Therefore, there is a f-isomorphism
between I — SSet : i — II(p; EG;) = BG,; and h(BG) in pro — Ho(SSet). Consequently,
h(BG) is K(G, 1) which is the inverse system {K(G;,1)};es of classifying spaces.

Remark 2.3.20. There is no model category structure on (BG)*™ with local weak equiva-
lences as weak equivalences and local fibrations as fibrations. Recall from [2.1.§]that local weak
equivalences and local fibrations can be checked at stalks. The topos BG has enough points;
the point Set — BG whose pull-back assigning underlying sets does the job. Therefore, a
morphism of simplicial discrete G-sets is a local weak equivalence (resp. a local fibration) if
and only if the underlying map of simplicial sets is a weak equivalence (resp. a Kan fibration).
For the sake of contradiction, assume there is such a model category structure. We claim that
there is no cofibrant object. If X, is cofibrant, we can find a dotted arrow in the following
diagram for each :

TEG;

épz

Xy — %

This is because the right vertical morphism is a trivial fibration as the pull-back of the trivial
fibration EG; — * in (BG;)*”. Having a dotted arrow implies that the stabilizer G, is a
subgroup of K; for each n and each x € X,,. Since this is true for every 7, each X,, has a free
G-action. However a discrete GG-set cannot have a free G-action unless G is discrete.

2.3.21. For the rest of the subsection, we study basic properties of topological types.

2.3.22. The notion of topological types is functorial up to strictly weakly equivalent ob-
ject. This slight annoyance will be resolved when defining topological types of schemes. A
morphism f : 7" — T between topoi induces a morphism of pro-simplicial sets:

WT') = LLp- (') — LLp- (%) = h(T)

Indeed, consider a cofibrant replacement H' — # of " in pro—7""" and choose a factorization

Lf* (H/) """ d> K

L

Lf*(*’) — > x

of the composition Ly«(H') — Lg«(%') — * as a cofibration followed by a trivial fibration.
Here L+ is a left adjoint of f* : pro — T2" — pro — T"A"" which is a right Quillen functor |2,
8.1|. Since Ly preserves cofibrations, K — * is a cofibrant approximation of . Then there
is a weak equivalence K — H over x where H — % is a cofibrant replacement of . Since L«
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preserves weak equivalence between cofibrant objects, we get a morphism

W(T") = Low(H') = Lr-(Ly- (')~ Le-(K) — L+ () = LLp- () = h(T)

where the map Lp«(K) — Lp«(H) is a strict weak equivalence. So the map h(T") — h(T) is
obtained by applying Lp+ to the composition L H" — K — H and thus can be regarded as
a morphism in the category of pro-simplicial sets rather than in its homotopy category.

2.3.23. If T is locally connected, then every object is isomorphic to a disjoint union of
connected objects. The behavior of topological types with respect to coproduct is simple:

Proposition 2.3.24. Let {F,}aca be a collection of objects in T*. Then there is a strict

weak equivalence
[T rF) = n(] £

Proof. For each a, choose a cofibrant replacement C,, — F,, of F,, in pro—T*". Since [] C, is
cofibrant, the morphism [[_, Co — [, Fi is a cofibrant approximation by the lemma below.
The statement follows from the fact that Ly commutes with coproducts. O

Lemma 2.3.25. Let { X% — Y*},ca be a collection of weak equivalences in pro—T>". Then
the induced morphism

Ix -1
s also a weak equivalence.

Proof. Say X is indexed by I,. Note that the coproduct [[, X* is simply
HIQ — T2 (ig) HX;‘;

By replacing morphisms by their level presentations [2.2.5] it suffices to prove the statement
for morphisms in 72" where the result follows from [20, 4.42]. In case T has enough points,
the statement is reduced further to the case of simplicial sets where the result is also well-
known. U

2.3.26. Different topoi can induce the same topological type up to strict weak equivalences.
The following is an important case which plays a crucial role in replacing étale homotopy
types by smooth topological types.

Proposition 2.3.27. Let f : C' — C be a cocontinuous functor between sites with the asso-
ciated morphism of topoi f :T" — T. Assume that the functor is continuous and commutes
with finite limits. For a simplicial object F. in T", the morphism

hr (Fy) = he(fi(F))

between topological types is a strict weak equivalence of simplicial sets where fi is a left adjoint
to f*. In particular, the morphism

h(T") — h(T)

between topological types is a strict weak equivalence of pro-simplicial sets.
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Proof. By the assumption on continuity, there is also a morphism of topoi
(f;,]”) T =T

whose push-forward is the pull-back of f. Consider a cofibrant replacement H' — F, (resp.
H — fi(F!)) of F! (resp. fi(F!)) in pro — T'"2™ (resp. pro — T2"). As a left Quillen adjoint
of f*, cofibrations are preserved under f, . Whereas f, as a pull-back of T"— T", preserves
trivial fibrations. Therefore we can fill in the dotted arrow in the diagram below:

| ~ H
j d j
f(H') — fil(F7)

The dotted arrow is a weak equivalence by the 2-out-of-3 property of weak equivalences.
Finally, Lr+ sends a weak equivalence between cofibrant objects to a strict weak equivalence:

hT’<F./) - LF’*(H/) = LF*(f!(H/)) 4 Lr*(H) = hT(f!(F./))

The last statement on topological types on topoi immediately follows from the fact that fi
preserves a final object. U

2.3.28. One of the key aspects of topological types of topoi is their behavior with respect to
localizations:

Lemma 2.3.29. Let F' be an object in T and j : T/F — T be the localization morphism of
topoi. Then the functor

g (T/F)A" = T2 . X, /F — X,

preserves weak equivalences.

Proof. For a simplicial object X,/F in the localized topos T/F, the presheaf 7,(X,/F) is
simply the presheaf 7, X, over F. Since both the sheafification and j; commute with fiber
products, 7 preserves weak equivalences. O

Proposition 2.3.30. Let G, — F be a morphism of simplicial objects in T where F is a
constant object. Then there is a strict weak equivalence

hry(Gof F) = hr(G)
of pro-simplicial sets. In particular, for any object F in T there is a strict weak equivalence
WT/F) = ho(F)
of pro-simplicial sets.
Proof. Denote by j : T/F — T the localization morphism of topoi. The pull-back functor

7% admits a left adjoint j, that forgets the structure morphisms to F'. Consider a cofibrant
replacement

H — G,/F
of Go/F in pro — (T/F)A™. Apply ji to get

j!H/ — jl(G./F) = G.
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As a left Quillen adjoint, j, preserves cofibration and so jiH is cofibrant. Now by [2.3.29]

Jji preserves weak equivalences and thus 5 H' — G, is a cofibrant approximation of G, in
AcP

pro—T"". Il

Remark 2.3.31. The last statement in [2.3.30] tells us that we could have defined the topo-
logical type of F' as the topological type of the localized topos T'/F.

2.3.32. Topological types behave well with respect to morphisms of topoi. Let f: T — T
be a morphism of topoi. For an object F' in T', there is a map of topological types

h(f*F) = h(F)

This follows from the definition of topological types. Or one can apply[2.3.30|to the morphisms
of localized topoi T"/f*F — T/ F.

2.3.33. Next goal is to understand the topological types of simplicial objects via the topo-
logical types of objects in each degree. We first recall basic notions related to the realization
and the homotopy colimit functors.

2.3.34. (The Reedy model category structure) For a model category M, there is a model
category structure on the category M2 of simplicial objects in M; if f : X, — Y, is a
morphism of simplicial objects,

(i) f is a Reedy weak equivalence if X, — Y, is a weak equivalence in M for each n,
(ii) f is a Reedy cofibration if the relative latching map

X, [[va—V.
LnX.
is a cofibration in M for each n where the latching object L, X, of X, at [n] is defined
by
L, X, := hgrl Xm
[m]ed(A°P /[n])
where the latching category O(A°P/[n]) of A° at [n] is the full subcategory of the comma
category A°P/[n] containing all objects except the the identity morphism on [n].
(iii) f is a Reedy fibration if the relative matching map

Xn — Yn X MY MnX.
is a fibration in M for each n.

We omit the details for Reedy fibrations (see |11, 15.3.3]).

Remark 2.3.35. Throughout this paper, whenever we consider the category of simplicial
objects in a model category, we endow the Reedy model category structure on it.

2.3.36. A Reedy cofibration X, — Y, induces a cofibration X,, — Y, for each n, but not
vice versa. In particular, a level-wise cofibrant object X, is not necessarily Reedy cofibrant.
However, most model categories we study in this paper have the property that every simplicial
object is Reedy cofibrant. These include:

(i) SSet in[E17
(ii) pro™ — SSet with the strict model category structure in [2.3.1]
(iii) pro — SSet with Isaksen’s model category structure in m
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(iv) CA” with Jardine’s model category structure in

(v) TA™" Wlth Joyal’s model category structure in

(vi) pro — T2 with Edwards-Hastings’ model category structure in
(vii) SSet with Quick’s model category structure in [5

2.3.37. Let M be a simplicial model category. The realization functor
| = M2 - M

is defined as following. For a simplicial object X, € M2" | its realization |X,| is the coequal-
izer of the diagram

[ Xa®Anhl=—= I X,®A[n]

([n]—=[m])eA [n]eA

The realization functor admits a right adjoint that sends X to ([n] — X2M) and they are
Quillen adjoint.

2.3.38. A homotopy colimit, hocolimaer X,,, of a simplicial pro-simplicial set X, is defined
by the coequalizer of the diagram

I Xn@N(n]/AP)? == [ X, & N([n]/A%)%
(Il lml)ea fmlea

where IV : Cat — SSet is the nerve functor. As a consequence of [2.3.36] for any simplicial
pro-simplicial sets X,, the Bousfield-Kan map

hocolim X,, — |[n] — X,,|

[n]eAcp

is a weak equivalence of pro-simplicial sets in the strict model category structure. Particularly,
it is a weak equivalence in the sense of Isaksen.

2.3.39. For a simplicial object F, in T, one can associate a simplicial object in T2:
AP — T2 :[n] — F,
where F), is viewed as a constant simplicial object. In turn, this gives rise to a simplicial
object in pro — T2 by embedding 72" into the associated pro-category:
A% — pro — T2 : [n] — F,

This will be used in the proof of [2.3.41| and in [2.3.43)).

Remark 2.3.40. Eventually we would like to consider a simplicial object
[n] = h(F,)

in the category of pro-simplicial sets. However, we should be careful because the cofibrant
replacement in pro — 72” is not functorial and thus we may have trouble in getting the
simplicial object. This caveat can be resolved once we choose a cofibrant replacement of

[n] — F,
n (pro — TA")A” . Of course, up to weak equivalence, this process is independent of the
choice of cofibrant replacements.
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Theorem 2.3.41. (Simplicial descent) Let Fy be a simplicial object in T. There is an iso-
morphism

hocolim h(F},) ~—— h(F,)

[n]eAcp

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. Recall from [2.3.38| that there is a strict weak equivalence
hocolim h(F,,) — |[n] — h(F,)]

[n]eAcp
So we can replace the hocolim by the realization. Since L+« commutes with colimits and
tensoring with simplicial sets, we have a (2-categorical) commutative diagram

Ho((pro — TA")A™) Llre Ho((pro — SSet)>™)

Lli'profTAOp L lLl_

Ho(pro — T2™) bl Ho(pro — SSet)

By applying the simplicial object [n] — F}, in pro—T2"" (see to the diagram, we obtain
a zig-zag strict weak equivalence between LLp-(L|[n] — F,|,,_rac») and L|LLp-([n]
F,)|. Consider a cofibrant replacement H, — ([n] — F,) of ([n] — F,) in (pro — T2")2".
By , the former is strictly weakly equivalent to LLp«(|[n] = F,|,oe-n_racr) which is
isomorphic to LLp-(F,) = h(F,) by [2.3.43

On the other hand, we have a strict weak equivalence

L|LLp«([n] — F,)| — |Lr-(H,)|

So far, we have shown that LLp«(F,) and |Lp«(H,)| are strictly weakly equivalent.

Say K. — ([n| — F,,) is the cofibrant replacement which is used to get the functoriality of
([n] = h(F,)). Then we can find a dotted arrow d in the diagram

Hy oo d o - K,

~ 7

([n] = Fu)

Since K, and H, are Reedy cofibrant, H,, — K, is a weak equivalence between cofibrant
object and hence
LF* Hn — LF* Kn
is a weak equivalence. Finally, every object in (pro — SSet)
|Lr«(H,)| = [[n] = Lr«(Hy)| = |[n] = Lr«(K,)| = [[n] — h(F,)|

is a weak equivalence. O

A% is Reedy cofibrant and thus

Lemma 2.3.42. Let F, be a simplicial pro-object in T>"" and H, — F, be a cofibrant
replacement of F, in (pro — TA™)A" . Then two objects |Ho|pro—raor and |Fy|yom-n_race are
weakly equivalent in pro — T2 .
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Proof. Recall from [2.2.21] that we have a Quillen equivalence
id : pro® — T2 — pro — T2

Since the identity functor commutes with colimits, we have a (2-categorical) commutative
diagram

Ho((pro — TA)A) B Ho((proftl — A )A)
Li=|,0_raop j lL|me-HTA0P
Ho(pro — T2™) L Ho(pro™H — T4%)

So we have a zig-zag weak equivalence between Lid(L|F, |, _7acr) and L|Lid(F}, )| oe-n_gace.

For the former, since the classes of weak equivalences are the same for both pro — 72" and

pro™™ — TA°" there is a weak equivalence

Lid<L|F0|pro—TA°p> — |I—I'|pro—TAOp
On the other hand, by definition,
L|L1d(F,) |prOE-H_TAOP = L|H. |prOE-H_TA0P

Also, there is a weak equivalence
L|]—I°|proE'H—TA°p — |]—10|pr0]‘3‘H—TA°p

. . _ op . .
because every object in pro®™H — T2 is Reedy cofibrant. Furthermore, there is a weak
equivalence
|H.|pr0E-H_TA0P — |F.|prOE-H_TA°P

because H, — F, can be viewed as a Reedy weak equivalence between Reedy cofibrant objects
in (pro™™ — TA"™)A " All things considered, we have proved the statement with respect to
pro™H — T2 " The same result holds in pro — 72" because pro™ — 72" and pro — T2”
have the same class of weak equivalences. O

Lemma 2.3.43. Let F, be a simplicial object in T. Then F, viewed as a pro-object in T

and |[n] = F, | pos-n_race are isomorphic pro-objects of T™.

Proof. Let C be a site whose associated topos is T'. In the category of simplicial presheaves on
C, the realization |[n] — F),|sacr is isomorphic to F,. That is, there is a natural isomorphism

Fn® M) == [ F.® Aln)— [ln] - F|

([n]—[m])eA [n]eA :
d:
\ v

Fy
where the top row is a coequalizer diagram. After sheafification, this induces an isomorphism
|[n] — F|pace — F,

of simplicial sheaves on C because the realization taken as simplicial sheaves is isomorphic to
the sheafification of the realization taken as simplicial presheaves.

The inclusion functor
i TA" — pro®t — 72
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commutes with colimits and thus we have a commutative diagram
(TAOP)AOP 7 (pI‘OE_H . TAOP)AOP

|| paop L L |~ | roB-s_pace

AP i profH — A

Then the result follows immediately from diagram chasing. U

2.3.44. Let P be a class of morphism in 7" that is stable under base change and composi-
tion, and that contains all isomorphisms. Assume further that every morphism in P is an
epimorphism.

Definition 2.3.45. A simplicial object G, over an object F'in T is a P-hypercover of F' if
the unique morphism G,/F — *7/p to a final object *7/p in the localized topos T'/ F satisfies
the following conditions:

(i) Go/F — *7/F,
(ii) Gpy1/F — (cosk, sk, Ge/F )41 for each n >0

are in P.

Lemma 2.3.46. Let G, be a P-hypercover of F' inT. Then the structure morphism G4 — F
is a trivial fibration in the weak fibration structure (see on T2, In particular, it can
be viewed as a trivial fibration in pro — T2 .

Proof. For n > 1, the functor jy : T/F — T commutes with the coskeleton functors. For
n =0, (cosky ski G./F), is nothing but Gy x » Gy over F. As we have

Go xp Go = (coskgsko Ge)1 X (coskq sko )1 F
the statement follows from that every morphism in P is an epimorphism and [2.1.10] U

2.3.47. For a simplicial object [n] — FJ* in the category of simplicial objects in a category
C, we view it as a bi-simplicial object F,q in C sending ([n],[m]) to F)'. When we say a
bi-simplilcial object G, over a simplicial object F,, the simplicial object sends (n,m) into
F,. So for each n, we have a simplicial object GG, over a constant simplicial object F,.

Definition 2.3.48. A bi-simplicial object G,, over a simplicial object F, in T is a P-
hypercover of F, if
Gne — F,

is a P-hypercover for each n.

2.3.49. Thanks to our approach to the topological types, we easily obtain the hypercover
descent theorems [2.3.51| and [2.3.53] The following proposition is due to Misamore |24} 2.1].

Proposition 2.3.50. If a morphism Gee — Fee of simplicial objects in TA" is a degree-wise
trivial fibration in a sense that Gne — Fe is a trivial fibration of the weak fibration structure
on TA” for each n, then its diagonal AGe.e — AF,, is a weak equivalence in TA.

Proof. Fix a Boolean localization p : S — T. Then a morphism in 72" is weak equivalence
(resp. trivial fibration) if and only if its pull-back in S2™ is a weak equivalence (resp.
section-wise trivial fibration). So we may assume that G,, — F,. is a section-wise trivial



28 CHANG-YEON CHOUGH

fibration. From the corresponding result for simplicial sets, we then have a section-wise weak
equivalence of simplicial sets, which implies local weak equivalence. O

Theorem 2.3.51. (Hypercover descent) Let Goe — Fy be a P-hypercover of Fy in T. Then
it induces a strict weak equivalence

hAGee) — h(F,)
of topological types.

Proof. By the definition of P-hypercovers and [2.3.46] G.. — F, is a degree-wise trivial
fibration in T2”. So the result follows from [2.3.501 O

Lemma 2.3.52. Let G, — F (resp. Hy — F') be a P-hypercover of F'. Then two topological
types h(Ge/S) and h(H,/S) are strictly weakly equivalent.

Proof. Define a bi-simplicial object K¢ by K, = G, X p Hy,. Then the projection K, — G,
(resp. Ko — H,) is a P-hypercover of G, (resp. H,). Apply the bi-simplicial hypercover
descent [2.3.51| to obtain strict weak equivalences

hAKe/S) = h(Ge/S)

and
hMAKe/S) — h(H,/S)
O

Theorem 2.3.53. (Simplicial hypercover descent) Let Gy be a P-hypercover of F inT. Then
there 1s an isomorphism

hocolim h(G,,) —— h(F

ocolit h(G,) *— h(F)
of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. This is a combination of the simplicial descent and the bi-simplicial hypercover
descent 2.3.51] O

2.3.54. We now study topological types of stacks and its relationship to topological types of
simplicial sheaves.

Definition 2.3.55.

(i) A fibered category in groupoid X over C is representable by sheaves if there exists a
sheaf F' on C and that X is equivalent to the fibered category associated to the sheaf F’
in the 2-category of fibered categories over C.

(ii) A morphism X — ) of fibered categories is representable by sheaves if for every sheaf Y
on C and every morphism Y — ), the base change X Xy Y is representable by sheaves.

2.3.56. Whenever we discuss topological types of stacks, we assume that the site C has a
subcanonical topology. Moreover, for the topological type of a stack X', we assume further
that the site C/X is subcanonical, too. Note that these conditions are satisfied by algebraic
stacks.
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Theorem 2.3.57. Let X' /C be a stack. Assume there exists an object X € C and a morphism
X — X such that X — X 1is representable by sheaves and the morphism

hx sx — *r/x
of sheaves on C/X is an epimorphism. Then there is an isomorphism
h(coskg(X/X))—— h(X)

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. Note that cosko(X/X) is a simplicial sheaves since X — X is representable by sheaves.
By applying [2.3.51| to the morphism hx_,x — *7/x, there is a strict weak equivalence
h(cosko(hxx/*r/x)) = h(*1/x) = h(X)

Consider the following commutative diagram

h[%ceoAl(i){jn h((cosko(hx—x/*7/x))n) — h(cosko(hx—x/*1/x))

hocolim h((cosko(X/X))n)

[n]eAcr

h(cosky(X /X))

By [2.3.41} the two horizontal arrows are isomorphisms in Ho(pro — SSet). On the other
hand, there is a strict weak equivalence

h((cosko(X/X))n) — h((cosko(hxx/*1/x))n)

for each n because both topological types are the topological type of the topos T'/(cosko(hx—x/*7/x))n
by [2.3.30] Thus the left vertical arrow is an isomorphism in the homotopy category of pro-
simplicial sets. From the commutative diagram above, the right vertical map is also an
isomorphism. Since all these isomorphisms are induced by strictly weakly equivalences, so is
the right vertical isomorphism. O

2.4. Connected components, Fundamental groups, and Cohomology of Topologi-
cal types.

2.4.1. Let X, be a simplicial set. Recall that the set of connected component my(X,) of X,
is the coequalizer

Xy == Xy —mo(X,)
For a pro-simplicial set X : I — SSet : i — Xj, its connected component 7y(X) is the pro-set

I — Set : i — m(X;)

Proposition 2.4.2. Let F, be a simplicial object in T'. Then there is a canonical bijection
of pro-sets

mo(h(FL)) — mo(Lr-(Fs))
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Proof. 1t suffices to show that for any given set S, the canonical map
Morpro—sets(ﬂ-O(LF* (Fo))7 S) — Morpro—sets (WO(h(Fo)>7 S)

is a bijection. Consider a cofibrant replacement H — F, of F, in pro—T>"". Say H : [ — T>"
with I the cofiltered index category.

(2.4.2.1) Morpro—set (mo(Lr+(Fs)), S) = Morpo—sset (Lr+(Fe), S)

( ) = Mory,,_pacr (Fy, 5)

( ) = Morpace (Fy, S)

(2.4.2.4) = Morrp(mo(Fy), S)

( ) = Morpo-7(mo(F3), S)

( ) = Morpo-7(mo(H), S)

(2.4.2.7) = Morpo-set(mo(h(Fs)), S)

where § = I'"*(S). Note that follows from that H — F, is a weak equivalence. [
Remark 2.4.3. In a geometric situation, say for schemes, the proposition above will mean

that the number of connected components of a scheme X is equal to the number of connected
components of its topological type.

2.4.4. Let G be a discrete group. For a simplicial set X, and a point z € X, its fundamental
group classifies G-torsors in a sense that there is a bijection

Morgps(m1(Xe, 7), G) = H'(X,,G)
where H'(X.,, G) is the set of isomorphism classes of G-torsors. We state and prove the cor-

responding result for topological types. We begin with a homotopy theoretic reinterpretation
of the result.

2.4.5. Let G be a group object in 7. The non-abelian cohomology group H(T, G) is defined
to be the set of isomorphism classes of G-torsors. Then it has been known from [17] that
there is an identification

Hl (T, G) = HOTAOP (*, BG)

This behaves well with respect to the localization:

Lemma 2.4.6. Let F' be an object in T. For a group object G in T, there is a canonical
bijection
where j* : T — T/F is the pull-back.

Proof. From [17] or |20} 9.8], the statement is equivalent to
Hogaor (F, BG) = HO(T/F)Aop(*T/F, B(5*G))
which is a consequence of the Quillen adjunction
(G, 5%) : T2 — (T/F)*"

with respect to Joyal-Jardine’s model category structures [2.1.12, Indeed, 7 preserves local
weak equivalences by [2.3.29| and cofibrations which are exactly monomorphisms. O
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Lemma 2.4.7. Let F, be a simplicial object in T and G be a discrete group. Then for each
n > 0 there is a canonical bijection

Hopaor (Fy, K(G,n)) — Hopro—sset(h(Fo), K(G,n))

Proof.

24.7.1
24.7.2

( ) Horpaor (Fy, K(G,n)) = Hooen_pace (Fo, K(G, 1))
(24.7.2) — Hoy, gar (Fay K(G, 1))
(2.4.7.3) = Ho,,,_gar (Fa, R T*K (G, n))
(2.4.7.4) = Hopostr_sset (L™ Lr- (FL), K (G, n))
(2.4.7.5) = Hoyyos0_sset(R(F2), K(G,n))
(2.4.7.6) = Hop,o-sset (h(Fs), K (G, n))
That is a consequence of the Quillen adjunction

(i : Jim) : prot — AT, A%
Similarly, (2.4.7.2)) is a consequence of the Quillen adjunction
(id,id) : pro™™ — T2" — pro — TA”

For (2.4.7.3), K(G,n) is a not just a simplicial set but also a simplicial group. So it is fibrant
simplicial set and thus a fibrant object in pro®" — SSet. Hence there is a weak equivalence
between R T*K (G, n) and I K (G, n) = K(G,n). Also, (2.4.7.4) follows from the Quillen
adjunction

(Lp-,T*) : pro®™ — SSet — pro — T4
Finally, (2.4.7.6]) follows from [12, 10.9]. O

Theorem 2.4.8. Let F' be an object in T. Fix a point x € h(F'). For every discrete group
G, there is a bijection

Moty Gps(mi (R(F), 7), G) — H'(F, G)

where G s the constant sheaf of groups associated to G.

Proof. Consider a cofibrant replacement H — F in pro — T2, Say H : I — T2 with I
cofiltered index category.

(2.4.8.1) Morpro-gps(m1(R(F)), G) = %ﬂ Morgps(mi (Lr«(H;)), G)
ieIop

(2.4.8.2) — ling Hosset(Lr-(H,), BG)
ieIop

(2.4.8.3) = Hopo-sset(Lr+(H ), BG)

(2.4.8.4) = HOTAOP (F, BQ)

(2.4.8.5) = H'(F,G)

where ([2.4.8.3)) follows from [12, 8.1] and (2.4.8.4) from [2.4.7] O

2.4.9. Fix an abelian group A throughout the rest of the subsection.
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Definition 2.4.10. For the topological type h(F,) of a simplicial object F, in T, the coho-
mology, homology, and homotopy groups are those of h(F,) as a pro-simplicial set.

2.4.11. In more detail, consider a cofibrant replacement H — F, of F, in pro—T A% 50 that
h(F,) = Lp-(H). Say H : I — TA” with I cofiltered. Then nth cohomology group with
coefficient A is
H"(h(F,),N) = %ﬂ H"(Lr«(H(7)),A\)
i€Iop
which is the filtered colimit of nth cohomology groups of simplicial sets with coefficient A.

Unlike cohomology groups, homology and homotopy groups are pro-groups. The nth ho-
mology group with coefficient A is a pro-group

H,(h(E.), A) = {H,(Lo- (H(), A e = T SSet - Group

which is obtained by degree-wise application of the homotopy groups to simplicial sets. The
nth homotopy groups are defined in a similar way.

All those groups are independent of choice of cofibrant approximations, up to isomorphism.
To see, let G — F, be a cofibrant approximation of F, in pro — T2". We can find a dotted
arrow filling in the diagram

The dotted arrow d is a weak equivalence by the 2-out-of-3 property of weak equivalences.
Since both G and H are cofibrant, the morphism d induces a weak equivalence Lp«(G) —
Lr+«(H) in pro— SSet. Not only that, it is a strict weak equivalence. Now we may assume d :
Lr«(G) — Lp«(H) is a level-wise weak equivalence of simplicial sets because every morphism
of pro-objects has a level presentation. It then follows from the fact that weak equivalences
of simplicial sets induce isomorphisms of homology and cohomology groups with any abelian
coefficient, and homotopy groups when they are pointed.

Remark 2.4.12. The strictly weakly equivalent pro-simplicial sets induce isomorphic coho-
mology, homology, and homotopy groups. Therefore, the nth cohomology group H"(h(F'), A)
could have defined by the nth cohomology group H"™(h(T/F'),A) of the topological type

h(T/F) by

2.4.13. There is a notion of cohomology of T'. On the other hand, we have defined cohomology
groups of the topological type h(T") (see [2.4.10) as cohomology groups of the pro-simplicial
sets. Of course, these two coincide:

Proposition 2.4.14. There is a canonical isomorphism
of cohomology groups for each n > 0.

Proof. Consider a cofibrant replacement H — * in pro — T2,
(2.4.14.1) H(T, A) = Hopaor (%, K(A, 1)
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(2.4.14.2) = Hoypro—sset(Lr+(H), K(A, n))
(2.4.14.3) = lim Hogset(Lr-(H (), K(A, n))
(2.4.14.4) - 1;1 H™(Lp-(H(3)), A)

(2.4.14.5) = fl"(h(T), A)

That (2.4.14.2)) is from [2.4.7, Also, (2.4.14.3) follows from |12, 8.1] as in (2.4.8.3). O

2.4.15. A simplicial object F, in T" induces a simplicial topos [n] — T'/F,,. The cohomology
of the total topos T/ F, associated to the simplicial topos agrees with the cohomology the
topological type h(F,):

Proposition 2.4.16. Let F, be a simplicial object in T'. Then there is an isomorphism
H™(T/F,,A) —= H"(h(F},),\)

of cohomology groups for each n > 0.

Proof. Once we know that H"(T/F,,A) can be identified with Hopaer (Fy, K(A,n)), we can
apply the proof of 2.4.14] Yet such an identification follows from [20, 8.34]. O

2.4.17. Recall the set-up in where the pull-back f* of morphism of topoi f: 7" — T
admits a left adjoint f, that commutes with finite limits. We have from a strict weak
equivalence between hy/ (F.) and hr(fi(F))). So they have isomorphic cohomology groups by
2.4.12] We give an alternative proof of this result with more general coefficient groups:

Lemma 2.4.18. Let f : C' — C be a cocontinuous functor between sites with the associated
morphism of topoi

f:T =T

Assume that the functor is continuous and commutes with finite limits. For a sheaf of abelian
groups G in'T" and for each n > 0, there is a canonical isomorphism

H"(fi(F}), G) —= H"(F, [*G)

of cohomology groups.
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Proof. Denote by K(G,n) the simplicial abelian sheaf in 7' that corresponds to the chain
complex G[—n| under the Dold-Kan correspondence.

2.4.18.1
2.4.18.2

( ) H"(fi(F,), G) = Hopaer (fi(F,), K(G,n))

( ) = Hopaor (A(F]), RIm(K(G,n)))
(2.4.18.3) = Ho,,,,eu_pace (Li(fi(F,)), K(G,n))
(2.4.18.4) = Ho,,su_pace (fi(F,), K(G,n))
(2.4.18.5) — Ho,, ram (A(FL), K(G,))
(2.4.18.6) = Hoy,,_paor (LA((F])), K(G,n))
(2.4.18.7) = Ho,,,,_paer (F,,Rf*"(K(G,n)))
(2.4.18.8) = Ho,,,_ T/AOP(F/ (K(G,n)))
(2.4.18.9) = Hoyuaor (FL, f*(K(G,n)))
(2.4.18.10) = H™(F., f*G)

Consider the Quillen adjunction
(¢, }im) - pro™H — A% _ AT

Choose a fibrant replacement K(G,n) — Fygn of K(G,n) in T'**. It then becomes a
fibrant approximation of K (G, n) in pro®™ —T2"" and so (2.4.18.2) follows. follows
because every object in 72" is cofibrant. That (2.4.18.5|) follows from the Quillen equivalence
between Barnea-Schlank’s and Edwards-Hastings’ model categories. For , by the
assumption on fi, it can be regarded as a pull-back of morphism of topoi and thus preserves
trivial fibrations. So we have a weak equivalence Lfi(F,) — F, , which shows ({2.4.18.6).
That follows from the fact that f* preserves weak equivalences. Also, S
the application of the same argument from ([2.4.18.2)) to (2.4.18.5)). 0

2.4.19. In fact, this is a generalization of Jardine’s lemma |16} 3.6]. In his proof, he applied
Brown'’s adjoint functor lemma [3, p.426] to a category of fibrant objects for a homotopy theory
[3, p.420]. A category of fibrant objects is similar to a model category without cofibrations
just like Barnea-Schlank’s weak fibration category, and is a sufficient structure for developing
a homotopy theory. It is equipped with two classes of morphisms that are called weak equiva-
lences and fibrations. In the proof, the category of sheaves on the big étale site on Spec k for
an algebraically closed field £ is equipped with local weak equivalences and local fibrations.
By the time Jardine proved the lemma, it was before having the model category structure on
the category of sheaves with local weak equivalences as weak equivalences and local fibrations
as fibrations, which does not always exist. However, we now have such a model category by
enlarging the category to its pro-category, thanks to Barnea-Schlank. Therefore, our proof of
the lemma above can be understood as a reinterpretation of Jardine’s proof by replacing the
category of fibrant objects and Brown’s adjoint functor lemma by the Barnea-Schlank model
category and Quillen adjoint functors respectively. As a byproduct, we can remove the fibrant
assumption on Jardine’s lemma.
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3. TOPOLOGICAL TYPES OF ALGEBRAIC STACKS

In this section we apply the general discussion about topological types of topoi to algebro-
geometric objects. We replace the small étale topology used by all previous theories by the
big étale topology in order to define topological types of algebraic stacks.

3.1. Motivation.

3.1.1. Let us take a look at Artin-Mazur’s étale homotopy type and see what can be improved
on it. Let X be a locally noetherian scheme. The homotopy category HR(X) of hypercovers
of X is cofiltered and gives rise to a pro-object, Artin-Mazur’s étale homotopy type of X, in
the homotopy category of simplicial sets by applying the connected component functor II:

HR(X) — Ho(SSet) : U, — TI(U,)

Observe that this is only a pro-object in the homotopy category of simplicial sets, which
does not fit into the model category theory. It would be better if this is an object in some
homotopy category of pro-simplicial sets so as to utilize model category theory. This goal
was partially accomplished by Friedlander with the introduction of rigid hypercovers. Indeed,
his étale topological type of the scheme X is a pro-simplicial set. However, the use of model
category theory was not a part of his theory as there was no appropriate model category
structure on pro-simplicial sets at the time he developed the theory.

Another improvement was made by Barnea-Schlank. After introducing weak fibration
categories and eventually putting their model category structure on the pro-category of sim-
plicial sheaves, they applied the machinery to the small étale topos on X and recovered
Artin-Mazur’s étale homotopy type with the derived functor approach.

3.1.2. All these previous theories can be applied to Deligne-Mumford stacks as one can still
use the small étale topology. However, none of them can be directly applied to general
algebraic stacks as one cannot use the small étale topology. Recall that algebraic stacks only
admit smooth covers, not étale covers, from schemes or algebraic spaces. Nonetheless, one can
define étale homotopy type of algebraic stacks by using simplicial hypercovers. Namely, for an
algebraic stack X', choose a smooth cover X — X with X a scheme. Take the Oth coskeleton
cosko(X/X) which is a simplicial algebraic space. One defines the homotopy type of X to be
the étale topological type of the simplicial algebraic space in the sense of Friedlander, and
then verify that this definition is independent of choice of smooth covers.

The main aim of this paper is to give its own definition of topological types of algebraic
stacks, not depending on smooth covers. We then prove that this definition coincides with the
previous definition using smooth covers. This new approach provides a general frame work
for a homotopy theory of algebraic stacks. We exploit Barnea-Schlank’s model categorical ap-
proach for étale homotopy types of schemes and generalize their approach to define topological
types of algebraic stacks. On the way to it, we actually modify their approach for schemes,
which paves the way for developing a homotopy theory of algebraic stacks. That is, we use
the big étale topology unlike the small étale topology used in all the previous theories in-
cluding Barnea-Schlank. As a result, we can define topological types of algebraic stacks. Our
theory of topological types of algebro-geometric objects is established under model category
theory so that we can utilize the power of model category theory. Consequently, compared
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to the previous theories, we can provide more systematic approach for topological types of
algebro-geometric objects.

View toward algebraic stacks, we may apply the big smooth topology or the big étale
topology to the theory of Friedlander. Unfortunately, it would not work as the use of small
étale topology is crucial. Namely, in Friedlander’s definition of étale topological type, having
the small étale topology guarantees that there is at most one morphism between two rigid
hypercovers [8, 4.1] and thus one can obtain étale topological types as pro-objects in the
category of simplicial sets, not in its homotopy category. We resolve this issue by taking the
topos-theoretical approach. In particular, it does not matter which big topology, étale or
smooth, we work as they induce equivalent topoi.

3.2. A setup for topological types of schemes. In this subsection we explore various
properties of the big étale topology that are necessary for developing our theory of topological

types.

Definition 3.2.1. Let X be a scheme. A site LEE(X ) (resp. LFS(X)) is the full subcategory
of the category of schemes over X, whose objects are locally of finite type morphisms to X
with coverings induced by coverings in the big étale (resp. smooth) topology on X.

3.2.2. The following lemma enables us to replace the small étale topology by the big étale
topology:

Lemma 3.2.3. Let X be a scheme. Then the inclusion functors
j:E{(X)— LFE(X)
and
i: LFE(X) — LFS(X)
are cocontinuous, continuous, and commute with finite limits.
Proof. Tt follows immediately that the inclusion functor j has all the properties and i is
continuous that commutes with finite limits. So it only remains to show that 7 is cocontinuous.

Given a locally of finite type morphism ¥ — X and any smooth covering {Y; — Y} of Y
over X, the smooth surjection
[[vi—v

étale locally admits a section. So there exists an étale surjection Z — Y
Z
[y, —Y

Let Z; be the fiber product Y; X1y, Z. Then {Z; — Y} is an étale covering of Y over X that
refines {Y; — Y} over X. O

3.2.4. In order to compare our topological types with Artin-Mazur, we study locally con-
nectedness of topoi. We show that LFS(X)™ is locally connected provided that X is locally
noetherian. In particular, two topoi Xg and LFE(X)™ are locally connected by |3.2.3|
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Lemma 3.2.5. Let X be a locally noetherian scheme. Then the topos LFE(X)™ is locally
connected.

Proof. The proof is identical to [33, 3.7]. O

3.2.6. Let X be alocally noetherian scheme. For a locally of finite type morphism of schemes
Y - X With Y connected. Then the representable sheaf hy_,x is a connected object in the
topos LFE(X)™.

3.2.7. One of the importance of is that one can use the big smooth or étale topology
to study étale homotopy theory. Contrary to our topos-theoretical approach, we give a
direct site-theoretical approach that recovers Artin-Mazur’s étale homotopy type with the

big smooth topology. The following proof is a slight modification of Jardine’s argument |18,
2.2].

Theorem 3.2.8. Let Uy — X be a smooth hypercover of a scheme X. Then there exists an
étale hypercover Vo — X that factors through U,.

Proof. Since every smooth morphism étale locally admits a section, there exists an étale
surjection Vy — X which lifts Uy — X. For n > 0, assume we have a n-truncated simplicial
scheme

V., : A%pn — Sch/X
satisfying the following conditions:

(i) Vo — X factors through Et(X)
(ii) V4 splits,
(iii) there is a commutative diagram

such that the bottom morphism is a hypercover.

Remark that even if the left adjoint i, of the skeleton functor sk, does not exist in general,
we do have 7,,V, thanks to the splitting assumption. So the last condition is equivalent to
the commutativity of the diagram

U.

1

in Ve —
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Consider a fibered diagram

NVn—H

Ypi1 — (cosk, Va)ns

| |

Un+1 - (COSkn sk, Uo)nJrl

Since the bottom morphism is a smooth covering, we can pick an étale surjection NV, .1 —
(cosk,, Vo)ns1 which lifts Y, 1 — (cosk, V4)n41. Since each V; is étale over X, so is their limit
(cosky, Vo)ni1. In particular, NV, is étale over X via the coskeleton. Now the morphism

NV,i1 — (cosky, Ve)nit

extends the n-truncated simplicial scheme V, to a (n + 1)-truncated simplicial scheme W, in
a way that W; =V, for 0 <i <n and

WnJrl = (in!‘/o)nJrl H an+1

From the splitting condition, each NV; — V; is an open immersion and so NVj is étale over
X. Hence,

(nVonn= [ NV

[n+1]—[i],i<n

is étale over X, which implies W, is étale over X. It follows then that W, is a hypercover.
Indeed, we only need to check at degree n + 1 because W, extends V4, which is a hypercover
over X. For the degree n + 1, the étale morphism

(in!‘/o)n+l H NVnJrl — (COSkn ‘/o)nJrl

is a surjection because NV, .1 — (cosk,, V4 )41 is so. Finally, we have a commutative diagram

7;n!‘/o U‘

NP

1 We

l

X

where the morphisms 4, 1,W, to U, (resp. to X) is induced by NV, .1 — Y11 — U,yq (resp.
NV,.1 — X). By taking inductive limits, we are done. O

Corollary 3.2.9. Let X be a scheme. Then the functor
HR(EH X)) — HR(LFS(X))

between two cofiltered categories is cofinal.
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3.3. Topological types of Schemes.

3.3.1. Given a S-scheme X, the representable functor hx_,s : (Sch/S)°? — Set is a sheaf on
the big fppf site on S. The representable functor is restricted to a sheaf on LFE(S), although
it is not representable unless the structure morphism is locally of finite type. We abusively
denote by X the restricted sheaf. Moreover, we view X as a constant simplicial sheaf on
LFE(S), in turn, as a pro-simplicial sheaf on the site.

Definition 3.3.2. A topological type of a scheme X over S is the pro-simplicial set
h(X/S) := Lllg(X)

where IIg : LFE(S)~ — Set is the connected component functor. A topological type of a
simplicial scheme X, over S is the pro-simplicial set

h(X./S) := Lllg(X,)
Remark 3.3.3.

(i) One can compute the topological types over any base scheme due to the globalization
lemma [2.3.30] Indeed, if X, is a scheme over S and S — T is a locally finite type
morphism of schemes with T locally noetherian, then there is a strict weak equivalence
h(Xe/S) — h(X./T). So theoretically speaking, one can compute every topological
type over SpecZ. In particular, assuming the structure morphism X — S is locally of
finite type, there is a strict weak equivalence

Lllx(xx) — h(X/95)

of pro-simplicial sets. So we could have defined the topological type of X to be the
topological type of the topos associated to the site LFE(X ).

(ii) Thanks to , we could have used the topoi associated to the sites LFS(S) or Et(S)
to define the topological type h(X/S).

Example 3.3.4. As an immediate application of [2.3.19] we calculate the topological type of
Spec k with k£ a field. Fix a separable closure k°P of k. We work with the small étale site
on Spec k whose associated topos is equivalent to the classifying topos BG of the absolute

Galois group G = Gal(k*P /k). Therefore, h(Speck) is K(G,1).

3.3.5. Let X be a locally noetherian scheme. Consider the topological type LIIy (xx) of the
small étale topos on X. Up to strict weak equivalence, this is nothing but the topological
type h(X) := h(X/SpecZ) of X over Spec Z. Barnea-Schlank have proved that |2} 8.3| if one

applies the natural functor
pro — SSet — pro — Ho(SSet)
to the topological type, one obtains an isomorphism
LITx (xx) — ham(X)

in pro — Ho(SSet) where hay(X) is the étale homotopy type of X in the sense of Artin-
Mazur |1}, §9]. Since a strict weak equivalence of pro-simplicial sets induces an isomorphism in
pro—Ho(SSet), it also follows that the topological type h(X) is isomorphic to Artin-Mazur’s
homotopy type as pro-objects in the homotopy category of simplicial sets.
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3.3.6. The upshot of the globalization lemma lies in the definition of topological types
of simplicial schemes. Indeed, we regard a simplicial schemes as a single object in the pro-
category of simplicial sheaves on LFE(S ) and derive the object to obtain its topological type.
On the other hand, Friedlander defined the étale topological types of simplicial schemes by
introducing rigid hypercovers. These two approaches are compatible:

Proposition 3.3.7. Let X, be a locally noetherian simplicial scheme. Then the étale topolog-
ical type hp(X,) defined by Friedlander [8, 4.4] is isomorphic to the topological type h(X,) :=
h(Xe/SpecZ) as pro-objects in the homotopy category of simplicial sets.
Proof. Recall that the natural functor

pro — SSet — pro — Ho(SSet)

factors through the homotopy category of pro-simplicial sets:

pro — SSet —— Ho(pro — SSet)

T

pro — Ho(SSet)
On one hand, [2.3.41] gives an isomorphism
hocolim h(X,,) — h(X,)

[n]eAopr
in pro — Ho(SSet). On the other hand, there is an isomorphism
hocolim hg(X,,) = hr(X,)

[n]eAopr

in pro — Ho(SSet) due to Isaksen |14, 3.3|. For schemes, both Friedlander’sétale topological
types and our topological types agree with Artin-Mazur’s étale homotopy type. So the result
follows from the lemma below. O

Lemma 3.3.8. Let X, and Y, be simplicial pro-simplicial sets. Assume that for each n there
is an isomorphism X,, — Y, in pro — Ho(SSet). Then there is a canonical isomorphism

hocolim X,, —— hocolim Y,
[n]eAcp [n]eAcp

in pro — Ho(SSet).

Proof. Note that hocolimpycaer X, is isomorphic to the realization |[n] +— X,| in pro —
Ho(SSet). Recall that the realization is the coequalizer of the diagram

[ Xa®Anhl=—= I X,®A[n]

([n]—=[m])eA [nJea
The isomorphism X,, — Y,, in pro — Ho(SSet) induces an isomorphism
X, ® h[m} =Y, ® h[m}

in pro — Ho(SSet) because every pro-simplicial set is cofibrant and so the derived functor of
(=) ® hjm) extends to the homotopy category. Following Isaksen [13, 9.1], we understand the
coequalizer as a colimit indexed by a cofinite directed set. Then it follows from |13} 9.6] that
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the natural functor pro — SSet — pro — Ho(SSet) preserves the colimit, which completes
the proof. O

3.4. Topological types of Algebraic spaces.

3.4.1. Recall that an algebraic space X over S is a sheaf on the big étale site on S. This
is restricted to the sheaf on LFE(S). As in the case of schemes, we view X as a constant
simplicial sheaf on LFE(X), in turn, as a pro-simplicial sheaf on the site. We extend the
definition of topological types of (simplicial) schemes to (simplicial) algebraic spaces.

Definition 3.4.2. A topological type of an algebraic space X over S is the pro-simplicial set
h(X/S) := Lllg(X)

where IIg : LFE(S)~ — Set is the connected component functor. A topological type of a
simplicial algebraic space X, over S is the pro-simplicial set

h(X./S) = LHS<X0)

Theorem 3.4.3. (Simplicial descent) Let X, be a simplicial algebraic spaces over S. There
1S an isomorphism

hocolim h(X,,/S) —— h(X,/S)

[n]eAcp
of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. Follows from the definition of topological types and the simplicial descent [2.3.41] [

3.4.4. Since an algebraic space admits an étale surjection from a scheme, one can try to
understand the topological type of algebraic space via the topological type of the scheme.
The notion of hypercovers connects these two topological types. Remark that the category
of algebraic spaces has all finite limits and thus coskeleton functor cosk, is representable for
every n > 0.

3.4.5. Throughout the rest of the subsection we will apply the general theory of P-hypercovers
2.3.45| to the topos associated to the site LFE(S) with P smooth surjections of algebraic
spaces.

3.4.6. Recall that smooth surjections of algebraic spaces are stable under base change, com-
position, and contains all isomorphisms. Furthermore, the following lemma shows that they
are epimorphisms:

Lemma 3.4.7. Let X —Y be a smooth surjection of algebraic spaces over S. Then it is an
epimorphism of sheaves on LFE(S).
Proof. This is an immediate consequence of the definition of smooth surjections of algebraic

spaces. Il

Definition 3.4.8. A smooth hypercover is a P-hypercover in the setup [3.4.5
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Theorem 3.4.9. (Hypercover descent) Let Uye — X, be a smooth hypercover of a simplicial
algebraic spaces X, over S. Then it induces a strict weak equivalence

h(AUse/S) — h(X./S)
of topological types.

Proof. An immediate consequence of [2.3.51] U

3.4.10. As a consequence of the hypercover descent we can compute the topological
type of an algebraic space X via the topological type of any simplicial algebraic space U, with
U, — X a smooth hypercover. A theoretical aspect of this consequence gives an extrinsic
definition of topological types of algebraic spaces. That is, by the definition of algebraic
spaces, one can choose an étale surjection U — X with X a scheme. Then its 0-coskeleton
cosko(U/X) gives a smooth hypercover

cosko(U/X) — X,

which shows the existence of a smooth hypercover by a simplicial scheme. Therefore, one
could have defined the topological type of an algebraic space by choosing any smooth hy-
percover that is a simplicial scheme and define the topological type of the algebraic space to
be the topological type of the simplicial scheme. That the independence of choice of smooth
hypercovers by simplicial algebraic schemes follows from the intrinsic definition of topological
types of algebraic spaces. Indeed, no matter how one chooses a smooth hypercover by a
simplicial algebraic scheme, there is a strict weak equivalence between the topological type
of the simplicial algebraic scheme and the topological type of the algebraic space.

However, the extrinsic definition itself is good enough to define the topological types of
algebraic spaces because one can prove the independence of choice of hypercovers without
using the intrinsic definition for algebraic spaces:

Lemma 3.4.11. Let Uy — X (resp. Vo — X ) be a smooth hypercover of an algebraic space
X over S by a simplicial algebraic space Uy (resp. Vi ). Then two topological types h(U,/S)
and h(V4/S) are strictly weakly equivalent.

Proof. An immediate consequence of [2.3.52] U

Theorem 3.4.12. (Simplicial hypercover descent) Let Uy — X be a smooth hypercover of
an algebraic space X over S by a simplicial algebraic space U,. There is an isomorphism

h[ocolim h(U,/S) —= h(X/S)

n]eAop

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. An immediate consequence of [2.3.53] O

3.5. Topological types of Algebraic stacks.

3.5.1. The theory of topological types of algebraic spaces does not work verbatim for algebraic
stacks because algebraic stacks cannot be regarded as sheaves. Nevertheless, we can still define
topological type of algebraic stacks by using hypercovers.
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Definition 3.5.2. Let X'/S be an algebraic stack. A site LFE(X ) is defined as following.
An object is a pair (Y,y), where y : Y — X is a locally of finite type morphism over S with
Y an algebraic space. A morphism

Yy) = (Z,2)

is a pair (h, h®) where h : Y — Z is a morphism of algebraic spaces and h® : y — z o h is a
2-morphism of functors. A collection of maps

{(hi, 17) = (Yisyi) — (Y,9)}

is a covering if the underlying collection of morphisms of algebraic spaces {y; : ¥; — Y} is an
étale covering. That is, each y; is étale and [[Y; — Y is surjective.

Lemma 3.5.3. The topos LFE(X) is locally connected.

Proof. The forgetful functor
LFE(X) — LFE(S) : (Y = X) = Y
is continuous and cocontinuous. So the pull-back functor of the morphism of topoi
LFE(X)~ — LFE(S)™

admits a left adjoint. Then the statement follows from that LFE(S)™ is locally con-
nected. g

Remark 3.5.4. One may define LES(X) for an algebraic stack X whose objects are smooth
X-morphism of algebraic stacks. This could be used to develop the theory of topological types
for algebraic stacks. Also, the small site Et(X) can be used for Deligne-Mumford stacks.

Definition 3.5.5. A topological type of an algebraic stack X over S is the pro-simplicial set
h(X/S) = LHX(*LFE(X)~)
where Iy : LFE(X)~ — Set is the connected component functor.

Remark 3.5.6. Thanks to the definition, we can consider topological types of classifying
stacks BG with G a smooth, not necessarily étale, group scheme. For example, the multi-
plicative group scheme G,,.

3.5.7. As promised at the beginning, we can think of topological types of algebraic stacks
via hypercovers. We need a lemma:

Lemma 3.5.8. Let X — X be a smooth surjection from a scheme X to an algebraic stack
X. Then the morphism

hx_x — *LFE(X)~

of sheaves on LFE(X) is an epimorphism.

Proof. This is an immediate consequence of the definition of the smooth surjection X —

X. U
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Theorem 3.5.9. Let X'/S be an algebraic stack. For any smooth surjection X — X with X
a scheme, there is an isomorphism

h(coske(X/X)) — h(X)

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. An immediate consequence of from [3.5.8] O

Corollary 3.5.10. Let X be an algebraic stack with a smooth surjection U — X with U an
algebraic space. Then the topological type h(X') is strictly weakly equivalent to the topological
type h(cosko(U/X)) of the simplicial algebraic space coskg(U/X). In particular, if X is an
algebraic space over S and G /S is a smooth group scheme which acts on X over S, then the
topological type h([X/G]) of the quotient stack [X/G| is strictly weakly equivalent to the topo-
logical type h(B(G, X, S)) of the simplicial algebraic space B(G, X, S) := cosko(X/[X/G]).

3.5.11. One can use any smooth hypercover of algebraic stacks to compute topological types:

Theorem 3.5.12. Let Uy — X be a smooth hypercover of an algebraic stack X /S. Then the
canonical map of topological types
h(Us) — h(X)

1s a strict weak equivalence.

Proof. An immediate consequence of [2.3.51] O

3.5.13. Let us consider the algebraic stacks counterpart of We only have the half of
the result due to the way we defined the topological types of algebraic stacks.

We have defined the topological types of algebraic stacks in a way that not depending on
any hypercovers. This can be linked to the hypercovers by Since every algebraic
stack admits a smooth surjection from a scheme, one could have defined the topological type
of an algebraic stack X by choosing any smooth hypercover that is a simplicial algebraic
spaces and define the topological type of the algebraic stack X to be the topological type of
the simplicial algebraic space. Again, the intrinsic definition shows the the independence of
choice of smooth hypercovers by simplicial algebraic spaces.

However, if we define topological types of algebraic stacks by choosing hypercovers, then

it is hard to prove the independence of choice of hypercovers without using the intrinsic
definition we have. This is due to the lack of the stacky counterpart for [2.3.51] and [2.3.52]

3.6. Cohomology of topological types.

3.6.1. For a pointed connected algebraic stack X, Behrang Noohi |25, §4] associated the
Galois category of locally constant sheaves to define the fundamental group 7)¥ of the algebraic
stack X'. We compare it to the fundamental group of the topological type h(X):

Proposition 3.6.2. For a pointed connected algebraic stack X, the profinite completion h(X)
of the fundamental group of the topological type h(X) is isomorphic to Noohi’s fundamental
group T (X).

Proof. This follows from as both classify finite torsors. O
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3.6.3. Fix an abelian group A throughout this subsection.

3.6.4. For a scheme (resp. an algebraic space) X locally of finite type over S, we have from
[3.2.3] combined with [2.4.14] that the following cohomology

H*(Xer, A), H(LFE(X)™, A), H*(LFS(X)™, A)
are all isomorphic to the cohomology
H*(h(X/5), A)
of the topological type h(X/S).

3.6.5. Similarly, for a simplicial scheme (resp. a simplicial algebraic space) X, that is locally
of finite type over S, we have from [3.2.3] combined with [2.4.16] that the following cohomology

H*(Set/Xo, A), H(LFE(S)~/X,,A), H*(LFS(S)~ /X, A)
are all isomorphic to the cohomology
H*(h(X./S),A)
of the topological type h(X,/S).

3.6.6. A similar result holds for Deligne-Mumford stacks. However, we should be careful for
algebraic stacks. The small étale topology for algebraic stacks are not the right topology to
work with (see . Other than that, we still have that for an algebraic stack A" locally of
finite type over S, the following cohomology

H*(LFE(X)™, A), H*(LFS(X)™, A)
are all isomorphic to the cohomology
H*(h(X/5),A)
of the topological type h(X/S).
3.6.7. For an algebraic stack X' /S, consider the full subcategories
LFS®(X) (resp. LFS*"/(X)) C LFS(X)

consisting of paris (X, z) where X is an algebraic space (resp. a scheme). With the induced
topologies, they all induce equivalent topoi. So we can use these topoi to compute cohomology.

4. TOPOLOGICAL TYPES WITH GROUP ACTIONS

Throughout this section X is a scheme over a field £ with the structure morphism f :
X — Speck unless stated otherwise. Such a scheme X has an action of the Galois group
G = Gal(k**?/k). We study the topological type h(X) of X with respect to the Galois action.
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4.1. Relative topological types.

4.1.1. In order to study the Galois action, we use the relative homotopy introduced by
Barnea-Schlank [2, §8.1]. Note that the structure morphism f : X — Speck induces a
morphism of topoi

f=(" 1)+ Xeo — (Speck)e
With respect to Barnea-Schlank’s model category structures|2.2.17] the functor

A°P
ét

Ly : pro — X5” — pro — (Speck)
a left adjoint to the pull-back functor f* on the pro-categories, is left Quillen.

Definition 4.1.2. The relative topological type hi(X) of a scheme X over k is the pro-
simplicial set
hi(X) := LL (%)
where * is a final object in X4
4.1.3. The small étale topos (Speck)e is equivalent to the category G — Set of discrete

G-sets. So the relative topological type hy(X) naturally encodes the Galois action as it is a
pro-object in the category of simplicial discrete G-sets.

4.1.4. Recall from that there is an adjoint triple
(Ilg, T, T,) : pro — (G — SSet) — pro — SSet
which is induced by the morphism of topoi
G — Set — Set

whose pull-back I'* admits a left adjoint II; that sends a discrete G-set into its quotient.

4.1.5. The relationship between the usual topological type h(X/k) of X over k and the
relative topological type is simple:

Proposition 4.1.6. The pro-simplicial set hy(X)/G which is the relative topological type
of X over k taken quotient by G, and the topological type h(X/k) of X are strictly weakly
equivalent.

Proof. Consider the commutative diagram

Xt — (Spec k)

Ny

Set

of topoi, which induces a zig-zag strict weak equivalence between derived objects LII(x) and
(LIlg o LLy)(*) = LIlg(he(X)) = hi(X)/G. As LII(x) can be identified with h(X/k) by
2.3.30] the statement follows. O

4.1.7. Given a variety X over R, David Cox showed [5, 1.1| that the étale homotopy type
of X is the homotopy orbit space of the étale homotopy type of X := X Xgpecr Spec C with
respect to the Galois action of Gal(C/R). This result was generalized by Gereon Quick |28,
5.3] to an arbitrary base field. We will see our proposition above is a generalization of

Quick’s result (see [5.1.26]).
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4.1.8. Denote by X*% the base change X XgpecrSpec k*P of X to £*P. The following lemma is
used to study the relationship between the relative topological type hj(X) and the topological
type of h(X5P/k5P).

Lemma 4.1.9. For the commutative diagram of schemes

xoo o ¥

- k

Spec k5P — Spec k

there is a canonical isomorphism of functors

frop. —=(px).o (f*P)*

on the small étale sheaves.

Proof. This is a consequence of the analysis of sheaves on a projective limit of schemes, and
cohomology and base change of proper morphisms. Indeed, the scheme Spec kP is the limit
of the projective system {Spec L : k C L C k*P is a finite separable extension }. Then one
can reduce the statement to the case for the finite morphism Spec L — Speck where the
result is well-known. O

Proposition 4.1.10. There is a strict weak equivalence
h(X>P[E>P) — p*(hi (X))
of pro-simplicial sets.
Proof. Consider a cofibrant replacement H — x of * in pro — X£". It pulls back to a trivial

fibration (px)*(H) — *. To begin with, we claim that (px)*(H) is cofibrant. So consider a
lifting problem

0 A

(p**) (H) — B

in pro — (X*)£™ . Since trivial local fibrations of simplicial sheaves on X form generating
trivial fibrations for pro — (X*P)£™ (see |2, 4.1]), we may assume A — B is both a local
weak equivalence and a local fibration of simplicial sheaves. Then by adjunction, it suffices
to show that (px). preserves a morphism that is both a local weak equivalence and a local
fibration. Recall from that those morphisms are described in terms of finite limits
and epimorphisms. Since (px). is a right adjoint, it only remains to prove that it preserves
epimorphisms. This follows from [22, Tag 04C2| because p : Spec kP — Spec k is integral.

Now consider a cofibrant replacement H*P — % of % in pro — (X*P)5”. Then we can
choose a lift d : H*® — (px)*(H). Since L(ssep)« preserves a weak equivalence between
cofibrant objects, we obtain a strict weak equivalence

Lpsery (H*P) = Lpser)-((px)"(H))
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Note that upon the identification of étale topos of kP with the category of sets, by [2.3.30],
we can identify the object Lgser)«(H*P) on the left with the topological type h(X*P/k*P) of
X*P_ Furthermore, by [4.1.9] there is an isomorphism

Therefore, we obtain the strict weak equivalence in the statement. Il

Remark 4.1.11.

(i) The pull-back p* : G — Set — Set sends a discrete G-set into its underlying set. So the
proposition above says that the topological type h(XP/k5P) of X is strictly weakly
equivalent to the underlying pro-simplicial set of the relative topological type hi(X) of
X over k. This result seems already known to Barnea-Schlank.

(ii) Although the Galois group G acts on h(X®P), it is not clear whether the action is
continuous or not. However, the Galois action on the relative type hy(X) is continuous
by definition. Therefore, the relative typological type hy(X) can be thought of the
replacement of the topological type h(XP).

Remark 4.1.12. One can generalize [4.1.9| and [4.1.10] as following. Let p : S — S be an
integral morphism of schemes. For a S-scheme X, consider a fibered diagram

XX

ol
S =3
Then the canonical morphism of functors
frope—= (o (f)
is still an isomorphism (|9, 5.9.7]). The argument in [4.1.10| works verbatim to establish a

strict weak equivalence
hS/(X/) — p*(hS(X))

4.1.13. As an immediate consequence of the remark above, one obtains the invariance of
topological types for a separably closed field with respect to its algebraic closure:

Proposition 4.1.14. Let X be a scheme over a separably closed field k. For an algebraic
closure k of k and X := X Xgpeck Speck, there is a strict weak equivalence

h(X) — h(X)
of the topological types.

Proof. Note that the small étale topoi for Speck and Speck are both identified with the

category of sets. So in this case, the relative topological types hz(X) and hy(X) are the usual
topological types h(X) and h(X) respectively. So the result follows from 4.1.12] OJ

4.1.15. For an algebraic space X/S, there is an equivalence of categories between the small
étale topos on X and the category of data ({Fy}, ps) where Fy is a small étale sheaf on a
scheme U for each étale morphism U — X and for each morphism of schemes f : V' — U over
X, py is an isomorphism f~'Fy; — Fy.. This date is subject to the condition g~ 'prop, = pgor
for any morphism g : W — V and f : V — U of schemes over X. Consequently, the
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statements 4.1.10, and for algebraic spaces can be reduced to the case of schemes,
and hence are still valid. We obtain the following generalization of 4.1.14}

Corollary 4.1.16. Let X be an algebraic space over a separably closed field k. For an
algebraic closure k of k and X := X Xgpeck Speck, there is a strict weak equivalence

h(X) — h(X)
of the topological types.

4.2. A scheme with an abstract group action. In this subsection we prove a similar
result to when X admits an abstract group action.

4.2.1. Let X be a scheme over a base scheme S. If an abstract group G acts on the scheme,
then there is an induced quotient stack [X/G]. We then study the G-action on the topological
type h([X/G]) of the quotient stack in the relative setting. There is a morphism of topoi

f:[X/Gle — G — Set

where the pull-back maps a G-set S into the quotient stack [X x S/G] over [X/G], and the
push-forward sends an étale sheaf F' on [X/G| into the G-set F'(X).

4.2.2. Just like the scheme case [1.1.6] we take the group action into account:

Definition 4.2.3. The topological type with G-action h®([X/G]) is the pro-object LL s« (x)
in the category of simplicial G-sets where x is a final object of the small étale topos [X/G].

Remark 4.2.4. The small étale topos computes the usual topological type of the quotient
stack [X/G] as it is Deligne-Mumford.

Proposition 4.2.5. Two pro-simplicial sets h%([X/G])/G and h([X/G]) are strictly weakly
equivalent.

Proof. The same argument as in applied to the following commutative diagram of topoi
works:

[X/Gle, — G — Set

.

Set

5. COMPLETION OF TOPOLOGICAL TYPES

In this section we study profinite completion of topological types. On the first half, we
show that recovers Quick’s result [28, 5.3| after profinitely completion. For the second
half, we generalize Artin-Mazur’s comparison theorem |1, 12.9] to simplicial schemes and to
algebraic stacks.
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5.1. Completions. We follow Quick for the profinite completion of (pro-)simplicial sets [27]
and for the equivariant completion of simplicial sets with group actions [29].

5.1.1. Let € be the category of compact, Hausdorff, and totally disconnected topological
spaces. The category is equivalent to the pro-category of finite sets. The forgetful functor

é\—> Set

o~

admits a left adjoint which is denote by (-) and called the profinite completion of sets.

5.1.2. The category of simplicial objects in & is denoted by SSet and we call its objects
profinite spaces. The forgetful functor

SSet — SSet

admits a left adjoint
(-) : SSet — SSet,

which is called profinite completion of simplicial sets.

Remark 5.1.3. The completion of (pro)-simplicial sets was first considered by Artin-Mazur
in their work of étale homotopy types. The comparison with their work is given in [5.2.13

Definition 5.1.4. (|27, 2.6]) A morphism f : X — Y of profinite spaces is a weak equivalence
if the following holds:

(i) mo(X) — mo(Y) is an isomorphisms of profinite sets,
(i) m (X, z) — m (Y, f(x)) is an isomorphism of profinite groups for each z € X,, and
(ili) For each n > 0, H*(Y; M) — H"(X; f*M) is an isomorphism for every local coeflicient
system M of finite abelian groups on Y (see |27, §2.2] for more details).

5.1.5. (Quick’s model category structure on the category of profinite spaces |27, 2.12|) There

is a model category structure on the category SSet of profinite spaces; if f : X — Y is a
morphism of profinite spaces,

(i) f is a weak equivalence of profinite spaces,
(ii) f is a cofibration if it is a monomorphism, and
(iii) f is a fibration if it has the right lifting property with respect to all trivial cofibrations.

Lemma 5.1.6. (|27, 2.28|) The adjunction
((),] = |) : SSet — SSet
is a Quillen adjunction.

Remark 5.1.7. A weak equivalence of profinite spaces is completely characterized by homo-
topy groups in the following sense:

Lemma 5.1.8. Let f : X — Y be a morphism of profinite spaces. Then it is a weak
equivalence if and only if it induces an isomorphism

(X, 7) — (Y, (7))

of profinite homotopy groups (profinite sets for n =0) for every n > 0 and every x € X.
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Proof. Considering the functorial fibrant replacements of X and Y, we may assume that
X and Y are fibrant by the 2-out-of-3 property of weak equivalences. Then f is a weak
equivalence if and only if the map |f] : |X| — |Y]| of underlying simplicial sets is a weak
equivalence if and only if 7, (]X|) — m,(|Y|) is an isomorphism for n > 0. Recall from |30,
2.9] that the profinite homotopy groups of a pointed fibrant profinite space is isomorphic
to the usual homotopy group of its underlying simplicial set. Therefore, all the equivalent
conditions are also equivalent to that m,(X) — m,(Y") is an isomorphism for n > 0. O

5.1.9. We study profinite completion of topological types which are pro-simplicial sets:
Definition 5.1.10. (|27, §2.7]) Let X : I — SSet : i — X, be a pro-simplicial set. The

o~

profinite completion X of X is the profinite space
X = @ 5(\1
iel
That is, take a level-wise completion of simplicial sets, and then pass to the limit in SSet.

5.1.11. As we study profinitely completed relative topological types (4.1.2]) with respect to
the Galois action, it is necessarily to build a model category on the category of profinite
spaces with group action. We follow Quick [28, 2.17].

5.1.12. Fix a profinite group GG. A profinite G-space is a profinite space equipped with a
level-wise compatible continuous G-action. That is, a profinite set X with continuous G-
action on each X, such that the map X, — X,, is G-equivariant for each d : [m] — [n].

Denote by G — SSet the category of profinite G-spaces with G-equivariant morphisms.
One can consider profinite completion with respect to G-action. Indeed, the forgetful
functor -
| — | : G — SSet — |G| — SSet

that maps a profinite G-space into its underlying simplicial |G|-set admits a left adjoint
()g : |G| — SSet — G — SSet

This functor is called G-equivariant profinite completion (|29, §4.1]). Here |G| is the under-
lying group of the profinite group G.

Lemma 5.1.13. The adjunction
(Ve | =) : |G| — SSet — G — SSet

15 a Quillen adjunction.

Proof. The forgetful functor preserves fibrations and trivial fibrations. Indeed, a morphism
f X — Y of profinite G-spaces is a fibration (resp. a trivial fibration) if and only if its
underlying morphism of profinite spaces is a fibration (resp. a trivial fibration). Then from
the underlying morphism of simplicial sets is a fibration (resp. a trivial fibration), which
is equivalent to that the underlying morphism of simplicial |G|-sets of f is a fibration (resp.
a trivial fibration). O

Remark 5.1.14. |G| — SSet is the category of simplicial |G|-sets whereas G — SSet is the
category of simplicial discrete G-sets.
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Definition 5.1.15. Let X : I — G — SSet : © — X, be a pro-object in the category of
simplicial discrete G-sets. The G-equivariant profinite completion )?G of X is the profinite
space R .
X :=lim X
€ Z% G
That is, apply the forgetful functor G — SSet — |G| — SSet, take a level-wise G-equivariant
completion of simplicial |G|-sets, and then pass to the limit in G — SSet.

5.1.16. (Quick’s model category structure on the category of profinite G-spaces |28, 2.17])
There is a model category structure on the category G — SSet of profinite spaces with con-
tinuous G-action; if f: X — Y is a morphism of profinite G-spaces,

(i) f is a weak equivalence if its underlying morphism of profinite spaces is a weak equiva-
lence,
(ii) f is a fibration if its underlying morphism of profinite spaces is a fibration, and
(iii) f is a cofibration if it has the right lifting property with respect to all trivial fibrations.

5.1.17. As pointed out earlier in @.1.7, Quick generalized Cox’s result. Concretely, for a
geometrically connected variety over a field & and the Galois group G, he proved |28, 3.5]
that the canonical map

cEt X5 x» EG — EtX
is a weak equivalence of profinite spaces where EtX is the profinite completion of the étale

topological type of X defined in the sense of Friedlander, and the left-most object cEtX*P is
defined to be

lim Bt X,

%
where L runs over all finite Galois extension of k in k*P. Remark from |28, 3.3] that the
canonical map

Et X5 — lim EtX
%

is a weak equivalence of profinite spaces. The reason why he had to replace Et X5 by cEtX®P
is that in general one does not know whether the canonical G-action on EtX*P is continuous
or not. Namely, we do not know in general whether EtX P is a proﬁmte GG-space or not.

Whereas the G-action on lim . EtX 1. is continuous because the action on Et X factors through
the action by Gal(L/k).

Remark 5.1.18. We will prove that our theorem is, at the level of pro-simplicial sets, a
generalization of Quick’s result. In particular, we recover his result after profinite completion.
Also, observe that the relative topological type carries continuous Galois action and so one
does not need to replace it by the limit over finite Galois extensions.

5.1.19. Throughout the rest of the subsection we fix a scheme X a field k. The Galois group
Gal(k*P/k) is denoted by G.

5.1.20. Recall from that there is the adjoint triple
(IL,I*,T) : pro — (G — SSet) — pro — SSet
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The profinite version is the adjoint triple
(IL,T*,T,) : G — SSet — SSet
Just like the case when G is a discrete group for a profinite G-space X, there is a weak
equivalence of profinite spaces
X x¢ EG := (X x EGQ)/G =1I(X x EG) — LII(X)
because EG — x is a trivial fibration (|28, 2.17]) and X x EG is cofibrant (|28, 2.18]) in

G — SSet. Therefore,
LIl : G — SSet — SSet
can be understood as the profinite version of the Borel construction.

5.1.21. To prove the compatibility with Quick’s result, we state and prove two lemmas:

Lemma 5.1.22. There is a commutative diagram

G — SSet—L - SSet

|

G| — SSet

|

G — 5Set —~ 5Set

of categories where the left vertical arrow is a forgetful functor followed by the G-equivariant
completion, the right vertical arrow is the completion, and two horizontal arrows are quotients

by G.

Proof. Let X be a simplicial discrete G-set. Along the bottom-left corner (resp. top-right
corner) of the diagram, one gets X¢/G (resp. X/G ). For a profinite space Y,

Morgg;(Xa/G,Y) = Mor,, g (Xa,Y)
= Mor|g|-sset (X, [Y])

= Morsget (X/G, [Y])

= MOIS/SE<X/G7 Y)

Whenever necessary, the underlying simplicial set |Y| of Y (resp. Y itself) is endowed with
the trivial |G|-action (resp. the trivial G-action). The statement follows from the Yoneda
lemma. U

Lemma 5.1.23. There is a commutative diagram

pro—(G—@e\t)—>pro—.§9?t

J l

G — SSet SSet
of categories where the vertical arrows are limit functors and the horizontal arrows are quotient

by G.
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Proof. Let X = (X;) be a pro-object in G — SSet. The assertion is an isomorphism
Im(X;/G) = (lim X;)/G

where the limit on the left is of profinite spaces and on the right is of profinite G-spaces. If
we endow X; /G the trivial G-action, then the limit of profinite G-spaces X;/G in G — SSet is
isomorphic to I&H(XZ /G) which is the limit of profinite spaces in SSet. Therefore, it suffices
to prove the assertion in the category of profinite G-spaces. This follows from that a cofiltered
limit commutes with finite colimits in the category of profinite GG-spaces, which can be checked
level-wise. Hence it is enough to prove that a cofiltered limit commutes with finite colimits in

the category of profinite sets with continuous G-action. However, the category is isomorphic
to the pro-category of finite sets with G-action where the result follows from |13} 6.1]. O

Remark 5.1.24. Isaksen [13] 6.1] showed that a cofiltered limit commutes with finite colimits
for a pro-category associated to a category C. The statement is true under the assumption
that the category C is complete and cocomplete. Actually, his proof shows that the theorem
is still true for the category C that has finite limits and finite colimits, which we used in the
previous lemma.

Proposition 5.1.25. There is a commutative diagram
pro — (G — SSet) — pro — SSet
G — 5Set SSet

of categories where the left vertical arrow is the G-equivariant completion, the right vertical
arrow is the completion, and the horizontal arrows are quotient by G.

Proof. The diagram in the assertion is a composition of two diagrams:

pro — (G — SSet) —— pro — SSet

l l

pro—(G—S/SEG)—>pro—S/S-a:

J |

G — SSet —— SSet

The top diagram commutes by [5.1.22] and the bottom one by [5.1.23] O

—

Theorem 5.1.26. Let X be a scheme over a field k. Then the completion h(X) of the
topological type h(X) of X is weakly equivalent to the Borel construction

—

hi(X)s xa EG
of the G-equivariant completion of the relative topological type hy(X) with respect to
the Galois group G = Gal(k*P /k).

Proof. We apply left derived functor to the top-right and the left-bottom arrows of the di-
agram in [5.1.25, Furthermore, we decompose each one as a composition of two left derived
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functors. For this, we prove that the left derived functors are well-defined for each side of
the diagram. The well-definedness of the top and bottom arrows follows from [5.1.20] For
the right arrow, note that the profinite completion of simplicial sets and the cofiltered
limit functor of profinite spaces preserve weak equivalences |27}, 2.14|. Therefore, the profinite
completion of pro-simplicial sets preserves weak equivalences and so the left derived functor
is well-defined. Lastly, for the left arrow, we prove that it sends a trivial cofibration between

cofibrant objects in pro — (G — SSet) into a weak equivalence in (G — S/S?c) Recall that the
left arrow is the compositions of three arrows

pro — (G — SSet) — pro — (|G| — SSet) — pro — (G — SSet) — (G — SSet)

A trivial cofibration between cofibrant objects in pro — (G — SSet) maps into a weak equiv-
alence between cofibrant objects in pro — (|G| — SSet) because a weak equivalence of sim-
plicial discrete G-sets induces a weak equivalence of simplicial |G|-sets and every object in

pro — (|G| — SSet) is cofibrant. Then from the Quillen adjunction [5.1.13
(e : |G — SSet — G — SSet

it maps into a weak equivalence. Therefore, it suffices to show that a cofiltered limit functor of
profinite G-spaces preserves a weak equivalence. However, this follows from [27], 2.14] because
the underlying profinite space of the limit of profinite G-spaces is the limit of underlying
profinite spaces.

So far, we have shown that each side of the square diagram defines the left derived functor.
Consider the relative topological type hi(X). Along the derived top arrow, one gets, up to
strict weak equivalences, hj(X)/G because hj(X) is cofibrant. From [{.1.6] h,(X)/G and
h(X/k) are strictly weakly equivalent. Then along the derived right vertical arrow, we get

—

h(X), up to weakly equivalent objects. On the other hand, the derived left vertical arrow

gives the G-equivariant completion ma of hi(X) |p.1.15, up to weak equivalence. Then

—

the derived bottom arrow sends hy(X). into its Borel construction hy(X), x¢ EG (5.1.20)),
up to weakly equivalent objects. U

Remark 5.1.27.

(i) This theorem is in the same spirit as Quick’s result |28, 3.1]. He applied the Borel
construction to A(X®P), up to the continuity issue. This is similar to what we did
because [4.1.9 says that the underlying pro-simplicial set of the relative topological type
hi(X) is the topological type h(XP).

(ii) In the statement of the theorem, the continuity issue that Quick had disappeared due
to the use of the relative topological type which is an object in pro — (G — SSet) where
the continuity issue is already taken care of.

(iii) In another paper by Quick [31], he avoided the continuity issue in a different way. For
a geometrically connected variety X over a field k, assume further that it is quasi-
projective. He used Friedlander’s rigid Cech étale topological type (X/k)yet (see |7, 3.1]
for more details) to consider Et(X) as a pro-simplicial set over BG. Then the profinite
model of (X/k).et over (Speck/k)wet = BG has the homotopy type of the G-homotopy
orbits of (X*P/k). (see |31, p.13| for more details). In particular, the continuity issue
is resolved. Also, his approach is at the level of pro-simplicial sets, and hence it sits
between [5.1.26] and [4.1.6] Note also that works for every scheme over k.
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5.2. Comparison theorems. In this subsection we prove that for a complex variety, one
can compute its topological type via the underlying topological space of its analytification,
after profinite completion. We then extend this classical result of Artin-Mazur into the case
of simplicial schemes and algebraic stacks.

Definition 5.2.1. (cf. [3.2.1)) The big étale site An is the category of complex analytic spaces.
A collection of morphisms {Y; — Y} is a covering of Y if each morphism Y; — Y is étale and

the map
H Y, =>Y
iel

is surjective.

For an analytic space X, the small étale site An(X) is the category of analytic spaces étale
over X. A collection of morphisms {Y; — Y} is a covering of Y if the map

[[vi—v
icl
is surjective. Denote by X the associated topos.

5.2.2. Let X be a locally of finite type scheme over C. There is an associated complex
analytic space X*". This construction is functorial and in fact the functor

LFE/C — An: X > X"
is continuous and commutes with finite limits. Therefore it induces a morphism of topoi
An~ — (LFE/C)~
By [2.3.32] this morphism in turn induces a map of topological types
h(X*) — h(X)

Definition 5.2.3. Let X be a complex analytic space. The site Et(|X|) is defined as following.
An object is a local homeomorphism from a topological space Y to the underlying topological
space | X| of X, and morphisms are continuous maps over | X|. A collection of maps {Y; — Y’}
is a covering of Y if the map

H Y, =Y

el
is surjective.
Remark 5.2.4. The small étale site Et(X) is isomorphic to the site Et(|X|). Moreover,
the topos associated to the site Et(]X|) is equivalent to the topos associated to the usual

topology on | X|. So, one concludes that the small étale topos Xy is equivalent to the usual
topos associated to the topological space |X]|.

5.2.5. For a locally of finite type scheme X over C, we abusively denote by X (C) both for
the underlying topological space of its associated analytic space X*" and the usual topos
associated to it.

5.2.6. As an immediate consequence of the previous remark, for a locally of finite type scheme
X over C, there is an equivalence of topoi

(X*)er = X(C)
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between the small étale topos (5.2.1)) of the analytic space X*" and the usual topos associated
to the underlying topological space X (C) of X?".

5.2.7. Like the case of schemes, replacing the small site by the big site for analytic spaces is
a key toward topological types of simplicial analytic spaces. By the same argument as in the
étale topology of schemes, the following lemma follows immediately:

Lemma 5.2.8. (cf. 3.2.3) Let X be an analytic space X. Then the inclusion functor
j:An(X) — An/X

from the small étale site of X to the big étale site localized by X s cocontinuous, continuous
and commutes with finite limits.

5.2.9. Let X be a locally of finite type scheme over C. Denote by X (C) the topological type
h(X?®) of X® as an object in the topos An".

Remark 5.2.10. For a locally paracompact topological space, the topological type of the
usual topos of the topological space is just the space itself (|1, 12.1]). So we use the same
notation for a topological space, its associated topos, and its topological type. From this
point of view, the notation X (C) means any of the underlying topological space of X" its
associated topos, and its topological type. Recall from that the last one is isomorphic
to the topological type of the topos (X*")s. However, the topological type of the small étale
topos (X )4 is the topological type h(X®") of X up to strict weak equivalence by

5.2.11. Let X be a locally of finite type scheme over C. Denote by h(X) (resp. h(X)) the
profinite completion (5.1.10|) of the pro-simplicial set h(X) which is the topological type of
X (resp. of the topological space X (C)).

5.2.12. Recall from |1} 11.1] that Ho(SSet)g, is the full subcategory of Ho(SSet) consisting
of simplicial sets whose homotopy groups are all finite. The Artin-Mazur completion theorem
|1, 3.4] says that the inclusion functor

pro — Ho(SSet)g, — pro — Ho(SSet)

admits a left adjoint. Denote by XAM the Artin-Mazur completion of a pro-simplicial set X.

On the other hand, for a profinite space X, one can associate a pro-object in Ho(SSet)g,
(see |27, p.604] for details), which is denoted by XAM.

So for a pro-simplicial set X, one can consider two different pro-objects in Ho(SSet)g,.
One is the Artin-Mazur completion XAM and the other is (X)*M, resulting from the profinite

completion X of X. The following proposition by Quick shows that these two pro-objets have
the isomorphic homotopy groups after passing to the limit. Here we give a more detailed proof
due to the missing technical details.

Proposition 5.2.13. (|27, 2.33|) Let X be a pointed connected pro-simplicial set. Then after

passing to the limits, the pro-homotopy groups of (X)AM and XM qgre 1somorphic. That is,
there 1s an isomorphism

Wn(X) — 7Tn()zAM)
for n > 1 where the right one taken the limit.
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Proof. The pro-homotopy group of (X YAM " after passing to the limit, is isomorphic to the
profinite homotopy group of the profinite completion X = Hm, X; where X = (X;) (see [29,
p.436]). Then
n(X) 2 (fim X5) =~ Jim 7, ()
el el

The second isomorphism follows from the lemma below that the profinite homotopy
group functor commutes with a cofiltered limit of profinite spaces. By the repeated application
of [29, p.436], 7, (X;) is isomorphic to m,((X;)*M) taken the limit.

On the other hand, for each 4, (X;)*M is isomorphic to X; by the discussion in [27,
p.604]. So by passing to the limits,

T (5)M) = ()

Now recall from |1, 3.9] that the Artin-Mazur completion of X is isomorphic to the cofiltered
limit in pro — Ho(SSet)g, of the Artin-Mazur completion of each X;. So after passing to the
limit,

S —~AM
T (XAM) = limm, (X, )

il
~AM
where 7, (X; ) is taken by the limit. O

Lemma 5.2.14. Let X : [ — SSet be a cofiltered diagram of profinite spaces. For each
n > 0, the map between profinite groups (profinite sets for n =0)
T (lim X;) — lim 7, (X)
i€l i€l

1S an isomorphism.

Proof. Apply the fibrant replacement functor F in SSet to X. We then have an induced map
of limits

I'&n X; — 1£1 FX;

iel iel
This map is a weak equivalence of profinite spaces because it comes from a level-wise weak
equivalence of profinite spaces (|27, 2.14]). In particular, we have an induced isomorphism of
homotopy groups by [5.1.8] We also have the isomorphisms

Wn(léI'n FX;) ~lim T(FX;) >~ Jm mn(X;)
il iel iel
The first follows as the homotopy group functor commutes with a cofiltered limit of fibrant
profinite spaces, and the second is an application of [5.1.8] So we obtain the desired isomor-
phism
o (im X;) = lim m, (X)
iel iel

0

5.2.15. The following comparison theorem is a restatement of Artin-Mazur’s comparison
theorem (|1, 12.9]) in the language of topological types.
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Theorem 5.2.16. (Comparison) Let X be a pointed finite type scheme over C. Then the
map

—

X(C) = h(X)

of profinite completions of topological types is a weak equivalence of profinite spaces.

Proof. We may assume X is connected. Indeed, the topological type functor preserves coprod-
ucts [2.3.24] the profinite completion functor commutes with finite colimits, and a coproduct
of weak equivalences between cofibrant objects is a weak equivalence [4], 1.2.5].

When taking Artin-Mazur’s completion, the statement follows from their comparison theo-
rem |1, 12.9]. In particular, they induce isomorphic pro-homotopy groups and hence isomor-
phisms of those pro-groups after passing to the limit. By the map in the statement
induces an isomorphism of profinite homotopy groups. The proof is completed by character-
ization of weak equivalence [5.1.8| O

Theorem 5.2.17. (Simplicial comparison) Let X, be a pointed finite type simplicial scheme
over C. Then the map

—

Xo(C) — h(X,)

of the profinite completions of topological types is a weak equivalence of profinite spaces.

Proof. By the same reason in the proof of [5.2.16, we may assume X, cannot be written as
a disjoint union of non-empty simplicial finite type schemes over C. Then the map induces
isomorphic fundamental groups by the corresponding result from Friedlander [8, 8.4]. Note
that we use the compatibility between our topological type and Friedlander [3.3.7 and the
result on homotopy groups with respect to completions [5.2.13] It is a classical result that
there is an isomorphism of cohomology groups, which completes the proof (cf. . U

Example 5.2.18.

(i) Consider the classifying stack BG,, of the multiplicative group scheme G,, over C.
By the hypercover descent , the topological type h(BG,,) of the classifying stack
is strictly weakly equivalent to the topological type h(BG,,) of the simplicial scheme
BG,,. After profinite completion, by [5.2.17, h(BG,,) is weakly equivalent to (BS')
where BS? is the classifying space of the unit circle. It is well-known that BS! is CP>
which is K(Z,2). Therefore, h(BG,,) is weakly equivalent to K (Z,2).

(ii) More generally, for the classifying stack BGL,, of the general linear group scheme G L,
over C for n > 1, h(BGL,) is weakly equivalent to BGL,(C). Since BGL,(C) is
the Grassimannian G(n,C*®) of n-dimensional subspaces in C*, h(BGL,) is weakly
equivalent to G(n,C®). Remark that for a finite coefficient group, the cohomology
groups of a profinite completion of a pro-simplicial set coincide with the cohomology
groups of the pro-simplicial set. Therefore, our result recovers that

H*(BGL,, Q) = Qlcr, ca,- -+, ) = H(G(n,C™),Qy)

where ¢;’s are the universal Chern classes of degree 2i. Each side is well-known to
algebraic geometers and topologists respectively.

5.2.19. The simplicial comparison theorem leads to the comparison theorem for alge-
braic stacks. We make it precise for the rest of the subsection.
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5.2.20. Let X be a topological space. Denote by op(X) the site induced by the usual topology
on X. We call it the small topological site. Also consider the big topological site Top(X)
whose objects are continuous maps over X and coverings are the usual open coverings. It
follows that the functor

Op(X) — Top(X)

satisfies the assumptions in [2.3.27, So we can use either the small or the big site to compute
topological types of the associated topoi.

Now consider the site Top defined by Top() where * is a final object in the category of
topological spaces. Then by the [2.3.30, one can compute the topological types above in this
site as well.

Remark 5.2.21. For the topos associated to Top, we take epimorphisms as the class of P
for the theory of P-hypercovers (see [2.3.45]).

5.2.22. Recall from |26, §20| that there is a functor from the category of locally of finite type
algebraic stacks over C to the category of stacks over Top. Denote by X*'*P the image of X
under the functor.

Theorem 5.2.23. (Stacky Comparison) Let X' be a finite type algebraic stack over C. Then
the map

—

B(X0P) = h(X)

of the profinite completions of topological types is a weak equivalence of profinite spaces.

Proof. There is an induced epimorphism X'P — X'P  Since the analytification com-
mutes with finite limits, the analytification of the simplicial scheme cosky(X/X) is simply
cosko(X*P /X*P)) which is a P-hypercover. By the hypercover descent , there are strict
weak equivalences

h(cosko(X /X)) — h(X)
and
h(cosky (X' /X*P)) — h(X*P)
The result follows from [£.2.17] O

5.2.24. Concretely, for a group scheme G over C acting on a scheme X/C, there is a weak
equivalence

W([X(C)/G(C)])) = h([X/G])
of profinite completions of topological types of quotient stacks. In particular, we obtain a
weak equivalence

h(BG(C)) — h(BG)

for classifying stacks.
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5.3. Profiniteness of topological types.

Definition 5.3.1. Let X : [ — Set be a pro-set. Its profinite completion X is the profinite
set

—~

lim X;

i
where 5(\1 is the profinite completion of the set X; as in and the limit is taken in the
category of profinite sets.

=

Remark 5.3.2. This notion of profinite completion of pro-sets is compatible with the profinite
completion of sets [5.1.1] the profinite completion of simplicial sets [5.1.2] and the profinite

completion of pro-simplicial sets [5.1.10

Lemma 5.3.3. Let X be a simplicial set. Then there is a canonical isomorphism of profinite
sets

~

7o(X) Im —2 7(X)

Proof. The statement is immediate from that for any finite set S,

Morset (10(X), S) = Morsset (X, S) = Morgg=(X, S) = Morg(m(X), S)

g

Corollary 5.3.4. Let X be a pro-simplicial set. Then there is a canonical isomorphism of
profinite sets

7T0<X) —N> Wo()?)

Proof. Say X : I — SSet : i +— X;. Then

mo(X) = lim(mo( X)) ~ lim mo(X;) ~ mo(lim X;) = mo(X)

iel iel iel
where the first isomorphism is by and the second isomorphism from the property that
7o commutes with cofiltered limits. O

Proposition 5.3.5. Let F, be a simplicial object in a topos T'. There is a canonical isomor-
phism of profinite sets

Wo(h(F.)A) ;- 7T()(LF* (F.)A>
Proof. Consider the commutative diagram of profinite sets:

mo(h(F.)) mo(h(FL))

| |

7o(Lr+(Fy)) — mo(Lr«(Fy))

The top (resp. bottom) horizontal map is an isomorphism by (resp. [5.3.3). On the
other hand, the left vertical map is an isomorphism by [2.4.2] Therefore, the right vertical
map is also an isomorphism. O
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5.3.6. For a pointed simplicial set X, the canonical map

~ ~

(m(X)) = m(X)

is an isomorphism of profinite groups (|27, 2.1]). We extend this result to pointed pro-
simplicial sets:

Proposition 5.3.7. Let X be a pointed pro-simplicial set X. Then there is a canonical
isomorphism of profinite groups

—~ ~

m(X) — m(X)

Proof. Say X : I — SSet : i — X;. It is enough to show that for any finite group G, the
canonical map

Morprofinite(11(X), G) = Morpyognite(m1(X ), G)

is an isomorphism where Profinite denote the category of profinite groups.

(5.3.7.1) Morprofinite(m1(X), G) = H'(X: G)
(5.3.7.2) = lim H'(X;; G)
i€oP
(5.3.7.3) = lim H'(X;;G)
iclopP
(5374) = hﬂ HOSSet(Xi> K(G7 1))
i€ oP
(5375) = HOpro—SSet(Xa K(G7 1))
(5.3.7.6) = HY(X,G)
(5.3.7.7) = Morpro-gps(m1(X), G)
(5378) - MorProﬁnite(ﬂ-l (X)Aa G)

where ((5.3.7.5)) follows from [27, 2.9]. O

5.3.8. Recall from |34, 0.23.2.1] that a local ring A is unibranch if Ayeq is a domain and if the
integral closure of A,.q is local. We say that A is geometrically unibranch if it is unibranch
and the residue field field of the integral closure of A,.q is purely inseparable over the residue
field of A. A scheme X is geometrically unibranch if for every point x € X the local ring
Ox , is geometrically unibranch.

5.3.9. The implication of the geometrically unibranch condition is the profinite theorem of
Artin-Mazur |1, 11.1]: For a pointed, connected, geometrically unibranch, and noetherian
scheme X, the étale homotopy type is profinite. i.e., all homotopy pro-groups are pro-finite.
This profinite theorem was generalized to simplicial schemes by Friedlander [8, 7.3]: For a
pointed simplicial scheme X, such that each X, is noetherian, connected, and geometrically
unibranch, the étale topological type is profinite. i.e., all homotopy pro-groups are pro-finite.

5.3.10. The property that a scheme is geometrically unibranch is local in the étale topology.
So we say that an algebraic space is geometrically unibranch if there is an étale surjection
U — X with U a geometrically unibranch scheme.
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Proposition 5.3.11. Let X/S be a quasi-compact, quasi-separated, and geometrically uni-
branch algebraic space. Then its topological type h(X) is profinite. i.e., m,(X) is profinite for
each n > 0.

Proof. Choose an étale cover U — X with U a scheme. By the hypercover descent there
is a strict weak equivalence

h(cosko(U/X)) — h(X)

Therefore, the result follows from the case of simplicial schemes |8, 7.3]. g
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