
INTEGRO-DIFFERENTIAL EQUATIONS

BASED ON (BV,L1) IMAGE DECOMPOSITION

PRASHANT ATHAVALE AND EITAN TADMOR

Abstract. A novel approach for multiscale image processing based on integro-differential equations
(IDEs) was proposed in [32]. These IDEs which stem naturally from multiscale (BV, L2) hierarchical
decompositions, yield inverse scale representations of images in the sense that the BV -dual norms of
their residuals are inversely proportional to the scaling parameters. Motivated by the fact that (BV, L1)
decomposition is more suitable for extracting local scale-space features than (BV, L2), we introduce here
the IDEs which arise from multiscale (BV, L1) hierarchical decompositions. We study several variants of
this (BV, L1)-based IDE model, depending on modifications to the curvature term.
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1. Introduction

In [32] we introduced a class of integro-differential equations (IDEs) to model images, based on (BV,L2)
hierarchical decompositions [33, 34]. In this paper we study integro-differential equations arising from
hierarchical (BV,L1) image decomposition. As in [32], we work here with greyscale images which can be
realized as a graph of a discrete function f : Ω ⊂ R2 → R. The values of this function, f(x), denote
the intensity of the image at the discrete points x ∈ Ω: the function f attains its maximum value at the
brightest spots in the image and minimum value of zero at the darkest spots. The graph of an image
consists of discrete pixels which for mathematical analysis, is postulated as an L2(Ω) function. The image
f , which is obtained by any image capturing device, may be blurred and may contain some additive noise η.
Thus, the observed image, f , could be written as f = KU + η, where U is the clean image sought without
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blurring and noise andK : L2(Ω) → L2(Ω) is some blurring operator. The problem of obtaining the “clean”
image U from the observed image f is an ill-posed problem of image restoration, which can be addressed
by several inverse problem solvers. We mention in this context variational techniques using Tikhonov-like
regularization, PDE-based methods, filtering, stochastic modeling and wavelets-based techniques that were
developed for solving these image processing problems [5, 9, 12, 13, 16, 17, 18, 20, 21, 24, 25, 29, 30, 35].

Image restoration leads to image decomposition. For example, any denoising of an observed image f
results in the decomposing of type f = Uλ+ηλ, where ηλ is interpreted as a noise by the denoising method.
Here, λ is an algorithm-specific scaling parameter : in the case of Gaussian smoothing, for example, the
variance of the Gaussian kernel may serve as such scaling parameter. Small scale features, categorized as
noise, are then forced into ηλ, resulting in a larger scale version, Uλ, of the original image f .

1.1. PDE-based, variational and hierarchical decompositions. Two main approaches for multiscale
representations of images are PDE-based methods and variational methods. The basic PDE-based method
is the heat equation, ut = ∆u, where starting with the given image as initial condition, u(0) := f , it
produces a multiscale representation, {u(t)}t>0 for the image f . The heat equation removes noise through
blurring, but being an isotropic diffusion it also blurs edges which define main features in the image. This
drawback can be removed by using instead, Perona-Malik [29] nonlinear equation based on non-isotropic

diffusion, ut = div(g(|∇u|)∇u). The equation is ill-posed, however, and as already noted by these authors,
the PM diffusion can lead to false detection of edges in the presence of noise. To resolve this issue, Catté et.
al. proposed to use a modified non-isotropic and non-local diffusive amplitude of the form, g(|Gσ⋆∇u|); this
class of methods was studied in [19, 36]. All these methods give rise to a forward multiscale representation
of the image f , in the sense that u(t) begins with the finest scale, u(0) := f and then progressively blurs
into coarser representations of f as t → ∞.

The class of variational methods is a widely used alternative to PDE-based methods in image processing.
Methods like Mumford-Shah segmentation [25, 26], Rudin-Osher-Fatemi (ROF) decomposition [30] etc.,
fall under a general category of Tikhonov regularization [35, 31]. Here one attempts to find a close
approximation to a function f ∈ Y , in a space X ( Y , which is an appropriate space adapted to measure
edges and textures sought in u. This leads to the following minimization problem:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{

‖u‖X + λ ‖v‖Y
}

.

The term ‖u‖X is a regularizing term and uλ+ vλ is a multiscale decomposition of f which varies with the
positive scaling parameter, λ. For references on this class of ‘u + v’ methods we refer to [10]. In the case
of the ROF model [30], for example, edges are sought in the space of bounded variations, X = BV (Ω) and
f ∈ Y = L2, e.g., [6]. This yields the (BV,L2)-decomposition:

(1.1) f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{

|u|BV + λ ‖v‖2L2

}

,

where |u|BV :=
∫

Ω |∇u| is the BV -seminorm. For small values of λ, the minimizer uλ is a large-scale image
which consists of only main features and prominent edges in f . As λ becomes larger, uλ captures the
small-scale details of f . The point of view advocated in [33] was to replace the fixed scaling parameter λ
by a varying sequence of inverse-scale parameters, λ1 < λ2 < . . ., which dictate the scaling of the iterative
refinement step,

(1.2a) [uλj+1
, vλj+1

] := arginf
vλj

=u+v

{

|u|BV + λj+1 ‖v‖
2
L2

}

,

which in turn, generates a multiscale (BV,L2) hierarchical representation,

(1.2b) f ≈
∑

j

uλj
.
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2. A novel (BV,L1) based integro-differential equation (IDE)

In [32] we introduced the integro-differential equation1

(2.1)

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

,
∂u

∂n

∣

∣

∣

∂Ω
= 0.

This novel IDE was based on a hierarchical (BV,L2) decomposition (1.2) which was introduced by Tadmor
et. al. [33, 34], from which it inherits many important properties. Once we were dealing with the framework
of IDEs, several extensions of (2.1) were proposed in [32] to deal with de-noising and de-blurring of images,
which were not strictly associated to any variational problem.

The ROF decomposition (1.1) uses the L2− fidelity term ‖f −u‖2L2. An alternative variational problem
based on an L1-fidelity term, ‖f − u‖L1, was proposed earlier by Alliney [4] and was studied extensively
by Chan, Esedoḡlu and Nikolova [11, 27, 14],

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{

|u|BV + λ ‖v‖L1

}

.(2.2)

The resulting (BV,L1) minimization1 differs from the (BV,L2) model in several important aspects which
attracted considerable attention in recent years, see [1, 2, 3, 15]. We shall mention two such aspects. The
(BV,L1) minimization is contrast invariant, as opposed to the (BV,L2) minimization. Chan and Esedoḡlu
[11] also showed the more local geometric aspects of the (BV,L1) minimization. In particular, recall that if
supp(f) ∈ BR(0), then both the (BV,L1) and the (BV,L2) minimizers vanish, uλ ≡ 0 and vλ = f , for all λ
which are less than a minimal threshold λL ∝ 1

R . But on the other hand, if the f is a characteristic function

χΣ, then the (BV,L1) minimizer of (2.2) admits a maximal threshold, λH , such that for all λ > λH we
have uλ = f and vλ ≡ 0, in contrast to the “leaking” phenomena with the (BV,L2)-based ROF model,
where vλ ∝ 1

R , [22].

2.1. Quantization. To proceed with the derivation of a (BV,L1)-based IDE, we first need to address a
proper quantization of the image intensity. If we let τ denote the small intensity quanta, then we can
rescale the coarse image in (2.2), uλ, in τ -units. With this in mind, we decompose the given image f using
the (BV,L1) scheme, starting with initial scale λ0:

f = uλ0
τ + vλ0

, uλ0
:= arginf

u

{

|u|BV +
λ0

τ
‖f − uτ‖L1

}

.

The residual image, vλ0
:= f − uλ0

τ , can be further decomposed into smaller scale with λ1 > λ0,

vλ0
= uλ1

τ + vλ1
, uλ1

:= arginf
u

{

|u|BV +
λ1

τ
‖vλ0

− uτ‖L1

}

.

We can continue this process for λ0 < λ1 < λ2 . . .

vλk−1
= uλk

τ + vλk
, uλk

:= arginf
u

{

|u|BV +
λk

τ
‖vλk−1

− uτ‖L1

}

.

A telescoping sum of the refinement step vλk−1
− vλk

= uλk
τ yields the following hierarchical (BV,L1)

decomposition of f :
f = uλ0

τ + vλ0

= uλ0
τ + uλ1

τ + vλ1

= . . . . . .
= uλ0

τ + uλ1
τ + · · ·+ uλN

τ + vλN
.

1The term, div
(

∇u(·,t)
|∇u(·,t)|

)

, which often arises in image processing, is the curvature of isolevel curves of function u(·, t),

[8, 7]. In the present context, it arises as the first variation of the BV norm, |u|BV , which in practice, is replaced by its

regularized form, e.g., |u|BV =
√

|∇u|2
L1 + ε2, thus removing the ambiguity when ∇u = 0 and the possible lack of uniqueness

in the corresponding (BV, L1) minimization in (2.2), [1, 3].
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Remark 2.1. We note that in order to begin with only the main features of f , the initial scale needs to be

small but not too small: to capture non-trivial minimizer, λ0 needs to be larger than a minimal threshold,

which is qunatified in terms of the dual ‖ · ‖∗-norm specified in (2.7) below, [34, (2.5)], [22],

(2.3) λ0 > λL := 1/‖sgn(f)‖∗.

This yields a hierarchical (BV,L1) multiscale image decomposition,

(2.4) f =

N
∑

k=k0

uλk
τ + vλN

,

where k0 signals the initial scale λk0
to yield the first non-trivial minimizer uλ0

. Consider the N th-step in
the (BV,L1) scheme,

uλN
= arginf

u

(
∫

Ω

|∇u|+
λN

τ

∫

Ω

|vλN−1
− uτ |

)

;

The Euler-Lagrange equation associated with this minimizer reads (with the usual understanding of a
regularized curvature term)

(2.5) sgn (uλN
τ − vλN−1

) =
1

λN
div

(

∇uλN

|∇uλN
|

)

From (2.4) we have

vλN−1
= f −

N−1
∑

k=k0

uλk
τ,

and using this above expression in (2.5) we find

sgn

(

N
∑

k=k0

uλk
τ − f

)

=
1

λN
div

(

∇uλN

|∇uλN
|

)

.

Letting τ → 0 we arrive at the following (BV,L1) IDE:

sgn

(
∫ t

s=t0

u(x, s) ds− f(x)

)

=
1

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

,
∂u

∂n

∣

∣

∣

∂Ω
= 0, t ≥ t0(2.6)

subject to the initial condition u(·, t0) = 0. The scaling function λ(t) is any monotone increasing function,
at our disposal. We discuss the role of this function in the next section.

2.2. On the scaling function λ(t). It is argued in [22] that the dual norm,

(2.7) ‖w‖∗ := sup
|ϕ|BV 6=0

〈w,ϕ− ϕ〉L2

|ϕ|BV
, ϕ =

1

|Ω|

∫

Ω

ϕ(x)dx,

is a proper norm to measure texture (equivalently, one can characterize this dual norm as ‖w‖∗ :=
infg{‖g‖L∞ : div g = w − w}. To understand the critical role of the scaling function λ(t) in the IDE
model (2.6) and its relationship with the star norm, we first prove the following useful lemma.

Lemma 2.1. For u ∈ BV , let κu be the curvature term, κu := div

(

∇u

|∇u|

)

, whenever |∇u| 6= 0. Then

‖κu‖∗ = 1.

Proof. For ϕ ∈ BV we have the following

(2.8) |(κu, ϕ)L2 | =

∣

∣

∣

∣

(

div

(

∇u

|∇u|

)

, ϕ
)

L2

∣

∣

∣

∣

≤ |ϕ|BV .

Thus, we have ‖κu‖∗ ≤ 1. Letting ϕ = u in (2.8), we obtain |〈κu, u〉L2 | = |u|BV and the result follows. �
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The following theorem is a direct consequence of this lemma.

Theorem 2.1. Consider the IDE model (2.6)

sgn (U(x, t)− f(x)) =
1

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

, U(x, t) :=

∫ t

t0

u(x, s) ds.

Then, the size of the residual, V (·, t) := f −
∫ t

t0
u(·, s) ds, is dictated by the scaling function λ(t),

∥

∥ sgn(V (·, t))
∥

∥

∗
=

1

λ(t)
.

The “star-norm” measures oscillations, [22]. Thus, the above equality could be interpreted to say that
the oscillations in the residual image V (·, t) are inversely proportional to the scaling function λ(t) (recall
that t0 is determined as the minimal effective scale in the sense that (2.3) holds, λ(t0) > λL). In particular,
the oscillations in the residual function diminish in a precise manner controlled by increasing λ(t).

2.3. L1-energy decomposition. The increase of λ(t) is directly linked to the “energy” of the underlying
image. For the (BV,L2)-based IDE (2.1), we proved in [32], the L2-energy decomposition.

∫ t

s=t0

1

λ(s)
|u(·, s)|BV ds+ ‖V (·, t)‖2L2 = ‖f‖2L2.

For the (BV,L1)-based IDE we have the corresponding L1-energy decomposition.

Proposition 2.1. Consider the IDE (2.6) and let V (·, t) denote the residual, V (·, t) :=
∫ t

t0
u(·, s)ds − f .

Then we have the following L1-energy decomposition,
∫ t

t0

1

λ(s)
|u(·, s)|BV ds+ ‖V (·, t)‖L1 = ‖f‖L1.

Proof. We denote by U(·, t) :=
∫ t

t0
u(·, s) ds the cumulative image so that the IDE (2.6) takes the form

1

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

= sgn(U(x, t)− f(x)).

Integrating the above against u ≡
d

dt
(U − f) we get,

−
1

λ(t)
|u(·, t)|BV =

∫

Ω

sgn(U(·, t)− f)
d

dt

(

U(·, t)− f
)

dx =

=
d

dt

∫

Ω

sgn(U(·, t)− f) (U(·, t)− f) dx =
d

dt

∫

Ω

|U(·, t)− f | dx,

and the result follows by time integration. �

3. IDEs for images: numerical results and extensions

3.1. Comparing the (BV,L1)- and (BV,L2)-based IDEs. The multiscale image representation gener-
ated by the IDE (2.6) is shown in figure 3.1. It is instructive to look at the image representation produced
by the (BV,L1)-based IDE (2.6) with the (BV,L2)-based IDE (2.1). In the first row of figure 3.2 we see
the multiscale representation using the new (2.6). Note that the larger blocks appear before the small
blocks, irrespective of their intensity levels. We observe that the appearance of these blocks is abrupt,
as opposed to the results obtained with (2.1), shown in the second row of figure 3.2 where these blocks
appear gradually and the multiscale representation produced by the (2.1) depends on the intensity levels,
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rather than the size of the blocks. This feature makes (BV,L1) IDE (2.6) more suitable for multiscale
representation than (BV,L2) IDE (2.1).

The difference between the (BV,L1) based IDE, and the (BV,L2) based IDE is demonstrated clearly
in figure 3.3. We note that for the same time, the (BV,L1) IDE gives better result at the edges, than the
(BV,L2) IDE. The (BV,L1) IDE is seen to be contrast invariant and depends only on the scale of the
blocks, whereas (BV,L2) IDE is not contrast invariant, as expected.

t = 1 t = 10 t = 13 t = 25

Figure 3.1. The images, U(t) =
∫ t

0
u(·, s) ds, of the IDE (2.6) at t = 1, 10, 13, 25. Here,

λ(t) = 0.01× 2t.

t = 1 t = 3 t = 5 t = 7

t = 1 t = 4 t = 6 t = 10

Figure 3.2. First row: The images, U(t) =
∫ t

0 u(·, s) ds, of the (BV,L1)-based IDE (2.6)

at t = 1, 3, 5, 7. Here, λ(t) = 0.15 × 2t. Second row: The images, U(t) =
∫ t

0 u(·, s) ds, of

the (BV,L2)-based IDE (2.1) at t = 1, 4, 6, 10. Here, λ(t) = 0.1× 2t.

3.2. IDE with filtered diffusion. Recall that one of the drawbacks in using the heat equation for
denoising is that it results in an isotropic diffusion. The Perona Malik model removes this drawback by



(BV,L1) INTEGRO-DIFFERENTIAL EQUATIONS FOR IMAGES 7

(a) (b) (c)

Figure 3.3. In (a),(b) and (c) we see the mesh views of the original image from figure

3.2, the result U(t) =
∫ t

0
u(·, s) ds for the (BV,L2)-based IDE (2.1) at t = 1 and the image

U(t) =
∫ t

0
u(·, s) ds for the (BV,L1)-based IDE (2.6), also at t = 1 respectively.

introducing a diffusion controlling function, that controls the diffusion near prominent edges in a given
image. We propose a similar modification to our IDE model, seeking u(x, t) : Ω× R+ 7→ R such that

sgn

(
∫ t

s=t0

u(x, s) dx − f(x)

)

=
g(|Gσ ⋆∇u(x, t)|)

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

, t > t0(3.1a)

subject to normal boundary conditions
∂u

∂n

∣

∣

∣

∂Ω
= 0. As before, the IDE (3.1a) is activated after the minimal

time scale, t ≥ t0, such that u(·, t0) is the first slice of f to capture non-trivial features at that scale.
Similar to the Perona-Malik type models, we can choose the pre-factor function g so that it vanishes

at infinity to control the diffusion at prominent edges in the image. Thus, the function g acts here as a

high-pass filter which retains prominent edges in the image
∫ t

0 u(x, s) ds without diffusing them. As choices
for such a g-filter, figure 3.5 displays the results of the modified IDE (3.1a) with

(3.1b) g(s) =
1

1 + (s/β)2
,

Here, the constant β determines the extent to which edges are preserved: for small β’s, relevant edges
are preserved whereas for large β’s, they are diffused. Detailed discussion of the numerical scheme for the
filtered diffusion model (3.1) is given in section 4.

Comparing the results of the filtered IDE (3.1a) shown in figure 3.5, we observe that edges, which are
diffused by the basic IDE (2.6) as depicted in figure 3.4, are preserved in figure 3.5. As in the case of (2.1),
see [32], this phenomenon is more apparent for smaller values of t due to the fact that as t increases, U(·, t)
in both models approaches f , and consequently, suffer from less diffusion of the edges. The usefulness
of the filtered diffusion IDE model becomes apparent when certain edges are required in the scale-space
for smaller values of t. For example, in figure 3.4, the edges are blurred for smaller values of t with the
standard IDE (2.6), but with the filtered diffusion IDE (3.1a) we retain relevant edges, as shown in figure
3.5. We remark that this edge preserving filtered diffusion could be used in landmark-based hierarchical
image registration algorithms [23, 28].

3.3. IDE with tangential smoothing. The approach of using the diffusion controlling function works
well with natural images with moderate gradients. With other images, however, such as those which often
arise in computer vision and industrial applications, the boundaries of their internal objects are marked
with large, sharp gradients; for example, characteristic function χD, where D ⊂ Ω. In such cases, we can
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t = 4 t = 4.2 t = 4.4 t = 6

Figure 3.4. The images, U(t) =
∫ t

0
u(·, s) ds, of the IDE (3.1a) at t = 4, 4.2, 4.4, 6. Here,

λ(t) = 0.1× 2t.

t = 0.2 t = 3.8 t = 4 t = 6

Figure 3.5. The images, U(t) =
∫ t

0 u(·, s) ds, of the IDE (3.1a) at t = 0.2, 3.8, 4, 6. Here,
λ(t) = 0.1× 2t.

choose to smooth only in the tangential direction to the boundaries of the objects, e.g., [5]. To this end,
write ∆u := uTT + uNN , where uTT and uNN are the tangential and normal diffusion components, i.e.

uTT = ∆u− uNN = |∇u| div

(

∇u

|∇u|

)

, uNN =

〈

∇u

|∇u|
,∇2u

∇u

|∇u|

〉

.

If we restrict the diffusion in our IDE model to tangential directions we obtain modified IDEs with tan-
gential smoothing,

sgn

(
∫ t

t0

u(x, s) ds− f(x)

)

=
1

λ(t)
|∇u(x, t)| div

(

∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n

∣

∣

∣

∂Ω
= 0,(3.2)

and with tangential smoothing and filtering,

sgn

(
∫ t

t0

u(x, s) ds− f(x)

)

=
g(|Gσ ⋆∇u(x, t)|)

λ(t)
|∇u(x, t)| div

(

∇u(x, t)

|∇u(x, t)|

)

.(3.3)

As before, u : Ω× R+ 7→ R evolves in inverse scale space using the conditions u(·, 0) ≡ 0 and ∂u
∂n |∂Ω = 0.

Numerical experiments are shown in figures (3.6)-(3.7). Compare the (BV,L1) IDE results (2.6) shown
in figure 3.6 with the tangential smoothing (3.3) shown in figure 3.7: the point here is that tangential
diffusion model preserves the edges, while denoising the rest of the image in a much faster rate than in the
standard IDE model.
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f at t = 0 t = 1 t = 4 t = 18

Figure 3.6. A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, of (2.6) at t =
1, 4, 18. Here, the scaling function is λ(t) = 0.0001 × 2t. Most of the noise is present at
scale t = 18.

f at t = 0 t = 1 t = 4 t = 18

Figure 3.7. A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, of (3.3) at t =

1, 4, 18. Here, the scaling function is λ(t) = 0.0001 × 2t. We observe that at t = 18 the
noise is suppressed, at the same time maintaining the boundary of the circle intact.

4. Appendix: numerical discretizations

In this appendix we describe the numerical implementation of (2.6) and its variants. First let us
concentrate on the basic (BV,L1) IDE model (2.6), rewritten here for convenience (for simplicity we set
the initial scale at λ(t0) at t0 = 0),

(4.1) sgn

(
∫ t

0

u(x, s) ds− f(x)

)

=
1

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

.

In practice we approximate the BV -seminorm |u|BV with
∫

Ω

√

|∇u|2 + ǫ2, which leads to the following
IDE:

(4.2) sgn

(
∫ t

0

u(x, s) ds− f(x)

)

=
1

λ(t)
div

(

∇u(x, t)
√

ǫ2 + |∇u(x, t)|2

)

.

In our numerical experiments we used the regularizatoin parameter ǫ = 10−3.

As usual, U(t) :=

∫ t

0

u(x, s) ds is the exact solution. Let ∆t be the time step and Un+1 will denote the

corresponding computed solution at tn+1 = (n+ 1)∆t:

Un+1 = Un +Wn+1, Wn+1 ≡ Wn+1
i,j := un+1

i,j ∆t,

where un+1
i,j ≡ un+1(ih, jh) is the approximate solution of the IDE at grid point (ih, jh). We introduce

αn := |Un − f |, and we compute the increment Wn+1 by fixed-point iterations {ωk}. With this, the IDE
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(4.2) is discretized at t = tn+1,

Un
i,j + ωk+1

i,j = fi,j

+
αn

λ(n+1)h2





ωk
i+1,j − ωk+1

i,j
√

ε2 + (D+xω
k
i,j)

2 + (D0yω
k
i,j)

2
−

ωk+1
i,j − ωk

i−1,j
√

ε2 + (D−xω
k
i,j)

2 + (D0yω
k
i−1,j)

2



(4.3)

+
αn

λ(n+1)h2





ωk
i,j+1 − ωk+1

i,j
√

ε2 + (D0xω
k
i,j)

2 + (D+yω
k
i,j)

2
−

ωk+1
i,j − ωk

i,j−1
√

ε2 + (D0xω
k
i,j−1)

2 + (D−yω
k
i,j)

2



 .

The nonlinear system (4.3) is solved using Jacobi iterations which leads to the fixed-point iterations for
computing ωk+1:

ωk+1
i,j =

λ(n+1)h2(fi,j − Un
i,j) + αn(cEω

k
i+1,j + cWωk

i−1,j + cSω
k
i,j+1 + cNωk

i,j−1)

λ(n+1)h2 + αn(cE + cW + cS + cN )
.(4.4a)

Here, λ(n+1) = λ(tn+1) are the discrete scaling parameters and cE , cW , cS , cN are the discrete coefficients

cE :=
1

√

ε2 + (D+xω
k
i,j)

2 + (D0yω
k
i,j)

2
, cW :=

1
√

ε2 + (D−xω
k
i,j)

2 + (D0yω
k
i−1,j)

2
,

cS :=
1

√

ε2 + (D0xω
k
i,j)

2 + (D+yω
k
i,j)

2
, cN :=

1
√

ε2 + (D0xω
k
i,j−1)

2 + (D−yω
k
i,j)

2
.

In the computations above we set h = 1. To minimize the grid effects, we alternate the directions in which
the above iterations were carried out, starting at the top-left corner position (1, 1), fixing i = 1 we vary
j = 1 to jmax (East-South direction), initiating the next iteration at the top-right corner, and so on. The

fixed point iterations (4.4a) yield, ωk k→∞
−→ Wn+1 ≡ un+1∆t, and we can then update the computed image

U ,

(4.4b) Un+1 = Un +Wn+1.

Next, we consider the filtered IDE (3.1a), which is rewritten here for convenience as
(
∫ t

0

u(x, s) ds− f(x)

)

=
g(|Gσ ⋆∇u(x, t)|)

λ(t)
div

(

∇u(x, t)

|∇u(x, t)|

)

.

The only difference here is the additional diffusion controlling function g(|Gσ ⋆∇u(x, t)|), where Gσ is the
two-dimensional Gaussian smoothing with standard deviation σ. The function g(s) = 1

1+(s/β)2 with β = 5

is used in our numerical experiments. We approximate

g(|Gσ ⋆∇u(x, t)|) ≈ g

(

∣

∣

∣
Gσ ⋆

∇ωn
i,j

∆t

∣

∣

∣

)

,

and the expression on the right enters into the RHS of (4.3). We end up with the same discrete IDE
scheme (4.4) with λ(n) 7→ λ(n)

/

g
(∣

∣Gσ ⋆∇ωn
i,j/∆t

∣

∣

)

.

References

1. W. Allard, Total variation regularization for image denoising. I. Geometric theory, SIAM J. Math. Anal. 39 (2007/08),
no. 4, 1150–1190.

2. , Total variation regularization for image denoising. II. Examples, SIAM J. Imaging Sci. 1 (2008), no. 4, 400–417.
3. , Total variation regularization for image denoising. III. Examples, SIAM J. Imaging Sci. 2 (2009), no. 2, 532–568.
4. S. Alliney, Digital filters as absolute norm regularizers, IEEE Transactions on Signal Processing 40 (1992), no. 6, 1548–

1562.



(BV,L1) INTEGRO-DIFFERENTIAL EQUATIONS FOR IMAGES 11

5. L. Alvarez, P-L. Lions, and J-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM
J. Numer. Anal. 29 (1992), no. 3, 845–866.

6. L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathe-
matical monographs, Oxford University Press, New York, 2000.

7. F. Andreu-Vaillo, V. Casalles, and J. Mazón, Parabolic quasilinear equations minimizing linear growth functionals,
Progress in mathematics, vol. 223, Birkhäuser, Switzerland, 2004.
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