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1. Introduction 
In this paper, we consider the asymptotic behavior of 

solutions to the following stochastic reaction-diffusion 
equation (SRDE) with multiplicative noise: 

 ( )( ) ( ) , ,du u f u dt bu dW t x D− ∆ − = ∈  (1.1) 

with the initial-boundary value conditions 

 ( ) ( )0, , ,
0, .

u x u x x D
u on D

τ = ∈


= ∂
 (1.2) 

where [ ], tτ ⊂   and nD ⊂   is a bounded open set with 

regular boundary D∂  and ( )W t  is a two-sided  
real-valued Wiener process on a probability space which 
will be specified later. 

The nonlinearity ( )1 ,f C∈    satisfies the following 
conditions: 

 ( )1 2 3 4 ,p pc u c f u u c u c− ≤ ≤ +  (1.3) 

 ( )f u γ′ ≥  (1.4) 

for some 2,p ≥  ,γ ∈  0ic >  ( )1,..., 4i =  and for all 
.u∈  

The asymptotic behavior of a random dynamical system 
(RDS) is captured by random attractors, which were first 
introduced in [5,11]. They are compact invariant random 
sets attracting all the orbits, but the attraction to it may be 
arbitrary. This drawback can be overcome by creating the 

notion of exponential attractor, which is a compact, 
positively invariant set of finite dimension and 
exponentially attract each orbit at an exponential rate. The 
existence of exponential attractors for deterministic case 
has been extensively studied since 1994, [7] ([3,6,8,9,10]). 
The concept of random exponential attractors was first 
introduced by A. Shirikyan and S. Zelik in [12]. They 
construct a random exponential attractor for abstract RDS 
and study its dependence on a parameter. In this paper, we 
devote to construct an exponential attractor for RDS and 
discuss the exponential attractive property of a random 
attractor. Firstly, we extend the deterministic result in [9] 
to stochastic case. Since we mainly concentrate on the 
exponential attractive property, we don't intend to discuss 
the time regularity of exponential attractors and its 
dependence on a parameter as in [12]. We then prove that 
a random attractor is actually an exponential attractor 
when the RDS satisfies Lipschitz continuity with small 
coefficient. Finally, we apply the abstract results to 
Eq.(1.1) to show that the corresponding RDS possesses an 
exponential attractors. When the derivative of the 
nonlinearity satisfies some restrictive condition, the 
random attractor become a point, i.e., the random 
equilibrium, and it attracts every orbit exponentially. 

We organize this paper as follows. In section 2, we 
recall some basic notions of random attractors for RDS. In 
section 3, we present our main results and give the proofs. 
In section 4, we show our application to Eq.(1.1). 

Throughout this paper, we denote by X⋅  the norm of 

Banach space .X  The norm of ( )2L D  is written as .⋅  

( )ω  denotes the random attractor for RDS ( ){ } 0, ttφ ω
≥

 

in a Banach space .X  
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2. Preliminaries and Main Results 
Let ( ), ,Ω   be a probability space, and ( )X  be 

the Borel σ -algebra of .X  In this paper, the term  -a.s. 
(the abbreviation for   almost surely) denote that an 
event happens with probability one. In other words, the set 
of possible exceptions may be non-empty, but it has 
probability zero. Moreover, we need the following 
definitions, see [2,4,5,13] for more details. 
Definition 2.1. ( )( ), , , t t Tθ ∈Ω   ( )T or=   is called 

a (discrete or continuous) metric dynamical system (MDS) 
if :Tθ ×Ω→Ω  is ( )( ),T ×   -measurable, 0θ  is 

the identity on ,Ω  s t s tθ θ θ+ =   or all ,s t T∈  and 

tθ =   for all t T∈  
Definition 2.2. The RDS on X over an 

( )( ), , , t t TMDS θ ∈Ω   is a mapping : ,T X Xφ + ×Ω× →  

( ) ( ), , , ,t x t xω φ ω  which is ( ) ( ) ( )( ),T X X+ × ×     

-measurable and satisfies for  - . . ,a sω∈Ω  
(i) ( )0, , idφ ω ⋅ =  on ;X  
(ii) ( ) ( ) ( ), , , , , ,st s t sφ ω φ θ ω φ ω+ ⋅ = ⋅ ⋅  (cocycle property) 

on X for all , .s t T +∈  
An RDS is said to be continuous on X  if 
( ), :t X Xφ ω →  is continuous for all t T +∈  and  

 - . . .a sω∈Ω  
Definition 2.3. A random bounded set ( ){ }B

ω
ω

∈Ω
 of X  

is called tempered with respect to ( )t tθ ∈  if for  

 - . . ,a sω∈Ω  

 ( )( )lim 0 0,t
t

t
e d B for allβ θ ω β−

−
→∞

= >  

where ( ) sup .x B Xd B x∈=  

Definition 2.4. (1) A random set ( ){ }B ωω
∈Ω

∈  is said 

to be a random absorbing set for φ  if for every 

( ){ } ,B
ω

ω
∈Ω

∈  there exists ( )0 0T ω >  such that for 

  - . . ,a sω∈Ω  

 ( )( ) ( ) ( )0, , , .tt D B for all t Tφ ω ω θ ω ω⊂ ≥  

(2) A random set ( ){ }C ωω
∈Ω

∈  is said to be  

 -pullback attracting if for any ( ){ } ,D
ω

ω
∈Ω

∈  we 

have for  - . . ,a sω∈Ω  

 ( )( ) ( )( )lim , , , 0,t
t

d t D Cφ ω ω θ ω
→∞

=  

where ( )1 2,d C C  denotes the Hausdorff semi-distance 
between 1C  and 2C  in ,Y  given by 

 ( )1 2 1 2
21

, sup inf , .Xy Cx C
d C C x y for C C X

∈∈
= − ⊂  

(3) A random set ( ){ }ωω
∈Ω

  is said to be a random 

attractor if the following conditions are satisfied for  
 - . .a sω∈Ω , 

(i) ( )ω  is compact, and ( )( ),d xω ω   is 
measurable for every ;x X∈  
(ii) ( ){ }ωω ∈Ω  is invariant, that is ( )( ) ( ), , ttφ ω ω θ ω=   
for all 0;t ≥  
(iii) ( ){ }ωω

∈Ω
  attracts every random set in .  

(4) A random set ( ){ }ωω
∈Ω

  is said to be a random 

exponential attractor if the following conditions are 
satisfied for  - . . ,a sω∈Ω  
(i) ( )ω  is compact; 

(ii) ( ){ }ωω
∈Ω

  is positively-invariant, that is, 

( )( ) ( ), , ttφ ω ω θ ω⊂   for all 0;t ≥  

(iii) ( ){ }ωω
∈Ω

  attracts every random set in   

exponentially, that is, there is ( ) 0β β ω= >  such that for 

( ){ }ωω
∈Ω

∈   

 ( )( ) ( )( ) ( ), , , , 0;t
td t D M c e tβφ ω ω θ ω ω −≤ ≥  

(iv) ( ){ }ωω
∈Ω

  has finite fractal dimension, that is, 

there exists a number 0d >  such that 

 ( )( )dim .f dω ≤  

Our main results read as: 
Theorem 2.1. Let X  and 1X  be Banach spaces such that 

1X  is compactly embedded in .X  Assume that ( )ω  is 

positively invariant under a nonlinear map ( ) ,S ω  and, 

for . . ,a sω− ∈Ω  ( )S ω  can be decomposed into a sum 
of two maps 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

0 0, : ,

: ,

S S K S X

K X

ω ω ω ω ω

ω ω

= + →

→




 (2.1) 

and, for . .a s−  ,ω∈Ω  and any ( )1 2, ,x x ω∈  there 

exist ( )0 1α ω< <  and ( )κ ω  such that 

 ( ) ( ) ( )0 1 0 2 1 2 ,XXS x S x x xω ω α ω− ≤ −  (2.2) 

and 

 ( ) ( ) ( )1 2 1 21
.XXK x K x x xω ω κ ω− ≤ −  (2.3) 

Then, the discrete ( ) ( )( ),nRDS S ω ω  possesses a 

random exponential attractor. 
In particular, when ( )0 0,S ω =  we have 

Theorem 2.2. Let X  and 1X  be Banach spaces such that 

1X  is compactly embedded in .X  Let ( )ω  be a 

bounded random set positively invariant under ( ).S ω  
Assume that, for . .a s−  ,ω∈Ω  

 
( ) ( ) ( )

( )
1 2 1 21

1 2

,

, ,
XXS x S x x x

x x

ω ω κ ω

ω

− ≤ −

∈
 (2.4) 
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Then the discrete ( ) ( )( ),nRDS S ω ω  possesses a 

random exponential attractor. 
Theorem 2.3. Let X  and 1X  be Banach spaces such that 

1X  is compactly embedded in .X  Let ( )ω  be a 

bounded random set positively invariant under ( ).S ω  
Assume that, for . . ,a sω− ∈Ω  

 
( ) ( ) ( )

( )
1 2 1 21

1 2

,

, ,
XXS x S x x x

x x

ω ω κ ω

ω

− ≤ −

∈
 (2.5) 

and 

 
( ) ( ) ( )

( )
1 2 1 2

1 2

,

, ,
XXS x S x x x

x x

ω ω ν ω

ω

− ≤ −

∈
 (2.6) 

where ( )0 1.ν ω< <  Then the random exponential 

attractor is identical with the random attractor ( ) ,ω  

i.e., ( )ω  attracts every obit exponentially. 

Assume that ( ), ,tφ ω  t +∈  is an RDS on X  over an 

( )( )MDS , , , ,t tθ ∈Ω


  we define 

 ( ) ( )* *, 0.nS nT for some Tω φ ω= >  

Then, using the cocycle property of ( ), ,tφ ω  we have 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * *
* *1 2

* *1 2

1 2

, , ... ,

...

... .

n

n T n T

n T n T

n n

S

T T T

S S S

S S S

ω

φ θ ω φ θ ω φ ω

θ ω θ ω ω

ω ω ω

− −

− −

− −

   =    
   
   =    
   

= Θ Θ

  

 

 

 

This implies that ( ){ }n
n

S ω
∈

 is a discrete RDS over 

the ( )( )MDS , , , t nθ ∈Ω


  on ,X  where 

 ( ) ( )* .n nT
ω θ ωΘ =  

In the following, we still use ( )( ), , , n nθ ∈Ω


  

instead of ( )( ), , , .n n∈Ω Θ


  

Once the existence of exponential attractors for discrete 
case is proved the result for the continuous case follows in 
a standard manner (e.g., see [7]). 
Theorem 2.4. Suppose that there is a * 0T >  such that 

( ) ( )*,S Tω φ ω=  satisfies of theorem 2.1, and the map 

( ) ( ), , ,F t x t xω φ ω=  is Hölder continuous from 

[ ]0,T X×  into X  for any 0.T >  Then ( ),tφ ω  has a 
random exponential attractor. 

Next, we construct ( )ω  based on the random 

attractor ( ).ω  

Lemma 2.5. For any fixed 0 0,>  there exists an integer 
m0 such that for any 0m m≥  

 ( ) ( )( ) ( )0 0 .m
mS B Bω ω θ ω⊂    

Furthermore, 

 ( ) ( ) ( )( ) ( ) ( )( )0 0
: .

X X
m m

mS S B S Bθ ω ω ω θω θω→    

Proof. Since ( )ω  is the random attractor, ( )0B ω   is 

a random absorbing set for any 0 0.>  Thus, the first 
assertion follows from the definition of random absorbing 
set. 

By the continuity of ( )S ω  on ( )0B ω   and the 
cocycle property, we get 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

0

01

1

0

0

0

...

...

.

Xm
m

Xm

X
m m

X
m m

Xm

S S B

S S B

S S S S B

S S S S B

S B

θ ω ω ω

θω ω ω

θ ω θ ω θω ω ω

θ ω θ ω θω ω θω

θω θω

−

−

=

=

⊂

=

   

   





















 

The proof is complete. 

Set ( ) ( ) ( )( )0

XmS Bω ω θω′ =    and 

( ) ( )mω θ ω−′=   for any fixed 0 ,m m≥  then we have 

Lemma 2.6. ( ) ( ) ( ) ( )k
k kSθ ω ω ω θ ω⊂ ⊂    for any 

.k ∈  Furthermore, ( )ω  is a random absorbing set 

for ( ){ } .n
n

S ω
∈

 

Proof. On one hand, from lemma 2.5, we have 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 1

1 2 2

...

...

.

k
m m k m

m k m

m k m k

S S S

S S

S S

θ ω ω θ ω θ ω ω

θ ω θ ω θω

θ ω θ ω θ ω θ ω

+ −

+ − +

+ − +

′ ′=

′⊂

′ ′⊂ ⊂

 

 



 



 

 

By replacing mθ ω  by ,ω  we get 

 ( ) ( ) ( ) ,k
m k mS ω θ ω θ ω− −′ ′⊂   

this implies 

 ( ) ( ) ( ).k
kS ω ω θ ω′⊂   

On the other hand, since ( ) ( ) ,ω ω⊂   we get 

 ( ) ( ) ( ) ( ) ( ).k k
k S Sθ ω ω ω ω ω= ⊂    

Thus, the first assertion hold. For any 
( ){ } ,C

ω
ω

∈Ω
∈  since ( )( )0B ω   is absorbing for 

( ){ } ,n
n

S ω
∈

 there exists 0 0k >  such that for all 

0 ,k k>  
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 ( ) ( ) ( )( )0 .k
kS C Bω ω θ ω⊂    

Therefore 

 

( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )( )
( ) ( )

1

0

0

0

...

.

k m k
k m

m
k k

Xm
k k

k k m

S C S S C

S B

S B

k k

ω ω θ ω ω ω

θ ω θ ω

θ ω θ ω

θ ω θ ω

+
+ −

+

=

⊂

⊂

′= = ∀ ≥

 









 

 

The proof is complete. 
Proof of Theorem 2.1. We choose ( ) 0θ θ ω= >  such 

that ( )2 1.θ α+ <  Since ( )ω  is bounded for 

. . ,a sω− ∈Ω  there exists a ball ( )0,XB R x  of radius 

( )R R ω=  centered in ( )ω  which contains ( ).ω  

Setting { }0 0 0 .E V x= =  It follows from (2.3) that the  

1X -ball ( )01 ,XB R Kxκ  covers ( )( ).K B ω  Since the 

embedding 1X X⊂  is compact, we can cover the  

1X -ball ( )01 ,XB R Kxκ  by a finite number of Rθ  balls in 

X  with centers .iy  Moreover, the finite number of ball in 
this covering has the following estimate 

 

( )( )( )
( )( )
( )( ) ( )

01

1

/ 1

, ,

,0 ,

1,0 , : , .

R X

R X

X

N B R K x X

N B R X

N B X N

θ

θ

θ κ

κ

κ

θ ω

=

= =

 

This implies that 

 ( )( ) ( ) ( ),
1 , .n

X iiK B R yθ ωω θ=⊂   (2.7) 

It follows from (2.2) we get 

 ( )( ) ( )( )0 0 0, .XS B R S xω α⊂  (2.8) 

Combining (2.7) and (2.8), we conclude that 

 ( ) ( ) ( ) ( )( ),
1 , ,n

X iiS B R yθ ωω ω θ α=⊂ +  (2.9) 

where ( )0 0 .i iy y S x= +  
Now, we enlarge the radius twice so that 

 ( ) ( ) ( ) ( )( ),
1 2 , ,n

X iiS B R xθ ωω ω θ α=⊂ +  (2.10) 

and ( ) ( ).ix S ω ω∈   
We set 

 ( ){ }{ }1, 1 : : 1,..., , ,i iV x i N θ ω= ∈  (2.11) 

 ( ) ( ) ( ) ( ) ( )1 0
1, 1: .iE S E V Sω ω ω= ⊂   (2.12) 

Applying the above covering process to every ball in 
the right-hand side in (2.10), we can generate the kth 
generation of centers in ( ) ( )kS ω ω  such that 

 ( ){ }{ }, ,..., ,..., ,1 1 1 1: : 1,..., , ,k i i i i jk kV x j N θ ω− −= ∈ (2.13) 

( ) ( ) ( ) ( ) ( )1
, ,...,1 1: .k k k

k i ikE S E V Sω ω ω−
−= ⊂  (2.14) 

Therefore, for any k ∈  we find sets ( ) ,kE  enjoy the 
following properties: 

 ( ) ( ) ( );k kE S ω ω⊂   (2.15) 

 ( ) ( ) ( )1 ;k kS E Eω +⊂  (2.16) 

 ( ) ( )1# , ;k kE N θ ω+≤  (2.17) 

 ( ) ( ) ( )( ) ( )( ), 2 .kkk
Xdist S E Rω ω α θ≤ +  (2.18) 

Now, we can construct the random exponential attractor 
for ( )S ω  as follows: 

 ( ) ( ) ( ) ( ), .
Xk

k
Eω ω ω

∞
′ ′= =



    (2.19) 

Considering ( )ω  as deterministic sets with 

parameter ,ω  then we can show that ( )ω  satisfies the 
conditions in definition 2.4 (4) (see [8] for deterministic 
case). Thus, ( )ω  is a random exponential attractor for 

.kS  The proof is completed. 
Proof of Theorem 2.3. For any ( ) ,x ω∈  

( ) ,ky θ ω∈  from (2.6) and the invariant of ( )ω , we 
get 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1 1... ...

,

k k k

k k
k

S x y S x S x

S S x S S x

x x

ω ω ω

θ ω ω θ ω ω

ν ω

− −

′− = −

′= −

′≤ −

     

where ( ) ,x ω′∈  ( ) .ky S xω ′=  Therefore 

 
( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )0

,

, : .

k
k

k k

d S

d c

ω ω θ ω

ν ω ω ω ω ν ω≤ =

 

 
 (2.20) 

Combine (2.15) and (2.20), we can choose sets 
( ) ( )k

kF θ ω⊂  satisfying (2.15)-(2.18) with (2.18) 
replaced by 

 ( ) ( ) ( )( ) ( ), ,kk k
Xdist S F cω ω ω η≤  

for some ( )0 1.η η ω< = <  Therefore, the exponential 
attractor constructed in the proof of Theorem 2.1 is 
identical with the random attractor. The proof is complete. 

3. Applications 
In this section, we apply the above results to show that 

the RDS generated by Eq. (1.1) possess a random 
exponential attractor. To this end, we need to convert the 
stochastic equation into a deterministic equation with a 
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random parameter. We consider the probability space 
( ), ,Ω   where 

 ( ) ( ){ }, : 0 0 ,Cω ωΩ = ∈ =   

  is the Borel algebra induced by the compact-open 
topology of ,Ω  and   is the corresponding Wienner 
measure on ( ),Ω  . Then we identify ( )tω  with ( ) ,W t  
i.e., 

 ( ) ( ) ( ), , .W t W t t tω ω= = ∈  

Define the time shift by 

 ( ) ( ) ( ) , .t t t tθ ω ω ω⋅ = ⋅+ − ∈  

Then ( )( ), , , t tθ ∈Ω


  is an ergodic MDS. We 

introduce an Otnstein-Uhlenbeck process 

 ( ) ( )( )0
: , ,t tz e d tτθ ω θ ω τ τ

−∞
= ∈∫   

and it solves the Itȏ equation 

 ( ).dz zdt dW t+ =  

From [14], it is known that the random variable ( )z ω  

is tempered, and there is a tθ -invariant set Ω ⊂ Ω  of full 

  measure such that for every ,ω∈Ω  ( )tt z θ ω→  is 
continuous in t  and 

 
( )

( )
0

1lim 0, lim 0.
tt

s
t t

z
z ds

t t
θ ω

θ ω
→±∞ →±∞

= =∫  (3.1) 

Moreover, there exists a tempered random variable 
( )1 0r ω >  such that 

 ( ) ( )1 , .t
tz e r tθ ω ω≤ ∈  (3.2) 

Setting ( ) ( ) ,bze ωα ω −=  from (3.1) one can easily 

show that ( )α ω  and ( )1α ω−  are temperate, and 

( )( )tα θ ω  is continuous in t for . . .a sω− ∈Ω  Therefore, 
by using Proposition 4.3.3 in [1], for any 0>  there 
exists  -slowly varying random variable ( )2 0r ω >  such 
that 

 
( ) ( ) ( )2

2

1 ,r
r

α ω ω
ω

≤ ≤  

and ( )2r ω  satisfies, for . . ,a sω− ∈Ω  

 ( ) ( ) ( )2 2 2 , .t
t te r r e r tω θ ω ω− ≤ ≤ ∈   

Therefore, for . . ,a sω− ∈Ω  

 ( ) ( ) ( )1
2 2 , .t t

te r e r tω α θ ω ω− − ≤ ≤ ∈   (3.3) 

If we set ( ) ( ) ( )( )1 2max , ,r r rω ω ω=  we can get from 
(3.2) and (3.3) that 

 ( ) ( );t
tz e rθ ω ω≤  (3.4) 

 ( ) ( ) ( )1 ,t t
te r e rω α θ ω ω− − ≤ ≤   (3.5) 

for all t∈  and . . ,a sω− ∈Ω  and ( )r ω  is also 
tempered. 

Let ( ) ( ) ( ) ,tv t u tα θ ω=  and we can consider the 
following evolution equation with random coefficients but 
without white noise: 

 ( ) ( )( ) ( )1 ,t t t
v v f v bz v
t

α θ ω α θ ω θ ω−∂
− ∆ + =

∂
 (3.6) 

with Dirichlet boundary condition 

 | 0,Dv ∂ =  (3.7) 

and initial condition 

 ( ) ( ) ( ) 0, .v x v uττ τ α θ ω= =  (3.8) 

From [15] we see that for . .a sω− ∈Ω  and for all 

( )2
0 ,v L D∈  the parameterized evolution equation (3.6)-

(3.8) with conditions (1.3)-(1.4) has a unique solution 

 

( ) [ ) ( )( )
[ ) ( )( )
[ ) ( )( )

2
0

2 1
0

, ; , , ;

, ;

, ; .

p p
loc

loc

v v C L D

L L D

L H D

ω τ τ

τ

τ

⋅ ∈ ∞

∞

∞





 (3.9) 

Furthermore, ( )0, ; ,v t vω τ  is continuous with respect to 

0v  in ( )2 ,L D  for all t τ≥  and . . .a sω− ∈Ω  

Then ( )( ) ( ) ( )1, ; , tv t u v tω τ τ α θ ω−=  is a solution of 

(1.1)-(1.2) with ( )1
0 0.u vτα θ ω−=  We now define a 

mapping ( ) ( )2 2: L D L Dφ + ×Ω× →  by 

( )( ) ( ) ( ) ( )( )1, , , ; , .tt u v t uτ τφ τ θ ω τ α θ ω ω τ α θ ω τ−− = (3.10) 

Then φ  is a continuous RDS on ( )2L D  and an RDS 

on ( )1
0H D  respectively associated with the SRDE  

(1.1)-(1.2) on .D  
Theorem 3.1. ([15]) Assume that (1.3)-(1.4) hold. Then 
the RDS φ  generated by (1.1)-(1.2) has a unique random 

attractor ( )ω  in ( )2 .L D  
Theorem 3.2. Assume that (1.3)-(1.4) hold. Let 

( )01 02, .u u ω∈  Then for . . ,a sω− ∈Ω  there exists 

( ), 0,T ω <  such that the solution ( )0, ; ,u t uω τ  of  

(1.1)-(1.2) satisfies that for all ( ), ,t T ω≤    

 
( ) ( )

( ) ( ) ( )

101 02
0

2 2 11
02 01

0, ; , 0, ; ,

.

H

t b t

u t u u t u

c e e u uλ γ

ω ω

ω + − +

−

≤ −
 (3.11) 

where ( )c ω  is a random variable and 1λ  is the first 
eigenvalue of .−∆  
Proof. Let ( ) ( )0, ; , ,i iv t v t uω τ=  ( )0 0 ,i t iv uα θ ω=  

1, 2i = , and ( ) ( ) ( )2 1 .w t v t v t= −  Then ( )w t  satisfies the 
following equation 
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 ( ) ( ) .t tw w l t w bz wθ ω−∆ + =  (3.12) 

where ( ) ( ) ( ) ( ) ( ) ( )( )1 1
1 2

1

0
1 ,t ts v t s v tl t f dsα θ ω α θ ω− −+ −′= ∫

and ( )l t γ≥  by (1.4). 
Multiply the above equation with w to get 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2

2

1
2

.

D

t

d w t w t l t w t
dt

bz w tθ ω

+ ∇ +

=

∫  (3.13) 

Thus, 

 
( ) ( ) ( )

( ) ( )

2 2 2
1

2

2 2

2 .t

d w t w t w t
dt

bz w t

λ γ

θ ω

+ +

≤
 (3.14) 

We multiply both side with ( )( )2 10
t bz drre
λ γ θ ω+ −∫  to get 

 ( )( ) ( )2 210 0.
t bz drrd e w t

dt
λ γ θ ω+ −∫ ≤  (3.15) 

Integrating the above inequality in [ ], tτ  we obtian 

 
( ) ( )( ) ( )

( )( ) ( )

22 21

2 21 2
02 01 .

bz drrt

bz drrt

w t e w

e u u

τ λ γ θ ω

τ λ γ θ ω
τ

τ

α θ ω

+ −

+ −

∫≤

∫= −

 (3.16) 

Next, we take inner product of (3.12) with w−∆  in 

( )2 ,L D  and use ( )l t γ≥  to get 

( )2 2 2 22 2 2 .t
d w w w bz w
dt

γ θ ω∇ + ∆ + ∇ ≤ ∇ (3.17) 

That is 

 ( )( )2 22 .t
d w bz w
dt

θ ω γ∇ ≤ − ∇  (3.18) 

Integrating (3.13) from t to t + 1 and using (3.16), it yields 

( )

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )( )1 2 21
02 01

1 2

12 2

2 21 2
02 01

.

1
2
1
2
t bz drrs

st

t
t

t
st

bz drrt

bz e ds u u

w s ds

w t bz w s ds

e u u

τ λ γ θ ω

τ λ γ θ ω
τ

θ ω γ

θ ω γ

α θ ω

+ + −

+

+

+ −

∫− −

∇

≤ + −

∫≤ −

+∫

∫

∫
(3.19) 

Combining (3.18) and (3.19) using Uniform Gronwall's 
Lemma (note that the Uniform Gronwall's inequality also 
hold when the right-hand side of (3.19) dependent on t), it 
yields 

 

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

12 2 21

1 2 21

2

2
02 01

1
[
2

]

1

.

t bz ds bz drs rt t

t bz drrs
st

e e

bz e ds

w t

u u

τθ ω γ λ γ θ ω
τ

τ λ γ θ ω
τ

α θ ω

θ ω γ α θ ω

+ − + −

+ + −

∫ ∫≤

∫+ −

∇ +

× −

∫
(3.20) 

Let 1,t = −  then replace τ  by t  to get 

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )( )

( )( )

( )( )

( ) ( )( )

2

02 2 1 21 1

0 2 1 2
1

2
02 01

2 12 0

02 11

00 2 21
02 011

2 12 0 02

0

1[
2

]

[

]

tbz ds bz drs r
t

t bz drrss t

t bz drr
t

bz drr

bz drrs

t bz drt r

w

e e

bz e ds

u u

c e

e

e ds u u

c e e u u

θ ω γ λ γ θ ω

λ γ θ ω

λ γ θ ω

λ γ θ ω

λ γ θ ω

λ γ θ ω

α θ ω

θ ω γ α θ ω

ω α θ ω

ω

− + −− −

+ −

−

+ −

+ −−

+ −

−

+ −−

∇

∫ ∫≤

∫+ −

× −

∫′≤

∫

∫+ −

∫≤ −

∫

∫


( ) ( ) ( )( )

( ) ( ) ( )( )1
2 0 222 1

02 01

2
01

2 222 1 0 02 01

.
tbt z drrt tt

tb z drt t r

c e e e u u

c e e e u u

θ ω
λ γ

θ ωλ γ

ω

ω

−
+−

−+−

 
 
 
∫

= −

∫≤ −





(3.21) 

We have used (3.5) in (3.21). By (3.1), there is 
( ) 1,,T ω < −  for ( ),t T ω≤   

 
( ) ( ) ( )

( ) ( ) ( )

2 222 21
02 01

22 2 11
02 01

0

.

t b

t b t

t tw c e e e u u

c e e u u

λ γ

λ γ

ω

ω

+− −

+ − +

∇ ≤ −

= −

 


(3.22) 

Finally, by the relationship between u and v we obtain 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

101 02
0

1
02 01

22 2 11
02 01

0, ; , 0, ; ,

0, ; , 0, ; ,

.

H

t b t

u t u u t u

v t u v t u

c e e u uλ γ

ω ω

α ω ω ω

ω

−

+ − +

−

= −

≤ −

 (3.23) 

The proof is complete. 
Theorem 3.3. Assume that (1.3)-(1.4) hold. Then the RDS 
generated by Eq (1.1) has a random exponential attractor 
in ( )2 .L D  
Proof. From theorem 2.2 and theorem 3.2, we see that, for 
some fixed ( )* , ,t T T ω= ≤   the discrete 

( ) ( )( )RDS ,nS ω ω  possesses a random exponential 

attractor in ( )2 ,L D  where ( ) ( )*, .n nS Tω φ ω=  

Moreover, by an elementary process, one can easily show 
that ( ),tφ ω  is Hölder continuous from [ ] ( )20,T L D×  

into ( )2 ,L D  then by theorem 2.4 we obtain that the 

( ) ( )( ),R S ,D tφ ω ω  has a random exponential attractor 

in ( )2 .L D  The proof is complete. 
When the constant γ  in (1.4) satisfies 1 0,γ λ+ >  the 

random attractor reduces to a single point, i.e., a random 
equilibrium (see [15]). Moreover, we have 
Theorem 3.4. Assume that (1.3)-(1.4) hold and 

1 0.γ λ+ >  Then the unique random equilibrium attracts 
every obit exponentially. 
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Proof. From (3.11) we get that for all ( ),t T ω≤   

 
( ) ( )

( ) ( ) ( )

101 02
0

2 2 11
02 01

0, ; , 0, ; ,

.

H

t b t

u t u u t u

c e e u uλ γ

ω ω

ω + − +

−

≤ −
 (3.24) 

Using poincaré inequality, we obtain 

 
( ) ( )

( ) ( ) ( )

01 02

2 2 11
02 01

1

0, ; , 0, ; ,

1 .t b t

u t u u t u

c e e u uλ γ

ω ω

ω
λ

+ − +

−

≤ −  (3.25) 

Since 1 0,γ λ+ >  we choose   small enough and 

( ),t T ω≤   such that 

 ( ) ( ) ( )2 2 11

1

1 1t b tc e eλ γω
λ

+ − + <  (3.26) 

for . . .a sω− ∈Ω  Then from (3.24) and (3.25), the 
conditions in theorem 2.3 are satisfied. From theorem 2.3 
we arrive at our conclusion. The proof is complete. 

4. Conclusion 
In this paper, we have constructed exponential 

attractors for abstract RDS and discussed the exponential 
attractive property of a random attractor. Moreover, we 
have applied our abstract results to a stochastic reaction-
diffusion equation. The abstract results presented in this 
paper have widely applications in RDS generated by many 
other stochastic partial differential equations, and these 
results will be applied in our future study. 
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