Software Engineering
Session 1 - Main Theme

Software Engineering Fundamentals

Dr. Jean-Claude Franchitti

P

R S 77 T -
e >
7 el 27 7 7

s

s
s s
77

e 2

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

e o
s
e e e e P Ll el P

\.\“\\\\\-

2z

Zr s

o &L 7

o
L T

o 2

7

Presentation material partially based on textbook slides
Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

3 Towards a Pattern-Driven SE Methodology

. Summary and Conclusion

Who am I?

- Profile -

» 27 years of experience in the Information Technology Industry, including twelve years of experience working
for leading IT consulting firms such as Computer Sciences Corporation

» PhD in Computer Science from University of Colorado at Boulder
» Past CEO and CTO

» Held senior management and technical leadership roles in many large IT Strategy and Modernization
projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail,
and information management industries

» Contributed to several high-profile ARPA and NSF research projects

» Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a
Professor of Computer Science at Columbia initially and New York University since 1997

» Proven record of delivering business solutions on time and on budget

» Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere
DataStage

» Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation
of various maturity assessment methodology

» Developed partnerships between several companies and New York University to incubate new
methodologies (e.g., EA maturity assessment methodology developed in Fall 2008), develop proof of
concept software, recruit skilled graduates, and increase the companies’ visibility

3

®
How to reach me?
& Cell (212) 203-5004
@ Email jef@cs.nyu.edu
L .
R € & AmYIM IcQ jef2 2003
@ MSN IM jcf2_2003@yahoo.com
Linked[[}] Linkedin http://www.linkedin.com/in/jcfranchitti
* Twitter http://twitter.com/jcfranchitti
@}i‘]f,@ Skype jcf2_2003@yahoo.com
4

What is the class about?

= Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/
» http://www.cs.nyu.edu/courses/spring10/G22.2440-001/

= Textbooks:
» Software Engineering: A Practitioner’s Approach
' Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7™ Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center view0/

» http://highered.mcgraw-
hill.com/sites/0073375977/information_center_view0/table of contents.html

Icons / Metaphors

Helpful Preliminary Knowledge

» Business Process Modeling (BPM)
» Object-Oriented Analysis and Design (OOAD)
» Object-oriented technology experience

» Software development experience as a
software development team member in the
role of business analyst, developer, or project
manager

» Implementation language experience (e.g.,
C++, Java, C#)

» Note: Knowledge of BPMN, UML or a specific
programming language is not required

Course Objectives (1/3) i

» Present modern software engineering techniques and
examines the software life-cycle, including software
specification, design implementation, testing and
maintenance

= Describe and compare various software development
methods and understand the context in which each
approach might be applicable

= Develop students’ critical skills to distinguish sound
development practices from ad-hoc practices, judge
which technique would be most appropriate for solving
large-scale software problems, and articulate the
benefits of applying sound practices

Course Objectives (2/3)

= Expand students’ familiarity with mainstream languages
used to model and analyze processes and object designs
(e.g., BPMN, UML).

= Demonstrate the importance of formal/executable
specifications of object models, and the ability to verify the
correctness/completeness of solution by executing the
models.

= Explain the scope of the software maintenance problem
and demonstrate the use of several tools for reverse
engineering software.

Course Objectives (3/3)

®

= Develop students’ ability to evaluate the effectiveness of an
organization’s software development practices, suggest
improvements, and define a process improvement strategy

= Introduce state-of-the-art tools and techniques for large-
scale development

= Implement major software development methods in
practical projects and motivate discussion via group
presentations

[/

Software Requirements

= Microsoft Windows XP (Professional Ed.) / Vista / 7
= Software tools will be available from the Internet or
from the course Web site under demos as a choice
of freeware or commercial tools
= Business and Application Modeling Tools
» Software Development Tools

= Workflow Management Frameworks

= etc.
» References will be provided on the course Web site

11

=)

3 Towards a Pattern-Driven SE Methodology

. Summary and Conclusion

Agenda — Software Engineering Fundamentals

. Software Engineering Scope J
Software Engineering Discipline
s s
Software Development Challenges

Refining the Software Engineering Discipline

Treiing the Software Engneerng Dscioine |
e vaman Sias ofSotware Devsiopment |
ottt process |
[rtrosuction o Agte sorre Engmemrig]

What is Software? (1/2)

Software is:

(1)instructions (computer programs) that when
executed provide desired features, function,
and performance;

(2) data structures that enable the programs to
adequately manipulate information;

(3) documentation that describes the
operation and use of the programs.

What is Software? (2/2)

= Software is developed or engineered, it is not
manufactured in the classical sense.

= Software doesn't "wear out."

= Although the industry is moving toward component-

based construction, most software continues
custom-built.

to be

Wear vs. Deterioration

increased failure
rate due to side effects

A

Failure
rate

/ actual curve

idealized curve

>

Time

|

Software Engineering

= The economies of ALL developed nations are
dependent on software

= More and more systems are software-controlled

= Software engineering is concerned with theories,
methods and tools for professional software
development

= Software engineering expenditure represents a
significant fraction of GNP in all developed countries
= GNP stands for Gross National Product. GNP per capita is
the dollar value of a country’s final output of goods and

services in a year, divided by its population. It reflects the
average income of a country’s citizens.

Software Costs '

= Software costs often dominate system costs.
= The costs of software on a PC are often greater
than the hardware cost
» Software costs more to maintain than it does
to develop

= For systems with a long life, maintenance costs
may be several times development costs

= Software engineering is concerned with cost-
effective software development

Software Products

‘

Generic products

= Stand-alone systems which are produced by a
development organization and sold on the open
market to any customer

Bespoke (customized) products

= Systems which are commissioned by a specific
customer and developed specially by some
contractor

Most software expenditure is on generic

products but most development effort is on

bespoke systems

Software Applications

System software
Application software
Engineering/scientific
software

Embedded software
Product-line software

WebApps (Web
applications)

Al software

20

Software—New Categories

pervasive, distributed
computing
- wireless networks
- the Web as a computing engine

- "free” source code open to the
computing community (a blessing, but also a
potential curse!)

= Also ...
»
»
»

»

21

Legacy Software

» software must be to meet the
needs of new computing environments
or technology

» software must be to
implement new business requirements

= software must be
with other more modern
systems or databases

= software must be to
make it viable within a network
environment

22

A\ |
Software Product Attributes ;

= Maintainability

» |t should be possible for the software to evolve
to meet changing requirements

Dependability

= The software should not cause physical or
economic damage in the event of failure

Efficiency

= The software should not make wasteful use of
system resources

Usability

= Software should have an appropriate user
interface and documentation

23

Importance of Product Characteristics

= The relative importance of these
characteristics depends on the product and
the environment in which it is to be used

= In some cases, some attributes may
dominate

= |n safety-critical real-time systems, key
attributes may be dependability and efficiency

» Costs tend to rise exponentially if very high
levels of any one attribute are required

24

A=)
Efficiency Costs :

Cost A

>
Efficiency

25

Characteristics of WebApps (1/2)

A WebApp resides on a network and must
serve the needs of a diverse community of clients.

A large number of users may access the WebApp at
one time.

The number of users of the WebApp may vary
by orders of magnitude from day to day.

If a WebApp user must wait too long (for access, for
server-side processing, for client-side formatting and display), he or
she may decide to go elsewhere.

Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand access on
a “24/7/365” basis.

The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.

The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

26

Characteristics of WebApps (2/2)

Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously

Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks

Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application

An undeniable part of the appeal of a WebApp is its
look and feel

27

Summary of Sub-Section’s Key Points

Software engineering is concerned with the
theories, methods and tools for developing,
managing and evolving software products

Software products consist of programs and
documentation

Product attributes include maintainability,
dependability, efficiency and usability

28

Agenda — Software Engineering Fundamentals

T T

e vaman Sias ofSotware Devsiopment |
ottt process |
[rtrosuction o Agte sorre Engmemrig]

29

ou
The Software Process ;

» Structured set of activities required to develop a
software system

= Specification

= Design
= Validation
= Evolution

= Activities vary depending on the organization
and the type of system being developed

» Software process must be explicitly modeled if it
is to be managed

30

Process Characteristics (1/2)

= Understandability
= [s the process defined and understandable?
= Visibility
= |s the process progress externally visible?
= Supportability
= Can the process be supported by CASE tools?
= Acceptability
= Is the process acceptable to those involved in it?

31

ou
Process Characteristics (2/2) :

Reliability
= Are process errors discovered before they result
in product errors?

= Robustness
= Can the process continue in spite of unexpected
problems?

Maintainability

= Can the process evolve to meet changing
organizational needs?

Rapidity
= How fast can the system be produced?

32

A\ |
Engineering Process Model :

= Specification

= Set out the requirements and constraints on the system
= Design

= Produce a paper model of the system

» Manufacture
= Build the system

= Test

= Check if the system meets the required specifications
= Install

= Deliver the system to the customer and ensure it is operational
= Maintain

= Repair faults in the system as they are discovered

33

Software Process Models Characteristics '

= Normally, specifications are
incomplete/anomalous

= Very blurred distinction between
specification, design and manufacturing

= No physical realization of the system for
testing

» Software does not wear out

= Maintenance does not mean component
replacement

34

‘

Generic Software Process Models

» Waterfall model

» Separate and distinct phases of specification and
development

= Evolutionary development
» Specification and development are interleaved
» Formal transformation

= A mathematical system model is formally
transformed to an implementation

= Reuse-based development
= The system is assembled from existing components

35

Waterfall Model ®

Requirements
definition
System and
software design
Implementation
and unittesting
Integration and
system testing

Operation and
maintenance

36

Waterfall Model Characteristics and Limitations

= Phases:
» Requirements analysis and definition
» System and software design
= |Implementation and unit testing
» Integration and system testing
= Operation and maintenance
= The drawback of the waterfall model is
the difficulty of accommodating change
after the process is underway

37

Evolutionary Development Q

Concurrent
activities

Initial
version

Intermediate
versions
Final
version

Specification

{
[

Development

Outline
description

38

Evolutionary Development Characteristics

= Exploratory prototyping

= Objective is to work with customers and to
evolve a final system from an initial outline
specification

= Should start with well-understood requirements
= Throw-away prototyping

= Objective is to understand the system
requirements

= Should start with poorly understood
requirements

39

Evolutionary Development Limitations

= Problems
» Lack of process visibility
= Systems are often poorly structured
= Requires Special skills (e.g., languages for rapid
prototyping) may be required
= Applicability
= For small or medium-size interactive systems

= For parts of large systems (e.g. the user
interface)

= For short-lifetime systems

40

Summary of Sub-Section’s Key Points

= The software process consists of those
activities involved in software development

= The waterfall model considers each process
activity as a discrete phase

= Evolutionary development considers process
activities as concurrent

Agenda — Software Engineering Fundamentals

Software Engineering Scope

Software Engineering Discipline
. Software Development Challenges J

Refining the Software Engineering Discipline

The Human Side of Software Development

Software Engineering Best Practices ala Rational

Rational Unified Process J
Introduction to Agile Software Engineering J

42

Inherent Risks

(http:/lwww.ibm.com/developerworks/rational/library/1719.html)

= Sponsorship

Budget

Culture

Business Understanding
Priorities

= Business changes

= Features
= Schedule slips

Methodology Misuse
Software Quality

43

Symptoms of Software Development Problems

= User or business needs not met
Requirements churn

Modules don’t integrate

Hard to maintain

Late discovery of flaws

Poor quality of end-user experience
Poor performance under load

No coordinated team effort
Build-and-release issues

44

‘

Trace Symptoms to Root Causes

Symptoms Root Causes Best Practices
Needs not met Insufficient requirements Develop lteratively
Requirements churn Ambiguous communications
Modules don’t fit '-r Brittle architectures Manage Requirements
Hard to maintain Overwhelming complexity
Late discovery Undetected inconsistencies Use Component Architectures
Poor quality Poor testing
Poor performance Subjective assessment el il s Ll
Colliding developers Waterfall development . . .

) Continuously Verify Quality

Build-and-release Uncontrolled change

Insufficient automation Manage Change

45

Risk Management Q

» Perhaps the principal task of a manager is to
minimize risk

= The 'risk' inherent in an activity is a measure
of the uncertainty of the outcome of that
activity

» High-risk activities cause schedule and cost
overruns

» Risk is related to the amount and quality of
available information
= The less information, the higher the risk

46

Process Model Risk Problems

@

= Waterfall

= High risk for new systems because of
specification and design problems

= Low risk for well-understood developments
using familiar technology
= Prototyping

= Low risk for new applications because
specification and program stay in step

= High risk because of lack of process visibility
= Transformational

= High risk because of need for advanced
technology and staff skills

Agenda — Software Engineering Fundamentals

Software Engineering Scope
Software Engineering Discipline
Software Development Challenges

P etiing e Sorware Engesrmg becmine]
e Haman sae of Software Deveopmant]

A\ |

Hybrid Process Models

= Large systems are usually made up of
several sub-systems

= The same process model need not be
used for all subsystems

= Prototyping should be used for high-
risk specifications

= Waterfall model should be used for
well-understood developments

49

Spiral Model of the Software Process Q

A

Determine objectives
alternatives and
constraints

Evaluate altematives
identify, resolve risks

Risk
analysis

Risk
analysis

Risk
analysis

Opera-
tional
protoype

REVIEW analysis

Requirements plan Simulati ons', models, ben chmarks
Life-cycle plan Conceptof
Operation S/W
i t Product
requirements design Detailed
desi

Develop ment Requirement esign
plan validation Code
i Unit test
Integration Design)
and test plan V&V Integration

Plan next phase test

Acceptance
Service test Develop, verify
next-level product

50

Phases of the Spiral Model

‘

Objective setting

» Specific objectives for the project phase are
identified

Risk assessment and reduction

= Key risks are identified, analyzed and
information is sought to reduce these risks

Development and validation

= An appropriate model is chosen for the next
phase of development.

Planning

= The project is reviewed and plans drawn up for
the next round of the spiral

51

Template for a Spiral Round '

= Quality Improvement Focus
= Objectives
= Constraints
= Alternatives

» Risk Reduction Focus
» Risk Assessment
» Risk resolution

= Plan-Do-Check-Act (PDCA) Approach
= Results
= Plans
= Commitment

52

Quality Improvement Focus

= Objectives
= Significantly improve software quality

= Constraints
= Within a three-year timescale
= Without large-scale capital investment
= Without radical change to company standards

= Alternatives
= Reuse existing certified software
= Introduce formal specification and verification
= Investin testing and validation tools

53

Risk Reduction Focus '

= Risk Assessment
= No cost effective quality improvement

= Possible quality improvements may increase
costs excessively

= Risk resolution
= Literature survey
= Pilot project
= Survey of potential reusable components
= Assessment of available tool support
= Staff training and motivation seminars

= New methods might cause existing staff to leave

54

‘

PDCA Approach

= Results

» Experience of formal methods is limited - very
hard to quantify improvements

= Limited tool support available for company-wide
standard development system

= Reusable components available but little
support exists in terms of reusability tools
= Plans
= Explore reuse option in more detail
= Develop prototype reuse support tools
= Explore component certification scheme

= Commitment
= Fund further 18-month study phase

55

Template for a Spiral Round at Work - Catalogue Spiral (1/3)

= Quality Improvement Focus

= Objectives
= Procure software component catalogue

= Constraints

= Within a year
Must support existing component types
Total cost less than $100, 000

= Alternatives
= Buy existing information retrieval software

= Buy database and develop catalogue using database
= Develop special purpose catalogue

56

Template for a Spiral Round at Work - Catalogue Spiral (2/3)

s Risks Reduction Focus

» Risks assessment
= May be impossible to procure within constraints

= Catalogue functionality may be inappropriate

» Risk resolution

= Develop prototype catalogue (using existing 4GL and
an existing DBMS) to clarify requirements

= Commission consultants report on existing information
retrieval system capabilities.

= Relax time constraint

57

Template for a Spiral Round at Work - Catalogue Spiral (3/3)

= PDCA Approach

= Results
= Information retrieval systems are inflexible.
= |dentified requirements cannot be met.

= Prototype using DBMS may be enhanced to complete
system

= Special purpose catalogue development is not cost-
effective

» Plans

= Develop catalogue using existing DBMS by enhancing
prototype and improving user interface

= Commitment
= Fund further 12 month development

58

A\ |

Spiral Model Flexibility

= Hybrid models accommodated for
different parts of a project:

» Well-understood systems

= Low technical risk

» Use Waterfall model as risk analysis phase is relatively
cheap

» Stable requirements and formal
specification with safety criticality
» Use formal transformation model

= High Ul risk with incomplete specification
= Use Prototyping model

59

==

Spiral Model Advantages

= Focuses attention on reuse options

= Focuses attention on early error
elimination

= Puts quality objectives up front

= Integrates development and
maintenance

= Provides a framework for
hardware/software development

60

Spiral Model Limitations

= Contractual development often specifies
process model and deliverables in
advance

= Requires risk assessment expertise
= Needs refinement for general use

61

Process Visibility as a Process Model Metric '

» Software systems are intangible so
managers need documents to assess
progress

= However, this may cause problems

= Timing of progress deliverables may not match
the time needed to complete an activity

= The need to produce documents places
constraints on process iterations

= The time taken to review and approve
documents is significant
» Waterfall model is still the most widely used
deliverable-based model

62

Sample Set of Waterfall Model Documents

Activity

Output documents

Requirements analysis

Feasibility study, Outline requirements

Requirements definition

Requirements document

System specification

Functional specification, Acceptance test plan
Draft user manual

Architectural design

Architectural specification, System test plan

Interface design

Interface specification, Integration test plan

Detailed design

Design specification, Unit test plan

Coding Program code

Unit testing Unit test report

Module testing Module test report

Integration testing Integration test report, Final user manual
System testing System test report

Acceptance testing

Final system plus documentation

63

Process Model Visibility

Process model Process visibility

Waterfall model Good visibility, each activity produces some
deliverable

Evolutionary Poor visibility, uneconomic to produce

development documents during rapid iteration

Formal Good visibility, documents must be produced

transformations from each phase for the process to continue

Reuse-oriented Moderate visibility, it may be artificial to

development produce documents describing reuse and
reusable components.

Spiral model Good visibility, each segment and each ring
of the spiral should produce some document.

64

Summary of Sub-Section’s Key Points

= The spiral process model is risk-driven

= Process visibility involves the creation
of deliverables from activities

Agenda — Software Engineering Fundamentals

Software Engineering Scope
Software Engineering Discipline
Software Development Challenges

Refining the Software Engineering Discipline

. The Human Side of Software Development J
Software Engineering Best Practices ala Rational
Rational Unified Process

Introduction to Agile Software Engineering

66

‘

Professional Responsibility

= Software engineers should not just be
concerned with technical
considerations. They have wider
ethical, social and professional
responsibilities

= Not clear what is right or wrong about
the following issues:
= Development of military systems

= Whistle blowing

= Whatis best for the software engineering
profession

67

Confidentiality
Competence

Intellectual property rights
Computer misuse

68

Summary of Sub-Section’s Key Points

= Software engineers have ethical, social
and professional responsibilities

Agenda — Software Engineering Fundamentals

Software Engineering Scope

Refining the Software Engineering Discipline)
[T roman side of oftware Development]
LY orcware engincering Best Pracices i Rationsl]

70

Section Outline

» |dentify Steps for Understanding and Solving
Software Engineering Problems

= Explain the IBM Rational “Six Best Practices”

71

Practice 1: Develop lteratively

Best Practices
Process Made Practical

Develop Iteratively

72

Waterfall Development Characteristics

Waterfall Process .

Requirements
analysis
| Design h

| Code and unit test I‘\

| Subsystem integration }\

| System test |

Delays confirmation of
critical risk resolution

Measures progress by
assessing work-
products that are poor
predictors of time-to-
completion

Delays and aggregates
integration and testing

Precludes early
deployment
Frequently results in
major unplanned
iterations

73

Iterative Development Produces Executable Releases

Requirements

Planning ’
Initial

Planning

Evaluation

Analysis & Design
Implementation
Management
Environment

Test

Deployment

74

Risk Profiles

‘

— Waterfall Risk
— lterative Risk

Time -

75

Practice 2: Manage Requirements

Best Practices
Process Made Practical

Manage Requirements

76

Requirements Management

Making sure you
= Solve the right problem

= Build the right system
By taking a systematic approach to
= eliciting

= Organizing

= documenting

= Managing
the changing requirements of a
software application.

77

Aspects of Requirements Management Q

Analyze the Problem
Understand User Needs
Define the System

Manage Scope

Refine the System Definition
Build the Right System

78

Map of the Territory

Problem
Space

Solution

Space ‘/%

The
Product
%/7 To Be

e Built |\ 2

Use Cases and
Software
Requirements

Test
Procedures

79

Practice 3: Use Component Architectures

Best Practices
Process Made Practical

Use Component
Architectures

80

Resilient, Component-Based Architectures

= Resilient
= Meets current and future requirements
= Improves extensibility
= Enables reuse
= Encapsulates system dependencies

= Component-based
= Reuse or customize components

» Select from commercially-available
components

= Evolve existing software incrementally

81

Purpose of a Component-Based Architecture Q

» Basis for reuse
= Component reuse
= Architecture reuse

» Basis for project management RRELIEIEEED
_ Architecture with
= Planning layers
» Staffing

= Delivery
» Intellectual control

= Manage complexity
= Maintain integrity

Application-
specific

Business-
specific

Middleware

System-
software

82

Practice 4: Model Visually (UML)

Best Practices
Process Made Practical

Model Visually (UML)

83

Why Model Visually? ®

= Capture structure and behavior
= Show how system elements fit together

= Keep design and implementation
consistent

= Hide or expose details as appropriate

= Promote unambiguous communication
» UML.: one language for all practitioners

84

Visual Modeling with UML 1.X

Multiple views
Precise syntax

and semantics Dynamic

Diagrams

oo
Bl

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Activity
Diagrams

85

Visual Modeling Using UML 1.X Diagrams

Use-case

diagram Statechart

Class diagram diagram

Deployment

Collaboration diagram
diagram iy
L
3 P E C_omponent
- diagram Target

—] System
Forward and

Reverse
Sequence Engineering

diagram

86

UML 1.X Notation Baseline

Diagram Name Type Phase
Use Case Static’ Analysis
Class Static Analysis
Activity Dynamic”™ Analysis
State-Transition Dynamic Analysis
Event Trace (Interaction) Dynamic Design
Sequence Dynamic Design
Collaboration Dynamic Design
Package Static Delivery
Deployment Dynamic Delivery

:*Static describes structural system properties
Dynamic describes behavioral system properties.

UML 1.X Diagrams '

UML 1.X defines twelve types of diagrams, divided into three
categories

= Four diagram types represent static application structure:
= Class Diagram
= Object Diagram
= Component Diagram
= Deployment Diagram

= Five represent different aspects of dynamic behavior
= Use Case Diagram
= Sequence Diagram
= Activity Diagram
= Collaboration Diagram
= Statechart Diagram

= Three represent ways to organize and manage your
application modules
= Packages

= Subsystems
= Models

Source: http://www.omq.org/gettingstarted/what is uml.htm

88

UML 1.X Views

@

= Approach
= UML 1.X defines five views that let you look at overall models from various
angles
= Layering architectural principles is used to allocate pieces of functionality to
subsystems
= Partitioning is used to group related pieces of functionality into packages
within subsystems
= Views and Related Diagrams
= Use Case View (application functionality)
= Use Case Diagram
= Logical View (static application structure)
= Class Diagram
= Object Diagram
= Process View (dynamic application behavior)
= Sequence Diagram
= Activity Diagram
= Collaboration Diagram
= Statechart Diagram
= Implementation View (application packaging)
= Component Diagram
= Deployment View (application delivery)
= Deployment Diagram

89

Behavioral
View

Coveragi
o Y

=] e E=]EE]

90

New in UML 2.X (1/2)

(http:/lwww.omg.org/gettingstarted/what_is_uml.htm)

» UML 2.X Profiles

= The new language goes well beyond the Classes and Objects well-modeled
by UML 1.X to add the capability to represent not only behavioral models,
but also architectural models, business process and rules, and other models
used in many different parts of computing and even non-computing
disciplines
= Nested Classifiers

= Every model building block (e.g., classes, objects, components, behaviors
such as activities and state machines) is a classifier

» A set of classes may be nested inside the component that manages them, or a
behavior (such as a state machine) may be embedded inside the class or
component that implements it

= Capability may be used to build up complex behaviors from simpler ones (i.e., the
capability that defines the Interaction Overview Diagram)

= Can layer different levels of abstraction in multiple ways:

= For example, you can build a model of your Enterprise, and zoom in to embedded site
views, and then to departmental views within the site, and then to applications within a
department

= Alternatively, you can nest computational models within a business process model.
OMG's Business Enterprise Integration Domain Task Force (BEI DTF) is currently
working on several interesting new standards in business process and business rules

91

New in UML 2.X (212)

http://lwww.omg.org/gettingstarted/what_is_uml.htm

= Improved Behavioral Modeling
= In UML 1.X, the different behavioral models were independent, but in UML
2.0, they all derive from a fundamental definition of a behavior (except for
the Use Case, which is subtly different but still participates in the new
organization)

= Improved relationship between Structural and Behavioral Models

= UML 2.0 makes it possible to designate that a behavior represented by (for
example) a State Machine or Sequence Diagram is the behavior of a class
or a component

= Object Constraint Language (OCL) and Action Semantics

» During the upgrade process, several additions to the language were
incorporated into it, including the Object Constraint Language (OCL) and
Action Semantics.

92

Practice 5: Continuously Verify Quality

Best Practices
Process Made Practical

Continuously
Verify Quality

Continuously Verify Software Quality

Cost

Software problems are
100 to 1000 times more costly
to find and repair after

deployment

Cost to Repair Software

Cost of Lost Opportunities

Cost of Lost Customers

Inception | Elaboration | Construction

Transition

94

Test All Dimensions of Software Quality

Does my application
respond acceptably?

Reliability

Verification of

sustained

application Does the system
. . operation perform under
Functionality production

load?

Does my application

do what’s required?

Verification of each
usage scenario Performance

t performance
3 er expected &
rst-case load

95

Test Each Iteration

Iteration 1 Iteration 2 Iteration 3 Iteration 4

S

Test Suite1 Test Suite 2 Test Suite 3 Test Suite 4

UML Model
and
Implementation

Tests

96

A=)
Practice 6: Manage Change :

Best Practices
Process Made Practical

Manage Change

What Do You Want to Control?

Changes to enable iterative development
Secure workspaces for each developer
Automated integration/build management
Parallel development

Parallel
Development

Workspace
Management

CM is more

than just
check-in and
check-out

Build

Process
Management

Integration

98

Aspects of a Configuration Management (CM) System

» Change Request Management

= Configuration Status Reporting

= Configuration Management (CM)
= Change Tracking

= Version Selection

= Software Manufacture

99

Unified Change Management '

= Management across the lifecycle
= System
= Project Management
= Activity-Based Management
= Tasks
= Defects
= Enhancements
= Progress Tracking
= Charts
= Reports

100

Best Practices Reinforce Each Other

Best Practices

-

Ensures users involved

as requirements evolve
|

Validates architectural

decisions early on
|

Addresses complexity of
design/implementation incrementally

«— Measures quality early and often

«— Evolves baselines incrementally

101

Agenda — Software Engineering Fundamentals

Software Engineering Scope
Software Engineering Discipline
Software Development Challenges

e aman s of Sortware Deveapmant |
Nieeenms= |

102

Section Outline

= Present the IBM Rational Unified Process
within the context of the Six Best Practices
covered in the previous sub-section

Foundations of RUP

= Implement Software Engineering Best
Practices:
» [terative Controlled Development

= Use Case Models for Business
Requirements

= Component Architectures

» Risk Identification, Management &
Mitigation

104

RUP Best Practices Implementation

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements
Use Component Architectures
Model Visually (UML)
Continuously Verify Quality
Manage Change

eu
Achieving Best Practices :

= lterative Approach

» Guidance for activities
and work products Requirements
(artifaCtS) Analysis & Design
» Process focus on
architecture
i . Test
= Use cases which drive Configuration &

design and Change Management
implementation

» Models which abstract
the system

tation

106

A Team-Based Definition of Process

New or changed

requirements

Software Engineering
Process

= A process defines Who is doing What,
When and How to reach a certain goal.

New or changed

system

107

Process Structure - Lifecycle Phases

Inception | Elaboration | Construction

Transition

time

Phases:

= | he Rational Unified Process has four

» Inception - Define the scope of project

> Elaboration - Plan project, specify features,
baseline architecture

» Construction - Build the product

» Transition - Transition the product into end
user community

==

108

Phase Boundaries Mark Major Milestones

Inception | Elaboration | Construction Transition
time A A A A
Lifecycle Lifecycle Initial Operational Product
Objective Architecture Capability Release
Milestone Milestone Milestone
109
q]
Iterations and Phases ;
| Inception Elaboration Construction Transition
Preliminary | Architect.| Architect.| Devel. Devel. Devel. | Transition Transition
Iteration Iteration | Iteration | Iteration | Iteration | Iteration | Iteration| Iteration
A

Minor Milestones: Releases

An iteration is a distinct sequence of activities based on
an established plan and evaluation criteria, resulting in an
executable release (internal or external)

110

Workflows Produce Models =

Core Process Business Requirements| | | Analysis & Implemen-

Workflows Modeling | Design tation Tt

Models

1
i Implemented Verified By
} Realized By By

Implementation Test Model
Model

Use-Case
Model ‘

Automated E

By 3 Design Model

Business
Object Model !

111

Bringing It All Together: The Iterative Approach

Workflows
group
activities
logically
Phases
|Inmpﬂon|| Elaboration ” Construction ” 'I'ransitim|

Business Modeling

Requirements i
Analysis & Design : In an iteration,
Implementation i you walk
. Tes: through all
eploymen : — workflows

Configuration
& Change Mgmt

Project Management | _ oo ;

Environment
"
e] [o] e [e [| o [
[o[o1 [e w2 e oo | G

Iterations

112

Workflows Guide Iterative Development

L]
::%!-'—1
& ..., Business Modeling:
7 Phases - ~| Workflow Details
Core Process Workflows Eu Habaatio, | Covstractim, Trastiam el - | e
q = w8
Business Madeling . . . < B =
Requiements _ . . _ % L%
Arlysis & Design _ _ L _ | 5 B
- ~_ s
Teft e e e L]
Deploymant —_—)
Core Supp orting Workfows L ——— Ly
Configmaion & Change Memt | L —— NG e
Przjoct Maragerent . o _ I, S
Environment . _ = | Ak the .qu.
el | T i = |£m |ﬂ\| s ‘% e [ty [i]
Heratons | NG

Requirements:
Workflow Details

113

A role that may be

played by an
individual or a team
in the development

A unit of work a
role may be
asked to perform

organization

Role

L/

Requirements
Specifier

responsible for

>

Use Case

Use-Case

Activity

v

.

Detail a
Use Case

A piece of

Artifact
information that is

produced, modified,
or used by a process

Package

114

Roles Are Used for Resource Planning

Resource

Role ﬁ

Activities [>

Paul 4‘ Designer Define Operations ‘
Mary 1 Requirements Specifier Detail a Use Case \
Joe A System Analyst Find Actors and Use Cases \
Sylvia 4‘ Implementer Perform Unit Tests \

Stefan ——‘ Architect

Identify Design Mechanisms\

Each individual in
the project is
assigned to one
or several roles

115

Roles Perform Activities and Produce Artifacts

e

Requirements:
Busmesss Vision Stakehol(ti:r v'fs '02 Supplementary '?we;‘#;ree%%mtts
\ \ equests (refined) Specifications C Workflow Detail
i P
/ //’ Define the
Requirements »
O D D Attributes System
D Develop Manage T -
Vision Dependencies
System Re ulrements
Analyst ributes
(reﬁned
Find Actors
%i?;%g: and Use Cases

/ Vocabulary

rs/@
Egl
| odelin Business
Glossary Glossa Gmdelmegs
(refined

Busine!
Use-Case Model

0b]ect Model Use Case Model

Use Case Model

(refined)

Use Case
(outlined)

116

Overview of Rational Unified Process Concepts
Other concepts: i
Workflows Concepts
Workflow Details e
I T
0 o™ Activity Work
A ~ Guideline
R, g @2 . .
Role %D“n& 'S’ *
e for @
y Tool
. Anif_acl N Mentor
e v N
v i N
Checkpoints Artifact Report
Y Guideline
\:LI Refers to
Template >
17

Summary: Best Practices of Software Engineering

= Best Practices guide software engineering
by addressing root causes

= Best Practices reinforce each other

= Process guides a team on what to do, how
to do it, and when to do it

= The Rational Unified Process is a means
of achieving Best Practices

118

Artifacts

Investment Concept
Statement Business Case

Sample RUP Artifacts Definition

De

Outlines the project’s purpose, scope, costs, benefits and risks of the investment and is used
by business sponsors and stakeholders to make an informed decision

ons

Vision

Defines the stakeholders view of the product to be developed, contains an outline of the
envisioned core requirements, defines the boundary and primary features of the system and is
used as the basis for more detailed technical requirements

Stakeholders Requests

Captures all requests made on the project from stakeholders

Technology Governance
Questionnaire

Assesses the impact of all development projects introducing significant architectural or high-
level design changes

Use Case Specifications

Defines the functional requirements for the system with use case diagrams

Supplementary
Specifications

Defines the nonfunctional requirements of the system

Software Architecture
Document

Provides a comprehensive architectural overview of the system, using a number of different
architectural views to depict different aspects of the system — use case view, logical view,
process view, deployment view, implementation view and data view (as needed)

User Acceptance Test Plan

Documents a plan to be used to direct user acceptance testing and ensures that all of the
detailed business requirements defined in Inception are tested completely

System Test Plan

Outlines and communicates the objectives of the testing effort to gain acceptance and
approval from the stakeholders

Corporate Report Card

Provides measurement and explanation of variances between actual and expected project
performance and informs management of project issues (High Risk, High Impact)

Issues List

Entails the documentation, review, resolution, and follow-up of project issues

Risk List

Details a list of known and open risks to the project, sorted in decreasing order of importance
and associated with specific mitigation strategies or contingency plans

Project Plan / Iteration Plan

Details the specific tasks that must be completed by each team member in order to complete a
project

Phase Assessment Review

Establishes criteria for determining whether or not a project is ready to move from one phase
to the next phase

119

Sample RUP Core Artifacts

Phase L Artifact Owner
& & Business Sponsor (A
Inception Investment Concept Statement Business Project Manager
& Business Sponsor ()
Inception Business Case Business Project Manager
2 & & Business Lead
Inception s Vision Technology Project Manager
Inception Vision & & Stakeholder Requests Business Lead
@ & & Delegated Governance
Inception Questionnaire Technology Project Manager
& & & Business Lead
Elaboration Use Case Specifications Technology Project Manager
Vision & & Business Lead
Elaboration Supplementary Specifications Technology Project Manager
& & & Technology Project Manager
Elaboration Software Architecture Document Architect
Construction & & ® User Acceptance Test Plan Business Project Manager
Construction ® ® System Test Plan Project Manager
Ongoing & & & Issues List Project Manager
Ongoing ® ® ® Risk List Project Manager
Ongoing & & & Project Plan / Iteration Plan Project Manager
Light
Ongoing @ @ Phase Assessment Review Project Manager
Ongoing & @ | Corporate Report Card Business Project Manader”*""

120

Sample Key Roles/Owners of RUP Artifacts

Key Role Defi n

Business Sponsor = Establishes the project funding and periodically review the spending progress against the
Investment Opportunity expectations. They consistently champion the project and
associated changes, as well as communicate project progress to Corporate leaders.

Business Lead = Provides project leadership and overall business perspective. This role is responsible
for managing the project risk and working with the team to ensure appropriate
communication of risk mitigation.

= Represents the team to stakeholders and management and influences the strategic and
tactical business decisions pertaining to the project product. This role’s overall goal is to
ensure the business expectations are achieved on time and on budget.

Busi Project Manag = Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The project manager also
establishes a set of practices that ensure the integrity and quality of project artifacts. In
addition, the Business Project Manager plans and conducts the formal review of the use-
case model.

= Leads and coordinates requirements elicitation and use-case modeling by outlining the
system's functionality and delimiting the system; for example, establishing what actors
and use cases exist and how they interact. In addition, this role details the specification
of a part of the organization by describing the workflow of one or several business use
cases.

Technology Project Manager = Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The technology project
manager also establishes a set of practices that ensure the integrity and quality of project
artifacts.

Architect = Leads and coordinates technical activities and artifacts throughout the project.

= The software architect establishes the overall structure for each architectural view: the
decomposition of the view, the grouping of elements, and the interfaces between these
major groupings. Therefore, in contrast to the other roles, the software architect's view is
one of breadth as opposed to one of depth. 121

Summary of Sub-Section’s Key Points

= RUP focuses on:
= Iterative Controlled Development

= Use Case Models for Business
Requirements

= Component Architecture

» Risk Identification, Management
&Mitigation

122

Agenda — Software Engineering Fundamentals

e St o Sotware Dovaopmant |
o

123

Agile Software Engineering

= Agility

= “Ability to create and respond to change in order to

profit in a turbulent business environment”

= Agile Values

Individual and interactions vs. processes and tools

Working software vs. comprehensive documentation

Customer collaboration vs. contract negotiation
Responding to change vs. following a plan

124

Agile Software Development Ecosystems

» Agile Software Development Ecosystems
(ASDEs) vs. Traditional Software Development
Methodologies

» “Chaordic” perspective
= Product goals are achievable but they are not
predictable
= Processes can aid consistency but they are not
repeatable
= Collaborative values and principles
= Barely sufficient methodology

= Agilists are proponents of ASDEs

125

‘/ 3 Towards a Pattern-Driven SE Methodology

l Summary and Conclusion

126

Section Objectives

= Describe the limitations of legacy and
best practice SDLC methodologies

= Suggest the improved approach that is
covered in the course

= Discuss the approach to follow for the
class project

127

==

Limitations of Legacy SE Methodologies

= Focused on software solutions
development
» Driven by processes

= Not driven by architecture and/or best
practices altogether (other than initially)

» Focus is on scope, time, cost, and quality
» customer input sparsely considered
= Metaphor:

» “an algorithm without a centralized data
structure to operate on”

128

A\ |

Limitations of RUP Approach

= Focused on software solutions development

= Driven by best practices
= Driven by workflows (and tools)

» Focus is on scope, time, and cost
= Customer assesses quality and drive change

= Deliver quality software on-time & on-budget

= By enforcing a best practice process that manages
change

= By following a PDCA approach were individuals play
various roles in the overall process

= Gap between Architecture-Driven approach
and Use-Case Driven Modeling
= A “top-down” architectural approach

129

lllustrating the RUP “Gap” '

Core Process Business . 3 Analysis & Im

| plemen-
Workflows Modeling Requirements| ; Design o Test
Models |

1
| Implemented Verified By
. ! i B
Realized| Business Use- Use-Case | Realized By 4

v v
v = [
I:I‘/‘D\‘ classes/code O Fail

Case Model Model

T |
g -
® Bl Automated =~
Business By | Design Model | Implementation Test Model
Object Model ! Model

= Going from business requirements to use cases
requires non-trivial input that is hard/impossible to
predict

130

Limitations of ASDE Approaches

|

Focused on software solutions development

Driven by best practices
= Driven by collaboration between individuals
= Interactions: customer/project team & intra-project team
= Driven by change
= Focus is on quality (test-driven), time, and cost
= Customer drives the scope
= Deliver optimal quality software on-time & on-budget
= By limiting the scope to facilitate change

= By follow an MOB approach were individuals assume full
leadership

Architectural re-factoring becomes a nightmare
= A “bottom-up architectural approach”

131

Agile Pattern-Driven Architecture (PDA) Approach

= Focused on business solutions development
» SDLC stands for “(Business) Solution Development LifeCycle”

= Seed the Architecture-Driven approach so it does not
operate top-down or bottom-up

» Integrate the Architecture-Driven approach into standard and
business specific architecture-driven workflows

* e.g., AKDAR, GDM, SBAM, PEM, LSS (BPM pattern), CBM (SOA
pattern)

» Use an agile workflow-driven approach rather than rigid processes

» Use architecture-driven approach from business strategy all the
way down to product maintenance

» Subject individuals to ongoing transformation processes
= Flexible RUP-like or ASDE-like focus and introduces
problem pattern set as an additional variable
= Need to deal with individuals reaction to the constant need
to adapt to change
» Build conducive environments (e.g., game-metaphor, etc.)

132

Enterprise Strategy and Business Solutions Alignment Problem %

Symptom #1:
Business Solutions
not aligned with
Enterprise strategic
goals

Symptom #2:
Business Solutions
are not delivered in
time and on budget
and/or have poor
quality

Enterprise Business Solutions
lack alignment with Enterprise
Driven Initiatives

Symptom #4:
Business Solutions
are hard to maintain

Symptom #3:
Business Solutions
are difficult to evolve

PDA Solution: Enterprise Architecture Management

“Focusing on Business Model Improvements while Maintaining Enterprise Alig

Enabler #5; Enabler #1:
Incremental iterative Best Practice
Enterprise Process Patterns and
Transformation Artifact Types
Methodology

Enabler #3:
Extensible Framework
for Traceable and
Reusable Artifact
Types and
Methodologies

Enabler #4:
Design and
Enabler #2: Runtime Tools

Best Practices
Knowledge Base

134

“Enabler #1”

Requirements
&

Architectural
Models

Requireme

(PT)

Requirements

Engineering

Legend
Process Patierns: [| SPO: Strategic Project Office
Artifacts: o ARE: Architecture Review Board
Traceability: EPQ: Execution Project Office
Reusability: — | PT: Project Team

Project

Strategy

(EPO)

Project

nis

Business Application
Architecture Architecture
(PT) (PT)

Requirements
&

(PT) (PT)
Information | | Technology
Architecture Architecture

Project

Architectural
Models

Strategy Enablement Process Patterns and Artifact Types

Enterprise
Requirements
&

Architectural
Models

Project
Strategy
(EPO)

Project
Requirements

Requirements
Enginesring
(PT)

Business
Architecture
(PT)

Application
Architecture
PT)

Project
Requirements
&

Architectural
Models
(PT)
Information
Architecture

(PT)
Technology
Architecture

"Whote is Greater than the Sum of the Parts”

Enterprise Strategy Enablement Project Strategy Enablement 135
Strategy Enablement Process Patterns Detailed e
ey

Strategic Goals Elicitation
{Net Promoter, DMAIC VOC,
Competitive Analysis, etc.}
Goal Decomposition
Business Patterns Elicitation
(e.g., SOA + BPM + BRM + BAM)
Project Roadmap Definition
Gated Governance Management
Program Management
(Context & Phase Plarning)
Project Definition
Project Review
Project Reuse Elicitation
Project Activities Management
Configuration Management
Collaboration Management
Requirements Retrieval (Current State)
Requirements Definition (Future State)
Requirements Management
Test Management
(Enterprise) Requirements Traceasility
Requirements Model Management
Business Architecture Characterization
Business Architecture Reuse Elicitatior:
Goa:-Driven Decompasition
Business Patterns Elicitation
Business Model Simulation
Business Pattern-Driven Mogeling
{e.g., BPM Improvement via DMAIC
Chartering and ROM modeling, SOA
Component Business Modeling, etc}
Requirements Model Management
(Traceability, Updates, etc.}
Business Architecture Analysis/Design
Business Architecture Deployment

Information Architecture Analysis
Refine Information Management Architecture:
Refine UI Management Architecture
Information Architecture Design
Ul Management Architecture Design
(Storyboarding, Wire frames definition, etc.}
Product Selection

Project
Strategy
(EPQ)

Requireme

(PT)

Requiremets
&

Requiremets

A Process Pattern Leads to a Methodology Once Specific Activities are Chosen to Implement a Vision

Enterprise

Architectural
Models.

Project

S

Enginicering

Busines

(PT)

Architecture

Requirements
&

(PT)
Informatior:
Architeciure

ss Applicatior
Architecture

Project

Architectural

Models.
(PT)
Technology
Architecture.

Enterprise Business Architecture
{Business Architecture Definition/Evolution)
Best Practices Maturity Assessment
Enterprise Governance Definition

T

Governance Process Definition,
Strategic Program Management, etc}
Project Governance Cefinition

Best Practices Knowledge Base Management
Portfolio Management
Project Technical Risks Assessment
Project Architecture Review
IT Strategy

Application Architecture Analysis
Reference Architecture Eliciation
Application Architecture Design
(Architectural/Design Patterns Elicitation,
Implementation Patierns Elicitaticr:, etc.)
Product Selection
Information Architecture Deployrrent
Application Architecture Deployrrent

Technology Architecture Analysis
Refine Infrastructure Architecture:
Technology Architecture Design

{ArchitecturalDesign Patterns Elicitation,

Implementation Patterns Elicitatior, etc.}

Product Selection
Technology Infrastructure Deployment

136

Project
Requirements

Project &
Requirements. Architectural
Models

Requirements Requirements Bus. Arch. Engineering
i Ay — Pl M syiome
Engineering Moadel Engineering Analysis Design
Software D Lifecycle Ph:
Glossary Project Bus_Vocabulary Defifion Relationships
e |
Stakenoider Requeste Steategy Defitor
!
Business Objectves Proj Bus Drectives \ !
Features and Events i \ _Festures anagvems
Use Cases. i Business Enlity Requirsments Enwes | Y[coman woad
Locstion Business Use Case Reguirements BUC Mg BUC Mg
Organzation Business Model . Location Regqurements Too.tal Loo.
usiness.
Business. Wode! Organizational Requirements Org i Org i
. Rules. irement Geness URN Mt Pracess Mol
3 7 cess
3 Worion Process Requirements
g Rules Bus. Arcr
3 Mage
3 Bus Workfiow
° e
g Rues Regs et i T
2 Bus. Problem |
g Business orFunctonsl Requraments Furcienat A e
o RS Requiramens Herarchies. \ SR
Definor Py "
Reference
Requrament
Non Funcuonal Reguremants L Teaerers 4 Business.
L Arctts)
Candoate | [Pl
Requrements Types. Requrements tlade BUs Patem:
gone: Herarchies. Reference
- || | | g A
Pt Producl_EGTpse Souton Ress Paiter Producl_ETGrprise Solans Caialo
e Proal T e e Prods i B gl — Projects)
Enterprise Business Vacabulary Regs Enterprise Glossary Bus. Arcr i
Business Fules Reqs Reposiory Enterpise Business Rules |, swes 4 fI Bus acr
Pattems Reus
Enterprise Soluon Patiems Requirements Enterprise Solion Patiems. || constrains
= = Gandoate |/
Business Strategy and Innovation Reds. Enterprise Sralegies G
Erterprise Project Reqairements. Erterprise Projectsa g Em_ Worker Services. Projects
EAMF Calalogs ord Enterpise Bus. Atk
rierprise Requiremenl
Enterprise Requirements Reguirements Model Categories. 3 = Design Artitacts]
Enterprise
Requirements.
&
Architectural Reusable Artifacts

Models

137

Extensible Framework and Best Practices Knowledge Base
“Enablers #2 and #3 (Sample)” — EAMF Framework Summary of Capabilities

= Extension of the TOGAF Industry Standard
= http://www.opengroup.org/togaf/

» Differentiators:
= Business Pattern Oriented Architecture (POA) orientation
= Extensible methodology based on business solution patterns

= Extensible knowledge foundation based on best practices and
ongoing strategies and business solution development

= Artifact Traceability Focus
= Agile Activity-Driven Approach
= Solution Development Lifecycle agnostic

Solution-Driven Approach
= Tool Agnostic Approach

138

Strategy Enablement From a Tools Perspective

Enabler #4 (Sample): EAMF Framework Implementation

Cognos.
Exce
PowerPoint
Visio
EAMF Catalogs Repository
JUCMNay

Enterprise
Requirements
&

Architectural
Models

TeamPlay
EAMF Catalogs Repository
cvs

ClearCase —
Livelink/Twiki Project
Exce Strategy

_ (EPO)

1BM Rational Requisiterro
Telelogic Doors
Mercury Test Director

Project
Requirements

Requirements

IBM Rational Requ\s\iePro./Telelcgle Doors Engineering
(PT)

forma Provision
Lombardi BluePrint
JUCMNav

TeamPlay Business.
EAMF Catalogs Repository Architecture
Excel P

Powerpoint
sio Project
etc. Requlr&ements

Acchitectural

—_ Models
1BM Rational RequisitePro/Telelogic Doors
ERWin Data Modeler

EAMF Catalogs Repository

(PT)
Information
Architecture

‘Application
Architecturs:
(PT)

(PT)
Technology
Architecture:

PowerPoint
Visio
Company Approved SOA Tool Suite
EAMF Product Catalog ApprovedTcols

IBM Rational RequisiteFro/Telelogic Doors
Proforma Provision
Lombardi BluePrint
JUCMNav
TeamPlay
EAMF Catalogs Repository
Excel

Powerpoint
Visio

EAMF Catalogs Repository
Powerpoint
Visio

Sparx Systems EA
EAMF Catalog Repository
PowerPoint
Visio
Company Approved SOA Tool Suite
EAMF Product Catalog ApprovedTcols

Sparx Systems EA
EAMF Catalog Repository
PowerPoint
Visio
Company Approved SOA Tool Suite
EAMF Product Catalog ApprovedTaols

139

Incremental Iterative Enterprise Transformation Methodology

“Enabler #5”

Transformation methodology needs
to be applied incrementally to reach
the desired level of Enterprise
maturity established by sponsors
upon the recommendation of experts
(muitiple iterations/projects may
need to be conducted)

Sustaining operation at a given
maturity level may not be possible
due ta: changes in the project
roadmap, ongoing SCR/IRs,
evolution of Best Practices, or
perception of customer discontent

Initiation:

Assess Maturity
Level & next
achievable level

Preparation:

Train organization as
needed and plan
projects executior

Execution:

Conduct project(s)
using applicable
methodology

Hardening:

Measure Success &
adapt governance
accordingly

Deployment:

Operate at given
maturity level and
assess viability

Initiation
Tollgate Review

For BPM Improvements, the
maturity level may be

assess
Sig

ed via BPMM and Six
ma maturity levels

Preparation
Tollgate Review

For BPM Improvements,
preparation involves
champion training and
Hoshin planning

Execution
Tollgate Review

Conducting projects may
involves ongoing
organizational fraining and

reviews

Hardening
Tollgate Review

Deployment
Tollgate Review

Hardening involves a
consolidation of the SPO

team in charge of Enterprise

governance

140

Strategy Enablement At Wor

Business unit X consults with the SPO to
identify:
(a) Their current maturity level with respect
to the high-level vision
(b) Business Unit Specific alignment goals
(c) Alignment Elicitation Methodology

Enterprise business model goal is to sustain
double digit annual growth and align all
business units with that goal

Enterprise
Requirements
&

SPO conducts a high-level goal
decomposition, consults with the ARB,
matches the business domain forces with

the forces that drive best practice business
reference architectures, and identifies a @
high-level vision:
e.g., SOA + BPM + BRM + BAM

@ With the help of the SPO and the EAM

infrastructure, alignment tenets are identified
by applying goal patterns and best

practices, and the applicable alignment
elicitation methodology is identified

Architectural
Models

Project
' o @ Strategy Business unit X applies the alignment
Gated execution of multiple projects starts: {EPO) elicitation methodology to identify their

maturity level (i.e., common denominator)
with respect to the high-level vision and a
set of alignment projects/opportunities

Projects that are not aligned with the -
Enterprise strategy breach gate 1
Projects that pass through gate 1 are funded
SPO updates the roadmap every six months

to account for changes in strategic directions ;O, ARB, and Business unit X prioritize the

projects and elevate a subset of them into
the 4-year project roadmap and select an
appropriate alignment execution
methodology (ARB inputs is key to identify
constraints imposed by existing
infrastructure)

Project
Requirements

Alignment Execution Methodology is applied
toindividual projects starting with
requirements engineering activities
conducted by project BAs: @ .
Gate 2 review occurs at the end of the | = —1 FEAL e
requirements definition phase (aka. g P?I'e 9
Inception phase) {E3)

While the business architecture is still being

On selected project a 3-months timeline is ile the b ¢

¢) refined, Alignment Execution Methodology

imposed on '"g;z";ergli‘:“f’ CPD prior to Business Application activities are conducted on the Application
Architecture ||| Architecture and Information Architecture fronts (business

- *T) (PT) architecture is “deployed” incrementally and
iteratively on top of the application/

Project
information architecture)

Requirements
s (-

Alignment Execution Methodology moves Architectural —
onto requirements model engineering Models While the business/application/information
activities and business architecture analysis architectures are still being refined,
and design conducted by project Business L (T} Alignment Execution Methodology activities
Architects in collaboration with application/ IDionTaton) - TeGingiody, are conducted on the Technology
information/technology architects Architecture | | Architecture i front (applicati i
(requirements model is shared between the architecture is “deployed” incrementally and
various group and is the central point of iteratively on top of the technology
focus for collaboration) architecture

141

Enterprise Architecture Management

EAMF Activities Integrate Seamlessly with the Company X Project Lifecycle

Project Activity Threads:
- @ ESLMMWITTS
Disciplines @ :Sep. of Funds
& © :Pay Code Aut
Process Workflows.
Planning
Reg. Engineering
HL Analysis —O—— 0—_
HL Design O——o
Det. Analysis.
E yst —00-O0——¢ |
Al Det. Design —0-0-0—O O
M| Architecture
F | Implementation — ot
Product Mapping O
Architecture
Deployment L OO0 —0—!
Application/Tests
Design —@ 0|
Implementation/Test
— @ —@C
O
Deployment/Test
L @—i
Supporting
Workflows
Administration I
P —
Management —_
—
Environment — P |
Iter. Iter. Iter. Iter. Iter. Iter. Iter.
i #1 #2 o #n #n+1 - #m | #mel | #me2 i
i SEgs Plsatnnlng Install/Close Rogl?eneﬁts
age Design Stage Build/Test Stage age
Stage
Construction | Testing Production Warranty
Concept Phase Elaboration Phase Phase Phase Elev. Phase Phase

142

Enterprise Architecture Management

Integration with the Company X Project Lifecycle all

Business & Technotony Algnment
Tactcaly Drver
ot Proect Reckeniol pcniecres

Dt maximzs schnology vesimnt acros st prse

Project Manager (EPQ)
‘ Solution Development Lifecycle (Partial View) N
T
defines:
o 2 | Busiess Solution Y Elaborated 3 » 2
R g s (N s £ | et N oo || B[sonan £ | avortes e
& & & & &
>(I/ >/\ & Deploy
Simplicity N Q
Mantainabilty
complexiy) Projecharéhitects Techiveaf Lead Deveicher Testhr
Scatabilty
Availabilly
etc uses,
—
(\/Tf:hnclogysewkts
Design Tools Development Tools
Determine Determine Search Available Select Select
Reference Reference Select Design Implementations Implementation SR s
Architectureds) Implementations Services Pattern Idior (sample)
143

3 Towards a Pattern-Driven SE Methodology

‘ l Summary and Conclusion

144

Course Assignments

= Individual Assignments

Reports based on case studies / class presentations

= Project-Related Assignments

All assignments (other than the individual assessments) will
correspond to milestones in the team project.

As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.

There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.

A sample project description and additional details will be available
under handouts on the course Web site

145

Team Project

= Project Logistics

Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

146

Team Project Approach - Overall

»= Document Transformation methodology driven
approach

» Strategy Alignment Elicitation

« Equivalent to strategic planning
— i.e., planning at the level of a project set

» Strategy Alignment Execution

+ Equivalent to project planning + SDLC

— i.e., planning a the level of individual projects + project
implementation

= Build a methodology Wiki & partially implement the
enablers

= Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found

= Final product is a wiki/report that focuses on

» Methodology / methodology implementation / sample
business-driven problem solution

147

Team Project Approach - Initial Step

» Document sample problem domain and
business-driven problem of interest
» Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

148

Assignments & Readings

= Readings
» Slides and Handouts posted on the course web site
i » Textbook: Chapter 1 & Part One-Chapter 2

= Assignment #1
» Team Project proposal (format TBD in class)

» Presentation topic proposal (format TBD in class)

= Project Frameworks Setup (ongoing)

» As per reference provided on the course Web site

149

Next Session: Software Development Lifecycles (SDLCs)

= Lifecycle Phases

= Traditional Lifecycle Models
= Alternative Techniques

= Homework #1

= Project #1

150

Any Questions?

