
1

Software Engineering

Session 1 – Main Theme
Software Engineering Fundamentals

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides
Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

2

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

3

- Profile -
27 years of experience in the Information Technology Industry, including twelve years of experience working
for leading IT consulting firms such as Computer Sciences Corporation
PhD in Computer Science from University of Colorado at Boulder
Past CEO and CTO
Held senior management and technical leadership roles in many large IT Strategy and Modernization
projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail,
and information management industries
Contributed to several high-profile ARPA and NSF research projects
Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a
Professor of Computer Science at Columbia initially and New York University since 1997
Proven record of delivering business solutions on time and on budget
Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere
DataStage
Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation
of various maturity assessment methodology
Developed partnerships between several companies and New York University to incubate new
methodologies (e.g., EA maturity assessment methodology developed in Fall 2008), develop proof of
concept software, recruit skilled graduates, and increase the companies’ visibility

Who am I?

4

How to reach me?

Cell (212) 203-5004

Email jcf@cs.nyu.edu

AIM, Y! IM, ICQ jcf2_2003

MSN IM jcf2_2003@yahoo.com

LinkedIn http://www.linkedin.com/in/jcfranchitti

Twitter http://twitter.com/jcfranchitti

Skype jcf2_2003@yahoo.com

Come on…what else
did you expect?

Woo hoo…find the word
of the day…

5

What is the class about?

Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/

» http://www.cs.nyu.edu/courses/spring10/G22.2440-001/

Textbooks:
» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/
» http://highered.mcgraw-

hill.com/sites/0073375977/information_center_view0/table_of_contents.html

6

Icons / Metaphors

6

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

7

Helpful Preliminary Knowledge

Business Process Modeling (BPM)
Object-Oriented Analysis and Design (OOAD)
Object-oriented technology experience
Software development experience as a
software development team member in the
role of business analyst, developer, or project
manager
Implementation language experience (e.g.,
C++, Java, C#)
Note: Knowledge of BPMN, UML or a specific
programming language is not required

8

Course Objectives (1/3)

Present modern software engineering techniques and
examines the software life-cycle, including software
specification, design implementation, testing and
maintenance
Describe and compare various software development
methods and understand the context in which each
approach might be applicable
Develop students’ critical skills to distinguish sound
development practices from ad-hoc practices, judge
which technique would be most appropriate for solving
large-scale software problems, and articulate the
benefits of applying sound practices

9

Expand students’ familiarity with mainstream languages
used to model and analyze processes and object designs
(e.g., BPMN, UML).
Demonstrate the importance of formal/executable
specifications of object models, and the ability to verify the
correctness/completeness of solution by executing the
models.
Explain the scope of the software maintenance problem
and demonstrate the use of several tools for reverse
engineering software.

Course Objectives (2/3)

10

Develop students’ ability to evaluate the effectiveness of an
organization’s software development practices, suggest
improvements, and define a process improvement strategy
Introduce state-of-the-art tools and techniques for large-
scale development
Implement major software development methods in
practical projects and motivate discussion via group
presentations

Course Objectives (3/3)

11

Software Requirements

Microsoft Windows XP (Professional Ed.) / Vista / 7

Software tools will be available from the Internet or
from the course Web site under demos as a choice
of freeware or commercial tools

Business and Application Modeling Tools

Software Development Tools

Workflow Management Frameworks

etc.

References will be provided on the course Web site

12

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

13

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

14

What is Software? (1/2)

Software is:

(1)instructions (computer programs) that when
executed provide desired features, function,
and performance;

(2) data structures that enable the programs to
adequately manipulate information;

(3) documentation that describes the
operation and use of the programs.

15

What is Software? (2/2)

Software is developed or engineered, it is not
manufactured in the classical sense.
Software doesn't "wear out."
Although the industry is moving toward component-
based construction, most software continues to be
custom-built.

16

Wear vs. Deterioration

idealized curve

change

actual curve

Failure
rate

Time

increased failure
rate due to side effects

17

The economies of ALL developed nations are
dependent on software
More and more systems are software-controlled
Software engineering is concerned with theories,
methods and tools for professional software
development
Software engineering expenditure represents a
significant fraction of GNP in all developed countries

GNP stands for Gross National Product. GNP per capita is
the dollar value of a country’s final output of goods and
services in a year, divided by its population. It reflects the
average income of a country’s citizens.

Software Engineering

18

Software costs often dominate system costs.
The costs of software on a PC are often greater
than the hardware cost

Software costs more to maintain than it does
to develop

For systems with a long life, maintenance costs
may be several times development costs

Software engineering is concerned with cost-
effective software development

Software Costs

19

Software Products

Generic products
Stand-alone systems which are produced by a
development organization and sold on the open
market to any customer

Bespoke (customized) products
Systems which are commissioned by a specific
customer and developed specially by some
contractor

Most software expenditure is on generic
products but most development effort is on
bespoke systems

20

Software Applications

System software
Application software
Engineering/scientific
software
Embedded software
Product-line software
WebApps (Web
applications)
AI software

21

Software—New Categories

Open world computing - pervasive, distributed
computing
Ubiquitous computing - wireless networks
Netsourcing - the Web as a computing engine
Open source - ”free” source code open to the
computing community (a blessing, but also a
potential curse!)
Also …
»Data mining
»Grid computing
»Cognitive machines
»Software for nanotechnologies

22

Legacy Software

software must be adapted to meet the
needs of new computing environments
or technology
software must be enhanced to
implement new business requirements
software must be extended to make it
interoperable with other more modern
systems or databases
software must be re-architected to
make it viable within a network
environment

Why must it change?

23

Software Product Attributes

Maintainability
It should be possible for the software to evolve
to meet changing requirements

Dependability
The software should not cause physical or
economic damage in the event of failure

Efficiency
The software should not make wasteful use of
system resources

Usability
Software should have an appropriate user
interface and documentation

24

Importance of Product Characteristics

The relative importance of these
characteristics depends on the product and
the environment in which it is to be used
In some cases, some attributes may
dominate

In safety-critical real-time systems, key
attributes may be dependability and efficiency

Costs tend to rise exponentially if very high
levels of any one attribute are required

25

Efficiency Costs

Cost

Ef ficiency

26

Characteristics of WebApps (1/2)

Network intensiveness. A WebApp resides on a network and must
serve the needs of a diverse community of clients.
Concurrency. A large number of users may access the WebApp at
one time.
Unpredictable load. The number of users of the WebApp may vary
by orders of magnitude from day to day.
Performance. If a WebApp user must wait too long (for access, for
server-side processing, for client-side formatting and display), he or
she may decide to go elsewhere.
Availability. Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand access on
a “24/7/365” basis.
Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.
Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

27

Characteristics of WebApps (2/2)

Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously
Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks
Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application
Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel

28

Summary of Sub-Section’s Key Points

Software engineering is concerned with the
theories, methods and tools for developing,
managing and evolving software products
Software products consist of programs and
documentation
Product attributes include maintainability,
dependability, efficiency and usability

29

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

30

The Software Process

Structured set of activities required to develop a
software system

Specification
Design
Validation
Evolution

Activities vary depending on the organization
and the type of system being developed
Software process must be explicitly modeled if it
is to be managed

31

Process Characteristics (1/2)

Understandability
Is the process defined and understandable?

Visibility
Is the process progress externally visible?

Supportability
Can the process be supported by CASE tools?

Acceptability
Is the process acceptable to those involved in it?

32

Process Characteristics (2/2)

Reliability
Are process errors discovered before they result
in product errors?

Robustness
Can the process continue in spite of unexpected
problems?

Maintainability
Can the process evolve to meet changing
organizational needs?

Rapidity
How fast can the system be produced?

33

Engineering Process Model

Specification
Set out the requirements and constraints on the system

Design
Produce a paper model of the system

Manufacture
Build the system

Test
Check if the system meets the required specifications

Install
Deliver the system to the customer and ensure it is operational

Maintain
Repair faults in the system as they are discovered

34

Software Process Models Characteristics

Normally, specifications are
incomplete/anomalous
Very blurred distinction between
specification, design and manufacturing
No physical realization of the system for
testing
Software does not wear out

Maintenance does not mean component
replacement

35

Generic Software Process Models

Waterfall model
Separate and distinct phases of specification and
development

Evolutionary development
Specification and development are interleaved

Formal transformation
A mathematical system model is formally
transformed to an implementation

Reuse-based development
The system is assembled from existing components

36

Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

37

Waterfall Model Characteristics and Limitations

Phases:
Requirements analysis and definition
System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance

The drawback of the waterfall model is
the difficulty of accommodating change
after the process is underway

38

Evolutionary Development

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

39

Evolutionary Development Characteristics

Exploratory prototyping
Objective is to work with customers and to
evolve a final system from an initial outline
specification
Should start with well-understood requirements

Throw-away prototyping
Objective is to understand the system
requirements
Should start with poorly understood
requirements

40

Evolutionary Development Limitations

Problems
Lack of process visibility
Systems are often poorly structured
Requires Special skills (e.g., languages for rapid
prototyping) may be required

Applicability
For small or medium-size interactive systems
For parts of large systems (e.g. the user
interface)
For short-lifetime systems

41

Summary of Sub-Section’s Key Points

The software process consists of those
activities involved in software development
The waterfall model considers each process
activity as a discrete phase
Evolutionary development considers process
activities as concurrent

42

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

43

Inherent Risks
(http://www.ibm.com/developerworks/rational/library/1719.html)

Sponsorship
Budget
Culture
Business Understanding
Priorities

Business changes
Features
Schedule slips

Methodology Misuse
Software Quality

44

Symptoms of Software Development Problems

User or business needs not met
Requirements churn
Modules don’t integrate
Hard to maintain
Late discovery of flaws
Poor quality of end-user experience
Poor performance under load
No coordinated team effort
Build-and-release issues

45

Trace Symptoms to Root Causes

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (e.g., UML)

Continuously Verify Quality

Manage Change

Needs not met
Requirements churn
Modules don’t fit
Hard to maintain
Late discovery
Poor quality
Poor performance
Colliding developers
Build-and-release

Insufficient requirements
Ambiguous communications
Brittle architectures
Overwhelming complexity
Undetected inconsistencies
Poor testing
Subjective assessment
Waterfall development
Uncontrolled change
Insufficient automation

Symptoms Root Causes Best Practices

46

Risk Management

Perhaps the principal task of a manager is to
minimize risk
The 'risk' inherent in an activity is a measure
of the uncertainty of the outcome of that
activity
High-risk activities cause schedule and cost
overruns
Risk is related to the amount and quality of
available information

The less information, the higher the risk

47

Process Model Risk Problems

Waterfall
High risk for new systems because of
specification and design problems
Low risk for well-understood developments
using familiar technology

Prototyping
Low risk for new applications because
specification and program stay in step
High risk because of lack of process visibility

Transformational
High risk because of need for advanced
technology and staff skills

48

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

49

Hybrid Process Models

Large systems are usually made up of
several sub-systems
The same process model need not be
used for all subsystems
Prototyping should be used for high-
risk specifications
Waterfall model should be used for
well-understood developments

50

Spiral Model of the Software Process

Risk
analys is

Risk
analys is

Risk
analys is

Risk
analysis Proto-

ty pe 1

Prototyp e 2
Prototyp e 3

Opera-
tional
protoyp e

Concept o f
Operation

Simulations, models, b en ch marks

S/W
requirements

Requirement
valid ation

Design
V&V

Prod uct
design Detailed

design

Code
Uni t tes t

Integr ation
testAccep tance

testServ ice Develop, v erify
next-level p rod uct

Ev aluate altern atives
id en tify, resolve risk s

Determine ob jectiv es
alternatives and

cons traints

Plan next p hase

Integration
and test p lan

Develop ment
plan

Requirements plan
Life-cycle plan

REVIEW

51

Phases of the Spiral Model

Objective setting
Specific objectives for the project phase are
identified

Risk assessment and reduction
Key risks are identified, analyzed and
information is sought to reduce these risks

Development and validation
An appropriate model is chosen for the next
phase of development.

Planning
The project is reviewed and plans drawn up for
the next round of the spiral

52

Template for a Spiral Round

Quality Improvement Focus
Objectives
Constraints
Alternatives

Risk Reduction Focus
Risk Assessment
Risk resolution

Plan-Do-Check-Act (PDCA) Approach
Results
Plans
Commitment

53

Quality Improvement Focus

Objectives
Significantly improve software quality

Constraints
Within a three-year timescale
Without large-scale capital investment
Without radical change to company standards

Alternatives
Reuse existing certified software
Introduce formal specification and verification
Invest in testing and validation tools

54

Risk Assessment
No cost effective quality improvement
Possible quality improvements may increase
costs excessively
New methods might cause existing staff to leave

Risk resolution
Literature survey
Pilot project
Survey of potential reusable components
Assessment of available tool support
Staff training and motivation seminars

Risk Reduction Focus

55

Results
Experience of formal methods is limited - very
hard to quantify improvements
Limited tool support available for company-wide
standard development system
Reusable components available but little
support exists in terms of reusability tools

Plans
Explore reuse option in more detail
Develop prototype reuse support tools
Explore component certification scheme

Commitment
Fund further 18-month study phase

PDCA Approach

56

Template for a Spiral Round at Work - Catalogue Spiral (1/3)

Quality Improvement Focus
Objectives

Procure software component catalogue

Constraints
Within a year
Must support existing component types
Total cost less than $100, 000

Alternatives
Buy existing information retrieval software
Buy database and develop catalogue using database
Develop special purpose catalogue

57

Risks Reduction Focus
Risks assessment

May be impossible to procure within constraints

Catalogue functionality may be inappropriate

Risk resolution
Develop prototype catalogue (using existing 4GL and
an existing DBMS) to clarify requirements
Commission consultants report on existing information
retrieval system capabilities.
Relax time constraint

Template for a Spiral Round at Work - Catalogue Spiral (2/3)

58

PDCA Approach
Results

Information retrieval systems are inflexible.
Identified requirements cannot be met.
Prototype using DBMS may be enhanced to complete
system
Special purpose catalogue development is not cost-
effective

Plans
Develop catalogue using existing DBMS by enhancing
prototype and improving user interface

Commitment
Fund further 12 month development

Template for a Spiral Round at Work - Catalogue Spiral (3/3)

59

Spiral Model Flexibility

Hybrid models accommodated for
different parts of a project:

Well-understood systems
Low technical risk
Use Waterfall model as risk analysis phase is relatively
cheap

Stable requirements and formal
specification with safety criticality

Use formal transformation model
High UI risk with incomplete specification

Use Prototyping model

60

Spiral Model Advantages

Focuses attention on reuse options
Focuses attention on early error
elimination
Puts quality objectives up front
Integrates development and
maintenance
Provides a framework for
hardware/software development

61

Spiral Model Limitations

Contractual development often specifies
process model and deliverables in
advance
Requires risk assessment expertise
Needs refinement for general use

62

Process Visibility as a Process Model Metric

Software systems are intangible so
managers need documents to assess
progress
However, this may cause problems

Timing of progress deliverables may not match
the time needed to complete an activity
The need to produce documents places
constraints on process iterations
The time taken to review and approve
documents is significant

Waterfall model is still the most widely used
deliverable-based model

63

Sample Set of Waterfall Model Documents

Activity Output documents
Requirements analysis Feasibility study, Outline requirements
Requirements definition Requirements document
System specification Functional specification, Acceptance test plan

Draft user manual
Architectural design Architectural specification, System test plan
Interface design Interface specification, Integration test plan
Detailed design Design specification, Unit test plan
Coding Program code
Unit testing Unit test report
Module testing Module test report
Integration testing Integration test report, Final user manual
System testing System test report
Acceptance testing Final system plus documentation

64

Process Model Visibility

Process model Process visibility
Waterfall model Good visibility, each activity produces some

deliverable
Evolutionary
development

Poor visibility, uneconomic to produce
documents during rapid iteration

Formal
transformations

Good visibility, documents must be produced
from each phase for the process to continue

Reuse-oriented
development

Moderate visibility, it may be artificial to
produce documents describing reuse and
reusable components.

Spiral model Good visibility, each segment and each ring
of the spiral should produce some document.

65

Summary of Sub-Section’s Key Points

The spiral process model is risk-driven
Process visibility involves the creation
of deliverables from activities

66

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

67

Professional Responsibility

Software engineers should not just be
concerned with technical
considerations. They have wider
ethical, social and professional
responsibilities
Not clear what is right or wrong about
the following issues:

Development of military systems
Whistle blowing
What is best for the software engineering
profession

68

Ethical Issues

Confidentiality
Competence
Intellectual property rights
Computer misuse

69

Summary of Sub-Section’s Key Points

Software engineers have ethical, social
and professional responsibilities

70

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

71

Section Outline

Identify Steps for Understanding and Solving
Software Engineering Problems
Explain the IBM Rational “Six Best Practices”

72

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

Practice 1: Develop Iteratively

73

Waterfall Development Characteristics

Delays confirmation of
critical risk resolution
Measures progress by
assessing work-
products that are poor
predictors of time-to-
completion
Delays and aggregates
integration and testing
Precludes early
deployment
Frequently results in
major unplanned
iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

Requirements
analysis

74

Iterative Development Produces Executable Releases

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
Environment

Each iteration
results in an
executable release

75

Risk Profiles

Risk Reduction

Time

Iterative Risk
Waterfall Risk

R
is

k

76

Practice 2: Manage Requirements

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

77

Requirements Management

Making sure you
Solve the right problem
Build the right system

By taking a systematic approach to
eliciting
organizing
documenting
managing

the changing requirements of a
software application.

78

Aspects of Requirements Management

Analyze the Problem
Understand User Needs
Define the System
Manage Scope
Refine the System Definition
Build the Right System

79

Problem

Solution
Space

Problem
Space

Needs

Features

Use Cases and
Software

Requirements

Test
Procedures Design User

Docs

The
Product
To Be
Built

Traceability

Map of the Territory

80

Practice 3: Use Component Architectures

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

81

Resilient, Component-Based Architectures

Resilient
Meets current and future requirements
Improves extensibility
Enables reuse
Encapsulates system dependencies

Component-based
Reuse or customize components
Select from commercially-available
components
Evolve existing software incrementally

82

Purpose of a Component-Based Architecture

Basis for reuse
Component reuse
Architecture reuse

Basis for project management
Planning
Staffing
Delivery

Intellectual control
Manage complexity
Maintain integrity SystemSystem--

softwaresoftware

MiddlewareMiddleware

BusinessBusiness--
specificspecific

ApplicationApplication--
specificspecific

Component-based
Architecture with
layers

83

Practice 4: Model Visually (UML)

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

84

Why Model Visually?

Capture structure and behavior
Show how system elements fit together
Keep design and implementation
consistent
Hide or expose details as appropriate
Promote unambiguous communication

UML: one language for all practitioners

85

Visual Modeling with UML 1.X

Multiple views
Precise syntax
and semantics

Activity
Diagrams

Models

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
Diagrams

Use-Case
Diagrams

Static
Diagrams

Dynamic
Diagrams

86

Visual Modeling Using UML 1.X Diagrams

Actor A

Use Case 1

Use Case 2

Actor B

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Wi ndow95

¹®¼-°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

Wi ndows
NT

¹®¼-°ü¸® ¿£Áø.EXE

Wi ndows
NT

Wi ndows95

Solaris

ÀÀ¿ë¼-¹ö.EXE

Alpha
UNIX

IBM
Mainframe

µ¥ÀÌÅ¸º£ÀÌ½º¼- ¹ö

Wi ndows95

¹®¼-°ü¸® ¾ÖÇ Ã¸´Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user
mainWnd fileMgr :

FileMgr
repositorydocument :

Document
gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByN ame ()

Æ¯Á¤¹®¼-¿¡ ´ëÇÑ º¸±â¸¦
»ç¿ëÀÚ°¡ ¿äÃ»Ç Ñ´Ù.

È-ÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º¸¸¦ ÇØ´ç ¹®¼-
°´Ã¼¿¡ ¼ ³Á¤À» ¿äÃ»Ç Ñ´Ù.

È-¸é °´Ã¼ ´Â ÀÐ ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î
Á¤·ÄÀ» ½ ÃÄÑ È- ¸é¿¡
º¸¿©ÁØ´ Ù.

Forward and
Reverse
Engineering

Target
System

Openning

Writing

Reading
Closing

add file [numberOffile==MAX] /
flag OFF

add file

close file

close fileUse Case 3

Use-case
diagram Class diagram

Collaboration
diagram

Sequence
diagram

Component
diagram

Statechart
diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Deployment
diagram

87

UML 1.X Notation Baseline

DeliveryStaticPackage
DeliveryDynamicDeployment

DesignDynamicCollaboration
DesignDynamicSequence
DesignDynamicEvent Trace (Interaction)

AnalysisDynamicState-Transition
AnalysisDynamic**Activity
AnalysisStaticClass
AnalysisStatic*Use Case

PhaseTypeDiagram Name

*Static describes structural system properties
**Dynamic describes behavioral system properties.

88

UML 1.X Diagrams

UML 1.X defines twelve types of diagrams, divided into three
categories
Four diagram types represent static application structure:

Class Diagram
Object Diagram
Component Diagram
Deployment Diagram

Five represent different aspects of dynamic behavior
Use Case Diagram
Sequence Diagram
Activity Diagram
Collaboration Diagram
Statechart Diagram

Three represent ways to organize and manage your
application modules

Packages
Subsystems
Models

Source: http://www.omg.org/gettingstarted/what_is_uml.htm

89

UML 1.X Views

Approach
UML 1.X defines five views that let you look at overall models from various
angles
Layering architectural principles is used to allocate pieces of functionality to
subsystems
Partitioning is used to group related pieces of functionality into packages
within subsystems

Views and Related Diagrams
Use Case View (application functionality)

Use Case Diagram
Logical View (static application structure)

Class Diagram
Object Diagram

Process View (dynamic application behavior)
Sequence Diagram
Activity Diagram
Collaboration Diagram
Statechart Diagram

Implementation View (application packaging)
Component Diagram

Deployment View (application delivery)
Deployment Diagram

90

Functional
view

Static
View

Behavioral
View

Architectural
View

Play

Player

View High Score

Find Beverage

Pour Coffee Drink Beverage

Get Can of ColaGet CupsAdd Water to ReservoirPut Coffee in Filter

Put Filter in Machine

Turn on Machine

Brew Coffee

 ̂ coffeePot.TurnOn

[no cola]

[found cola]

[no coffee]

[found coffee]

light goes out

Player

name : String
score : int = 0;

play()

(from Use Case View) Die
faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

d1 : Die : DiceGame : Player d2 : Die

1: play()
2: roll()

3: roll()

Ready to play Player ready
entry: ge t player name

In progress
entry: turn++

 / S tart game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Game Computer

SGBD computer

JBDC
Connection

Play the
game File

System

Save/load the
highscore

Maybe a Remote
a file system

Consistency

Coverage

Need to Maintain Consistency and Coverage Across UML 1.X Views

91

New in UML 2.X (1/2)
(http://www.omg.org/gettingstarted/what_is_uml.htm)

UML 2.X Profiles
The new language goes well beyond the Classes and Objects well-modeled
by UML 1.X to add the capability to represent not only behavioral models,
but also architectural models, business process and rules, and other models
used in many different parts of computing and even non-computing
disciplines

Nested Classifiers
Every model building block (e.g., classes, objects, components, behaviors
such as activities and state machines) is a classifier

A set of classes may be nested inside the component that manages them, or a
behavior (such as a state machine) may be embedded inside the class or
component that implements it
Capability may be used to build up complex behaviors from simpler ones (i.e., the
capability that defines the Interaction Overview Diagram)
Can layer different levels of abstraction in multiple ways:

For example, you can build a model of your Enterprise, and zoom in to embedded site
views, and then to departmental views within the site, and then to applications within a
department
Alternatively, you can nest computational models within a business process model.
OMG's Business Enterprise Integration Domain Task Force (BEI DTF) is currently
working on several interesting new standards in business process and business rules

92

New in UML 2.X (2/2)
(http://www.omg.org/gettingstarted/what_is_uml.htm)

Improved Behavioral Modeling
In UML 1.X, the different behavioral models were independent, but in UML
2.0, they all derive from a fundamental definition of a behavior (except for
the Use Case, which is subtly different but still participates in the new
organization)

Improved relationship between Structural and Behavioral Models
UML 2.0 makes it possible to designate that a behavior represented by (for
example) a State Machine or Sequence Diagram is the behavior of a class
or a component

Object Constraint Language (OCL) and Action Semantics
» During the upgrade process, several additions to the language were

incorporated into it, including the Object Constraint Language (OCL) and
Action Semantics.

93

Practice 5: Continuously Verify Quality

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously
Verify Quality
Manage Change

94

Continuously Verify Software Quality

CostCost

TransitionConstructionElaborationInception

Software problems are
100 to 1000 times more costly
to find and repair after
deployment

Cost to Repair Software

Cost of Lost Opportunities

Cost of Lost Customers

95

Test All Dimensions of Software Quality

Functionality

Reliability

Performance

Does my application
do what’s required?

Does the system
perform under
production
load?

Verification of each
usage scenario

Verification of
sustained

application
operation

Test performance
under expected &
worst-case load

Does my application
respond acceptably?

96

UML Model
and

Implementation

Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 33

Test Suite 3

Test Each Iteration

97

Practice 6: Manage Change

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

98

ALERTREPORT

Workspace
Management

Process
Integration

Parallel
Development

Build
Management

CM is more
than just

check-in and
check-out

What Do You Want to Control?

Changes to enable iterative development
Secure workspaces for each developer
Automated integration/build management
Parallel development

99

Aspects of a Configuration Management (CM) System

Change Request Management
Configuration Status Reporting
Configuration Management (CM)
Change Tracking
Version Selection
Software Manufacture

100

Unified Change Management

Management across the lifecycle
System
Project Management

Activity-Based Management
Tasks
Defects
Enhancements

Progress Tracking
Charts
Reports

101

Best Practices Reinforce Each Other

Validates architectural
decisions early on

Addresses complexity of
design/implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users involved
as requirements evolve

Best PracticesBest Practices
Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

102

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

103

Section Outline

Present the IBM Rational Unified Process
within the context of the Six Best Practices
covered in the previous sub-section

104

Foundations of RUP

Implement Software Engineering Best
Practices:

Iterative Controlled Development
Use Case Models for Business
Requirements
Component Architectures
Risk Identification, Management &
Mitigation

105

RUP Best Practices Implementation

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component Architectures
Model Visually (UML)

Continuously Verify Quality
Manage Change

106

Achieving Best Practices

Iterative Approach
Guidance for activities
and work products
(artifacts)
Process focus on
architecture
Use cases which drive
design and
implementation
Models which abstract
the system

Implementation

Test

Analysis & Design

Requirements

Configuration &
Change Management

107

A Team-Based Definition of Process

A process defines Who is doing What,
When and How to reach a certain goal.

New or changed
requirements

New or changed
system

Software Engineering
Process

108

Process Structure - Lifecycle Phases

The Rational Unified Process has four
Phases:
» Inception - Define the scope of project
» Elaboration - Plan project, specify features,

baseline architecture
» Construction - Build the product
» Transition - Transition the product into end

user community

Inception Elaboration Construction Transition

time

109

Phase Boundaries Mark Major Milestones

Inception Elaboration Construction Transition

Lifecycle
Objective
Milestone

Lifecycle
Architecture

Milestone

Initial Operational
Capability
Milestone

Product
Release

time

110

Iterations and Phases

An iteration is a distinct sequence of activities based on
an established plan and evaluation criteria, resulting in an
executable release (internal or external)

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

Minor Milestones: Releases

111

Workflows Produce Models

OK
OK
Fail

Realized By
Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Core Process
Workflows TestImplemen-

tation
Analysis &

Design
Requirements

Business Use-
Case Model

Business
Modeling

Business
Object Model

BBB

B

Realized
By

Automated
By

112

Bringing It All Together: The Iterative Approach

Workflows
group

activities
logically

In an iteration,
you walk

through all
workflows

113

Workflows Guide Iterative Development

Business Modeling:
Workflow Details

Requirements:
Workflow Details

114

Notation

Role

Activity

Artifact

Detail a
Use Case

Use-Case
Package

Use Case

responsible for

Requirements
Specifier

A unit of work a
role may be

asked to perform

A piece of
information that is

produced, modified,
or used by a process

A role that may be
played by an

individual or a team
in the development

organization

115

Resource

Paul

Mary

Joe

Sylvia

Stefan

Roles Are Used for Resource Planning

Each individual in
the project is

assigned to one
or several roles

Role

Designer
Requirements Specifier
System Analyst
Implementer
Architect

Activities

Define Operations
Detail a Use Case
Find Actors and Use Cases
Perform Unit Tests
Identify Design Mechanisms

116

Roles Perform Activities and Produce Artifacts

Example
Requirements:

Workflow Detail

“Define the
System”

Capture a
Common

Vocabulary

System
Analyst

Find Actors
and Use Cases

Use-Case Model
(refined)

Use-Case
Modeling

Guidelines

Supplementary
Specifications

Glossary
(refined)

Glossary

Stakeholder
Requests

Use-Case Model

Manage
Dependencies

Requirements
Management

Plan
Vision

Business
Use-Case Model

Business
Object Model

Requirements
Attributes

Requirements
Attributes
(refined)

Develop
Vision

Business
Rules

Vision
(refined)

Use Case
(outlined)

117

Overview of Rational Unified Process Concepts

118

Summary: Best Practices of Software Engineering

Best Practices guide software engineering
by addressing root causes
Best Practices reinforce each other
Process guides a team on what to do, how
to do it, and when to do it
The Rational Unified Process is a means
of achieving Best Practices

119

Assesses the impact of all development projects introducing significant architectural or high-
level design changes

Technology Governance
Questionnaire

Provides a comprehensive architectural overview of the system, using a number of different
architectural views to depict different aspects of the system – use case view, logical view,
process view, deployment view, implementation view and data view (as needed)

Software Architecture
Document

Defines the functional requirements for the system with use case diagramsUse Case Specifications

Outlines and communicates the objectives of the testing effort to gain acceptance and
approval from the stakeholders

System Test Plan

Provides measurement and explanation of variances between actual and expected project
performance and informs management of project issues (High Risk, High Impact)

Corporate Report Card

Details the specific tasks that must be completed by each team member in order to complete a
project

Project Plan / Iteration Plan

Captures all requests made on the project from stakeholdersStakeholders Requests

Entails the documentation, review, resolution, and follow-up of project issuesIssues List

Details a list of known and open risks to the project, sorted in decreasing order of importance
and associated with specific mitigation strategies or contingency plans

Risk List

Establishes criteria for determining whether or not a project is ready to move from one phase
to the next phase

Phase Assessment Review

Documents a plan to be used to direct user acceptance testing and ensures that all of the
detailed business requirements defined in Inception are tested completely

User Acceptance Test Plan

Defines the nonfunctional requirements of the systemSupplementary
Specifications

Defines the stakeholders view of the product to be developed, contains an outline of the
envisioned core requirements, defines the boundary and primary features of the system and is
used as the basis for more detailed technical requirements

Vision

Outlines the project’s purpose, scope, costs, benefits and risks of the investment and is used
by business sponsors and stakeholders to make an informed decision

Investment Concept
Statement Business Case

DefinitionsArtifacts

Sample RUP Artifacts Definition

120

Project ManagerPhase Assessment ReviewOngoing

Business Project ManagerCorporate Report CardOngoing

Project ManagerProject Plan / Iteration PlanOngoing

Project ManagerRisk ListOngoing

Project ManagerIssues ListOngoing

Project ManagerSystem Test PlanConstruction

Business Project ManagerUser Acceptance Test PlanConstruction

Technology Project Manager
ArchitectSoftware Architecture DocumentElaboration

Business Lead (A)

Technology Project ManagerSupplementary Specifications
Vision

Elaboration

Business Lead (A)

Technology Project ManagerUse Case SpecificationsElaboration

Technology Project Manager
Delegated Governance

QuestionnaireInception

Business Lead Stakeholder RequestsVisionInception

Business Lead (A)

Technology Project ManagerVisionInception

Business Sponsor (A)

Business Project ManagerBusiness CaseInception

Business Sponsor (A)

Business Project ManagerInvestment Concept StatementInception

OwnerArtifactLMSPhase

A = Approver

Light

Light

Light

Sample RUP Core Artifacts

121

Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The project manager also
establishes a set of practices that ensure the integrity and quality of project artifacts. In
addition, the Business Project Manager plans and conducts the formal review of the use-
case model.
Leads and coordinates requirements elicitation and use-case modeling by outlining the
system's functionality and delimiting the system; for example, establishing what actors
and use cases exist and how they interact. In addition, this role details the specification
of a part of the organization by describing the workflow of one or several business use
cases.

Business Project Manager

Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The technology project
manager also establishes a set of practices that ensure the integrity and quality of project
artifacts.

Technology Project Manager

Provides project leadership and overall business perspective. This role is responsible
for managing the project risk and working with the team to ensure appropriate
communication of risk mitigation.
Represents the team to stakeholders and management and influences the strategic and
tactical business decisions pertaining to the project product. This role’s overall goal is to
ensure the business expectations are achieved on time and on budget.

Business Lead

Leads and coordinates technical activities and artifacts throughout the project.
The software architect establishes the overall structure for each architectural view: the
decomposition of the view, the grouping of elements, and the interfaces between these
major groupings. Therefore, in contrast to the other roles, the software architect's view is
one of breadth as opposed to one of depth.

Architect

Establishes the project funding and periodically review the spending progress against the
Investment Opportunity expectations. They consistently champion the project and
associated changes, as well as communicate project progress to Corporate leaders.

Business Sponsor

DefinitionKey Role

Sample Key Roles/Owners of RUP Artifacts

122

Summary of Sub-Section’s Key Points

RUP focuses on:
Iterative Controlled Development
Use Case Models for Business
Requirements
Component Architecture
Risk Identification, Management
&Mitigation

123

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

124

Agile Software Engineering

Agility
“Ability to create and respond to change in order to
profit in a turbulent business environment”

Agile Values
Individual and interactions vs. processes and tools
Working software vs. comprehensive documentation
Customer collaboration vs. contract negotiation
Responding to change vs. following a plan

125

Agile Software Development Ecosystems

Agile Software Development Ecosystems
(ASDEs) vs. Traditional Software Development
Methodologies

“Chaordic” perspective
Product goals are achievable but they are not
predictable
Processes can aid consistency but they are not
repeatable

Collaborative values and principles
Barely sufficient methodology

Agilists are proponents of ASDEs

126

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

127

Section Objectives

Describe the limitations of legacy and
best practice SDLC methodologies
Suggest the improved approach that is
covered in the course
Discuss the approach to follow for the
class project

128

Limitations of Legacy SE Methodologies

Focused on software solutions
development
Driven by processes

Not driven by architecture and/or best
practices altogether (other than initially)

Focus is on scope, time, cost, and quality
customer input sparsely considered

Metaphor:
“an algorithm without a centralized data
structure to operate on”

129

Limitations of RUP Approach

Focused on software solutions development
Driven by best practices

Driven by workflows (and tools)
Focus is on scope, time, and cost

Customer assesses quality and drive change
Deliver quality software on-time & on-budget

By enforcing a best practice process that manages
change
By following a PDCA approach were individuals play
various roles in the overall process

Gap between Architecture-Driven approach
and Use-Case Driven Modeling

A “top-down” architectural approach

130

Illustrating the RUP “Gap”

OK
OK
Fail

Realized By
Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Core Process
Workflows TestImplemen-

tation
Analysis &

Design
Requirements

Business Use-
Case Model

Business
Modeling

Business
Object Model

BBB

B

Realized
By

Automated
By

Going from business requirements to use cases
requires non-trivial input that is hard/impossible to
predict

131

Limitations of ASDE Approaches

Focused on software solutions development
Driven by best practices

Driven by collaboration between individuals
Interactions: customer/project team & intra-project team

Driven by change

Focus is on quality (test-driven), time, and cost
Customer drives the scope
Deliver optimal quality software on-time & on-budget

By limiting the scope to facilitate change
By follow an MOB approach were individuals assume full
leadership

Architectural re-factoring becomes a nightmare
A “bottom-up architectural approach”

132

Agile Pattern-Driven Architecture (PDA) Approach

Focused on business solutions development
» SDLC stands for “(Business) Solution Development LifeCycle”

Seed the Architecture-Driven approach so it does not
operate top-down or bottom-up
» Integrate the Architecture-Driven approach into standard and

business specific architecture-driven workflows
• e.g., AKDAR, GDM, SBAM, PEM, LSS (BPM pattern), CBM (SOA

pattern)
» Use an agile workflow-driven approach rather than rigid processes
» Use architecture-driven approach from business strategy all the

way down to product maintenance
» Subject individuals to ongoing transformation processes

Flexible RUP-like or ASDE-like focus and introduces
problem pattern set as an additional variable
Need to deal with individuals reaction to the constant need
to adapt to change
» Build conducive environments (e.g., game-metaphor, etc.)

133

Enterprise Strategy and Business Solutions Alignment Problem

134

PDA Solution: Enterprise Architecture Management
“Focusing on Business Model Improvements while Maintaining Enterprise Alignment”

135

Strategy Enablement Process Patterns and Artifact Types
“Enabler #1”

136

Strategy Enablement Process Patterns Detailed
A Process Pattern Leads to a Methodology Once Specific Activities are Chosen to Implement a Vision

137

Strategy Enablement Artifact Types Detailed

Traceable A
rtifacts

138

Extensible Framework and Best Practices Knowledge Base
“Enablers #2 and #3 (Sample)” – EAMF Framework Summary of Capabilities

Extension of the TOGAF Industry Standard
http://www.opengroup.org/togaf/

Differentiators:
Business Pattern Oriented Architecture (POA) orientation

Extensible methodology based on business solution patterns
Extensible knowledge foundation based on best practices and
ongoing strategies and business solution development

Artifact Traceability Focus
Agile Activity-Driven Approach

Solution Development Lifecycle agnostic
Solution-Driven Approach
Tool Agnostic Approach

139

Strategy Enablement From a Tools Perspective
Enabler #4 (Sample): EAMF Framework Implementation

140

Incremental Iterative Enterprise Transformation Methodology
“Enabler #5”

141

Strategy Enablement At Work
Enterprise business model goal is to sustain

double digit annual growth and align all
business units with that goal

Alignment Execution Methodology moves
onto requirements model engineering

activities and business architecture analysis
and design conducted by project Business
Architects in collaboration with application/

information/technology architects
(requirements model is shared between the

various group and is the central point of
focus for collaboration)

While the business architecture is still being
refined, Alignment Execution Methodology
activities are conducted on the Application

and Information Architecture fronts (business
architecture is “deployed” incrementally and

iteratively on top of the application/
information architecture)

Business unit X consults with the SPO to
identify:

(a) Their current maturity level with respect
to the high-level vision

(b) Business Unit Specific alignment goals
(c) Alignment Elicitation Methodology SPO conducts a high-level goal

decomposition, consults with the ARB,
matches the business domain forces with

the forces that drive best practice business
reference architectures, and identifies a

high-level vision:
e.g., SOA + BPM + BRM + BAM

With the help of the SPO and the EAM
infrastructure, alignment tenets are identified

by applying goal patterns and best
practices, and the applicable alignment

elicitation methodology is identified

Business unit X applies the alignment
elicitation methodology to identify their

maturity level (i.e., common denominator)
with respect to the high-level vision and a

set of alignment projects/opportunities

SPO, ARB, and Business unit X prioritize the
projects and elevate a subset of them into
the 4-year project roadmap and select an

appropriate alignment execution
methodology (ARB inputs is key to identify

constraints imposed by existing
infrastructure)

Gated execution of multiple projects starts:
Projects that are not aligned with the

Enterprise strategy breach gate 1
Projects that pass through gate 1 are funded
SPO updates the roadmap every six months
to account for changes in strategic directions

Alignment Execution Methodology is applied
to individual projects starting with

requirements engineering activities
conducted by project BAs:

Gate 2 review occurs at the end of the
requirements definition phase (aka.

Inception phase)
On selected project a 3-months timeline is
imposed on the delivery of a CPD prior to

Gate 2 review

While the business/application/information
architectures are still being refined,

Alignment Execution Methodology activities
are conducted on the Technology

Architecture front (application/information
architecture is “deployed” incrementally and

iteratively on top of the technology
architecture

Project
Requirements

Enterprise
Strategy
(SPO)

Enterprise
Governance

(SPO)

Project
Strategy
(EPO)

Requirements
Engineering

(PT)

Business
Architecture

(PT)

(PT)
Information
Architecture

Application
Architecture

(PT)

(PT)
Technology
Architecture

Enterprise
Requirements

&
Architectural

Models

Project
Requirements

&
Architectural

Models

Architecture
Integration

(SPO & ARB)

1

2

3

4

5

6

7

8

9

10

11

142

Enterprise Architecture Management
EAMF Activities Integrate Seamlessly with the Company X Project Lifecycle

143

Enterprise Architecture Management
Integration with the Company X Project Lifecycle all

144

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

145

Course Assignments

Individual Assignments
Reports based on case studies / class presentations

Project-Related Assignments
All assignments (other than the individual assessments) will
correspond to milestones in the team project.
As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.
There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.
A sample project description and additional details will be available
under handouts on the course Web site

146

Team Project

Project Logistics
Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.
Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

147

Document Transformation methodology driven
approach
» Strategy Alignment Elicitation

• Equivalent to strategic planning
– i.e., planning at the level of a project set

» Strategy Alignment Execution
• Equivalent to project planning + SDLC

– i.e., planning a the level of individual projects + project
implementation

Build a methodology Wiki & partially implement the
enablers
Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found
Final product is a wiki/report that focuses on
» Methodology / methodology implementation / sample

business-driven problem solution

Team Project Approach - Overall

148

Document sample problem domain and
business-driven problem of interest
» Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

Team Project Approach – Initial Step

149

Assignments & Readings

Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapter 1 & Part One-Chapter 2

Assignment #1

» Team Project proposal (format TBD in class)

» Presentation topic proposal (format TBD in class)

Project Frameworks Setup (ongoing)

» As per reference provided on the course Web site

150

Next Session: Software Development Lifecycles (SDLCs)

Lifecycle Phases

Traditional Lifecycle Models

Alternative Techniques

Homework #1

Project #1

151

Any Questions?

