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Summary

The MAPK (mitogen-activated protein kinase) or its synonymous ERK (extracellular sig-
nal regulated kinase) pathway whose components are Ras, Raf, and MEK proteins with
many biochemical links, is one of the major signalling systems involved in cellular growth
control of eukaryotes including cell proliferation, transformation, differentiation, and apop-
tosis. In this study we describe the MAPK/ERK pathway via (quasi) biochemical reactions
and then implement the pathway by a stochastic Markov process. A novelty of our ap-
proach is to use multiple parametrizations in order to deal with molecules for which lo-
calization in the cell is an intricate part of the dynamic process and to describe the protein
using different binding sites and various phosphorylations. We simulate the system by
exact and different approximate simulations, e.g. via the Poisdeap, the Binomiat--

leap and the diffusion methods, in which we introduce a new updating plan for dependent
columns of the diffusion matrix. Finally we compare the results of different algorithms by
the current biological knowledge and find out new relations about this complex system.

1 Introduction

The MAPK/ERK pathway whose main components are Ras, Raf, and MEK proteins (Ejgure

is one of the major signalling systems which regulates the cellular growth control of all eukary-
otes. The structure of this pathway includes a number of phosphorylations on the protein level
whose interactions are directed pgsitiveand negative feedback loopsThese loops cause
either activation or inhibition of other proteins and are namedsadlatory behaviouif they

are executed as combinations with time delays. The circadian rhythm is an example of an
oscillatory behaviour which implies a series of coordinated feedbacks between transcriptional
activation and protein degradation that generates a periodic cycle (See Settion

Because of its importance in cellular activation, the MAPK/ERK pathway has been intensively
studies from different laboratoried¥, 12, 13, 1]. There are a number of biological sources
which give qualitative knowledge about the MAPK/ERK pathwag,[18]. However these
sources do not describe the system by an explicit set of reactions which can be more helpful to
understand the actual structure. In this study we combine these underlying qualitative knowl-
edge to represent biochemical activations of the pathway as a list of (quasi) reactions. We
denote all components by simple notations, thereby, produce a basis for stochastic simulation.
As a novelty, moreover, we use multiple parametrizations in order to deal with molecules for
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Figure 1: Simple representation of the structure of MAPK/ERK pathway.

which localization in the cell is an intricate part of the dynamic process and to describe the pro-
tein using different binding sites and various phosphorylations. The following set of equations,
which describes the activation of the MAPK pathway by the EGF receptor, is an example from
the reaction list of the pathway with 94 reactions and 51 substrates, representing 33 proteins
and genes.

EGF + Shc— EGF + Shg, (translocation)

Grb2 + SOS— Grb2-SOS

EGF + Grb2-SOS— EGF + Grb2-SO§ (translocation)
Shg,, + Grb2-SOg, — Shc-Grb2-S0J

Shc-Grb2-SO3 + Ras.GDP— Shc-Grb2-SO§5 + Ras.GTP

in which Grb2, SOS, Shc, EGF, Ras.GTP, and Ras.GDP are single proteins, Grb2-SOS and Shc-
Grb2-SOS are protein complexes in the cytosol, and Shc-Grb2;3€eprotein complex near

the membrane. As seen from the reactions, the translocation of substrates to the membrane is
expressed by the notation. For instance the protein Shaenotes the Shc protein translocated

from the cytosol towards the membrane. The different levels of the phosphorylation, on the
other hand, are denoted by the index p or p1l and p2 where the first two abbreviations show
the mono-phosphorylation and the latter implies the double-phosphorylation of a protein. For
example, MEK.p2, another protein from the list, represents the double-phosphorylated MEK
protein on the S218 and S222 binding sites.

Gene regulation is commonly modelled via ordinary differential equations (ODESs), which em-
ploy the law of mass action and continuous concentrations of each chemical substrate. Even
though ODEs are successful to describe several reactions such as linear production and degra-
dation, they cannot explain the small system variability of the actual reactions. For modelling
biochemical systems, stochastic processes are a natural chdCk [This dynamic formaliza-

tion takes into account the probabilistic manner of the different biological activations, such as
the transcription of certain proteins, which occurs with low frequency in biological tidie [
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2 Stochastic Simulation Algorithms (SSA)

There are various exact methods 7, 5] for implementing stochastic simulations, but practi-
cally the Direct method[6], also known as th&illespie algorithm is the most common and
usually most efficient simulator.

2.1 Gillespie algorithm

The Gillespie algorithm is strictly based on tbleemical master equationhich describes the
stochastic behavior of the syste@0[ by

0
&P (Y1) Z{aj —vj,¢;)P(Y —vj;t)dt — a;(Y, ¢;) P(Y;t)dt}.
In this equation,M is the number of reactiong;, R», ..., Ry;. The N-dimensional vector

Y = (Y1,Ys,...,Yn) represents the state of the system at time; denotes thgth row of

the net effect matriX’, andc; is the stochastic rate constantjoh reaction,?;. Accordingly,

a;(Y, ¢;) describes the hazard for reactipwith stochastic rate constantand staté” so that
the terma; (Y —v;, ¢;) P(Y — v;; t)dt indicates the probability that the reactiéh occurs over
time interval [, t + dt] moving the state fromy” —v; to Y.

This algorithm works well for simulating small systems, however, it is inefficient for developing
realistic complex models since the time step for the next reaction is taken so small such that
only a single reaction can occur in a given time stépZ0]. Hence we use the following
approximation techniques for simulating the signalling pathway.

2.2 The Poisson r-leap method

An interesting idea for an approximation is to execute several reactions simultaneously over
a larger time interval. If we define how many times each reaction is executed in each small
time interval, we can move along the system’s history axis from one time step to the next,
instead of moving along from one reaction to the next. So by using these subintirapks,

a realization of state vectdr can be described. If we choose these intervals very small, the
results correspond to those of the exact SSA. However if a larger time interval is selected, the
results give us an approximation of the exact algorithm with a reduction of computational cost.

The Poissonr-leap method is an approximation method whose aim is to increase intervals
between sampling times efficiently under teap condition[9]. The method determines a

small time intervalr by
an(Y)
T = min
s | [N 6(Y)bia(Y)|

in whicha;(Y") is thejth reaction hazard,; = 0a;(Y)/0Y; i =1,...,Nandj =1,..., M),
ao(Y) = XM, a;(Y), &Y) = M, a;(Y)v;; € is the specified fractiond(< ¢ < 1), in the
sense that the transition probability per unit time (hazard) does not change very much, so that
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the leap condition is satisfied. Under this assumption a sample ¥alwéhich is the number
of times of the execution of the reactidty in the time interval {, t+7] given thatY (¢) = v,

is drawn from thePoissondistribution with mearu;(Y)7. On the other hand the net change in
the state of the system in, | + 7], A, is calculated a8 = }°7" k;v;. The method updates the
current state by replacingoy ¢ := ¢+ 7andY by Y :=Y + A\ [9, 10].

2.3 The Binomial 7-leap method

Similar to the Poisson alternative, the Binomialeap method also uses the system’s history
axis to produce an approximate simulation. By assuming that the leap condition holds, the
maximum numbek{) ~of the jth reaction occurring in time interval,[t + 7] given the state

Y (t) is determined bynin,, ;| Yi/|vi;| |, Wwhere| z | is the greatest integer in Y is the current

state vector containing the number of molecuig$) of all substrates at timg and finallyv;;

stands for each entry of the net effect matrix for ttiesubstrate and thgh reaction.

The binomialT-leap method samples the number of thk reactionk; from the binomial
distribution with the success probability= a;7/kY), in whichT = f/ ¥ a; and f is a
coarse graining factor greater than 1. In the computatfos, 1 stands for the average time
increment of the exact SSA[19] and for the choice of, like f < 10 for small steps or

f > 10* for large steps, the method controls the computational time and the accuracy of the
approximation. The method updates the titrend the staté’; by settingt,., = t,c + 7 and

Yi(twew) = Yi(toa) + A, WhereX = v;;k;, respectively 2, 3].

The advantage of this method over the Poisson alternative is that it solves the problem of neg-
ative populations which may result in the unbounded Poigstgap algorithm. This case
happens, particularly, whet) exceeds the available population size of one or more species in a
single reaction19, 2]. However it is unable to simulate several types of reaction, like transcrip-
tional regulation, because the update regimg'gf, is based on only the substrates whose net
effects in thejth reaction are less than 0 (See SecBol), whereas transcriptional regulation
(DNA—DNA + RNA) has no negative net-effects.

2.4 Diffusion approximation

Under the assumption that the probability distribution of the number of the molecules of each
species at depends on the continuousand continuous number of molecules, the stochastic
model can be converted to a differential equations model. With the Fokker-Planck approach
[17], this probability distributionP(Y'(¢)) can be expanded via a Taylor expansidh, [L7] and

the change of state of each speciesiatfound by a Langevin approach, in which a correlated
noise term describes the stochastic behaviour of the model over and above the drift term

dY (t) = p(Y, ©)dt + B2 (Y, 0)dW (t)

wherep(Y,0) = V'a(Y,0) and3(Y,0) = V'diag{a(Y,©)}V are mean, or drift, and vari-
ance, or diffusion, matrices, respectively, both dependinyy @nd the parameter vectér =
(c1,c9,...,c.) explicitly; dW (t) represents the change of a Brownian motion over time. Practi-
cally we implement the time increment by choosing the Gillespie’s time step which is generated
according to an exponential with paramezej‘i1 a;. The algorithm computes the next state at

t + dt by replacingY () by Y (¢) + dY (¢) [8, 11].
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2.5 The new updating regime for diffusion approximation

In large stochastic systems, we have observed that the distribution of the number of molecules
of substrates exhibits high dependency when the system converges to the stationary distribu-
tion. This dependency structure causes a singularity in the diffusion miaaid makes cal-
culation of dY'(¢) via a multivariate normal impossible. Effectively, the variance structure

32 (Y,©)dW (t) “lives” in a lower dimensional space. To unravel this problem we propose the
following updating regime:

1. By checking the columns of from left to right, each linearly dependent colurinis
identified.

2. The dependent columrts, totally |S|, are described as the linear combination of inde-
pendent columns so that evety = 3" ..s ;-; ai;8; The a vector shows the linear re-
lationship between the underlying dependent column and previous independent columns
and is stored for eactfi € 5).

3. Anew (N — |S]) x (N —|S]) dimensional diffusion matri)* is defined by eliminating
|S| dependent columns and rows froig . v

4. N—|S| samples\ _g are generated from normal distribution with mean zero and variance
3124t for updatingV — | S| linearly independent substrates Wat + dt) = Y;(t) +
pi(t)dt + A; wherej & S.

5. The dependent columns ®f, Ag, are generated a8; = 3¢ ;; @;;A; (i € S) using
the as from before and are updated¥aét + dt) = Yi(t) + pi(t)dt + A,;.

Under this new updating regime, it can be shown that the covariance strgadfitbe changes
dY (t) is preserved: For€ S andj ¢ S

Cov(A;,A)) = Cov( Y auly,A))
k&S k<i
= Z OéikCOV(Ak,Aj>
k&S k<i
= Z Oéikﬁkj
k¢S k<i
= By
forie S
Cov(A;,A;) = Cov > audy,A)

k¢S k<i

= Z OéikCOV(Ak7 Az)

kS, k<i

= > S

kS k<i

= Bu

The results of the new algorithm are shown in Sec8dn
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3 Results

We have simulated the MAPK pathway by using exact and approximate methods mentioned
above. In our computations, we have assumed that the hazards are constant for each level.
We choose 3 gradations of reaction time speed, namely slow, normal, and fast. The stochastic
rate constants have been calculated according to the order of each reaction, the given hazards,
and the number of molecules which is initialized at 100 for all substrates. Then we have run
the algorithms under three different scenariag:ekcluding all reactions of degradation;)(

merely including EGF degradation, and:{ initializing the number of molecules of EGF at

zero, respectively. Indeed in biochemical reactions protein degradation is much slower than
the time periods during which biochemical activation and de-activation processes take place.
Therefore ignoring these reactions in the MAPK pathway is realistic in simulation. Under the
second scenario, we have addeddbgradatiorof EGF, which is a direct result of the activation

of the MAPK pathway via the internalization of this receptor into vesicles. Finally under the
third scenario without the presence of EGF we aim to unravel the steady state behaviour of
the system, since EGF is the only protein that triggers the activation of the pathway and its
inactivation has not yet been fully understodd]|

3.1 Comparison of simulation results

All methods Without EGF degradation
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Figure 2: (a) Total hazards of Gillespie algorithm, Poissorr-leap method withé = 0.6, Binomial
7-leap method with f = 102, and diffusion approximation with new update plan under the first
scenario andt = 5. (b) Gillespie and diffusion approximation with new updating regime of active
MEK-RKIP complex in cytosol under the first scenario and ¢t = 20. The y-axis indicates the
number of molecules of this complex for the timet.

We have run simulations of the system under all simulation methods, and have compared the
differences of their total hazards and changes in activities of substrates through time under
the first scenario. Figurg2 shows that the Poissortleap and the diffusion method with the

new updating regime seem relatively smoother, whereas the Binengap gives the worst
approximation of the exact Gillespie algorithm. The comparison of number of iterations of all
methods in Tabld illustrates that the Binomiat-leap has time increments that are too large.
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Table 1: Comparison of computational times (2st column) and total number of iterations (3rd
column) of the Gillespie algorithm, the Poissonr-leap method, the Binomialr-leap method, and
the diffusion approximation with new update plan, respectively under the first scenario and = 5.

Total time  Total iteration

Gillespie algorithm 1hr 30625
Poissonr-leap method 1 hr 28 min 27851
Binomial 7-leap method 28 sec 3516
Diffusion approximation with new update plan 1hr 30731

In this method the time stepis decided with respect to the success probabhjility a7 /kY)
(Section2.3). If a,7 is bigger thark?) . 7 is automatically made large, like in our example.
Under this condition the only variable which can be adjusted for the computationsathe
value of the coarse gaining factér Although for an appropriate choice ¢f the result can be

improved significantly, the decision abofits based on ad hoc calculations.

Furthermore if the system has many reactions of transcriptional regulation or the reaction of
production, the method can not simulate the network properly becausgg ofipdating step
(Section2.3). For instance the following reaction of transcription,

ERK.p2-TF.p2+ MKP.DNA — ERK.p2-TF.p2+ MKP.DNA + MKP.RNA

in which ERK.p2-TF.p2 is the active ERK in the nucleus, MKP.DNA and MKP.RNA are the
DNA and the transcripted RNA sequences of MKP protein, respectively, cannot be executed
during the algorithm since the net effect vector of the reactioa: (0,...,0,1,0,...,0) has

only positive entries (Figurab).

As seen from Tabld, on the other hand, the Poissedeap method is computationally more
expensive than other approximations. Indeed its result is highly dependent on the choice of
e which affectsr. Even though the method does not use any ad hoc calculations, it can give
negative population numbergq, 2, 3], particularly in the log-run simulation.

From the Tablel, it is also observed that the computational time of both Gillespie and diffu-
sion algorithms are equal fer= 5. However since the number of iterations of the diffusion
approximation is greater than that of Gillespie algorithm, it can be concluded that the speed
of the former is slightly faster than the latter per iteration. Additionally from the simulation
with longer time interval, it has been found that as the network becomes more complex, the
computational efficiency of the diffusion approximation becomes considerably faster than the
Gillespie algorithm. For instance the running time of the MAPK pathway fer 20 is com-

pleted in 21 hours with Gillespie algorithm, on the other hand, the simulation takes 10 hours
with diffusion approximation.

In this study because of the underlying problems of the Poisson and Bino#@ap methods,

we have chosen the diffusion approximation to analyze the pathway as a smooth approximation
of the exact simulation. Figurgb shows the results of the active MEK-RKIP complex in
cytosol produced by diffusion approximation with new updating regime. As seen from the
graph, the diffusion with new updating step fits the exact result (Gillespie’s results) well. The
accuracy of the new procedure comes from the step that is very sensitive to the singularity of
the diffusion matrix.
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Figure 3: (a) Inactive, mono-phosphorylated MEK and RKIP complex in cytosol and (b) RNA

sequence of MKP in nucleus simulated by the Gillespie algorithm and Binomiat-leap method

with f = 102 under the first scenario andt = 5. The y-axes stand for the number of molecules of
the underlying substrates for the timet.

3.2 Comparison of conditions and translocation of proteins

In order to compare the results under the three conditions, we have listed changes in activities
of substrates with respect to their activations when EGF degradation is included. As shown in
Table2, we have found that single MEK and ERK proteins, all kinds of MEK-RKIP and ERK-
RSK complexes as well as c-Fos, MKP proteins are unrelated to the availability of EGF protein
in the system. Indeed a non-linear functionality between ERK and EGF has been already
mentioned by earlier studies of Wiley et a2] and Hornberg et al. [3]. On the other hand
inactive/active Ras, Raf, SOS, Shc, Grb2 proteins and their complexes either in cytosol or near
the cell membrane are highly dependent on the EGF activation. Moreover as seen fro) Table

it has been observed that under the first (excluding all reactions of degradations) and the third
(initializing the number of molecules of EGF to zero) scenarios, the proteins indicate exactly
the same changes if the second (merely including EGF degradation) scenario is chosen as the
basis condition of the pathway. This interesting finding can be explained by the oscillatory
behavior of ERK which is still unclear but possibly due to the negative feedback through the
induction of the expression of MAPK phosphatis&6][

Moreover co-regulation plots of biologically important pairs of substrates through time, have re-
vealed a bi-activation relations within RSK vs c-Fos, ERK.p2 vs c-Fos, c-Fos.RNA vs ERK.p2-
RSK.A, and EGF vs c-Fos proteins. The plot of the last pair is shown in Fiasean illustra-

tion. These findings can imply the oscillatory behaviour of proteins like in the case of the ERK
activation [L6].

On the other hand for investigating the effects of the translocation of proteins under all con-
ditions, we have plotted changes in activities of substrates with different localizations through
time. We have found that the localization of molecules by multiple parametrization is necessary
for explaining the dynamic behavior of the system. For instance Fispusnd Figuréb show
different activation of Grb2-SOS protein in cytosol and near the cell membrane, respectively.
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Figure 4: Plot of the co-regulation of EGF versus c-Fos proteins in the MAPK pathway under the
second scenario and = 20. The axes show the number of molecules of substrates through time.
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Figure 5: Change in activities of Grb2-SOS complex (a) in cytosol and (b) near membrane, respec-
tively including the degradation of EGF by using both Gillespie algorithm and diffusion approx-
imation under the second scenario and = 20. The y-axes illustrate the number of molecules of

the Grb2-SOS complexes for the time.
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Table 2: Changes in activities of each protein of the MAPK pathway under the first and the third
scenario when the second scenario is accepted as the natural activation of the cell and 20.

Types of proteins

Decrease in activation Ras.GDP, Raf.l, Shc, Grb2, Grb2-SOS, MKP.RNA

Stability in activation  Raf.l-RKIP, Raf.lI-RKIR, Raf.I-RKIP-Ras.GTR,
MEK, MEK , MEK g, MEK.p2, MEK-RKIP, RKIP,
MEK #-RKIP, MEKs-RKIP, MEK.p2-RKIP, ERK,
ERK.pl, ERK.p2, ERK.p2-TF.p2, ERK.p2-RSK.A,
ERK.p2-RSK.A-TF.p2, c-Fos, c-F0s.DNA, c-Fos.RNA,
c-Fos.p, MKP, MKP.DNA, TF, GAP, PP2A, PAK, PP5,
RKIP.p, PKC, RSK

Increase in activation Ras.GTP, Raf, Raf.Raf.I-Ras.GTP, Raf.A,,, Grb2,,,
Raf.A-Ras.GTR, Shg,,, SOS, Grb2-SOS, Shc-Grb2,,
Shc-Grb2-S0g

3.3 Dynamic profiles

In order to find out highly variable substrates in the MAPK/ERK pathway, we have applied

principal component analysis. The results from both diffusion and Gillespie algorithms show
that inactive Raf (Raf.l), active MEK (MEK.p2), c-Fos phosphorylated by ERK (c-Fos.p), and

RKIP phosphorylated by either PKC or ERK (RKIP.p) are associated with the most of the
variability of the network. Indeed a similar conclusion was obtained in the study of Hornberg
et al. (2005a): only a small group of reactions, which involve Raf, MEK, and ERK, directs the

behaviour of the pathway.

For finding homogeneous subsets of substrates in the system, we have applied PAMSAM clus-
tering [23] whose dissimilarity measure is defined via pairwise correlations. Figust@ews

the resulting 8 clusters. The results with EGF degradation indicate that both simulation tech-
nigues partition most of the proteins in the same clusters and the substrates whose activations
are similar like in the Tabl® are the members of the same or close clusters. Similarly the
substrates whose activations are linear under the same conditions are gathered in the same or
close classes. However the diffusion approximation has more correlated proteins than Gillespie
algorithm. The reason is that the former is much smoother than the latter.

4 Conclusion

In this study, we have implemented the stochastic simulation of the MAPK pathway by using
both exact and approximation algorithms. We have compared the simulation results according
to their computational times and accuracies. The results show that although the Poisson
leap method can be accelerated by several improvements in time incre@nisdan give
negative population sizes in the long-run. On the other hand the Binergalp method is fast

in calculation, but it is not accurate enough to get smooth approximation of the exact algorithm
and has ad hoc choices for updating states and determining the time increments.

In order to unravel the singularity problem 8f the diffusion matrix, in the diffusion approxi-
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Figure 6: PAMSAM clustering of 45 substrates (excluding c-Fos.DNA, GAP, PP2A, PAK, PP5,
PKC) by using (a) Gillespie algorithm and (b) diffusion approximation under the second scenario
and ¢t = 20.

mation, we have proposed a new updating regime. The results show that our method sorts the
singularity problem and gives an exact solution.

For simulating the MAPK pathway, as a novelty we have used multiple parameterizations to
describe the translocation and the different levels of phosphorylation of the protein and have
combined the different biological sources, which represent the pathway qualitatively, as a list
of (quasi) reactions with simple notations. The analysis indicates that such kind of description,
indeed, is essential to better understand the structure of the complex system and suitable for
generating a stochastic simulation. Finally we have checked our conclusions with the biological
knowledge about the pathway and found out several new features of the MAPK signalling
system.
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