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ABSTRACT The concept image consists of all the cognitive structure in the
individual's mind that is associated with a given concept. This may not be
globally coherent and may have aspects which are quite different from the
formal concept definition. The development of limits and continuity, as taught
in secondary school and university, are considered. Various investigations are
reported which demonstrate individual concept images differing from the
formal theory and containing factors which cause cognitive conflict.

Compared with other fields of human endeavour, mathematics is usually
regarded as a subject of great precision in which concepts can be defined
accurately to provide a firm foundation for the mathematical theory. The
psychological realities are somewhat different. Many concepts we meet in
mathematics have been encountered in some form or other before they are
formally defined and a complex cognitive structure exists in the mind of every
individual, yielding a variety of personal mental images when a concept is
evoked. In this paper we formulate a number of general ideas intended to be
helpful in analysing these phenomena and apply them to the specific concepts of
continuity and limits.

l. Concept image and concept definition

The human brain is not a purely logical entity. The complex manner in which it
functions is often at variance with the logic of mathematics. It is not always
pure logic which gives us insight, nor is it chance that causes us to make
mistakes. To understand how these processes occur, both successfully and
erroneously, we must formulate a distinction between the mathematical
concepts as formally defined and the cognitive processes by which they are
conceived.

Many concepts which we use happily are not formally defined at all, we
learn to recognise them by experience and usage in appropriate contexts. Later
these concepts may be refined in their meaning and interpreted with increasing
subtlety with or without the luxury of a precise definition. Usually in this
process the concept is given a symbol or name which enables it to be
communicated and aids in its mental manipulation. But the total cognitive
structure which colours the meaning of the concept is far greater than the
evocation of a single symbol. It is more than any mental picture, be it pictorial,
symbolic or otherwise. During the mental processes of recalling and
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manipulating a concept, many associated processes are brought into play,
consciously and unconsciously affecting the meaning and usage.

We shall use the term concept image to describe the total cognitive structure
that is associated with the concept, which includes all the mental pictures and
associated properties and processes. It is built up over the years through
experiences of all kinds, changing as the individual meets new stimuli and
matures.

For instance the concept of subtraction is usually first met as a process
involving positive whole numbers. At this stage children may observe that
subtraction of a number always reduces the answer. For such a child this
observation is part of his concept image and may cause problems later on
should subtraction of negative numbers be encountered. For this reason all
mental attributes associated with a concept, whether they be conscious or
unconscious, should be included in the concept image; they may contain the
seeds of future conflict.

As the concept image develops it need not be coherent at all times. The brain
does not work that way. Sensory input excites certain neuronal pathways and
inhibits others. In this way different stimuli can activate different parts of the
concept image, developing them in a way which need not make a coherent
whole.

We shall call the portion of the concept image which is activated at a
particular time the evoked concept image. At different times, seemingly
conflicting images may be evoked. Only when conflicting aspects are evoked
simultaneously need there be any actual sense of conflict or confusion. Children
doing mathematics often use different processes according to the context,
making different errors depending on the specific problem under consideration.
For instance adding 1

2 + 1
4  may be performed correctly but when confronted by

1
2 + 1

3  an erroneous method may be used. Such a child need see no conflict in the
different methods, he simply utilises the method he considers appropriate on
each occasion.

The definition of a concept (if it has one) is quite a different matter. We shall
regard the concept definition to be a form of words used to specify that concept.
It may be learnt by an individual in a rote fashion or more meaningfully learnt
and related to a greater or lesser degree to the concept as a whole. It may also be
a personal reconstruction by the student of a definition. It is then the form of
words that the student uses for his own explanation of his (evoked) concept
image. Whether the concept definition is given to him or constructed by
himself, he may vary it from time to time. In this way a personal concept
definition can differ from a formal concept definition, the latter being a concept
definition which is accepted by the mathematical community at large.

For each individual a concept definition generates its own concept image
(which might, in a flight of fancy be called the “concept definition image”).
This is, of course, part of the concept image. In some individuals it may be
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empty, or virtually non-existent. In others it may, or may not, be coherently
related to other parts of the concept image. For instance the concept definition
of a mathematical function might be taken to be “a relation between two sets A
and B in which each element of A is related to precisely one element in B.” But
individuals who have studied functions may or may not remember the concept
definition and the concept image may include many other aspects, such as the
idea that a function is given by a rule or a formula, or perhaps that several
different formulae may be used on different parts of the domain A. There may
be other notions, for instance the function may be thought of as an action which
maps a in A to f(a) in B, or as a graph, or a table of values. All or none of these
aspects may be in an individual’s concept image. But a teacher may give the
formal definition and work with the general notion for a short while before
spending long periods in which all examples are given by formulae. In such a
case the concept image may develop into a more restricted notion, only
involving formulae, whilst the concept definition is largely inactive in the
cognitive structure. Initially the student in this position can operate quite
happily with his restricted notion adequate in its restricted context. He may even
have been taught to respond with the correct formal definition whilst having an
inappropriate concept image. Later, when he meets functions defined in a
broader context he may be unable to cope. Yet the teaching programme itself
has been responsible for this unhappy situation.

As we shall see shortly the concept images of limit and continuity are quite
likely to contain factors which conflict with the formal concept definition. Some
of these are subtle and may not even be consciously noted by the individual but
they can cause confusion in dealing with the formal theory. The latter is
concerned only with that part of the concept definition image which is generally
mutually acknowledged by mathematicians at large. For instance, the verbal
definition of a limit “sn→s” which says “we can make sn as close to s as we
please, provided that we take n sufficiently large” induces in many individuals
the notion that sn cannot be equal to s (see Schwarzenberger and Tall, 1978). In
such an individual this notion is part of his concept definition image, but not
acknowledged by mathematicians as part of the formal theory.

We shall call a part of the concept image or concept definition which may
conflict with another part of the concept image or concept definition, a potential
conflict factor. Such factors need never be evoked in circumstances which cause
actual cognitive conflict but if they are so evoked the factors concerned will
then be called cognitive conflict factors. For instance the definition of a
complex number x+iy as an ordered pair of real numbers (x, y) and the
identification of x+i0 = (x, 0) as the real number x is a potential conflict factor in
the concept of complex number. This is because it includes a potential conflict
with the set-theoretic notion that the element x is distinct from the ordered pair
(x, 0). Students in a questionnaire (Tall, l977b) often regarded a real number
such as √2 as not being a complex number and yet several of these defined real
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numbers as “complex numbers with imaginary part zero.” Thus √2 was
regarded as real and √2+i0 as complex. These were conveniently considered as
being distinct entities or the same, depending on the circumstances, without
causing any cognitive conflict. They only become cognitive conflict factors
when evoked simultaneously.

In certain circumstances cognitive conflict factors may be evoked
subconsciously with the conflict only manifesting itself by a vague sense of
unease. We suggest that this is the underlying cause for such feelings in
problem solving or research when the individual senses something wrong
somewhere; it may be a considerable time later (if at all) that the reason for the
conflict is consciously understood.

A more serious type of potential conflict factor is one in the concept image
which is at variance not with another part of the concept image but with the
formal concept definition itself. Such factors can seriously impede the learning
of a formal theory, for they cannot become actual cognitive conflict factors
unless the formal concept definition develops a concept image which can then
yield a cognitive conflict. Students having such a potential conflict factor in
their concept image may be secure in their own interpretations of the notions
concerned and simply regard the formal theory as inoperative and superfluous.

The notions so far described are all clearly manifested in the various
concepts of limit and continuity. In the remainder of the article we describe a
few of the problems caused by a concept image which does not coherently
relate to the concept definition and the resulting potential conflicts.

2. Practical curriculum problems

There are several practical problems imposed in the teaching of the concepts of
limits and continuity. If we confine ourselves to the three notions set out:

(i) limit of a sequence lim
n→∞

sn,

(ii) limit of a function lim
x→a

f (x),

(iii) continuity of a function f: D→R,

then we find that in English schools these are rarely taught in a logical order.
Practical considerations and the need to learn the calculus at the earliest
opportunity lead to the notion of a limit of a function first being discussed in
differentiation as

lim
δx→0

f (x + δx) − f (x)
δx
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or in some other notation. Very soon the standard formulae for derivatives are
derived and the general notation of limit recedes into the background. When it is
discussed, initially it is usually in a dynamic form:

“ f(x) → c as x → a,”
or

“ f(x) approaches c as x approaches a.”

Later the limit may be given in some quantified form as

“we can make f(x) as close as we like to c provided that we take x
sufficiently close to a,”

or

“for all ε > 0, there exists δ > 0 such that
0 < |x–a| < δ implies |f(x)–c| < ε.”

In a similar manner the limit of a sequence is often dealt with briefly then
greater stress is laid on the limit of a series, for instance in the form of a
geometric series

  
1 + x+Kxn−1 = 1 − xn

1 − x
→ 1

1 − x
 for |x|<1,

or a Taylor series

  
f (x + h) = f (x) + h ′f (x)

1!
+ h2 ′′f (x)

2!
+K .

The notion of continuity is rarely alluded to as a formal definition, but a concept
image is built up from informal usage of the term. For instance in The School
Mathematics Project Advanced Level texts (hereinafter referred to as “SMP”)
the concept images of limits and continuity are carefully built up over the two
years of the course with fairly formal concept definitions only being given at the
very end. In this way the concept image is intended to lead naturally to the
concept definition, but in practice certain potential conflicts occur which can
cause cognitive conflict for those who later study formal analysis.

These comments are not intended as a criticism of the curriculum as it now
is. They are intended to demonstrate the realities of the situation where concept
images are built up practically and informally, then an initial concept definition
is given which is an approximation to the formal definition met by the small
percentage of students who go on to study mathematics at university. Our
intention is to consider the three given concepts in turn and discuss some of the
potential conflict factors which may occur.1

                                                
1 The authors are grateful to Cambridge University Press and The School Mathematics Project for granting
permission to quote from Advanced Mathematics (Metric) Books l–4.
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3. Limits of sequences

Sequences are usually introduced without formal definition. For instance in
SMP, Book 1, chapter 2 (page 31) it says:

Suppose that you wanted to work out the value of 27 how would you do it?
Probably you would recite to yourself the sequence of numbers

2, 4, 8, 16, 32, 64, 128;

and perhaps you would also count off

1, 2, 3, 4, 5, 6, 7

on your fingers at the same time, which would help you to keep your place in
the sequence. Thus when you had counted off n fingers you would have
recited the number 2n.

It then goes on to explain how the process can be carried out on a computer,
leading through inductive definitions, proof by induction and several
intermediate topics before defining the notion of function in chapter 4. After a
brief set-theoretic discussion recalling earlier work on relations the notion of
function is defined (SMP, Book 1, chapter 4, p. 83):

It will be noticed that the relation ‘is the husband of’ has a special property, at
least in Christian countries: that each married man has just one wife. This
means that each member of the domain M is associated with one and only one
member of the codomain. Relations having this property occur very
frequently, and play an important part in mathematics. They are known as
‘functions’.

A function is a relation between elements of two sets – the domain and the
codomain – such that each member of the domain is related to one and only
one member of the codomain.

A dozen pages later the notion of ‘sequence’ is recalled and reinterpreted as part
of the function concept (SMP, Book 1, chapter 4, p. 95):

We have sometimes looked at strings of numbers such as

0, 1
2 , 2

3 , 3
4 , …

and used the word ‘sequence’ to describe them. The separate numbers are
called the ‘terms’ of the sequence: thus the first term is 0, the second term is 1

2

and so on. We see at once that with this sequence is associated a mapping,
described by the table:

Position of Value of
term term

1 → 0

2 → 1
2

3 → 2
3

4 → 3
4

… …

It is therefore possible to define a sequence as a function having for domain
the set N of natural numbers {l, 2, 3, 4, … }.† The image f(n) of the number n
is described as the nth term of the sequence.
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†The word sequence is also used for functions having for domain the set of
non-negative integers {0, 1, 2, 3, …}. The number f(n) is then properly
described as the (n+1)th term.

Apart from giving arithmetic and geometric progressions (n→a+bn, n→arn

respectively) as examples of sequences, the text then returns to further
discussion of the function concept.

Later on various iterative processes are used to approximate certain numbers,
for instance the Newton-Raphson technique for a root of an equation or step-by-
step methods to solve differential equations. It is only in the very last chapter of
the fourth and last book of the course that the notion of convergence of a
sequence is discussed in any formal sense. First there is a discussion of the
“challenge and response” procedure in the particular case (SMP, Book 4,
chapter 43, p. 1309):

1
2 , 1

4 , 1
8 , … , 1

2( )i
, …

No term of this sequence is zero, but if we programmed a computer to
evaluate them, the terms would soon be printed as zeros, since they would be
smaller than the smallest number that the machine could handle. Furthermore,
this would be true however many decimal places the output could print.
Challenged to produce a number N which will enable us to say ‘all terms from
the Nth onwards will be zero to the first 50 decimal places’, we can certainly
find such a number; and we can do so whatever number the challenger puts in
the place of 50. Notice two things: we are not committed to produce the
smallest such number N, but only one suitable N; secondly, we cannot produce
a single number N for all time, which will dispose of the challenge no matter
what number is put in place of 50. Our response depends on the challenge with
which we are faced. Formally, we can express the situation like this: Given
any number p, there can be found a number N such that

1
2i <101−p  for all i > N.

When this is true, we say that the limit of l/2i is zero, or that l/2i converges to
zero, as i increases without limit. This is written

lim
i→∞

1
2i = 0.

There is, of course, no particular virtue in decimal representation; from the
mathematical point of view all that is necessary is to say that

For every positive number k, there is a number N such that 1
2i < k  for all i >N.

Further examples are given (in which the functions are all given neatly by
formulae) of both convergent and divergent sequences until after nearly five
pages of discussion we reach (SMP, Book 4, chapter 43, p. 1312):

Definition. If for every positive number k there is a number N such that
i > N ⇒ f (i) − c < k ,

the sequence {f(i)} has the limit c, and we write
f (i) → c as i → ∞, or lim

i→∞
f (i) = c .

In particular, therefore, we find a spiral technique in use, introducing the
concept contextually in specific examples, then returning to it at various times
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in increasing stages of subtlety until a formal definition is reached and then
briefly used at the end of the course. We may legitimately ask what concept
image is produced by these tactics and whether the formal concept definition is
thoroughly integrated into this image. On this matter to date we only have data
collected from students arriving at an English university having taken a variety
of different ‘advanced level’ courses in their last two years at school. In a
questionnaire for mathematics students arriving at University, students were
asked if they had met the concept of the limit of a sequence s1, s2, … , sn, … at
school, either with a precise definition, informally or not at all. They were then
all asked to find the limits of certain sequences, including

  
lim
n→∞

1 + 9
10

+ 9
100

+K+ 9

10n




 .

After being asked to write down the definition of a limit (if they knew one),
they were asked to say whether 0 ⋅ 9̇  (nought point nine recurring) was equal to 1,
or just less, giving the reason for their answer. The details of their responses are
discussed in Tall (1977a). A number contained potential conflicts. A
mathematician might consider that the computation of the limit in (1) above was
a similar problem to the question of 0 ⋅ 9̇. On the contrary, fourteen out of 36
students claimed

  
lim
n→∞

1 + 9
10

+ 9
100

+K+ 9

10n




 = 2  but 0 ⋅ 9̇<1.

The responses to the last part were often couched in ‘infinitesimal’ terms:

“It is just less than one, because the difference between it and one is
infinitely small.”

“Just less than one, because even at infinity the number though close to
one is still not technically one.”

Clearly the two questions evoked different parts of the concept image of the
limiting process. In a subsequent test the same students were asked to write the
following decimals in fractions:

(2) ⋅25, ⋅05, ⋅3,   ⋅3̇ = ⋅333K,   ⋅9̇ = ⋅999K,

Thirteen of the fourteen who previously said 0 ⋅ 9̇< l now said 0 ⋅ 9̇= 1. Several
now experienced actual cognitive conflict, illustrated in the following responses
to the last two decimals in list (2).

A 0 ⋅ 3̇ = 1
3

 0 ⋅ 9̇ = 3 × 0 ⋅ 3̇ = 3 × 1
3 = rubbish

B   0 ⋅333K= 1
3  no fraction [this answer was crossed out]

C 0 ⋅ 3̇ = 1
3

0 ⋅ 9̇ =1 or (none exists)
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D 0 ⋅ 3̇ = 1
3

0 ⋅ 9̇ = 0 ⋅ 999
E 0 ⋅ 3̇ = 1

3

0 ⋅ 9̇ ≈ 1

Other potential conflict factors which occurred are discussed (though not using
this terminology) in Schwarzenberger & Tall (1978) and Tall (1977b). One of
great significance is that students often form a concept image of “sn→s” to
imply sn approaches s, but never actually reaches there, as one student put it:

 “sn→s means sn gets close to s as n gets large, but does not actually
reach s until infinity.”

Thus “point nine recurring” is not equal to one because the process of getting
closer to one goes on for ever without ever being completed.

In forming the concept image it does not help when most of the examples of
the limiting process consist of sequences given by regular formulae which never
actually equal the limit. If a student has a concept image that does not allow sn

to equal s (because it gets ‘closer’ to s as n increases) then we conjecture that he
may not absorb a concocted example when it is presented to him. When a small
group of four such students were shown the example

sn =
0   (n odd)
1

2n
 (n even)







they insisted that it was not one sequence, but two. The even terms tended to
one and the odd terms were equal to one. So this was not a genuine example of
a sequence some of whose terms equalled the limit! When a student is given a
formal concept definition, the concept definition image that it forms in his
cognitive structure may be very weak. We have noted, for example, that
students have great initial difficulties with the use of quantifiers “all” and
“some” and the standard definitions of limits and continuity all can present
problems to the student. His concept image makes it obvious to him that if sn

gets close to s then l/sn gets close to l/s (provided the latter is not zero). But a
weak understanding of the concept definition can make the formal proof of this
result very hard for him. This is a typical phenomenon occurring with a strong
concept image and a weak concept definition image that permeates the whole
university study of analysis, especially when there are potential conflict factors
between the two.

4. Limits of functions

Limits of functions of the form lim
x→a

f (x) = c  are also approached in the sixth

form in an intuitive manner, with an informal explanation, then at a later stage a
more formal definition may be given. Often the limit process is first introduced
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when differentiation is being discussed, in which case the concept image of a
limit may include a mental picture of a chord tending to a tangent. Other
approaches to the derivative may affect the concept image via magnification
factor or instantaneous velocity. As with the limit of a sequence, the limit of a
function is often considered as a dynamic process, where x approaches a,
causing f(x) to get close to c. Once again students may consider f(x) ≠ c as part
of their concept image. On the other hand the formal concept definition may be
given in an imprecise form. In the text of SMP book 4, the example is discussed
of

lim
x→1

x2 −1
x −1

= 2

where f(x) = (x2–1)/(x–1) is not defined for x = 1. The implication is that one
does not consider the case x = 1, so it is deduced that (SMP, Book 4, Chapter
43, p. 1325):

For every positive number h, there is a number k, such that

x −1 < k ⇒ f (x) − 2 < h .

From this the formal definition of limit is (SMP, Book 4, Chapter 43, p. 1325):
Definition. If for every positive number h there is a number k, such that

x − a < k ⇒ f (x) − c < h ,

then we write

f(x)→c as x→a, or lim
x→a

f (x) = c .

Explicitly the definition should at least specify x ≠ a, so that it should read:
Given h > 0, there exists k > 0 such that
0 < x − a < k ⇒ f (x) − c < h.

Implicitly this may be part of the concept image. We would conjecture that the
intuitive approach prior to the definition (if the latter is given at all) is often so
strong that the feeling of the students is a dynamic one:

as x approaches a, so f(x) approaches c

with a definite feeling of motion.
A questionnaire was given to first year students in which they were asked to

explain what is meant by

lim
x→1

x3 −1
x −1







= 3.

On the next page of the questionnaire they were asked to write down a
definition of lim

x→a
f (x) = c if they knew one.
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Seventy students responded (each with an ‘A’ or ‘B’ grade in A-level
mathematics). Those responding to the second question, the concept definition
for “ lim

x→a
f (x) = c ” could be classified as follows:

correct incorrect

formal  4 14

dynamic 27 4

Only four gave a correct formal definition, of which one was topological and
three were of the form given above.

The fourteen incorrect attempts at a formal definition included seven that
were mixed up with other limit notions such as:

As x → a, c − ε ≤ f (x) ≤ c + ε  for all n > n0

or

f (n) − f (n +1) < ε  for all n > given N0

and seven were incomplete or inaccurate, such as
|f(x)–c| < ε for all positive values of ε with x sufficiently close to a.

Of the incomplete ones, two omitted the condition x ≠ a.
The dynamic responses included typical replies such as

the value that f(x) approaches as values of x are taken closer to a is c.

or

as x tends towards a, the value of f(x) tends towards c.

Incorrect dynamic responses included

as x gets nearer and nearer to a, the value of the function = c,

or versions mixed with other limit processes:

lim
x→a

f (x) = f (x) − f (a)
x − a

= c.

The earlier question requiring explanation of

lim
x→1

x3 −1
x −1







= 3

revealed that most of the students could make an attempt at an example even
though they could not give a concept definition. Those not giving a concept
definition responded to this example as follows:
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correct incorrect

used a dynamic idea  11 1

other 6 3

Those using a dynamic idea essentially said that (x3–1)/(x–1) approaches 3 as x
approaches 1, some of them dividing x–1 into x3–1 and evaluating the limit as
lim
x→1

(x2 + x +1) = 3. The other approaches included continuity ideas (“filling in

the missing point in the graph”) and L’Hôpital’s rule,

lim
x→1

x3 −1
x −1







= lim
x→1

3x2

1







= 3.

Of interest was whether those giving a concept definition actually used this
definition in the example. Three out of the four giving a correct formal
definition applied the same method in the example, the fourth using a dynamic
method. Meanwhile the 14 giving incorrect formal definitions split 10 dynamic
(of which 2 were again incorrect) and 4 using the wrong formal definition. All
the students giving a dynamic definition used the dynamic method with varying
levels of precision. In total 54 out of 70 used a dynamic approach in the
example.

Many of these used the words “approaches,” “gets close to,” “tends to”
which lead to the possibility that the assumption that f(x) ≠ c is a potential
conflict factor.

As a follow-up to this questionnaire, two years later when the students were
in their final year, twenty-two were asked suddenly in a lecture, whether the
following theorem is true or false:

Suppose as x→a then f(x)→b
and as y→b then g(y)→c
then it follows that
as x→a, then g(f(x))→c.

The students were asked to write down ‘true’ or ‘false’ and responded twenty-
one ‘true’ and one ‘false’. When pressed, those who said ‘true’ refused to
change, asserting that the theorem is true.

It is false. The concept image of y=f(x) getting close to b and g(f(x)) = g(y)
getting close to c is very powerful. The theorem would be true if f(x) ≠ b for x
near a. But in the formal definition, which the students had handled for two
years, we have “lim

x→a
f (x) = b” means

for all ε > 0, there exists δ > 0 such that
0 < |x–a| < δ implies |f(x)–b| < ε.

Here we may have f(x) = b and then g(f(x)) = g(b) need not be defined, and if it
is we may have g(b) ≠ c.



– 13 –

For instance if

f(x) = 0

g(y) = 0 (y ≠ 0)
1 (y = 0)


then

as x → 0, f(x) → 0
as y→ 0, g(y) → 0
as x → 0, g( f(x)) = g(0) → 1.

The one student who was concerned the theorem might be false was worried
that g(b) might not be defined. The remainder relied on their concept image of a
limit, not the formal concept definition which they had handled in the course
over the previous two years.

5. Continuous functions

This topic is truly the bête noire of analysis. The concept image derives initially
from a variety of sources, for instance the colloquial usage of the term
“continuous” in such phrases as

“the rail is continuously welded”
(meaning the track has no gaps)

or
“it rained continuously all day”
(meaning there were no breaks in the rainfall).

The initial use of the term ‘continuous function’ often implies a similar idea that
the graph of the function may be drawn “continuously” so that it has no gaps.
An incorrect popular description of topology as ‘rubber-sheet’ geometry, which
allows stretching but no tearing, does nothing to dispel this illusion. (In fact
topology does allow tearing as long as the tears are glued together again. For
instance a square ABCD in which A D and D C  are glued together is
homeomorphic to a surface made out of a square WXYZ in which a double twist
has been performed before glueing WX and ZY. There is no way that one of
these surfaces can be transformed to the other in three dimensional space
without tearing and reglueing! So the popular idea of continuity has a potential
conflict in topology too.)

In the English sixth form the concept of continuity is often suppressed or
dealt with only in passing. The more central topic is differentiation and, since a
differentiable function is necessarily continuous, the latter topic is relegated to
the background (although it is essential in certain proofs).

Interestingly enough, SMP does stress discontinuity in a mathematically
non-standard manner in curve sketching. (SMP, Book 1, Chapter 5, p. 133):
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Behaviour near a discontinuity. Often a discontinuity, or break in a graph,
occurs because there is a value of x which would make the denominator of a
rational form zero. Thus, in Example 4,
f: x → 1/(x–1) is not defined for x = 1, and the graph shows a discontinuity
there.†

In a footnote this is modified to the standard definition (SMP, Book 1, Chapter
5, p. 133);

†  It is customary, though not strictly correct, to say that the function is
discontinuous at x = l: in fact it is neither continuous nor discontinuous,
because it is undefined. We could define f(1) = 0, or any other number, but we
cannot choose this number so as to make f(x) continuous.

The net effect on the concept image, however, is, almost certainly, a
reinforcement of the intuitive idea that the graph has “no gaps” and may be
drawn freely without lifting the pencil from the paper.

Once more the formal definition in SMP comes at the end of the course
(SMP, Book 4, Chapter 43, p. 1326):

Redefining continuity. Exercise E gives a number of examples of
discontinuities, and should have made it clear that lim

x→a
f (x) may be entirely

different from f(a), and that either may exist independently of the other. This,
in fact, is the essence of a discontinuity, and we may provisionally redefine
continuity as follows:

Definition. f is said to be continuous at a if lim
x→a

f (x) = f (a).

This can immediately be rewritten in ‘challenge and response’ form, from our
knowledge of limits:

Theorem. f is continuous at a if and only if for every positive number h there is
a number k such that

x − a < k ⇒ f (x) − f (a) < h .

The theorem follows at once from the definition of a limit.

In this case the value x = a need not be excluded, for then f(x) = f(a) and the
theorem is true.

What concept images do students have of continuity when they arrive at
university? Once again we only have evidence from students with a variety of
backgrounds.

A questionnaire was administered to 41 students with an A or B grade in A-
level mathematics. They were asked:

“Which of the following functions are continuous? If possible, give your
reason for your answer.”

They were given five functions, as follows:

f1 (x) = x2
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f 2 (x) =1 / x (x ≠ 0)

f 3 (x) = 0 (x ≤ 0)
x (x ≥ 0)



f 4 (x) = 0 (x ≤ 0)
1 (x ≥ 0)



f 5 (x) = 0 (x rational)
1 (x irrational)


(No picture was drawn in the last case).

The responses were:

1 2 3 4 5

continuous 41 6 27 1 8

discontinuous 0 35 12 28 26

no answer 0 0 2 2 7

The first of these is to be expected, though the “right” answer may be given for
the “wrong” reasons (where “right” and “wrong” are determined by the strict
mathematical formulation). For instance it was pronounced continuous “because
it was given by only one formula.” The second answer intimates that most
students have a concept image which does not allow “gaps” in the picture. This
is supported by the comments and, among those who thought f2 was
discontinuous, we have remarks such as

“the graph is not in one piece,”

“the function is not defined at the origin,”

“the function gets infinite at the origin.”

Even amongst those who asserted that f2 was continuous we find concept
images which do not coincide with the accepted formal definition:

“it is continuous because the function is given by a single formula.”

The third function was interesting. Most students who thought it continuous and
made a comment made remarks like

“it is all in one piece.”

The twelve who thought it discontinuous gave several different reasons:

“it is not given by a single formula,”
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“there is a sudden change in gradient.”

The fourth function was considered discontinuous by most, with several
different kinds of reasoning:

“it is not in one piece,”

“there is a jump at the origin,”

“it is not a single formula.”

The last function caused more problems (seven students did not respond). For
several it was discontinuous because

“it is impossible to draw,”

for one it was continuous because

“it has a continuous pattern of definition.”

In these responses we see that most students evoked a concept image involving
the graph having “no gaps,” being “all in one piece,” for a small number there is
an evoked concept of “a single formula” and for a minority there are other
images (such as “smoothly changing gradient”). All of these concept images
just mentioned have potential conflict factors which conflict with the formal
concept definition. We take the latter to be that f:D→R is continuous at a ∈ D
if

∀ ε > 0, ∃ δ  > 0 such that x ∈  D, |x–a| < δ ⇒  |f(x)–f(a)| < ε.

Some potential conflicts are concerned with the nature of D. The mental picture
most mathematicians have of the real line is “continuous” in the colloquial
sense that it has no gaps. It is extremely difficult to form a satisfactory mental
picture of the rational line instead of the real line. If we consider functions
defined only on the rationals then we may have formally continuous functions
which conflict with all the concept images mentioned above. For instance
f:Q→Q (where Q denotes the field of rationals) given by

f (x) = 0 (x < 0  or  x2 < 2)
1 (x > 0 and x2 > 2)





has a graph like this:

–2 –1 1 2

This function is continuous but the graph has a “gap.”
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Then again, the concept image is a global property, the notion of continuity
over an interval, not continuity at a point. There are strange animals like

f (x) = x (x rational)
1 − x (x irrational)


which are formally continuous at a single point (in this case at 1

2 ) yet conflict
with all three evoked images mentioned above. (It is not in one piece, nor given
by a single formula, nor has it a smoothly varying graph.)

If a student is presented with one of these exotic creatures and it causes
cognitive conflict with his concept image, then he may be in difficulties. When
the teacher is aware of the possible concept images it may be possible to bring
incorrect images to the surface and, by discussion, rationalise the problem.
However, parts of the concept image may be very strong, especially the idea
that the graph is all in one piece over real intervals. This latter mental picture is,
in fact, correct. Even so, it can still cause problems in the formal theory.

In a mental picture of the intermediate value theorem and the extreme value
theorem, the results are patently obvious, but the proofs of those results using
the concept definition are more subtle. Without entering too deeply into another
area, we briefly mention that current investigations are revealing the extent to
which students have problems with the meaning of “all” and “some” and the
manipulation of quantifiers. This means that many students have great difficulty
(as is well known) with manipulating the definitions of limits and continuity.
They are then in the situation where they may have a strong mental picture yet
the concept definition image is weak. They understand the statements of
theorems as being obvious, but cannot follow the proofs.

In such a situation, students who do succeed become very suspicious of ideas
in analysis. At more advanced levels it becomes far more difficult to visualise
the concepts as mental pictures and they can never be sure of the intuitions
suggested by their concept image which may be now a mixture of strong
concept images having potential conflicts with the concept definition. For
instance, how does one visualise a function which is continuous everywhere but
differentiable nowhere? Or what mental picture can one have of a function f
whose derivatives ′f  exists yet ′f  may not be continuous? The mental pictures
which served the students well at an earlier stage may now become an
impediment. Bruner suggested that iconic processing limited ideas and urged a
movement onto the symbolic level. But the student, saddled with his inadequate
concept image, may find such a development difficult to achieve. In these and
other ways, the difficulty of forming an appropriate concept image, and the
coercive effects of an inappropriate one having potential conflicts, can seriously
hinder the development of the formal theory in the mind of the individual
student.
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