Journal of Integrative Bioinformatics, 8(3):171, 2011 http://journal.imbio.de

Rapid development of proteomic applications with the AlBench
framework

Hugo Lépez-Fernandez'!, Miguel Reboiro-Jato!”, Daniel Glez-Pefa', José R. Méndez
Reboredo!, Hugo M. Santos?, Ricardo J. Carreira2, José L. Capelo-Martinez®, Florentino
Fdez-Riverola'

TEscuela Superior de Ingenieria Informatica, University of Vigo, Edificio Politécnico, Campus
Universitario As Lagoas s/n, 32004 Ourense, Spain

2REQUIMTE, Departamento de Quimica, Facultade de Ciéncias e Tecnologia, Universidade
Nova de Lisboa, Lisboa, Portugal

3Bioscope Group, Physical Chemistry Department, University of Vigo, Ourense, Spain

Summary

In this paper we present two case studies of Proteomics applications development using
the AlBench framework, a Java desktop application framework mainly focused in scien-
tific software development. The applications presented in this work are Decision Peptide-
Driven, for rapid and accurate protein quantification, and Bacterial Identification, for Tu-
berculosis biomarker search and diagnosis. Both tools work with mass spectrometry data,
specifically with MALDI-TOF spectra, minimizing the time required to process and ana-
lyze the experimental data.

1 Introduction and Motivation

Since the 1980s, computational methods have been used for comparative analysis of genome
data [1], leading to the Bioinformatics field expansion, where various branches such as Ge-
nomics, Proteomics, Computer-Aided Drug Design, Bio Data Bases & Data Mining, Molecu-
lar Phylogenetics, Microarray Informatics or System Biology emerged [2]. With the arrival of
high-throughput *omics’ data, a new dimension was added to data-driven comparative research
[1], where manual analysis became unsuitable, requiring the use of computational methods.
Nowadays, due to the proliferation of high-throughput techniques, the need for Bioinformatics
tools is increasing, being necessary even in small studies.

In this context, the rapid development of successful feature-rich applications containing ad-
vanced functionalities in the field of biomedical and clinical research remains a major demand
for smaller institutions due to the lack of both human and financial resources [3]. This fact
gets worse 1f we consider the software development effort required to deliver highly special-
ized applications usually demanding sophisticated user interfaces. Moreover, developing ap-
plications in an interdisciplinary and applied research context also presents a large number
of particular requisites ranging from computational requirements to usability. Specific issues
include (i) sharing of heterogeneous data, (ii) integrating third party or previously developed
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algorithms, (iii) cross-platform compatibility, (iv) ability to repeat workflows but changing a
few parameters or input data, (v) extensive use of logging messages to monitor the progress of
long processes, (vi) establishing values for a high and variable number of parameters before
running experiments and (vii) taking the maximum advantage of multi-threading capabilities in
high-demanding tasks, among others.

Considering these requirements, we have developed AIBench [3], an open-source Java applica-
tion framework for rapid development of translational software in Biomedicine. In this work,
we describe the design of two new AlBench-based applications in the field of Proteomics: De-
cision Peptide-Driven and Bacterial Identification. Both tools analyze MALDI-TOF spectra
in order to accurately quantify the amount of protein in a given sample and to discriminate
between Tuberculosis strains, respectively.

The paper is structured as follows. Section 2 contains an overview of the AlBench architec-
ture and its key design concepts. Section 3 identifies the scope of the applications developed
and presents the shared components. Sections 4 and 5 describe the main functionalities and
AlBench components of the Decision Peptide Driven and Bacterial Identification applications,
respectively. Finally, Section 5 includes the conclusions and future work.

2 The AlIBench Framework

The AlBench platform was particularly conceived to facilitate the development of a wide range
of research applications based on general input-processing-output cycles where the framework
acts as the glue between each executed task. In order to provide the basis for supporting
rapid application development, AIBench manages three key concepts that are present in ev-
ery AlBench application: operations, data-types and views. The developer only needs to con-
centrate on how to divide and structure the problem specific code into objects of these three
entities.

From an architectonical perspective, AlBench is structured in several layers, as it is shown in
Figure 1. The AlBench framework runs over a plug-in engine able to define a straightforward
reusable component model where both the framework native components and the application-
specific functionalities are divided and packaged into plug-ins. AIBench plug-ins are isolated
by default, increasing the modularity and ensuring that accidental coupling is not introduced,
but they can also interact by establishing dependencies or extension points. A dependency
between plug-ins allows one plug-in to require other plug-ins to be present at runtime and
to be allowed to access their classes and/or resources. An extension point declares a place
where some plug-in can be extended by another plug-in (extension), usually providing a specific
interface implementation.

The Core layer contains two native plug-ins: the Core and the Workbench. The AIBench Core
detects and registers the application-specific operations, executes them upon request, keeps the
results in the Clipboard structure and stores the session workflow in the History. The graphi-
cal user interface aspects are implemented in the Workbench plug-in, which creates the main
application window, composes a menu bar with all the implemented operations, generates in-
put dialogs when some operation is requested for execution, instantiates the registered results
viewers, etc. All additional services bundled with AIBench belong to the Services layer and are
also implemented via independent plug-ins that can be easily removed to meet the application
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Figure 1: AIBench framework architecture.
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specific needs. The Core and Services layers are maintained by the AIBench team and consti-
tute all the code built-in and distributed with the framework, being the starting point of every
development.

The Plugin and Application layers are placed on the top of the architecture and contains the
application specific code (operations, data-types and views) provided by applications develop-
ers (AlBench users). In this sense, when an applications developer starts using the framework,
there are no operations, data-types or views available, because these components are problem
specific items. However, operations, data-types and views can (and should) be shared among
applications related to the same area, especially when they are developed inside the same team.
These higher-level components, along with other third-party libraries are also packaged in one
or more plug-ins. Finally, from the most abstract point of view, an AlBench application can
be seen as a collection of operations, data-types and views, reusable in more than one final
application.

3 Building Proteomics Applications

Mass spectrometry (MS) is an analytical technique that generates mass spectra plotting the
relative abundance of molecules versus their mass-to-charge ratio (m/z) [4]. This technique
is an important tool in Proteomics for biomarker discovery, identification and quantification,
as it allows the detection of small molecules (such as peptides) and the measurement of their
intensities. Due to the low analysis time and the high data throughput of MS, it is very useful
for fast and accurate diagnosing and monitoring different disease states [5]. On the other hand,
the volume of data generated in MS experiments makes manual analysis unsuitable, requiring
the use of Bioinformatic applications.

In this context, we have used the AlBench framework for the development of two MS data
analysis applications with specific objectives, which will be presented in the following sections.
These applications are intended to work with MALDI-TOF data, a soft ionization technique
used in MS. As the data source for both applications is the same, a first plug-in named ’Peptide
Analysis’ has been developed containing common data-types, views and operations. Figure 2
shows the main classes of this plug-in.

The SpectrumData class represents a MS spectrum composed by a set of peaks each with mass-
to-charge ratio and intensity. ExperimentalData contains a set of SpectrumData coming from
the same sample or data analysis. These three classes are specializations of three more generic
classes, which can be used to work with other types of experimental data. The LoadSpectrum-
Data and LoadExperimentalData operations can be used to load spectra from CSV files and,
although it is not represented in the Figure 2, the ExportToCSV operation is a generic operation
to store different data-types into CSV files. Finally, the views in the Figure 2 present the main
data-types as charts and tables.

The following sections describe the case studies of the two Proteomics applications developed
with the AlBench framework and based on the ’Peptide Analysis’ plug-in previously intro-
duced.
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Figure 2: Main data-types (green), operations (blue) and views (orange) of the ’Peptide Analysis’
plug-in.

4 Case Study 1: Decision Peptide-Driven

The identification and quantification of the protein content of biological samples plays a crucial
role in biological and biomedical research [6]. The Decision Peptide-Driven tool' (DPD) [7]
implements a software application for assisting the user in a protocol [8] for accurate protein
quantification by using MALDI-TOF mass spectrometry. Main application views showing data
and experiment information are shown in Figures 3 and 4, respectively.

Using the DPD software, user can compare the MALDI results of the direct and inverse *O-
labeling experiments and quickly identify those peptides with paralleled loses in different sets
of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quan-
tification. The interpretation of the MALDI data from direct and inverse labeling experiments
is time-consuming requiring a significant amount of time to do all comparisons manually.

The DPD software shortens and simplifies the search for the peptides that must be used for
quantification from a week to just some minutes. To do so, it takes as input several MALDI
spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse
180-labeling experiments, calculating the corresponding ratios to determine those peptides with
paralleled losses throughout different sets of experiments; and (i7) allow to use those peptides
as internal standards for subsequent accurate protein quantification using ®O-labeling.

When working with the DPD software, users can follow two main workflows: labeling and
quantification. Figure 5 depicts the data-types (green) and operations (blue) involved in the
labeling workflow and their relationships. Along with direct and reverse data, in silico data is
needed to perform the peptide detection in the spectra. Once the data has been loaded, the repro-
ducible peptides can be obtained by executing a labeling experiment. This is a macro-operation
composed by a series of operations: (i) detect peptides, indentifies the peptides present in the
direct and inverse data using the in silico data as reference, (ii) filter peptides, removes the
low-quality peptides, (iii) intersec peptides, joins the direct and inverse peptides, and (iv) select
reproducible, evaluates the quality of the final peptides. The final output of the labeling work-

Thttp://sing.ei.uvigo.es/DPD
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Figure 3: Snapshots of (a) the in silico data view and (b) the experimental data view of the DPD
software.
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Figure 4: Snapshots of (a) the experiment view and (b) the experiment results view of the DPD
software.
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Figure 5: DPD labeling experiment workflow.

The quantification workflow allows the protein quantification in a MALDI-TOF sample. As can
be seen in Figure 6, this workflow is very similar to the labeling workflow. The main difference
is that, in this case, only one experimenal data is needed. Additionally, the last operation of the
quantification experiment is a quantification step where the amount of protein is calculated.
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Figure 6: DPD quantification experiment workflow.
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Both workflows described above are sequential workflows, as they implement two concrete
protocols for MS data analysis specifically designed for the proposed problems. This type of
protocols suits perfectly to the input-process-output model on which is based AlBench, thus we
could take advantage of the framework capabilities in order to minimize the development time.

The AIBench components used to build the DPD application are distributed in two plug-ins:
the "Peptide Analysis’ plug-in, described in the previous section, and the ’Decision Peptide-
Driven’ plug-in, containing all operations, data-types and views of the software. The second
plug-in depends on the first one. The list of components included in the *Decision Peptide-
Driven’ plug-in are summarized in Table 1.

Table 1: AIBench components of the DPD software.

Component Description
Operations
Create Labeling Experiment Creates a new labeling experiment.
Create Quantification Experiment | Creates a new quantification experiment.
Execute Experiment Executes a labeling or quantification experiment.
Export Result Exports an experiment result as a log file.
Load In Silico Data Loads in silico peptide information from a csv file.
Load Labeling Data Loads experimental spectra data for labeling experi-
ments from csv files.
Load Quantification Data Loads experimental spectra data for quantification ex-
periments from csv files.
Data-types
InSilicoData In silico peptide information.
DirectExperimentalData Experimental spectra data to be used as direct data in
labeling experiments.
InverseExperimentalData Experimental spectra data to be used as inverse data
in labeling experiments.
LabelingExperiment A labeling experiment. Contains direct and inverse

data and the parameter configuration.
QuantificationExperimentalData | Experimental spectra data to be used in quantification

experiments.

QuantificationExperiment A quantification experiment. Contains quantification
data and the parameter configuration.

[Experiment Common interface for labeling and quantification ex-
periments.

IResult Common interface for experiment results.

Storeable Items that can be exported to log files.

Views

Experiment View Allows the user to execute experiments and view re-
sults.

Experimental Data View Shows chart and table representation of the experi-
mental spectra data.

In Silico Data View Shows table representation of the in silico data.

doi:10.2390/biecoll-jib-2011-171 9
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5 Case Study 2: Bacterial Identification

Tuberculosis (TB) is an infectious disease and the world’s leading cause of death. In fact, the
World Health Organization estimates that one third of the world’s population is infected with
Mycobacterium tuberculosis (MTB) [9]. Moreover, the usual methodologies for TB diagnosis
can take up to 3 months for the identification of the correct infectious agent or only 1 week
with molecular methods like PCR, but these last methods are expensive and are not affordable
for many laboratories, especially in undeveloped countries. Recently, Hettick ef al. reported
the discrimination of intact mycobacteria at the strain level using MALDI-TOF-MS and a bio-
statistical analysis [10]. However, for security reasons the handling of intact TB, MDR-TB and
XDR-TB can only be done in laboratories with a biosafety level of 3, and thus the analysis of
intact MTB by mass spectrometry is not possible.

Bacterial Identification tool? (BI) is a software application that allows rapid bacterial identifica-
tion through peptide mass mapping obtained after analysis by MALDI-MS-based approaches.

The main functionalities of BI tool allow the researcher to (i) load and visualize spectra data
containing peaks of each bacterial strain, (if) identify a peptide fingerprint of each strain, con-
taining all common peaks of all replicates, (iii) fingerprint comparison to obtain peaks which
are unique of a given strain, being potential biomarkers, (iv) train and test a Support Vector
Machines (SVM) classifier using the most predictive peptides and (v) perform and visualize a
hierarchical clustering of the strains with those predictive peptides. Main views of the applica-
tion are shown in Figures 7 and 8.

Figure 9 shows the internal workflow of the BI tool. Besides the data loading, this workflow can
be divided into three sub-workflows, according to the functionalities they cover. The ’Strains
Analysis’ sub-workflow includes the ’intra’ and ’inter’ class analysis, useful for identifying
the peptide fingerprint of TB strains and the discriminant peaks among different strains. The
"Classification” sub-workflow allows the user to train a SVM classifier using TB data previously
classified and the correspondent list of discriminant masses. Once the classifier is trained, it can
be used to classify new TB data. Finally, in the ’Clustering’ sub-workflow, user can perform
a hierarchical clustering, creating a heat map to study the relationship between the analyzed
strains and, additionally, between their peptides.

In this case, we do not have a sequential workflow but, as noted above, the main workflow is
divided into three different sub-workflows according to the analysis to perform. As the data
loaded can be used in different analysis, the AIBench capability to keep data on the Clipboard
so you can reuse it in different operations was very useful when developing this application.

The AIBench components used to build the BI application are distributed in two plug-ins: the
"Peptide Analysis’ plug-in and the ’Bacterial Identification’ plug-in, containing all operations,
data-types and views of the software. As in the previous case, the second plug-in depends
on the first one. The list of components included in the *Bacterial Identification’ plug-in are
summarized in Table 2.

http://sing.ei.uvigo.es/BI
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Figure 7: Snapshots of (a) the data view and (b) the clustering view of the BI Software.
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Figure 8: Snapshots of (@) the intra-class analysis view and (b) the inter-class analysis view of the
BI Software.
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Table 2: AIBench components of the Bacterial Identification software.

Component

Description

Operations
Clustering Analysis
Create Discriminant Peptide List
Inter-class Intersection

Intersect Discriminant Peptide Lists
Intra-class Intersection

Load Classified Data

Load Clustering

Load Discriminant Peptide List
Load Trained Classifier

Merge Discriminant Peptide Lists
Save Discriminant Peptide List
Save Trained Classifier

Single Inter-class Intersection

Single Intra-class Intersection
Substract Discriminant Peptide Lists

Train Classifier

Performs a hierarchical clusternig analysis.

Creates a new discriminant peptide list.

Intersect several strain data with different class and
generates a peptide occurrence matrix.

Intersects two or more discriminant peptide lists.
Intersects several strain data with the same class and
generates a peptide occurrence matrix.

Loads several strains data of the same class. Strains
data must be in separated directories.

Loads clustering analysis results.

Loads a stored list of discriminant peptides.

Loads a trained classifier.

Merges two or more discriminant peptide lists.
Stores a list of discriminant peptides.

Stores a trained classifier.

Intersects several strain data with different class and
generates a peptide occurrence matrix.

Intersects several strain data with the same class and
generates a peptide occurrence matrix.

Subtract two or more discriminant peptide lists to a
reference peptide list.

Trains a new SVM-based strain classifier.

Data-types
ClassifiedData
Clustering
DiscriminantPeptideList
InterClassIntersection

IntraClassIntersection

Strain data associated with a class.

Clustering data.

List of discriminant peptides.

Peptide occurrence matrix coming from an inter—class
intersection.

Peptide occurrence matrix coming from an intra—class
intersection.

Cluster Explorer
Data Classification
Inter-class Intersection

Intra-class Intersection

TrainedClassifier Trained strain classifier.
PeptideFingerprints List of characteristic peptides of a class.
Views
Classified Data View Shows chart and table representation of the strains

data.

Shows a heat map and hierarchical view of clustering
data.

Allows the user to train a classifier and to classify data
with it.

Allows the user to analyze a peptide occurrence ma-
trix coming from an inter-class intersection.

Allows the user to analyze a peptide occurrence ma-
trix coming from an inter-class intersection.
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Figure 9: Bacterial Identification workflow.
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6 Conclusions

This paper has presented two new applications, Decision Peptide-Driven and Bacterial Iden-
tification, in the field of Proteomics, showing the suitability of our AlBench framework to
fast-develop user friendly applications in Biomedicine. The flexibility of AIBench has become
evident as it was easily adapted to the different workflows of both applications. Additionally,
both applications share components via common plug-ins, one of the most powerful aspects of
AlBench.

The future work is divided in two objectives. By one hand, the two presented applications will
be improved in their future versions. Decision Peptide-Driven will be integrated with Swissprot
in order to download in silico data from the desired proteins and Bacterial Identification will
include more classifier algorithms. In the other hand, the AIBench framework is in continuous
development, including new features and bug fixes frequently.
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