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Abstract

This paper presents an introduction to phase transitions and critical phe-

nomena on the one hand, and nonequilibrium patterns on the other, using

the Ginzburg-Landau theory as a unified language. In the first part, mean-

field theory is presented, for both statics and dynamics, and its validity

tested self-consistently. As is well known, the mean-field approximation

breaks down below four spatial dimensions, where it can be replaced by a

scaling phenomenology. The Ginzburg-Landau formalism can then be used

to justify the phenomenological theory using the renormalization group,

which elucidates the physical and mathematical mechanism for universality.

In the second part of the paper it is shown how near pattern forming linear

instabilities of dynamical systems, a formally similar Ginzburg-Landau the-

ory can be derived for nonequilibrium macroscopic phenomena. The real

and complex Ginzburg-Landau equations thus obtained yield nontrivial so-

lutions of the original dynamical system, valid near the linear instability.

Examples of such solutions are plane waves, defects such as dislocations or

spirals, and states of temporal or spatiotemporal (extensive) chaos.

2



CONTENTS

I. Introduction: systems, models, phenomena 5

A. Phase transitions and critical phenomena in bulk thermodynamic systems 5

B. Nonequilibrium patterns near linear instabilities 8

C. Nature of the presentation 12

II. Mean-field theory: statics 12

A. Order parameters and broken symmetries: the Landau expansion 12

B. Spatial variations and fluctuations: the Ginzburg-Landau free energy 15

C. Continuous broken symmetries 17

D. Physical systems 20

1. Uniaxial magnet 20

2. Pure fluid: liquid-gas critical point 20

3. Binary fluid 21

4. Planar magnet 21

5. Isotropic ferromagnet or antiferromagnet 22

6. Superfluid 22

7. Superconductor 23

III. Dynamics: hydrodynamic modes 24

A. Relaxational dynamics: conserved and non-conserved order parameter 24

B. Coupling to conserved densities: propagating modes 25

C. Physical systems 27

1. Liquid-gas critical point 27

2. Isotropic magnets 27

3. Superfluids 28

D. Phase transitions in dynamics: mean-field or conventional theory 31

IV. Phenomenology of critical behavior: scaling and universality 31

A. Statics 32

B. Dynamics 34

1. Planar magnet 37

3



2. Pure fluid 37

3. Isotropic magnets 38

4. Superfluid 38

V. Effects of thermal fluctuations: renormalization group 40

A. The ‘Ginzburg-Landau-Wilson’ model 40

B. Effects of fluctuations: the Levanyuk-Ginzburg criterion 42

C. Static critical phenomena: dimensional analysis 43

D. The renormalization group: statics 45

E. The ε-expansion 50

F. Critical dynamics 53

G. Testing the theory experimentally 55

VI. Nonequilibrium patterns near linear instabilities 57

A. Classification of instabilities 57

B. Pattern forming systems 59

1. Experimental systems 59

2. Reaction-diffusion model 60

C. Amplitude equations: the real and complex Ginzburg-Landau equations: potential and

non-potential dynamics 63

1. The real Ginzburg-Landau equation 63

2. The complex Ginzburg-Landau equation 66

D. Defect solutions of the Ginzburg-Landau equations 70

1. Defects in the real Ginzburg-Landau equation 70

2. Defects in the complex Ginzburg-Landau equation 72

E. Pattern selection 73

F. Solutions of the Ginzburg-Landau equations: temporal and spatiotemporal chaos 74

1. Temporal chaos 74

2. Spatiotemporal chaos 77

Acknowledgments 79

References 79

4



I. INTRODUCTION: SYSTEMS, MODELS, PHENOMENA

This paper describes two classes of physical phenomena, continuous phase transitions

and nonequilibrium patterns, using a unified theoretical approach, the so-called Ginzburg-

Landau theory. We will show that a rich variety of observable phenomena can be usefully

unified and understood using this approach, which emphasizes important physical principles

and seeks to avoid excessive technical complications.

A. Phase transitions and critical phenomena in bulk thermodynamic systems

We begin by considering thermodynamic systems undergoing a continuous phase transi-

tion from a ‘symmetric’ state to a more ‘ordered’ state. Examples are fluids or fluid mixtures

at their critical point, uniaxial and isotropic ferro- and antiferromagnets, superfluids and

superconductors. The systems are defined on the microscale `0 (which is generally an atomic

dimension) by their Hamiltonian and classical or quantum dynamics. These quantities con-

trol the behavior from the microscale `0 all the way to the macroscale L, which we think of

as being the scale of experiments (typically from millimeters to meters), but which will also

be considered to go to infinity in the so-called ‘thermodynamic limit’.

The systems we are considering all undergo a continuous phase transitions at a tempera-

ture T = Tc, from a high-temperature symmetric phase to a low-temperature ordered phase

in which some symmetry is broken. The notion of equilibrium phases of matter is funda-

mental to thermodynamics and statistical mechanics. Each phase can be characterized by

its symmetries and conserved variables, from which specific hydrodynamic modes follow at

long wavelengths and long times. For example, a fluid supports sound waves whose velocity

is exactly related to the compressibility, an equilibrium thermodynamic quantity. In the

solid crystalline phase the system displays additional transverse sound modes, reflecting the

broken translational symmetry, in addition to the (longitudinal) compression mode already

present in the fluid. All of these modes exist generally for classical or quantum systems,

quite independent of the specific atomic or molecular details of the constituents.

This generality motivates a theoretical description in terms of coarse-grained variables,

i.e. local averages in which the short-scale properties have been eliminated in favor of den-

sities varying slowly in space and time. As explained below, the most powerful theoretical
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description of thermodynamic phases is in terms of a coarsening operation, the Wilson renor-

malization group, in which short-scale fluctuations are progressively eliminated. This is most

easily visualized in an abstract space whose elements are different system Hamiltonians. The

coarsening operation is then represented by a trajectory in this space, whose endpoint or

fixed point describes the system properties at the longest scales and thus serves to charac-

terize the thermodynamic phase. We show below that this general renormalization group

framework, introduced by K. G. Wilson in 1968-72 and elaborated by many others, not

only serves to illuminate the physics of thermodynamic phases but it also leads to powerful

theoretical methods for understanding critical phenomena at continuous phase transitions

quite generally. The renormalization group fixed points represent different phases of matter

at low and high temperatures respectively, as well as distinct universality classes of critical

behavior at the transition point between the two phases: different physical systems flowing

to the same fixed point belong to the same universality class.

To be more specific, let us return to a consideration of a system undergoing a continuous

phase transition from a high-temperature symmetric phase to a low-temperature ordered

phase in which some symmetry is broken. Prior to the 1960s the most general and accurate

description of such transitions was the Landau mean-field theory, based on defining a local

order parameter ψ whose average value controlled the thermodynamic phase. The theory was

in qualitative agreement with experiment, especially in the prediction of long-range spatial

correlations of the order parameter over a length ξ which diverges at the phase transition.

As explained below, at this point the system displays a separation of scales in which the

microscopic details can be averaged over (to define ψ) and the long-range properties are

associated with a fixed-point of the renormalization group trajectory.

The quantitative features of the high- and low-temperature phases and of the mean-field

phase transitions, as reflected in the properties of the respective fixed points, could be largely

determined by arguments based on dimensional analysis, symmetry and analyticity in ap-

propriate variables. By the 1960s, however, it was understood that while mean-field theory

worked well for the high- and low-temperature fixed points, it was quantitatively inaccurate

at the phase transition, and many improvements and corrections were devised, as discussed

below. It is the singular achievement of K. G. Wilson to have linked these departures from

mean-field theory to the behavior of the renormalization group trajectories near the critical

fixed point, and to have devised theoretical methods for arriving at systematic quantitative
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results, later elaborated by many workers. Specifically, in contrast to the mean-field fixed

points which can be fully characterized in terms of the local order parameter that embod-

ies the dominant short-range fluctuations, Wilson argued that at the critical fixed point

fluctuations on all scales, from microscopic to order ξ, make non-negligible contributions to

the renormalization group trajectories and these must be accounted for to determine the

quantitative critical behavior.

The first part of the present paper provides an introductory treatment of continuous phase

transitions using the so-called Ginzburg-Landau theory as a convenient general language to

describe both the mean-field theory and the renormalization group framework. As mentioned

above, we begin with a microscopic Hamiltonian and note that according to statistical

mechanics, thermodynamic quantities and correlation functions are all derivable from a free

energy which can be expressed in terms of the microscopic Hamiltonian as a sequence of

integrals over all scales from the microscale `0 to the macroscale L (and out to infinity)

[see Eq. (5.5) below]. We now introduce the mesoscale ξ0 = k−1
0 , which is intermediate

between the microscale `0 and the macroscale L, `0 � ξ0 � L, and note that the correlation

length ξ extends from ξ0 to L (ξ0 < ξ < L), and it diverges at the transition. Since

near the transition the properties of interest involve fluctuationson the varying scale ξ, a

fundamental assumption of the Ginzburg-Landau approach is that the scales extending from

the microscale to the mesoscale (`0 < l < ξ0) are unimportant, and may be averaged over

[see Eq. (5.7)]. One is then left with a model derived in a precise way from the microscopic

Hamiltonian, but involving only scales extending from the mesoscale ξ0 to the macroscale L.

This is so-called Ginzburg-Landau free energy function Φ[ψ], which is a general functional of

the coarse-grained order parameter ψ(x, t) [see Eqs. (5.9) and (5.30)]. This functional can be

a complicated nonlinear and nonlocal functional of the field ψ(x, t), but it no longer involves

the microscopic details of the system under study. It only reflects general features of the

system such as the dimensionality of space and the symmetry of the ordered state, i.e., the

number n of relevant components of the order parameter ψ(x, t). In this way, even before

attempting to analyze the precise behavior of the thermodynamics and correlation functions

near the transition, we have achieved a considerable level of universality: different physical

systems, with different Hamiltonians, will lead to the same Ginzburg-Landau free energy

functional, provided they have the same spatial dimension and order parameter symmetry.

In this representation the microscopic details of the original system are summarized by the
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values of the parameters in the Ginzburg-Landau free energy, e.g., the values of Tc, ξ0, etc.

Starting from the Ginzburg-Landau free energy function we focus on the long-wavelength

region ` � ξ0 with ` ' O(ξ) (i.e. both ` < ξ and ` > ξ are considered), where ξ � ξ0

is the diverging correlation length. These are the degrees of freedom that will control the

renormalization group trajectories and universal behavior near Tc.

Up to now we have been discussing thermodynamic functions and static (time indepen-

dent) correlations. In order to investigate dynamic properties such as transport coefficients

or dynamical modes, we must carry out a similar coarse-graining (i.e., averaging) on the dy-

namical equations, eliminating the microscopic modes involving the scales `0 < l < ξ0. The

remaining modes then describe the time dependence of the order parameter, which slows

down near the transition, and the time dependence of any conserved densities that remain

coupled to the order parameter at long wavelengths (kξ ≈ 1), as the transition is approached

(T → Tc). In this way one obtains a dynamic generalization of the Ginzburg-Landau free

energy, whose long-wavelength modes are precisely those of the original systems near Tc.

The important difference between statics and dynamics, which is already apparent from

the Ginzburg-Landau theory itself, is that a single static universality class (given spatial

dimension d and order parameter symmetry n) will correspond to a multiplicity of dynamic

universality classes, depending on the long-wavelength dynamics of the order parameter and

of the conserved densities that couple to it.

A schematic representation of the above description of the Ginzburg-Landau theory is

shown in Fig. 1.

B. Nonequilibrium patterns near linear instabilities

We now turn to a different application of the Ginzburg-Landau theory, namely the study

of nonequilibrium pattern formation in systems undergoing linear instabilities at a nonzero

length and/or time scale. We should say at the outset that whereas in the case of continuous

phase transitions the most interesting properties near the transition are fully captured by

the Ginzburg-Landau approach, for nonequilibrium patterns this is not the case. It is only

because the validity of our methods is confined to the vicinity of the linear instability that

we focus on this regime. Thus the analogy between phase transitions and nonequilibrium

patterns is formal, rather than physical. On the other hand, it should be mentioned that
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•  Predict universal behavior on  
    scales                with  
•  Renormalization group, scaling and 

universality 

Coarse graining 
 

•  define mesoscale  
•  eliminate scales  

Ginzburg-Landau theory 
 

•  defined for  
•  free-energy functional 
•  dynamical equations 
•  depend on symmetries, dimensionality, 

conservation laws 

Physical Systems 
 

•  Hamiltonian and dynamical equations 
•  defined on all scales from microscale       to macroscale 
•  systems:  

 ξ0 < ℓ < L

 ℓ ≫ ξ0

 ℓ0 < ℓ < ξ0
ξ0

 ℓ0 L

– uniaxial and isotropic ferro- and antiferromagnets 
– pure and binary fluid critical points 
– superfluids, superconductors 

 ℓ "O(ξ )

FIG. 1 Schematic structure of the Ginzburg-Landau theory of continuous phase transitions.

much less is known in general about systems far from equilibrium than about equilibrium and

near-equilibrium phenomena and our treatment does provide nontrivial results for certain far

from equilibrium systems, so we believe this more limited theory does make a contribution.

We consider a nonequilibrium system defined by dynamical equations, typically by a

set of partial differential equations. The system is subjected to a constant external drive,

represented by a control parameter R, which vanishes in equilibrium. We imagine that

for sufficiently small R > 0, the solutions u(x, t) of the dynamical equations are ‘simple’

nonequilibrium steady states which we represent by a constant ū. At a critical value R = Rc

of the control parameter, the steady state ū becomes unstable, and a mode with wave vector

q0 and frequency ω0 (length scale q−1
0 and time scale ω−1

0 ) is the one that grows most rapidly.

In analogy with the situation of continuous phase transitions we now define the ‘microscale’

as `0 = q−1
0 (or some other length scale associated with the linear instability) and note that
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the starting dynamical equations, though they may originate from some physical macroscopic

theory, can from a formal point of view be considered as a ‘microscopic model’, valid from

the microscale `0 to the macroscale L. We then introduce the reduced control parameter

r = (R − Rc)/Rc, and define a mesoscale ξ = `0|r|−1/2 = q−1
0 |r|−1/2, which sufficiently close

to the instability (|r| � 1) provides a scale separation between the micro- and macroscales

(`0 � ξ), with ξ <∼ L. Note that since the starting equations are themselves physically

macroscopic, we do not need the coarse graining step employed in the phase transition case,

and we here define the microscale `0 to be what we called ξ0 previously (see Fig. 1). The

Ginzburg-Landau equations are only valid in the critical (or ‘universal’) region |r| � 1

(ξ � `0) and it describes scales ` ' O(ξ).

We now represent the solution of the original dynamical system as

u(x, t) = u0

[
A(x, t)ei(q0x−ω0t) + c.c.

]
, (1.1)

where u0 is a function related to the linear instability, and c.c. signifies complex conjugate.

Then sufficiently close to the linear instability, it can be shown that solutions u(x, t) of the

starting dynamical system are given by Eq. (1.1), provided A(x, t) satisfies the so-called real

or complex Ginzburg-Landau equations given by Eqs. (6.23) and (6.39) below.

For this case we have thus reduced the problem of finding solutions of a general dynamical

systems to analysis of a relatively simple nonlinear partial differential equation. We also

demonstrate thereby that at least sufficiently close to the linear instability the behavior is

entirely determined by the parameters of that instability, so that vastly different systems can

thus admit a universal description, as long as they have similar linear instabilities. Of course,

as mentioned above, this universality is confined to the vicinity of the linear instability, which

is not necessarily the most interesting physical regime, in contrast to thermodynamic phase

transitions where the vicinity of the critical point is of primary physical relevance.

Nonequilibrium systems undergoing pattern forming linear instabilities include Rayleigh-

Bénard convection, convection in fluid mixtures, Taylor-Couette flow, oscillatory chemical

reactions and reaction-diffusion dynamics in neural systems and heart muscle, to cite only a

few. Solutions of the Ginzburg-Landau equations can then be found for 0 < r � 1, and they

constitute nontrivial solutions of the original dynamical system via Eq. (1.1). For example

a continuum of stationary or traveling plane wave solutions can be constructed and their

stability investigated. More complicated solutions, which we refer to as ‘defects’, can be
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found and their dynamics investigated. These are then bona fide solutions of the starting

dynamical system and they are observed in experiments on a variety of systems.

One of the most interesting aspects of pattern forming nonequilibrium systems is the

phenomenon of chaos, and the complex Ginzburg-Landau equation [see Eq. (6.40)] provides

an excellent example, where the transition from temporal to spatiotemporal chaos as the

system size is increased can be vividly illustrated both numerically and experimentally.

Solutions of Ginzburg-Landau 
equations 

 
•  find some universal features 
•  stability of ideal patterns 
•  defect solutions 
•  temporal and spatiotemporal chaos 

Expansion near linear instability 
 

•    
•  mesoscale 
•  eliminate scales  

Ginzburg-Landau equations 
 

•  valid on scales                    with  
•  real Ginzburg-Landau equation: potential 

(Lyapunov functional) 
•  complex Ginzburg-Landau equation: 

non-potential  

Physical Systems 
 

•  defined by dynamical equations, on all scales                     , 
from microscale        to macroscale 

•  systems:  

 ℓ "O(ξ )

 ℓ0 < ℓ < ξ

 ℓ0 L

– Rayleigh-Benard convection 
– thermal convection in binary fluid 
– Belousov-Zhabotinsky reaction 

 ℓ0 < ℓ < L

 | r |≪1,  r = (R − Rc ) / Rc
 ξ ∼  ℓ0 | r |−1/2

 ξ ≫ ℓ0

FIG. 2 Schematic structure of the Ginzburg-Landau theory of pattern formation and chaos.

A schematic structure of the Ginzburg-Landau theory of pattern formation and chaos is

shown in Fig. 2.
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C. Nature of the presentation

This paper is designed to introduce the reader to critical phenomena and nonequilibrium

pattern formation using a unified language, that of the Ginzburg-Landau theory. It is by no

means intended to be a full survey of these fields even for the first portion (phase transitions)

and certainly not for the second portion (patterns). Rather, the Ginzburg-Landau theory

is presented as a convenient and transparent language with which to highlight the essential

principles that govern the behavior. There is little emphasis on calculational techniques or

on detailed experimental developments, and the historical aspects of the field are treated

rather superficially. The authors consider those items to be adequately treated in the existing

literature, to which references can be found in the various reviews and monographs referred

to in the bibliography. It is hoped that by tying together the two primary applications of

the Ginzburg-Landau equations, phase transitions and nonequilibrium patterns, which are

usually discussed separately, this paper will lead to a unified conceptual understanding of

cooperative equilibrium and nonequilibrium behavior.

A word about references. In accordance with the introductory nature of the discussion, we

have not provided citations for the occasional references to historical materials. These can

be found in the textbooks, monographs and review articles that appear in our bibliography.

II. MEAN-FIELD THEORY: STATICS

A. Order parameters and broken symmetries: the Landau expansion

Continuous (also known as second-order) phase transitions occur when a new state of

reduced symmetry emerges continuously from the disordered or symmetric phase as the

temperature is reduced. The ordered phase at low temperature has a lower symmetry than

the disordered phase at high temperature. There are a multiplicity of equivalent states

(equal free energy) in the ordered phase, sometimes an infinite number. These states are

macroscopically different, so fluctuations do not connect them in the macroscopic (L→∞)

limit, also known as the thermodynamic limit. The ordered phases are described by a

phenomenological order parameter ψ(T ) which is nonzero below the transition point Tc and

vanishes at and above Tc, in equilibrium.

The Landau expansion:
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For spatially uniform systems the free energy for given value of the order parameter is

analytic in ψ and T . Near the transition it thus takes the form

Φ(P, T ) = Φ0(T ) + V
[
a(T )ψ2 + b(T )ψ4 + . . .

]
, (2.1)

where Φ0 is smooth at Tc. For the coefficients a and b we have

a(T ) = a0τ + . . . , a0 > 0 ,

b(T ) = b0 + . . . , b0 > 0 , (2.2)

where the reduced temperature τ is defined by

τ = (T − Tc)/Tc . (2.3)

The equilibrium condition (Landau equation) is given by minimization of the Landau free

energy Φ with respect to ψ

∂Φ

∂ψ
= 0 :⇒ 2aψ + 4bψ3 = 0 . (2.4)

The solutions ψ̄ of Eq. (2.4) are given by

ψ̄ =

0 , τ > 0 (a > 0)

±
(−a

2b

)1/2
= ±

(
−a0τ
2b0

)1/2

, τ < 0 (a < 0)
(2.5)

Substituting ψ = ψ̄ into the free energy given by Eq. (2.1) one obtains

Φ = Φ0 − V
a2

4b
= Φ0 − V

a2
0τ

2

4b0

. (2.6)

The specific heat Cp is given by

Cp = −T
V

∂2Φ

∂T 2
=

C0 , τ > 0

C0 +
a20T

2b0T 2
c
, τ < 0

(2.7)

One has a jump ∆Cp = a2
0/(2b0Tc) at the transition temperature T = Tc.

In addition to temperature one introduces an external field h, which couples linearly to

the order parameter. The free energy contains an additional term

Φ̃(P, T, h) = Φ(P, T )− V ψh , (2.8)
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where Φ(T, P ) is given by Eq. (2.1) and h is the external field. The equilibrium value of ψ

is determined by minimization of Φ̃(P, T, h)

∂Φ̃

∂ψ
= 0 :⇒ 2aψ + 4bψ3 = h . (2.9)

The susceptibility is the derivative χ = (∂ψ/∂h)T,h→0. Differentiation of Eq. (2.9) gives

χ−1 =
∂h

∂ψ
= 2a+ 12bψ2 . (2.10)

Then one obtains for h→ 0 in the disordered phase

τ > 0 , ψ2 = ψ̄2 = 0 and χ−1 = 2a , (2.11)

and in the ordered phase

τ < 0 , ψ2 = ψ̄2 = −a/(2b) and χ−1 = −4a . (2.12)

Thus the susceptibility diverges at the transition point T → Tc (a = a0τ → 0). For nonzero

external field h 6= 0 at the transition point τ = 0 (a = 0), the order parameter is

ψ =

(
h

4b

)1/3

. (2.13)

It is the minimization with respect to ψ which turns the smooth free energy (2.8)-(2.1) into

one having a singularity at T = Tc and h = 0.

First-order phase transitions:

We assume a free energy in the form

Φ(P, T ) = Φ0(T ) + V
[
aψ2 + eψ3 + bψ4 + . . .

]
. (2.14)

In the presence of a cubic term (e 6= 0) one has metastability, for example at a solid – liquid

phase transition (melting, freezing) one has

T = Tsol : Φsol > Φliq , ψ = ψliq ,

T + Tmeta : Φsol = Φliq , ψsol = ψliq ,

T < Tmeta : Φsol < Φliq , ψ = ψsol . (2.15)

Thus the order parameter ψ jumps at T = Tmeta.

One also has a first-order phase transition for a free energy of the form

Φ(P, T ) = Φ0(T ) + V
[
aψ2 − bψ4 + fψ6 + . . .

]
, (2.16)

with b > 0, f > 0. Note that the expansion (2.14) is only valid if the transition is weakly

first-order, i.e. |ψliq − ψsol| � |ψliq|+ |ψsol|.
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B. Spatial variations and fluctuations: the Ginzburg-Landau free energy

Let us consider spatially nonuniform systems, i.e., we allow the order parameter to be

spatially dependent, ψ = ψ(x). The free energy is now a functional of ψ(x), and in the

presence of an external field h it has the following form

Φ̃[P, T, ψ(x), h] = Φ0(T )

+

∫
d3x

[
aψ2(x) + bψ4(x) + c(∇ψ)2 − hψ(x)

]
. (2.17)

This expression is for historical reasons referred to as the Ginzburg-Landau free energy,

though it was introduced by Landau before the appearance of the Ginzburg-Landau paper

(1950). The probability of a fluctuation ψ(x) is

P [ψ(x)] = Z−1 exp
{
−βΦ̃[ψ(x)]

}
,

β =
1

kBT
=

1

T
, (2.18)

where Z is the partition function (normalization) obtained by integration over all possible

configurations Dψ(x) of the order parameter

Z =

∫
Dψ(x) exp

{
−βΦ̃[ψ(x)]

}
. (2.19)

Knowing the probabilities as in Eq. (2.18) one can write in general the average value of

some function of the order parameter A(ψ) as

〈A(ψ)〉 = Z−1

∫
DψA(ψ) exp

{
−βΦ̃[ψ(x)]

}
. (2.20)

The average value of the order parameter is given by

〈ψ〉 =
Z−1

V

∂Z

∂h
=
T

V

∂ lnZ

∂h
, (2.21)

and the susceptibility can be found from the linear response

χ =
∂〈ψ〉
∂h

=
T

V

∂2 lnZ

∂h2
. (2.22)

Let us now relate the partition function to the correlation function. Introduce Fourier modes

ψ(x) =
V

(2π)3

∫
d3q ψ(q)eiq·x ,

ψ(q) =
1

V

∫
d3xψ(x)e−iq·x . (2.23)
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Define the correlation function

C(x) = 〈〈ψ(x)ψ(0)〉〉 , (2.24)

where the double bracket is defined as 〈(ψ(x) − 〈ψ〉)(ψ(0) − 〈ψ〉)〉. Using Fourier modes

from Eq. (2.23) the free energy can be written (for h = 0) as

Φ =

∫
d3q

[
aψ(q)ψ(−q) + cq2ψ(q)ψ(−q) + . . .

]
. (2.25)

The fluctuation-response relation (fluctuation dissipation theorem) is

χ =
1

T

∫
d3xC(x) , (2.26)

a relation which is valid for weak fluctuations since linear response was assumed. More

generally, for nonzero wave vector we have

χ(q) =
V

T
C(q) , (2.27)

which relates the response χ and the correlations C (or fluctuations). According to the free

energy given by Eq. (2.25) the coefficient a in the Landau expansion is replaced by a+ cq2

in the Ginzburg-Landau expansion. Thus one has for the susceptibility in Fourier space

[compare with Eqs. (2.11) and (2.12)]

χ−1(q) =

2(a+ cq2) , τ > 0

2(−2a+ cq2) , τ < 0 .
(2.28)

Using the relation between susceptibility and correlation function given by Eq. (2.27) one

finds after Fourier transformation

C(x) =
T

(2π)3

∫
d3q χ(q)eiq·x =

T

8πcx
e−x/ξ , (2.29)

where the so-called correlation length ξ is given by

ξ2 = 2c χq=0 =

c/a = c/(a0τ) , τ > 0

−c/(2a) = −c/(2a0τ) , τ < 0 .
(2.30)

The correlation length ξ ∝ 1/
√
τ diverges when the transition point is approached (Ornstein

and Zernicke).
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C. Continuous broken symmetries

Up to now the order parameter ψ was considered to be a real scalar. The ordered state

has the broken symmetry ψ ↔ −ψ (discrete broken symmetry). The more general case is a

vector order parameter (n-vector model):

ψ(x) = {ψ1(x), . . . , ψn(x)} , (2.31)

and one has in Eq. (2.17)

ψ2 → |ψ|2 =
n∑
i=1

ψ2
i ,

(∇ψ)2 → |∇ψ|2 =
n∑
i=1

(∂xψi)
2 . (2.32)

The scalar case corresponds to n = 1. An external field is now also a vector and hψ → h ·ψ.

In the ordered state the order parameter is equal to ψ1, say, but it could be equal to any

other component ψi, i.e., there is an n-fold degeneracy. In this case we speak of a continuous

broken symmetry.

The free energy for a spatially uniform system in the presence of an external field is given

by

Φ̃ = Φ(|ψ|2)− V h ·ψ ,

Φ(|ψ|2) = V
[
a|ψ|2 + b|ψ|4

]
. (2.33)

The equilibrium state is determined by minimization of Φ̃

∂Φ̃

∂ψi
= 0 :⇒ 2ψiΦ

′ = V hi , (2.34)

where Φ′ means the derivative of Φ with respect to its argument |ψ|2.

What is now the susceptibility? We introduce the matrix

χij =
∂ψi
∂hj

and χ−1
ij =

∂hi
∂ψj

. (2.35)

We consider the field to be applied either along the vector order parameter or transverse to

it, with corresponding susceptibilities χ‖ and χ⊥, respectively. The susceptibility matrix is

χij = χ‖ĥiĥj + χ⊥(δij − ĥiĥj) , (2.36)
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where ĥ = h/|h| is a unit vector along the external field. Similarly, for the inverse suscep-

tibility we have

χ−1
ij = χ−1

‖ ĥiĥj + χ−1
⊥ (δij − ĥiĥj) . (2.37)

Taking into account Eq. (2.34) and differentiating with respect to ψj one finds for the inverse

susceptibility

V χ−1
ij = 2δijΦ

′ + 4ψiψjΦ
′′ = 2δijΦ

′ + 4ĥiĥj|ψ|2Φ′′ . (2.38)

Adding and subtracting the term 2ĥiĥjΦ
′ to the right hand side of Eq. (2.38) one finds

V χ−1
ij = ĥiĥj(2Φ′ + 4|ψ|2Φ′′) + (δij − ĥiĥj)2Φ′ . (2.39)

Comparing with Eq. (2.37) one obtains for the longitudinal and transverse inverse suscepti-

bilities

V χ−1
‖ = 2Φ′ + 4|ψ|2Φ′′ ,

V χ−1
⊥ = 2Φ′ . (2.40)

For Φ(|ψ|2) given by Eq. (2.33) one finds

Φ′ = V
[
a+ 2b|ψ|2

]
, Φ′′ = V 2b , (2.41)

and substituting into Eqs. (2.40) obtains

χ−1
‖ = 2a+ 12b|ψ|2 ,

χ−1
⊥ = 2a+ 4b|ψ|2 . (2.42)

Then one finds in the disordered phase

τ > 0 , |ψ|2 = 0 and χ−1
‖ = χ−1

⊥ = 2a , (2.43)

and in the ordered state

τ < 0 , |ψ|2 = −a/(2b) and χ−1
‖ = −4a , χ−1

⊥ = 0 . (2.44)

Since χ−1
⊥ = 0 for all τ < 0 one has a divergence of the transverse susceptibility not only

at the critical point but throughout the ordered phase. The significance of this result is
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apparent when one looks at a spatially dependent vector order parameter. The free energy

will contain an additional square gradient term

Φ =

∫
d3x

[
a|ψ|2 + b|ψ|4 + c|∇ψ|2

]
. (2.45)

The same structure occurs in Fourier space and again the coefficient a is replaced by a+cq2.

One can then write

τ > 0 , χ−1
‖ = χ−1

⊥ = 2(a+ cq2) ,

τ < 0 , χ−1
‖ = 2(−2a+ cq2) , χ−1

⊥ = 2cq2 . (2.46)

Using the relation between susceptibility and correlation function given by Eq. (2.27), one

finds after Fourier transformation for the longitudinal correlation function C‖(x)

C‖(x) =
T

(2π)3

∫
d3q χ‖(q)e

iq·x =
T

8πcx
e−x/ξ‖ . (2.47)

However for the transverse correlation function C⊥(x) in the ordered phase one finds

C⊥(x) =
T

(2π)3

∫
d3q

eiq·x

2cq2
=

T

8πcx
. (2.48)

Thus one has a power-law decay of correlations for all T < Tc, rather than an exponential,

i.e., there is an infinite correlation length ξ⊥ → ∞. A continuous broken symmetry pos-

sesses a kind of critical behavior not only at the critical point but along the whole ordered

(condensed) phase at zero field. Such behavior is referred to as a ‘soft mode’, even though

it occurs in the static (time-independent) correlations.

Let us consider a vector order parameter with planar order (n = 2). Suppose the sym-

metry is broken in a certain way and one has

ψ(x) = {ψ1, ψ2} = ψ̄eiθ(x) . (2.49)

Since the free energy depends only on |ψ|2, changing the phase θ in Eq. (2.49) does not

change the free energy. Although there is no barrier in the free energy when the direction

of ψ is changed, there is a so-called finite ‘stiffness’. Consider the square gradient term in

Eq. (2.45) in the ordered state τ < 0 with the order parameter given by Eq. (2.49); we have

|∇ψ|2 = |i∇θψ̄eiθ|2 = ψ̄2(∇θ)2 . (2.50)

Then the free energy Eq. (2.45) can be rewritten in the form

Φ = aψ̄2 + bψ̄4 +
ρs
2

∫
v2
s , (2.51)
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where we have introduced

vs = ∇θ , ρs = 2cψ̄2 , (2.52)

and the coefficient ρs is called the stiffness. The free energy Φ is independent of θ (continuous

degeneracy), but it depends on the gradient of θ(x).

D. Physical systems

Let us briefly describe the most commonly studied physical systems in which continuous

phase transitions occur.

1. Uniaxial magnet

This is the simplest physical system since it is described by a scalar order parameter

(n = 1). In the case of a ferromagnet ψ ∼ M is the magnetization and h ∼ B a magnetic

induction, and in the ordered phase we have ψ = ±ψ̄. For antiferromagnets ψ ∼ Ms is the

so-called staggered or sub-lattice magnetization. Considering a lattice of spins there will be

an ‘up-lattice’ and a ‘down-lattice’ and ψ characterizes each sub-lattice. The external field

h is the staggered field that acts on each sub-lattice separately.

The simplest model for a uniaxial magnet is the Ising model (n = 1). On the microscale

(lattice spacing `0) the Hamiltonian is

H = −J
∑
〈i,j〉

SiSj , (2.53)

where 〈i, j〉 means the sum over nearest neighbors, and Si = ±1 is a classical spin. For

J > 0 one has a ferromagnet and for J < 0 an antiferromagnet.

The phase diagram can be written in terms of a field variable, the temperature T vs. the

external field B, or alternatively, in terms of a density variable, T vs. M . In the latter case

one has a one-phase region above Tc and a two-phase region below Tc [see Fig. 3].

2. Pure fluid: liquid-gas critical point

For a pure fluid the order parameter is the difference between the liquid and gas densities,

ψ = ρL − ρG, and the external field is the difference between the liquid and gas chemical
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two−phase
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FIG. 3 Phase diagram of Ising model (n = 1): (a) Field variable: temperature T vs. external field

B, ordered state below Tc; (b) Density variable: temperature T vs. magnetization M , one phase

region above Tc and two phase region below Tc. For the gas-liquid critical point, B is replaced by

µ = µL − µG and M is replaced by ρ = ρL − ρG, so that M+ = ρL, M− = ρG. For the binary fluid

M is replaced by ψ = cA − cB the difference of concentrations, and B = h = µA − µB.

potentials, h = µL − µG. The symmetry ψ → −ψ is true only asymptotically as T → Tc

(τ → 0). The liquid-gas transition can also be described by an Ising model (lattice gas

model).

3. Binary fluid

For a fluid mixture the order parameter is the difference between the concentrations of

the two components, ψ = cA − cB, the external field is the difference between the chemical

potentials of the two components, h = µA − µB. This system can also be represented by an

Ising model (n = 1).

4. Planar magnet

This system is also known as an easy-plane magnet. It is a magnetic system in which

the ordered state is characterized by a vector isotropic in a plane, say the x− y plane. The

order parameter now has two components (n = 2), ψ = (Mx,My), and the external field is

h = (Bx, By). The orthogonal components, Mz and Bz do not enter the static description,

only the dynamics (see below).
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FIG. 4 Easy-plane magnet.

The microscopic model for this system is given by

H = −Jxy
∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
+ Jz

∑
〈i,j〉

Szi S
z
j , (2.54)

where the coefficients |Jxy| > |Jz| depend on the details of the lattice. For Jxy > 0 one has

an easy-plane ferromagnet and for Jxy < 0 an easy-plane antiferromagnet.

5. Isotropic ferromagnet or antiferromagnet

The ordered state is characterized by a vector isotropic in space, i.e., n = 3. In a

ferromagnet one has ψ = M where M = (Mx,My,Mz) is the uniform magnetization and

the field h = B where B = (Bx, By, Bz) is the magnetic induction. In an antiferromagnet

the order parameter is the staggered magnetization Ms and h is the staggered field Bs. The

model on the microscale is the Heisenberg model

H = −J
∑
〈i,j〉

Si · Sj − h ·
∑
i

Si . (2.55)

For J > 0 one has a ferromagnet and for J < 0 an antiferromagnet.

6. Superfluid

The superfluid or Bose-fluid is described by an n = 2 order parameter ψ, which is the

complex superfluid ‘wave function’. It comes from the off-diagonal density matrix ρ(r, r′) of

a Bose-fluid,

ρ(r, r′) = 〈a†(r)a(r′)〉 , (2.56)

where a†, a are the quantum creation and annihilation operators of the Bose-fluid and the

bracket mean a thermal average. The complex order parameter ψ(r) is defined as

lim
|r−r′|→∞

ρ(r, r′) = ψ(r)ψ∗(r′) . (2.57)
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If the off-diagonal density matrix does not decay to zero at large distances, then ψ 6= 0 and

one has a Bose condensate. For example 4He has such a Bose condensation at T ≤ Tλ (the

lambda-temperature). Since the order parameter ψ is complex one has a phase degeneracy

(n = 2). The field h is a ‘source of quantum particles’ and is not physically realizable. Thus

ψ and h are not directly measurable in liquid helium. However they are coupled to physical

quantities such as temperature T , entropy S, pressure P , and density ρ. So the effect of ψ

on thermodynamic quantities can be measured, e.g., Cp and the stiffness ρs (also known as

the superfluid density) can be measured.

7. Superconductor

Another system with quantum condensation is a superconductor. It is also described by

an n = 2 order parameter ψ, which is the complex ‘pair wavefunction’. This case is like

Bose condensation but instead of the quantum creation and annihilation operators of the

Bose-fluid a and a† one has for Fermi particles, pairs operators

a, a† ⇒ aa, a†a† . (2.58)

The superconducting order parameter is related to an appropriate two-particle density ma-

trix

ρ2(r, r′) = 〈a(r)a(r)a†(r′)a†(r′)〉 , (2.59)

by

lim
|r−r′|→∞

ρ2(r, r′) = ψ(r)ψ∗(r′) . (2.60)

The order parameter was introduced phenomenologically by Ginzburg and Landau in 1950

via Eq. (2.60), without knowledge of the microscopic quantum relations Eq. (2.59) for the

density matrix. The field h is again not physically realizable. In superconductors the

important new element from the point of view of physics is the coupling to electromagnetic

fields since the electrons are charged. The square gradient term in the Ginzburg-Landau

free energy takes the form

|∇ψ|2 → |(∇− ie∗

h̄c
A)ψ|2 , (2.61)
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where A(r, t) is the vector potential and e∗ is the charge associated with the ‘particles’

which are actually pairs, i.e., e∗ = 2e. This coupling leads to many important physical

consequences, such as:

(i) the Meissner effect, an expulsion of a magnetic field from a superconductor below the

transition to the superconducting state;

(ii) interfaces between the normal and superconducting states;

(iii) at nonzero magnetic field the Abrikosov instability leading to patterns of vortices of

supercurrent with finite wavenumber q0 ∼ 1/ξ, where ξ is the Ginzburg-Landau correlation

length.

Note that in zero field one has the same expression for the free energy as for a superfluid,

namely Eq. (2.51).

III. DYNAMICS: HYDRODYNAMIC MODES

A. Relaxational dynamics: conserved and non-conserved order parameter

In terms of the Ginzburg-Landau description an equilibrium state is determined by the

relation

∂Φ

∂ψ
= 0 , (3.1)

so away from equilibrium the simplest dynamics is relaxational

∂ψ

∂t
= −Λ

V

∂Φ

∂ψ
, (3.2)

i.e., ψ decays to equilibrium, and the proportionality constant Λ is called a ‘kinetic coeffi-

cient’. In the spirit of the Ginzburg-Landau expansion, for ψ near equilibrium (and near

the phase transition) one finds [see Eq. (2.8)]

∂Φ̃

∂h
= 0 :⇒ ∂Φ

∂h
= V ψ ,

∂Φ

∂ψ
=
∂Φ

∂h

∂h

∂ψ
= V ψχ−1 . (3.3)

The relaxational dynamics is then given by

∂tψ = −Γψ , (3.4)
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where Γ = Λ/χ is the ‘relaxation rate’. In the ordered phase (τ < 0) where ψ = ψ̄ one has

∂t(ψ − ψ̄) = −Γ(ψ − ψ̄) . (3.5)

Let us introduce the notion of a conserved order parameter, namely

∂t

∫
d3xψ(x, t) = 0 , (3.6)

or in Fourier space

∂tψ(k = 0, t) = 0 . (3.7)

If the order parameter is conserved it implies

Λ→ λ∇2 , (3.8)

where λ is known as a ‘transport coefficient’. For a conserved order parameter one finds in

Fourier space

∂tψ(k) = Γ(k)ψ(k) , Γ(k) =
λ

χ
k2 = Dk2 . (3.9)

Here D = λ/χ is the diffusion coefficient and the relaxation rate Γ(k) goes to zero as k → 0.

The expression D = λ/χ is known as an ‘Einstein relation’.

When the order parameter is not conserved we have Γ(k = 0) = Γ0 6= 0 and ψ(t) decay

to equilibrium at a finite rate for k → 0: ψ(t)− ψ̄ ∼ e−Γ0t.

B. Coupling to conserved densities: propagating modes

Let us consider a situation where a non-conserved order parameter [Γ(k = 0) = Γ0 6= 0]

is coupled to a conserved density. The model we consider is the planar magnet (see Fig. 4).

The system has rotational symmetry around the z-axis and ψ lies in the x− y plane. There

is no temporal symmetry of the dynamics of ψ in the plane, therefore ψ is not conserved,

whereas mz is conserved, and ∂tmz ∼ ∇2mz. In this model ψ is coupled to mz, and the

normal component of the field, hz, generates rotations of ψ. Classically we have the Poisson

bracket

{ψ,mz}PB = iψ , (3.10)
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or quantum mechanically, in terms of the commutator we can write

[Sx + iSy, Sz] ∝ i(Sx + iSy) . (3.11)

We consider an extension of the simple relaxational model of Sec. III.A to this case of a

non-conserved order parameter ψ = Mx + iMy coupled to a conserved density mz. The free

energy, which now depends on ψ, mz, and hz, takes the form

Φ(ψ,mz, hz) =

∫
d3x

[
a|ψ|2 + b|ψ|4 + c|∇ψ|2

+χ−1
m m2

z − hzmz

]
. (3.12)

The dynamics of ψ and mz is then given by

∂tψ = −Λψ

V

∂Φ

∂ψ
− ig0

ψ

V

∂Φ

∂mz

,

∂tmz =
λm
V
∇2 ∂Φ

∂mz

+
2g0

V
Im

[
ψ∗

∂Φ

∂ψ∗

]
. (3.13)

This is model E in the classification of Hohenberg and Halperin (1977). For the disordered

phase, τ > 0, the cross coupling is negligible since |ψ| → 0. In the ordered phase, τ < 0,

one has ψ = ψ̄eiθ and

Φ ∼ ρs
2

∫
|∇θ|2 , ρs = 2cψ̄2 . (3.14)

Then in lowest order, the dynamics of θ, mz is given by

∂tθ = g0χ
−1
m mz ,

∂tmz = g0ρs∇2θ . (3.15)

Going into Fourier space, ∇2 → −k2, we find for the dynamical modes θ ∼ exp(iωθt),

mz ∼ exp(iωmt)

ωθ(k) = ωm(k) = ±csk , c2
s = g2

0ρs/χm . (3.16)

Thus a non-conserved order parameter relaxes for τ > 0, but it is coupled to a conserved

density (mz) for τ < 0, due to the broken continuous symmetry. This leads to a propagating

‘Goldstone’ (spin wave) mode with ω = ±csk and cs ∝
√
ρs. At the critical point one has

ρs = 2cψ̄ → 0 and the velocity of the Goldstone mode goes to zero. As we will see below,

this result is directly related to the superfluid model with ρs as the superfluid density.
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C. Physical systems

1. Liquid-gas critical point

This is an example of a system where a conserved order parameter is coupled to a con-

served momentum current. As mentioned above, in the static description the order param-

eter is the difference between the liquid and gas densities, ψ = ρL − ρG, the external field is

the difference between the liquid and gas chemical potentials, h = µL−µG, and χψ = ∂ρ/∂µ

is the compressibility.

In the dynamics the order parameter ψ is proportional to the entropy density s = ε −

(µ̄ + Tcs̄)ρ, where ε is the energy density, and ρ is the mass density. The field hψ is T

and χψ = ∂s/∂T |p = Cp. The order parameter couples to the transverse momentum jT , a

conserved current, with diffusion coefficient proportional to the viscosity η̄: Dj = η̄/ρ. Note

that a fluid in a porous medium does not obey momentum conservation so that both the

sound mode and the viscous diffusion mode disappear at long wavelengths.

For this system one can also write a Ginzburg-Landau model [model H of Hohenberg and

Halperin (1977)]. The relevant dynamical modes [see Landau and Lifshitz (1987)] are the

thermal diffusion (Rayleigh) and viscous diffusion modes:

Rayleigh : ωψ = iDTk
2 , DT = λ/Cp ,

viscous : ωj = iDjk
2 , Dj = η̄/ρ , (3.17)

where λ is the thermal conductivity and η̄ the viscosity. There also are modes related to

sound waves, the so-called Brillouin modes

Brillouin : ωB = ±ck , c2 ∝ (∂ρ/∂p)−1
s , (3.18)

but these are not important near Tc.

2. Isotropic magnets

The dynamics of the isotropic Heisenberg antiferromagnet (n = 3) can be mapped onto

the planar magnet (model E). One has for the non-conserved order parameter ψ ∼Ms, the

staggered (or sublattice) magnetization, which is mapped to the components Mx,y in the

planar magnet model. The average total magnetization M is conserved and it is mapped
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onto the orthogonal component mz of the planar magnet model. ThusM generates rotations

of Ms. The dynamical modes for τ > 0 are

ωψ ∼ iΓ0 = i
Λ

χψ
,

ωM ∼ i
λ

χM
k2 , (3.19)

where χM is the magnetic susceptibility. In the ordered phase, τ < 0, the staggered and the

total magnetization are coupled and one has

ωψ = ωM = ±csk , c2
s ∼ ρsχ

−1
M , (3.20)

which is a linear spin wave mode.

The isotropic ferromagnetic case is similar but there we have an n = 3 conserved vector

order parameter ψ ∼ M (Bloch equations, Landau-Lifshitz equations). The dynamical

modes are given for τ > 0 by

ωψ ∼ iDsk
2 = i

λ

χψ
k2 , (3.21)

which corresponds to spin diffusion. This is in contrast to the antiferromagnet where for

τ > 0 the order parameter just decays at a finite rate. In the ordered phase, τ < 0, the

different components of ψ are coupled and one has

ωψ = ±bk2 , (3.22)

which describes the propagation of spin waves with quadratic wave vector dependence, and

b is again given by pure thermodynamics, b = ρs/ψ̄, where ψ̄ is the magnitude of the order

parameter, and ρs is the stiffness.

3. Superfluids

As mentioned above, the Bose fluid is described by an n = 2 order parameter ψ. We

first consider a simple model of helium in a porous medium, i.e., no velocity diffusion (no

momentum conservation), which makes the hydrodynamics simpler. In analogy with the

planar magnet we can use model E

ψ ∼Mx + iMy → Bose wave function ψ

mz → ρ , hz → µ . (3.23)
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For the dynamical modes for τ > 0 one has a non-conserved order parameter ψ and a

conserved (mass) density ρ

ωψ ∼ iΓ0 = i
Λ

χψ
,

ωρ ∼ i
λ

χρ
k2 , χρ = ∂ρ/∂µ , (3.24)

describing relaxation of the order parameter and diffusion of density with transport coeffi-

cient λ. In the ordered phase, τ < 0, the order parameter and density modes are coupled

and one has a propagating mode with linear dispersion relation

ωψ = ωρ = ±csk , c2
s = ρs/χρ . (3.25)

In the normal (disordered) phase there is no sound propagation. However, when Bose

condensation happens, one gets a propagating sound mode appearing as a result of the

continuous broken symmetry. In a porous medium this mode is known as ‘fourth sound’

and it has been observed experimentally. There is also a mode called ’third sound’, which

describes propagation of sound in thin films of superfluid.

Pure helium is more complicated. For τ > 0 it is essentially the same model as for a

pure (normal) fluid critical point and one has the Rayleigh mode for the conserved entropy

density s and a decaying mode for the non-conserved Bose order parameter ψ

ωs = iDTk
2 , DT =

λ

Cp
,

ωψ = iΓ0 = i
Λψ

χψ
. (3.26)

In the ordered phase, τ < 0, there is a contribution to the free energy ∼ (ρs/2)
∫
d3x|∇θ|2

as in the planar magnet where we had [see Eq. (3.15)]

∂tθ = g0χ
−1
m mz = g0hz . (3.27)

This equation expresses the fact that mz generates rotations of ψ (changes in the phase θ of

the complex order parameter ψ). In the case of a superfluid hz → µ and taking into account

the units for the chemical potential µ one can write

∂tθ = µ/h̄ , (3.28)

which represents the Josephson relation between changes of the phase of the order parameter

and the chemical potential. In the context of the Ginzburg-Landau description it just
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expresses the generation of rotations of the order parameter by the field hz in the planar

magnet.

One can also define a superfluid velocity vs by

vs =
h̄

m
∇θ ,

∂tvs =
1

m
∇µ . (3.29)

This is the Landau equation for superfluid hydrodynamics, which can be obtained by taking

the gradient of Eq. (3.28). Equation (3.29) was derived by Landau in 1941 without any

reference to Bose condensation, only on the basis of symmetry arguments.

Finally one finds for the modes in the ordered phase

ωs = ωψ = ±c2k , c
2
2 = ρs/Cp . (3.30)

This mode is known as ‘second sound’, which is the new mode that appears in a superfluid,

and its velocity c2 → 0 when approaching Tc. The Brillouin mode also exists and it is given

by

ωB = ±c1k , (3.31)

which is known as ’first sound’. It represents ordinary compression of the fluid and has only

a weak singularity at the transition to the superfluid state.

T

P

0

Tc

Tλ(P)

He−II He−I

solid

liquid

gas

PS

PG

FIG. 5 Phase diagram of 4He. The gas-liquid coexistence curve ends at the critical point. The

liquid-solid melting line is shown at high pressure, and the so-called λ-line Tλ(P ), the transition

from normal 4He-I to superfluid 4He-II depends on pressure in the range PG < P < PS .
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All of these results are dramatic predictions for superfluids, all within the mean-field

theory. The phase diagram of helium (PT -diagram) is shown in Fig. 5. One can separately

measure the second sound velocity c2, the superfluid density ρs (by measuring the trans-

verse response χ⊥), the specific heat Cp, and for example check the exact relation given by

Eq. (3.30).

D. Phase transitions in dynamics: mean-field or conventional theory

The discussion of dynamics thus far in Sec. III, based as it is on mean-field theory, is

nevertheless exact in the long-wavelength limit, away from the phase transition, since it

refers either to the low-temperature or the high-temperature fixed point. This is because

mean-field theory correctly captures the symmetries and couplings that determine the long-

wavelength hydrodynamics. At the phase transition, we do not expect mean-field theory

to be any more accurate for the dynamics than for the statics. In that approximation

the modes will reflect only the behavior of the thermodynamic quantities χψ ∼ |τ |−1 and

ρs ∼ |ψ̄|2 ∼ |τ |, and all the singularities (jump in Cp, correlation length ξ ∼ |τ |−1/2) come

from the vanishing of τ at the transition. In particular, this so-called ‘conventional theory’

assumes that all transport and kinetic coefficients Γ0, Λ, λ, are non-singular (smooth). Thus

χ−1
ψ → 0, ρs → 0 and since they enter into the mode frequencies one has also ωψ → 0 at the

transition. This phenomenon is known as critical slowing down: for example in relaxational

dynamics we have Γ ∼ χ−1
ψ → 0.

Let us consider for example a pure fluid for which ωψ ∼ C−1
p and Cp ∼ χψ, thus ωψ → 0

at |τ | → 0. In the isotropic antiferromagnet ωψ = ωM ∼ cs and cs ∼ ρ
1/2
s ∼ |τ |1/2 (χM is

non-singular). For the isotropic ferromagnet ωψ ∼ bk2 where b ∼ ρs ∼ |τ |. For the superfluid

ωs = ωψ ∼ c2k and c2 ∼ ρ
1/2
s ∼ |τ |1/2, in the ordered phase, but ωψ ∼ χ−1

ψ ∼ τ above Tc.

IV. PHENOMENOLOGY OF CRITICAL BEHAVIOR: SCALING AND UNIVER-

SALITY

We shall follow the historical order and introduce scaling and universality before dis-

cussing the renormalization group, even though this reverses the logical order.
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A. Statics

A noted earlier, in mean-field theory a = a0τ and we have for the order parameter

ψ̄ ∼
√
−a for τ < 0 and ψ̄ = 0 for τ ≥ 0. For the specific heat one has Cp = C0 for τ > 0

and Cp = C0 + ∆Cp for τ < 0. Finally for the susceptibility one has χψ ∼ |τ |−1 for all τ .

These lead to the following critical exponents in the disordered phase

τ > 0 : χψ ∼ τ−1 = τ−γ , γ = 1 ,

Cp ∼ const = τ−α , α = 0 . (4.1)

Along the critical isochore we have

τ = 0 , h 6= 0 : h(ψ) ∼ ψ3 = ψδ , δ = 3 , (4.2)

and at the critical point we have

C(x) = 〈ψ(x)ψ(0)〉 ∼ x−(1+η) , η = 0 . (4.3)

In the ordered phase one has

τ < 0 : χψ ∼ |τ |−1 = |τ |−γ , γ = 1 ,

ψ̄ ∼ |τ |1/2 = |τ |β , β = 1/2 ,

C(x) ∼ x−1−ηe−x/ξ , η = 0 ,

ξ ∼ |τ |−1/2 = |τ |−ν , ν = 1/2 . (4.4)

Note that for models with n > 1 (continuous symmetry breaking) one has two correlation

lengths [see Eqs. (2.47) and (2.48)]: ξ‖ ∼ |τ |−1/2 and ξ⊥ = ∞. The corresponding critical

exponent is ν‖ = 1/2 and ν⊥ is undefined. These six critical exponents α, β, γ, δ, η, and ν

are universal in the sense that they are the same for all n (except for the difference between

ν‖ and ν⊥) and all space dimensions

α β γ δ η ν ,

0 1
2

1 3 0 1
2
.

(4.5)

As is well known, however, experiments and approximate calculations of exponents show

that the mean-field theory is not quantitatively correct, as regards values for the exponents

and the fact that the values depend on the system. During 1960s a highly successful phe-

nomenological theory was developed, which we call scaling and universality. It is based on
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the idea that the diverging correlation length ξ controls all the singularities in the ther-

modynamics and correlation functions. Specifically, one assumes for the free energy of the

system in the vicinity of the critical point (τ → 0, h→ 0, ξ−1 → 0)

Φ̃(T, h) = Φreg(τ, h) +

∫
ddxφ̃(τ, h) , (4.6)

where Φreg represents the regular part, and in the integral the function φ̃(τ, h)→ φ̃(ξ, h) is

expressed in terms of the correlation length ξ(τ, h) as a homogeneous function of ξ and h

φ̃(ξ, h) = ξ−yf±(h/ξ−w) . (4.7)

For the correlation function one also assumes homogeneity:

C(ξ, h, x) = x−(d−2+η)g±(x/ξ, h/ξ−w) . (4.8)

Now from the fluctuation-dissipation theorem, Eq. (2.26)

χ =
1

T

∫
ddxC(x) , (4.9)

we obtain a relation between y, w, and η which leaves two independent exponents. From

Eqs. (4.7) and (4.8) one can calculate the exponents α, β, γ, δ, and ν as they are defined in

Eqs. (4.1)-(4.4), just re-expressing them in terms of y, w, and η. One finds

y = d , w = βδ/ν , (4.10)

and

2− α = 2β + γ = dν ,

γ = β(δ − 1) = (2− η)ν . (4.11)

These 4 relations between the 6 exponents (known as ’scaling laws’) allow all static exponents

to be expressed in terms of 2 independent ones, say, ν and η. This follows directly from the

homogeneity assumptions Eqs. (4.7) and (4.8).

One now assumes that ν and η depend only on the order parameter dimension n and

the space dimension d, as suggested by experimental data. This is known as universality,

namely that within a universality class, defined by d and n, the exponents are the same:

n = 1, d = 3 : liquid-gas critical point = uniaxial magnet (Ising model);

n = 2, d = 3 : superfluid = planar magnet;
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n = 3, d = 3 : isotropic magnet (ferro- and antiferromagnet).

As explained in the next section the validity of the phenomenological theory turns out to

be justified by the renormalization group.

Finally, let us consider the special case of a continuous symmetry, where in the mean-field

theory one has for the correlation lengths ξ‖ 6= ξ⊥ for τ < 0 and n > 1. In the scaling theory

we have assumed a single ξ. The only way to do this is to define the transverse correlation

function in d dimensions as follows:

C⊥(x) =
T ψ̄2

ρsxd−2
∼ T ψ̄2

(
ξ⊥
x

)d−2

, (4.12)

which also defines ξ⊥ ∝ ξ‖ and thus ν‖ = ν⊥. It implies that

ξ2−d
⊥ ∼ ρs . (4.13)

In d = 3 it gives ρs ∼ ξ−1 ∼ |τ |ν , a relation which is sometimes associated with the name of

Josephson, although it was understood earlier.

B. Dynamics

Is there a phenomenology for dynamics? As we saw in Sec. III.A the simplest dynamics

is relaxational, where for a non-conserved order parameter one has

∂tψ = −Γ0(ψ − ψ̄) , (4.14)

and Γ0 = Λ/χψ is the relaxation rate. For a conserved order parameter the condition

∂t
∫
ddxψ = 0 is achieved by Λ→ −λ∇2 and

∂tψ = D∇2ψ , (4.15)

where D = λ/χψ is the diffusion constant. In Fourier space one can write

∂tψ(k) = Γ(k)ψ(k) , (4.16)

where Γ(k) = Γ0 for a non-conserved order parameter and Γ(k) = Dk2 for a conserved order

parameter, respectively.

We have seen that in mean-field theory different characteristic frequencies ωψ, ωm go to

zero with different exponents for τ > 0, τ < 0, and with different exponents for different

coupled densities. Hydrodynamics is different for τ > 0 and τ < 0. The first assumption
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of the phenomenological scaling theory is that because of the divergence of the correlation

length ξ, the breakdown of hydrodynamics is controlled by ξ alone in all modes.

We can discuss hydrodynamics by considering the time dependent correlation function

for the order parameter

C(x, t) = 〈(ψ(x, t)− ψ̄)(ψ(0, 0)− ψ̄)〉 , (4.17)

which can be Fourier transformed to get C(k, ω), whose time dependence is controlled by

modes ω(k). C(k, ω) is characterized by either decay or propagation for different modes.

Similar definitions apply for the conserved densities entering the hydrodynamics.

The second assumption of the phenomenological theory is the homogeneity of character-

istic frequencies ω = ω(k, ξ) whose form depends on the dynamic universality class defined

by the hydrodynamics [dynamic scaling, Halperin and Hohenberg (1967)].

0

k

ξ−1τ<0 τ>0

H+H−

C

FIG. 6 Hydrodynamic regimes H+, H−, and critical dynamics C shown on a plot of the wave vector

k vs. the temperature T measured by ξ−1, with the critical point at ξ−1 = 0. ξ+ ∼ τν , ξ− ∼ |τ |ν .

In Fig. 6 a schematic diagram of the hydrodynamic regimes is shown. In the region

H+, kξ � 1, we have hydrodynamics for τ > 0. In the region H−, kξ � 1, we have

hydrodynamics for τ < 0. In the region C, τ ≈ 0, kξ � 1, we have critical dynamics and

no hydrodynamic laws.

The third assumption of the phenomenological theory is that near Tc the link between

regimes is also controlled by the correlation length ξ. Thus, for the characteristic frequency

of the order parameter, for example, one assumes a homogeneous function

ωψ(k, ξ) = kzΩ±(kξ) , (4.18)

where z is a new ‘dynamic’ exponent. Any density that couples to the order parameter has

a characteristic frequency with a similar functional form and the same dynamic exponent z,
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but a different scaling function,

ωm(k, ξ) = kzΩm
± (kξ) . (4.19)

Since at nonzero k, the frequency ω should remain finite at Tc, we have in the critical

dynamics regime, ω ∼ kz.

From these quite general assumptions one can already draw an important conclusion.

Since the dispersion relation of propagating hydrodynamic modes can be expressed entirely

in terms of static (equilibrium) quantities, the dynamic exponent z of Eq. (4.18) is always

exactly related to static exponents. It is only in cases where the order parameter relaxes

that new dynamic exponents appear, relating to kinetic and transport coefficients. Consider

relaxational dynamics for a non-conserved order parameter, where

ωψ = iΓ0 = i
Λ

χψ
∼ ξxλ

ξ2−η , (4.20)

where we have introduced xλ for the scaling of Λ. According to the dynamic scaling as-

sumption Eq. (4.18) one can also write

ωψ ∼ kz(kξ)−z , (4.21)

which gives for the dynamic exponent

z = 2− η − xλ . (4.22)

In the case of a conserved order parameter one has

ωψ = iDk2 = i
λ

χψ
k2 ∼ ξxλ

ξ2−η k
2 , (4.23)

which can be written in the form of a homogeneous function

ωψ ∼ kz(kξ)−(2−η−xλ) , (4.24)

yielding for the dynamic exponent

z = 4− η − xλ . (4.25)
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1. Planar magnet

Consider now the planar magnet where the non-conserved order parameter is coupled to

a conserved density. In the region H+ (τ > 0, kξ � 1, see Fig. 6) the dynamics of ψ is

relaxational, ωψ ∼ iΓ0 decays and the dynamic exponent is given by Eq. (4.22). For the

conserved density mz the frequency is given by

ωm = i
λm
χm

k2 ∼ ξxλm

ξ0
k2 = k2−xλm (kξ)xλm , (4.26)

which results in the dynamic exponent

z = 2− xλm . (4.27)

In the region H− (τ < 0, kξ � 1) one has propagating modes for ψ and mz with

frequencies ωψ = ωm = ±csk where c2
s ∼ ρs/χm. According to Eq. (4.13) one has ρs ∼ ξ2−d

with d = 3 and taking into account that χm ∼ ξ0 one finds for the frequency scaling

ωψ = ωm ∼ ξ−1/2k = k3/2(kξ)−1/2 , (4.28)

with dynamic exponent

z =
3

2
. (4.29)

Now we assume that since the ωψ and ωm modes agree for τ < 0, the same dynamic

scaling assumption (with the same exponent z) holds for ωm for τ > 0. Then we have

xλm = 2− z =
1

2
. (4.30)

2. Pure fluid

For fluids the order parameter does not have propagating modes so the dynamic expo-

nent z is not related to static exponents. One does, however predict the k-dependence of

ωψ(k, ξ), which can be checked by inelastic light scattering (Rayleigh scattering) to extract

the dynamic exponent z (Swinney and Henry).
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3. Isotropic magnets

The isotropic antiferromagnet can be mapped to the planar magnet case, for which z =

3/2. This can be verified by measurements of ωψ(k, ξ) by neutron scattering.

In the case of ferromagnets (n = 3, d = 3) one has for τ < 0 propagating spin waves with

ωψ = ±bk2 where b = ρs/ψ̄ and

ωψ ∼
ρs
ψ̄
k2 ∼ ξ−1

ξ−β/ν
k2 = kz(kξ)β/ν−1 , (4.31)

which gives for the dynamic exponent

z = 3− β

ν
. (4.32)

Taking into account the static critical exponents β, ν for isotropic ferromagnets one finds

z ≈ 5/2. In the disordered phase, τ > 0, the dynamic mode is given by ωψ = iDk2 and

similar to Eqs. (4.23)-(4.24) the dynamic exponent is given by Eq. (4.25), with z determined

by Eq. (4.32), yielding xλ = 1 − η + β/ν ≈ 3/2 − η. These predictions have also been

confirmed experimentally.

4. Superfluid

The case of helium in pores is analogous to the planar magnet (Sec. IV.B.1) and the

dynamic exponent is z = 3/2, yielding xλm = 1/2.

For pure helium the specific heat singularity enters and one has the following scaling:

χm ∼ Cp ∼ ξα/ν . (4.33)

For τ > 0 one has

ωm ∼ ωs ∼
λ

Cp
k2 , (4.34)

and for τ < 0 (propagating modes) we find

ωs = ωψ = ±csk . (4.35)

Assuming again the same dynamic exponent for ωψ for τ > 0 as well one finds

z =
3

2
+

α

2ν
,

xλ =
1

2
+

α

2ν
. (4.36)
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In this way the dynamic exponent z is evaluated in terms of static exponents, yielding

a dramatic prediction by Ferrell et al. and by Halperin and Hohenberg in 1967 for the

divergence of the thermal conductivity at the superfluid transition. This prediction was

verified experimentally by Ahlers in 1968.

To summarize, the Landau or mean-field theory is universal in that all thermodynamic

properties (critical exponents) are the same in all systems. The scaling theory assumes

universality classes, i.e., that critical exponents and scaling functions are the same for all

systems belonging to the same class, but different for different classes. For static phenomena

the classes depend on d (dimension of space) and n (dimension of the order parameter). For

dynamic phenomena the classes depend also on the form of the hydrodynamics. Thus a

single static class (d, n) splits up into different dynamic universality classes, depending on

the form of the hydrodynamic modes. We list below the principal dynamic universality

classes, along with the corresponding Ginzburg-Landau model defined by Hohenberg and

Halperin (1977).

n = 1: Relaxation: non-conserved ψ (model A)

Diffusion: conserved ψ (model B)

Fluid: conserved ψ coupled to

conserved transverse

current jT (model H)

n = 2: Relaxation: non-conserved ψ (model A)

Diffusion: conserved ψ (model B)

Planar magnet, hz = 0, χm ∼ const (model E)

Helium in pores: z = 3
2

(model E)

Planar magnet, hz 6= 0, χm ∼ ξα/ν (model F)

pure helium: z = 3
2

+ α
2ν

, xλ = 1
2

+ α
2ν

(model F)

n = 3: Relaxation: non-conserved ψ (model A)

Diffusion: conserved ψ (model B)

Antiferromagnet: z = 3
2

(model G)

Ferromagnet: z = 3− β
ν

(model J)
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V. EFFECTS OF THERMAL FLUCTUATIONS: RENORMALIZATION GROUP

The mean-field theory neglects the effects of thermal fluctuations on the thermodynamic

functions, even though it predicts divergent fluctuations via the correlation function C(x)

and response χ(k) as τ, h→ 0. It is thus not self-consistent. However the Ginzburg-Landau

theory can be used to determine the domain of validity (self-consistency) of mean-field

theory, and also to calculate the corrections to mean-field theory. For this it is sufficient to

take into account the effects of thermal noise.

A. The ‘Ginzburg-Landau-Wilson’ model

For illustration, let us consider the Ising model on a lattice as a starting point for a

microscopic description over the whole range of scales `0 < l < L. The Hamiltonian is given

by [see Eq. (2.53)]

H = −J
∑
〈i,j〉

SiSj , (5.1)

where 〈i, j〉 means the sum over nearest neighbors, Si = ±1 are classical spins and the lattice

spacing is `0. The Gibbs free energy and the partition function are

Ω = −T lnZ , (5.2)

Z =
∑
{Si}

exp [−H/T ] , (5.3)

where the sum in Eq. (5.3) signifies a sum over all configurations of the Si on the lattice.

Define the Fourier transform

Sk =
∑
i

Sie
−ikxi , 0 ≤ k ≤ `−1

0 , (5.4)

and take the system volume to be V = Ld. Then the partition function Z can be rewritten

in terms of Sk as

Z =

∫
L−1<k<`−1

0

DSk exp {−H[Sk]/T} , (5.5)

where DSk ≡ ddSk1d
dSk2 . . . d

dSkn , with k1 = L−1 and kn = `−1
0 , i.e., we have discretized

the modes for clarity. In the thermodynamic (continuum) limit (L → ∞), k1 → 0 and
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the number of modes diverges. We can divide the integral in Eq. (5.5) into two parts:

L−1 < k < k0 and k0 < k < `−1
0 , where we have introduced the ‘mesoscale’ wave vector

k0 = ξ−1
0 . Then for the partition function we can write

Z =

∫
L−1<k<k0

DSk exp {−Φ[Sk]} , (5.6)

with the definition

exp {−Φ[Sk]} ≡
∫

k0<p<`
−1
0

DSp exp {−H(Sk, Sp)/T} . (5.7)

For L−1 < k < k0 we define ψk = Sk, and going back to x (inverse Fourier transform), we

have

ψ(x) =
∑

L−1<k<k0

ψke
ikx . (5.8)

The field ψ(x) thus represents not the full spin but a ‘coarse-grained spin’, since only the

modes L−1 < k < k0 are taken into account in Eq. (5.8). Now Φ[Sk] becomes a functional

of ψ(x)

Φ[ψ(x)] =

∫
k−1
0 <x<L

ddx
[
a|ψ|2 + b|ψ|4 + · · ·+ c|∇ψ|2 + . . .

]
,

≡
∫

k−1
0 <x<L

ddxφ[ψ(x)] . (5.9)

The free energy Eq. (5.9) is referred to as the Ginzburg-Landau-Wilson model. It is related

to the exact partition function by Eq. (5.6) and its general form has in principle an infinite

number of terms. It was popularized in the west by Wilson in 1968-1972, but it was first

introduced by Landau as part of a general formulation of critical phenomena in 1958 [see

footnote in Sec. 147 in Landau et al. (1994), and Patashinskii and Pokrovskii (1964)].

The mean-field theory corresponds to a saddle-point (or steepest descent) approximation

of the functional integral in Eq. (5.6), i.e, to the ‘stationary phase’ condition

δΦ

δψ
= 0 . (5.10)

We now wish to study the fluctuation corrections to mean-field theory.
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B. Effects of fluctuations: the Levanyuk-Ginzburg criterion

It is important to test the self-consistency of the mean-field theory and of the Ginzburg-

Landau expansion to see where they might break down. This was first done by Levanyuk

(1959) but it was reformulated by Ginzburg (1960) and it is often referred to as the Ginzburg

criterion. We shall refer to it as the ‘Levanyuk-Ginzburg criterion’.

As mentioned above, we can use the Ginzburg-Landau theory to estimate the fluctuations

approximately from the correlation function in mean-field theory. For self-consistency we

require the fluctuations of the order parameter over a volume v = ξd to be less than the

average value of the order parameter over that volume

〈(ψ(x)− ψ̄)2〉v = 〈(∆ψ)2〉v � 〈ψ〉2v = ψ̄2 . (5.11)

Let us evaluate the fluctuations 〈(∆ψ)2〉v for τ > 0 and assume that the answer is comparable

for τ < 0 when expressed in terms of ξ. From Eq. (2.29) we have in three dimensions

C(x) = 〈(ψ(x)− ψ̄)(ψ(0)− ψ̄)〉 =
T

8πcx
e−x/ξ , (5.12)

and then

〈(∆ψ)2〉v =
1

v

∫
x<ξ

d3xC(x) ≈ T

cξ
. (5.13)

For the average value of the order parameter one has

ψ̄2 =
a

2b
, (5.14)

and Eq. (5.11) takes the form

T

cξ
� a

2b
. (5.15)

Taking into account ξ2 = c/a for τ > 0 [see Eq. (2.30)] and a = a0τ we can rewrite Eq. (5.15),

expressing the validity of mean-field theory in the vicinity of Tc as

τ � 4Tcb
2

a0c3
= τLG , (5.16)

where τLG denotes ’Levanyuk-Ginzburg’ (not Landau-Ginzburg!). In d-dimensions we have

〈(∆ψ)2〉v = ξ−d
∫
ddx

e−x/ξ

cxd−2
≈ T

cξd−2
, (5.17)
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and Eq. (5.16) becomes

τ �
(

4Tcb
2

a4−d
0 cd

)1/(4−d)

= τLG , (5.18)

or

τ 4−d � 4Tcb
2

a4−d
0 cd

= τ 4−d
LG . (5.19)

For dimensions d > 4 one has τ 4−d → ∞ as τ → 0 and the Levanyuk-Ginzburg criterion is

satisfied as T → Tc. For dimensions d < 4 the Levanyuk-Ginzburg criterion breaks down at

|τ | ≈ τLG. The case of d = 4 is marginal or border line.

In the case of long-range forces c ∼ R2
0, where R0 � `0 is the range of the forces. Then

one has in d-dimensions

τLG =

(
4Tcb

2

a4−d
0 cd

)1/(4−d)

∝
(

1

R0

)2d/(4−d)

. (5.20)

If d < 4 then τLG → 0 for R0 → ∞ and the Levanyuk-Ginzburg criterion is satisfied closer

and closer to Tc as R0 grows.

For superconductors one has ξ = ξ0τ
−1/2, where ξ0 is the pair size and ξ0kF ∼ (EF/Tc).

Then one has

τLG ∼
(
Tc
EF

)2(d−1)/(4−d)

. (5.21)

Typically for superconductors EF/Tc ∼ 103 − 104 and in three dimensions one has

τLG ∼
(
Tc
EF

)4

∼ 10−14 � 1 . (5.22)

Thus the Levanyuk-Ginzburg criterion (and the Ginzburg-Landau theory) are satisfied up

to very small |τ | close to Tc. Note that in high-Tc superconductors the ratio EF/Tc ∼ 1− 10

is not large, so fluctuations become important.

C. Static critical phenomena: dimensional analysis

Let us carry out dimensional analysis of the general Ginzburg-Landau-Wilson model.

The free energy functional in d dimensions is given by

Φ[ψ] =

∫
ddxφ[ψ] ,

φ[ψ] = a|ψ|2 + b|ψ|4 + c|∇ψ|2 − hψ + . . . . (5.23)
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How do the different terms in φ[ψ] scale? We introduce the following notation for the scaling

dimension: if some quantity A scales as A ∼ l−dA we define the dimension of A as [A] = dA.

Assume now that the total free energy Φ has no scale, i.e., Φ ∼ l0 and [Φ] = 0. This means

that the free energy density φ scales as φ ∼ l−d and [φ] = d.

Let us first determine the ’naive dimensions’ applicable to mean-field theory, based on

the assumption that each term in the Landau expansion Eq. (5.23) has the same dimension.

We have some freedom in the definition of the dimension of ψ and to fix it we choose the

dimension of the coefficient of the square gradient term [c] to be zero. With these conventions

we can find the dimension of ψ by looking at the square gradient term in Eq. (5.23)

[c|∇ψ|2] = 0 + 2 + 2dψ = [φ] = d , (5.24)

since [∇] = 1, and thus the dimension of ψ is

[ψ] = dψ =
d− 2

2
. (5.25)

Similarly we can find the dimensions of h, a, and b from the assumption that the terms in

Eq. (5.23) all scale in the same way:

[h] = dh =
d+ 2

2
,

[a] = da = 2 ,

[b] = db = 4− d . (5.26)

For the dimension of χ one has

[χ] = dχ = dψ − dh = −2 . (5.27)

Equations (5.25)-(5.27) yield what we call the naive dimensions.

In the critical regime, on the other hand, we will assume phenomenological scaling

(Sec. IV.A). All dimensions are supposed to be controlled by the correlation length ξ. We

want to know the scaling dimensions, also known as ’anomalous dimensions’, of the various

quantities, determined by their dependence on ξ. The quantity a scales as a ∼ a0τ ∼ ξ−1/ν ,

so [τ ] = ν−1. The dimension of ψ follows from Eq. (4.8), since C(x) ∼ ψ2 so

2dψ = d− 2 + η . (5.28)

Similarly, from Eq. (4.8) we see that h scales as ξ−w so dh = w = (d + 2 − η)/2, and from

Eq. (5.27) we obtain dχ = η − 2. The naive and anomalous dimensions are summarized in

Table I.
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TABLE I Comparison between naive and anomalous dimensions.

Quantity Naive dimension Anomalous dimension

Φ 0 0

φ d d

c 0 0

ψ d−2
2

d−2+η
2

a ∼ τ 2 ν−1

h d+2
2

d+2−η
2

χ −2 η − 2

ξ −1 −1

b 4− d ?

The renormalization group provides a calculation or a schema for understanding these

anomalous dimensions.

D. The renormalization group: statics

Let us now describe the renormalization group transformation which explains how the

phenomenological scaling theory emerges near the critical point. To see how this comes

about we start from the general Ginzburg-Landau-Wilson free energy, as defined by the

partition function given in Eq. (5.5) which we rewrite as

Z =

∫
0<k<k0

Dψk exp {−Φ[ψk]} , (5.29)

with a free energy density φ, Eq. (5.9) in the general form

φ[ψ] =
∑
i

µiOi , Onm = |ψ|n|∇ψ|m . (5.30)

In Eq. (5.30) we have introduced the generalized fields µi = µmn. We want to study the

renormalization group, which is a transformation of the free energy density R[φ] = φ′,

defined as follows:

(i) Integrate out wave numbers in the momentum shell k0/s < k < k0 in Eq. (5.29), with

s > 1.
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(ii) Change the length scale so that k0/s→ k0, i.e., for the length l→ l/s.

(iii) Renormalize the order parameter as ψ → sdψψ.

Then the partition function has once more the form Eq. (5.30), but with φ→ φ′ and

φ′ =
∑
i

µ′iOi . (5.31)

In other words, one can writeR as a transformation of the fields µi, R[φ] ≡ R[{µi}], because

φ is entirely defined by these fields:

R[φ] ≡ R[{µi}] = φ′ ≡ {µ′i} . (5.32)

We can thus consider the renormalization group to be a transformation of the huge vector

{µi} to {µ′i},

R : {µi} → {µ′i} , (5.33)

which is a highly nonlinear and a very complicated function, e.g., µ′1 = M1(µ1, µ2, . . . , µn)

and so on.

FIG. 7 Representation of the renormalization group in µ-space. The transformation R[{µi}] is

represented as R(M (n)) = M (n+1).

We can considerM to be a vector in an n-dimensional µ-space of fields {µi} with n→∞.

Thus each M is a point in µ-space that corresponds to some free energy density φ and

therefore to some free energy Φ. The transformation R can be thought of as a trajectory in

µ-space. The topology of µ-space is shown schematically in Fig. 7. We start with some point

that we call M (0) which is the original Ginzburg-Landau free energy Eq. (5.30). Applying

the transformationR(M (0)) one arrives at another pointM (1). Applying the transformation

R(M (1)) once again one arrives at the point M (2) and so on. Thus we have Rn(M (0)) =

M (n) and R has a group property Rn+m = RnRm, whence the name ‘renormalization

group’. It is actually not a group but only a semi-group because the transformation is not
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reversible. For further information on the renormalization group see the textbooks by Pfeuty

and Toulouse (1977) and by Goldenfeld (1992).

We now state the so-called ‘Wilson conjectures’ for the behavior of the renormalization

group transformation near a continuous transition.

RG 1: There exists a fixed point M∗ or φ∗ defined by limn→∞Rn(M ) = M ∗ or

limn→∞Rn(φ) = φ∗.

RG 2: For φ near the fixed point φ∗ one can linearize the transformation R, i.e., one can

represent the very complicated nonlinear function {µ′i} =M({µi}) by a linear function. Let

us write for φ near φ∗

φ− φ∗ =
∑
i

µiOi , (5.34)

and apply the transformation R to it

R(φ− φ∗) = φ′ − φ∗ =
∑
ij

AijµjOi , (5.35)

which yields linear relations µ′i =
∑

j Aijµj via the matrix Aij. We can diagonalize this

matrix and introduce eigenvalues Λi (corresponding to ‘eigenfields’ {gi}) and eigenfunctions

Õi (‘eigenoperators’)

R(Õi) = ΛiÕi . (5.36)

Then the transformation can be rewritten as

φ− φ∗ =
∑
i

giÕi ,

R(φ− φ∗) = φ′ − φ∗ =
∑
i

giΛiÕi =
∑
i

g′iÕi . (5.37)

Thus near the fixed point one has eigenfields and eigenoperators and the transformation is

linear.

Let us write Λi = sλi where s > 1 is the scale chosen in the transformation steps. If

Λi > 1, i.e., λi > 0, every time the transformation is repeated, g′i = sλigi, the corresponding

gi grows near the fixed point. Such a gi is called a relevant field. If Λi < 1, i.e., λi < 0, one

has gi → 0 when the transformation is repeated. In this case gi is called an irrelevant field.

If λ = 1, i.e., λi = 0, the corresponding gi is called marginal. The third Wilson conjecture

is:
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RG 3: There are only two relevant fields (and two relevant operators), namely, g1 = h

and g2 = a ∝ τ with the positive exponents λ1 and λ2. All other fields scale to zero. The

corresponding relevant operators are Õ1 = ψ and Õ2 = |ψ|2. This assumption is necessary

from the very definition of a critical point. Finally we have:

RG 4: A universality class is defined by its fixed point. All systems that flow to the same

fixed point have the same exponents and belong to the same universality class.

The consequences of these renormalization group conjectures are the following: According

to the definitions of the transformation we have

φ′(gi) = φ(g′i) . (5.38)

Each time one renormalizes φ (whose dimension is d) by a factor s, one gets

φ′(gi) = sdφ(gi) , (5.39)

and therefore

φ(gi) = s−dφ′(gi) = s−dφ(g′i) = s−dφ(Λigi) , (5.40)

so that

φ(gi) = s−dφ(sλigi) . (5.41)

This is the scaling relation which follows from the linearization of R close to the fixed

point. For most fields gi the corresponding λi is negative and such gi are irrelevant. By our

assumption, as one goes near the fixed point there are only two relevant fields, g1 = h and

g2 = a = a0τ . Let us write s = ξ and ξλ2g2 = 1. Then τ ∼ ξ−λ2 with λ2 = 1/ν. Near the

fixed point Eq. (5.41) can be rewritten as

φ(g1, g2) = ξ−dφ(ξλ1g1, ξ
λ2g2) , (5.42)

and thus

φ(h, τ) = ξ−dφ(ξλ1h, 1) = ξ−df±(h/ξ−λ1) , (5.43)

with the sign ± for positive and negative τ , respectively, which is just the homogeneity

relation Eq. (4.7), and there are only two exponents λ1 = w and λ2 = 1/ν. Similarly, one

can show that the correlation function takes the form

C(x, h, τ) = ξ−2dψg±(x/ξ, h/ξ−w) , (5.44)
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where dψ = (d− 2 + η)/2.

Finally and importantly, there are also corrections to scaling. Let us call g3 the irrelevant

field with the smallest eigenvalue, which scales as g3 ∼ ξλ3 , with λ3 < 0 and |λ3| a minimum.

This field represents the dominant correction to scaling for ξ → ∞. Therefore one has for

the scaling of φ, linearizing with respect to g3 → 0,

φ(h, τ, g3) = ξ−df±(h/ξ−w) [1 + g3fcorr + . . . ] . (5.45)

For example for h = 0 one has for the susceptibility

χ = Γ|τ |−γ
[
1 + Γcorrξ

λ3 + . . .
]

= Γ|τ |−γ
[
1 + Γ′corr|τ |∆ + . . .

]
, (5.46)

where ∆ = −λ3ν > 0. If ∆ < 1, the correction becomes singular and it will dominate the

regular correction terms.

FIG. 8 Approaching the critical point in µ-space. The field µ
(0)
1 = h has been set to zero.

As mentioned in the Introduction it is the great achievement of Wilson and others to

have introduced the framework of renormalization group flows and fixed points to define

equilibrium phases and transitions between them on the one hand, and to have demonstrated

mathematically the mechanism for scaling and universality at the transition point on the

other hand. In Fig. 8 a pictorial way of looking at the renormalization group in µ-space is

shown. Let us take µ
(0)
1 = h = 0 and consider in µ-space the relevant field µ

(0)
2 = a. The

value µ
(0)
2 = 0 corresponds to the critical point. Let us draw a surface of constant ξ. If it

goes through µ
(0)
2 = 0 (meaning τ = 0) then on that surface ξ = ∞. As long as one stays
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on that surface and makes the transformation R with the length scale s, one will remain on

that surface approaching the fixed point M ∗, since ξ = ∞ and multiplying by s does not

matter.

For the surface of constant ξ that goes through some other µ
(0)
2 , say, µ

(0)
2 > 0 (i.e., τ > 0)

we have finite ξ = ξ1. Then starting from that surface and making transformations, ξ will

be reduced at each step and one eventually goes out of the surface, away from the fixed

point, to T = 0. Similarly if one starts above Tc (µ
(0)
2 > 0) and makes transformations, one

goes eventually away from Tc, to T →∞.

FIG. 9 Fixed points on the critical surface ξ =∞ in µ-space. A – unstable fixed point, B – saddle

point, C – stable fixed point.

On the critical surface ξ = ∞ one has the following picture (Fig. 9). There could be

several fixed points, differing by the values of irrelevant fields. These fixed points can be

stable, unstable, and saddle node points with respect to trajectories on the critical surface,

i.e., with respect to the irrelevant fields. The only important fixed point is the one that

remains stable on the critical surface. Note that such points are always unstable with

respect to the relevant fields µ1 = h and µ2 = a (meaning relevant directions away from the

critical surface).

E. The ε-expansion

Another major achievement (Wilson and Fisher) is the ε-expansion, which is an explicit

perturbative calculation which justifies the renormalization group conjectures for spatial

dimension d sufficiently close to 4. Consider the partition function

Z =

∫
0<k<k0

Dψk exp {−Φ[ψk]} , (5.47)

and assume that the free energy density is given by only the lowest-order terms in ψ

φ = a|ψ|2 + c|∇ψ|2 = (a+ ck2)ψkψ−k . (5.48)
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Then the integral in Eq. (5.47) is exactly solvable (each component of k separates). This is

known as the Gaussian model. The naive dimensions discussed in Sec. V.C are the scaling

dimensions of this Gaussian model. We have also seen that the dimension of b, the coefficient

of ψ4, is db = 4 − d and for d > 4 one has b → 0 when one iterates the renormalization

group. But for d < 4 one has db > 0 and b grows, so that the Gaussian model has large

corrections. The case of b 6= 0 is known as ψ4 field theory. In this case perturbation theory

for φ has a diagrammatic form, where each element represents a certain integral in k-space.

For example the term b|ψ|4 is represented by a 4-vertex with strength b. Note that the

integrals have the form∫
ddk1d

dk2 . . . f(k1, k2, . . . )

=

∫
kd−1

1 dk1f(θ1, . . . )

∫
kd−1

2 dk2f(θ2, . . . ) . . . , (5.49)

and they formally depend on the spatial dimension d. Wilson and Fisher proposed to make

an analytic continuation of expressions such as Eq. (5.49) from integer d to continuous d.

They defined ε = 4 − d, which for continuous dimension d can be arbitrary small, ε � 1.

Then, when starting with small b ∼ ξdb = ξε, it remains small in the vicinity of the critical

point (ξ → ∞) for sufficiently small ε. Thus one can do perturbation theory (expansion in

b near b = 0) for ε� 1.

Although for fixed ε the perturbation expansion in b ∼ ξε eventually breaks down as

ξ →∞, the scheme allows one to obtain a formal expansion of the eigenvalues (exponents)

λi as a power series in ε, more precisely as an asymptotic expansion. The coefficients of

the Landau expansion a(s), b(s), etc. depend on s as we iterate the renormalization group,

where now the transformation factor can be written as s = el with l → 0 (infinitesimal

transformations). Then one can turn the transformationR into a set of differential equations,

instead of discrete iterations of s,

da

dl
= 2a+ cab(1− a) +O(b2) ,

db

dl
= εb− cbb2 +O(b3) , (5.50)

with explicit expressions for ca and cb in terms of ε and n. Let us now see if there is a

self-consistent way of carrying out the renormalization group under the condition ε � 1.

The fixed point is given by the condition that a and b should no longer vary:

da

dl
=
db

dl
= 0 . (5.51)
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There are two fixed points: the Gaussian fixed point given by

a∗ = b∗ = 0 , (5.52)

and the Wilson-Fisher fixed point

b∗ = ε/cb , a
∗ = −cab∗/(2− cab∗) . (5.53)

The question is, which one is stable? Let us do a linear stability analysis of the fixed point

of Eq. (5.50), (a∗, b∗),

a = a∗ + δa ,

b = b∗ + δb . (5.54)

Linearizing Eq. (5.50) one obtains

dδa

dl
= 2δa+ ca[(1− a∗)δb− b∗δa] ,

dδb

dl
= εδb− 2cbb

∗δb . (5.55)

In the case d > 4 one has ε < 0 and for the Gaussian fixed point, Eq. (5.52), one finds

δb ∼ eεl → 0 , δa ∼ e2l , (5.56)

which means that the Gaussian fixed point has λ2 = 2 = ν−1 and λ3 = ε < 0; it is stable on

the critical surface (a = 0). For the Wilson-Fisher fixed point Eq. (5.53), one finds

δb ∼ e−εl , (5.57)

which is unstable on the critical surface for ε < 0.

In the case d < 4 one has ε > 0 and the Gaussian fixed point is unstable on the critical

surface, whereas the Wilson-Fisher fixed point is stable (now λ3 = −ε < 0). For the

perturbations of a at the Wilson-Fisher fixed point one has

δa ∼ e(2−εca/cb)l , (5.58)

and thus λ2 = 2 − εca/cb = ν−1. Therefore one obtains the critical exponent ν as an

expansion in the parameter ε. This can be generalized to higher orders in ε and in this way

all critical exponents can be calculated as asymptotic series in ε, which agree very well with

experiments and other theoretical estimates. We will discuss later on how one can verify the

critical exponents and scaling functions experimentally.

An illuminating perspective on the renormalization group may be found in the review by

Fisher (1998).
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F. Critical dynamics

We may generalize the Ginzburg-Landau-Wilson model to dynamics, i.e., construct dy-

namical models which incorporate fluctuations and have the correct hydrodynamics for τ > 0

and τ < 0. The simplest model is relaxational with a stochastic contribution

∂tψ = −Λψ
∂Φ

∂ψ
+ θ(x, t) , (5.59)

where Φ is the general Ginzburg-Landau free energy as in Eq. (5.29), and θ is a noise source,

a random function defined by its probability distribution. We choose θ to be a Gaussian

white noise source, such that

〈θ(x, t)〉 = 0 ,

〈θ(x, t)θ(x′, t′)〉 = 2Λψδ(x− x′)δ(t− t′) . (5.60)

Since the probability distribution is Gaussian the higher correlators, e.g., 〈θθθ〉, are ex-

pressible in terms of the second-order correlator given by Eq. (5.60). If in the probability

distribution Eq. (5.60) the coefficient Λψ is the same as in Eq. (5.59), then it can be shown

that for µi independent of time the probability distribution of ψ relaxes at long times to the

equilibrium distribution

Peq(ψ) = Z−1 exp [Φ(ψ)] . (5.61)

As discussed above, a model with richer hydrodynamics is the planar magnet where one

has coupling of the order parameter to a conserved density.

∂tψ = −2Λψ
∂Φ

∂ψ∗
− ig0ψ

∂Φ

∂m
+ θ(x, t) ,

∂tm = λ∇2 ∂Φ

∂m
+ 2g0Im

[
ψ∗

∂Φ

∂ψ∗

]
+ ζ(x, t) , (5.62)

where Φ is the generalization of Eq. (3.12) to contain high-order terms in ψ and m, and the

noise terms satisfy

〈θ(x, t)θ(x′, t′)〉 = ReΛψδ(x− x′)δ(t− t′) ,

〈ζ(x, t)ζ(x′, t′)〉 = −λ∇2δ(x− x′)δ(t− t′) ,

〈θ(x, t)ζ(x′, t′)〉 = 0 . (5.63)
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Here again if the coefficients in Eqs.(5.63) have been chosen appropriately, the system relaxes

at long times to the equilibrium distribution

Peq(ψ,m) = Z−1 exp [Φ(ψ,m)] . (5.64)

As shown by Halperin and Hohenberg, the renormalization group theory of Sec. V.D may

be generalized to apply to the dynamical models Eqs. (5.59) or (5.62), and the static Wilson

conjectures can be extended to the full dynamics. The phenomenological scaling theory is

recovered if one assumes that the equations of motion are transformed and reach a fixed

point form upon iteration. Linearization about the fixed point yields one more relevant

exponent z, which controls the scaling of frequencies, and the scaling of dynamic correlation

functions and critical modes as in Eq. (4.18), then follows.

Just as in the static case these conjectures can then be verified in detail by carrying out

an analytic ε-expansion of the equations of motion near 4 dimensions. In the planar magnet

[Eq. (5.62)], for example, one now has Λψ(l), λ(l), χψ(l), χm(l), and g0(l). An equation for

Λψ for given a(l), b(l) has the following form

dΛψ

dl
= F [a(l), b(l), . . . , ε] . (5.65)

Solving this equation one finds dynamic fixed points and dynamic exponents in an expansion

in terms of ε. Similar equations can be found for λ(l) and g0(l). For τ > 0 we define the

characteristic frequencies

ω+
ψ (l) ∼ Λψ(l)

χψ(l)
, ω+

m(l) ∼ λ(l)

χm(l)
k2 . (5.66)

In the ordered phase, τ < 0, we define

ω−ψ (l) = ω−m(l) = ±cs(l)k , c2
s = g2

0ρs/χm , (5.67)

as well as the two quantities w(l) and f(l) given by

w(l) =
ω+
ψ (l)

ω+
m(l)

, f(l) =
[ω−ψ,m(l)]2

ω+
ψ (l)ω+

m(l)
. (5.68)

Equations for w(l) and f(l) can be derived from the equations for Λψ(l), λ(l), and the static

functions a(l), b(l), ρs(l), χm(l), and a fixed point is found, of the form

w(l)→ w∗ = 1 +O(ε) , f(l)→ f ∗ = ε+O(ε2) . (5.69)
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Given the existence of such a fixed point one can verify that the characteristic frequencies

satisfy the dynamic scaling relation ω ∼ kzΩ(kξ), and the dynamic exponent turns out

to be z = d/2. In this way, the phenomenological assumptions of Sec. IV.B are justified

analytically to lowest order in ε, and further terms in the ε-expansion can also be calculated.

Similar treatments have also been carried out for the other dynamic universality classes, as

described in the review of Hohenberg and Halperin (1977).

G. Testing the theory experimentally

In this section we wish to show how the detailed predictions of the renormalization group

theory can be tested experimentally, thus permitting accurate estimates of the numerical

values of universal exponents and amplitudes. In the usual procedure, when measuring some

physical quantity Q(τ) which has a singularity for τ → 0, one assumes the form

Q(τ) = AQτ
xQ . (5.70)

By plotting the measured values on a log− log scale, the exponent xQ is taken to be the

best fit over a reasonably large range, especially close to τ = 0 (many decades). To be more

sophisticated one does a χ2-test by calculating

χ2 =
〈(Qexp −Qth)

2〉
〈(Qexp +Qth)2〉

, (5.71)

and minimizes χ2 = χ2(xQ) with respect to xQ. This gives values of xQ with error bars.

However, fitting experimental data by expressions like Eq. (5.70) without correction terms

leaves out contributions of the form |τ |∆ which are significant for |τ | → 0, ∆ < 1. This

means that the exponents thus obtained cannot be considered to be quantitatively reliable.

Let us take as an example the superfluid transition in 4He (λ-transition). The phase

diagram is shown in Fig. 5. We are interested in the transition from 4He-I (liquid) to 4He-II

(superfluid) when the λ-line is crossed. Along this line there are in fact an infinite number of

λ-transitions, and the renormalization group theory predicts that universal quantities (ex-

ponents and amplitude ratios) should be the same for all those transitions (i.e., independent

of P ). Suppose the measured quantity Q(τ) is the specific heat Cp ∼ |τ |−α or the superfluid

density ρs ∼ |τ |ν . The usual method would give critical exponents α(P ) and ν(P ) as fit

parameters for each pressure value P . How does one check that, e.g., α = 2− 3ν holds for
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each P , or how does one account for the pressure dependence of the ‘best fit’ exponents?

One is reminded of Einstein’s statement: “The theory decides what is measurable”. There

is another way of saying this due to Eddington: “Never believe an experimental result until

it has been confirmed by theory”.

The renormalization group theory for the superfluid transition says that there is only one

transition independent of P , and one can write

C±p = A±(P )|τ |−α
[
1 +B±(P )|τ |∆ + . . .

]
,

ρs = D(P )|τ |ν
[
1 + E(P )|τ |∆ + . . .

]
, (5.72)

where α, ν, and ∆ are universal, i.e., independent of P , with α = 2− 3ν. Let us now define

the amplitude ratios Ri as follows:

R1 =
D(P )3

A±(P )
, R2 =

A+(P )

A−(P )
,

R3 =
B+(P )

B−(P )
, R4 =

B−(P )

E(P )
. (5.73)

According to the renormalization group theory these four ratios should also be universal,

i.e., independent of P . Taking data for all P and fitting by Eqs. (5.72) one extracts α, ν,

∆, R1, . . . , R4 and one can test the theoretical predictions. In practice one can take α, ν, ∆

from theory and fit experimental Ri for all P . If the Ri depend on P that would falsify the

theory.

The main conclusion one may draw from this exercise is that no matter how good the

accuracy and range of experimental data, it is not possible to determine critical exponents

without some assumption about the dependence of measured quantities on temperature,

say. For example, given Eq. (5.72) one can determine the numerical values of amplitude

ratios accurately if one assumes values for the exponents. In this way the consistency of the

theory is directly tested and the actual values of certain quantities can be determined from

experiments. Systematic analysis of the experimental data in terms of Eqs. (5.72)-(5.73) has

been carried out at the λ-transition by Ahlers and co-workers, where in the same experiment

only the pressure varies. The renormalization group predictions were thus rigorously tested

and the agreement between experiment and theory constitutes a major triumph for both,

see e.g. Privman et al. (1991).
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VI. NONEQUILIBRIUM PATTERNS NEAR LINEAR INSTABILITIES

Up to now we were interested in average quantities, averaged over the thermal noise. Now

we consider macroscopic phenomena on scale l for which the scale of energies 〈ε〉 averaged

over a volume v ∼ ld far exceeds kBT , so we may neglect thermal noise. Moreover we are

interested in the behavior far from equilibrium. We shall focus on systems with spontaneous

symmetry breaking, so that Ginzburg-Landau theory will once again turn out to be useful.

In the phase transition theory considered up to now, the spontaneous symmetry breaking

came from the phase transition. Here we consider the bifurcation of a uniform nonequilib-

rium steady state, for example the instability of a horizontal fluid layer heated from below

(Rayleigh-Bénard convection). The control parameter R measures the distance from equi-

librium; above a certain value Rc the uniform steady state becomes linearly unstable and

patterns in space and time can grow.

A. Classification of instabilities

Consider systems described by what we will call a ‘microscopic model’, defined by differ-

ential equations of the general form

∂tu(x, t) = f(R,u,∇u, . . . ) , (6.1)

where u = {u1, u2, . . . , un} is an n-component vector and the function f = {f1, f2, . . . , fn}

(also a vector) depends on the control parameter R.

Suppose u = ū(R) is a uniform solution of Eq. (6.1) with ∂tū = 0. In mathematics this

is referred to as an ‘equilibrium solution’, even thought the state ū(R) is not an equilibrium

state of the physical system. Now we ask whether ū(R) is linearly stable. Linearizing

Eq. (6.1) about u = ū(R)

u = ū(R) + δu(x, t)

∂tδui(x, t) =
∑
j

(
∂fi
∂uj

)
u=ū

δuj(x, t) , (6.2)

one obtains linear equations for the perturbations δui. These equations can be solved by

Fourier transformation

δu(x, t) =

∫
δu(q, ω)ei(qx−iωt)dq dω , (6.3)
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yielding a frequency ω(q, R) for each value of the wave vector and control parameter. Equa-

tion (6.2) thus becomes a set of linear algebraic equations

δui(q, ω) =
∑
j

Aijδuj(q, ω) . (6.4)

In general ω(q, R) = ωr(q, R) + iωi(q, R) is complex. If ωr(q, R) < 0 for all q, then δu decays

and ū is stable; if ωr(q, R) > 0 then ū is unstable and ωr(q, R) = 0 corresponds to the point

of instability which occurs at R = Rc [see Fig. 10(a)].

(a)

q0 q

q− q+

ωr

R>Rc

R=Rc

R<Rc

0

(b) q0

R

q

ωr>0

ωr<0

Rc(q)

Rc

0

FIG. 10 Real part of ω(q,R) (a) and neutral curve Rc(q) (b).

The condition ωr(q, R) = 0 defines a function R = Rc(q) which is also called the neutral

curve. Let us consider the case when Rc(q) has a minimum at a certain q = q0 (which could

also be zero). For q = q0, R = Rc(q0) ≡ Rc, one has for the real part ωr = 0 and for

the imaginary part we define ω0 ≡ ωi(q0, Rc). The classification of instability type in time

and space is based on the values of q0 and ω0, see Cross and Hohenberg (1993), Cross and

Greenside (2009). If ω0 = 0 and q0 = 0 one has a transition from one uniform steady state

to another, there is no pattern and we will not consider this case. The length scale q−1
0 = `0

is what we will (formally) consider to be the ‘microscale’. The cases we consider are:

Type Is: Stationary-periodic, ω0 = 0, q0 6= 0. The critical mode at R = Rc is time

independent, δu ∼ eiq0x and for R > Rc all modes with q− < q < q+ grow [see Fig. 10(a)].

The instability results in a stationary stripe pattern (in 2d).

Type IIIo: Oscillatory-uniform, ω0 6= 0, q0 = 0. Here the critical mode at R = Rc is δu ∼

eiω0t, i.e. it has q = 0. Above Rc there is a band of unstable modes with q2 < q2
± ∼ R−Rc,

with growth rates Reω(q, R) ∼ q2
± − q2.
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Type Io: Oscillatory-periodic, ω0 6= 0, q0 6= 0. The critical mode depends on space and

time, δu ∼ A−e
i(q0x−ω0t) + A+e

i(q0x+ω0t). It results in traveling waves.

In general, above Rc the modes within the band q− < q < q+ are unstable. As these

modes grow they interact due to nonlinearity and one mode typically emerges. This is an

ideal pattern. The following questions arise:

(i) Which ones of these modes are stable?

(ii) They exist in a continuum. Which one is selected?

(iii) How do such patterns evolve as R increases quasistatically?

In equilibrium steady states, the answers to these questions can be found by minimization

of a free energy. Here we have no such principle, so the problems are much more complex

and less general. We will answer some of these questions using Ginzburg-Landau equations.

B. Pattern forming systems

1. Experimental systems

In this section we describe very briefly some examples of physical systems undergoing

linear instabilities, according to the instability type.

Type Is:

- Rayleigh-Bénard convection in a horizontal fluid layer of height d heated from below. The

control parameter is proportional to the temperature difference ∆T between the lower and

the upper plate. Above a critical value of ∆T the uniform heat conduction state becomes

unstable and a stationary convective flow in the form of a series of rolls (stripe pattern) with

q0 ∼ 1/d develops.

- Taylor-Couette flow of a fluid between two coaxial cylinders with rotating inner cylinder.

The control parameter is proportional to the angular velocity Ω of the inner cylinder. For

small Ω one has a uniform velocity profile which becomes unstable above a critical value Ωc

and a system of toroidal rolls around the inner cylinder is formed (Taylor-Couette vortices).

If one also rotates the outer cylinder the instability type can be changed to Io.

Type Io:

- Thermal convection in fluid mixtures – traveling rolls. Under certain conditions thermal

convection in a fluid mixture can change from a stationary (type Is) to an oscillatory (type
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Io) bifurcation.

- The same is true for Taylor-Couette flow in certain regimes in which both the inner and

the outer cylinder are rotating.

Type IIIo:

- Belousov-Zhabotinsky chemical reaction: as first demonstrated by Belousov and further

explored by Zhabotinsky, certain chemical reactions spontaneously change over from quies-

cent to oscillatory when concentrations and reaction rates are varied.

- Electrical activity of heart muscle: the electric potentials in heart muscle can also experi-

ence bifurcations to various regimes of oscillatory behavior.

2. Reaction-diffusion model

Patterns developed in reaction-diffusion equations for chemical or biological media were

first discovered by Turing in 1952. Depending on the details they can be of type Is, Io, or

IIIo. Traditionally the type Is (stationary) instability goes by the name ‘Turing pattern’,

and the type IIIo instability is called ‘oscillatory instability’, even though Turing discussed

both types in his paper in 1952. The reaction-diffusion model is defined by linear diffusion

and a nonlinear reaction function in Eq. (6.1)

∂tu = f(u) +D∇2u . (6.5)

The simplest reaction-diffusion system is the two-component model

∂tu1 = f1(u1, u2) +D1∇2u1 ,

∂tu2 = f2(u1, u2) +D2∇2u2 . (6.6)

Suppose ū = (ū1, ū2) is a uniform steady solution of Eqs. (6.6). Taking u = ū + δu and

linearizing Eqs. (6.6) one obtains two coupled linear differential equations for perturbations

∂tδui =
∑
j=1,2

aijδuj , i = 1, 2 ,

aij =

(
∂fi
∂uj

)
u=ū

. (6.7)

Using Fourier transformation

δu =

∫
δu(q)ei(qx−iωt)dq dω , (6.8)
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the equations reduce to an eigenvalue problem for ω

Ã(q)δu(q) = ω(q)δu(q) ,

Ã(q) =

a11 −D1q
2 a12

a21 a22 −D2q
2

 . (6.9)

The eigenvalues for this 2× 2 matrix Ã are

ω±(q) =
1

2
trÃ± 1

2

[
(trÃ)2 − 4 detÃ

]1/2

≡ 1

2
Tq ±

1

2

[
T 2
q − 4Dq

]1/2
. (6.10)

Suppose ū is stable at q = 0. This means that Reω(0) < 0, which can be realized for

T0 ≡ trÃ(0) < 0 , D0 ≡ detÃ(0) > 0 , (6.11)

so that the stability condition at q = 0 becomes

a11 + a22 < 0 , a11a22 − a12a21 > 0 . (6.12)

Let us choose a11 > 0, then a22 and a12a21 both are negative. The question is, can one get

an instability at q 6= 0 (due to diffusion)? One has

Tq = a11 + a22 − (D1 +D2)q2 < T0 < 0 , (6.13)

because the diffusion coefficients D10, D2 are positive. To get an instability we need

Reω(q) > 0 for some value of q. Since T0 < 0 the only way to accomplish this is to

have

Dq = (a11 −D1q
2)(a22 −D2q

2)− a12a21 ≤ 0 , (6.14)

and the threshold is given by Dq = 0. To find the q value for which Dq first becomes zero

one minimizes Dq with respect to q

∂q2 [Dq] = 0 : D1D2q
2 −D1a22 −D2a11 , (6.15)

which gives

q2
0 =

1

2

(
a11

D1

+
a22

D2

)
, (6.16)
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a quantity that has to be positive. Taking into account that a11 > 0 and a22 < 0 and defining

l21 = D1/a11, l22 = D2/|a22| one obtains

q2
0 =

1

2

(
1

l21
− 1

l22

)
, (6.17)

which is positive for l1 < l2 or equivalently

D2

D1

>
|a22|
a11

. (6.18)

In such a case one has a type Is instability. For a11 > 0, a22 < 0 u1 is referred as the

activator and u2 as the inhibitor. The condition l1 < l2 implies short-range activation and

long-range inhibition. Typically in real systems |a22|/a11 ∼ 5 − 10 and most chemicals

have approximately the same diffusion coefficients, so that Turing patterns (i.e., type Is)

were not observed for many years. One needs sufficiently different diffusion coefficients for

activation and inhibition. After this was understood, such systems were in fact prepared

experimentally and (stationary) Turing patterns have now been observed in a number of

chemical systems.

As mentioned above, Turing also showed that an instability of type IIIo is rather easy to

obtain in reaction-diffusion systems. According to Eq. (6.10) this occurs for

T0 ≥ 0 , D0 > 0 , T 2
0 < 4D0 . (6.19)

The threshold is given by T0 = 0 and the frequency of oscillations is ω0 = 2
√
D0.

Historically Turing was the first to understand how various patterns can arise sponta-

neously out of the instability of a nonequilibrium homogeneous steady state. His motivation

seems to have been to understand differentiation during embryo development. It can also

be shown that a type Io is impossible in this model. One needs at least one more variable,

u3, to get a type Io instability.

For completeness, let us also mention natural patterns: Excitable biological media such as

nerve pulses, heart muscle, aggregation patterns of Dictyostelium (slime mold), zebra stripes,

leopard spots, some patterns in developing embryos; snow flakes; sand dunes; the red spot

of Jupiter; spiral galaxies. All of these systems display spontaneous pattern formation with

many similarities to patterns found in the simple models we are discussing, but under natural

conditions systems rarely operate near the linear instability of a uniform state.
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C. Amplitude equations: the real and complex Ginzburg-Landau equations: po-

tential and non-potential dynamics

1. The real Ginzburg-Landau equation

Let us consider a one-dimensional system (one space, one time dimension) defined by a

differential equation

∂tu(x, t) = f(R, u,∇u, . . . ) , (6.20)

which has a uniform solution ū and shows a type Is instability for R > Rc (q0 6= 0). We wish

to study the nonlinear states of u(x, t) for R > Rc. Introduce the reduced control parameter

r =
R−Rc

Rc

, (6.21)

and assume that the growing solution has the following form near threshold (r � 1):

δu(x, t) = δu0

[
A(x, t)eiq0x + c.c.

]
+ h.o.t. , (6.22)

where A(x, t) is complex (c.c. means complex conjugate and h.o.t denotes high-order terms).

Then inserting Eq. (6.22) into the original equation (6.20) and expanding in r, one obtains

an equation for the amplitude A(x, t)

τ0∂tA(x, t) = rA+ l20∂
2
xA− g0|A|2A+ h.o.t. , (6.23)

where τ0 and l0 are time and length scales that can be obtained from the function ω(q, R)

arising from the linear instability of the system (6.20). We now show that the form of the

equation can be inferred using symmetry arguments and the assumptions r � 1, |A| � 1,

and |∇A| � 1.

The symmetry requirements that constrain the form of the amplitude equation arise from

the need for consistency with the physical symmetries of the original system (6.20). These

are

(i) translation symmetry: Eq. (6.23) should be unchanged by the substitution A → Aei∆,

since by Eq. (6.22) it implies a translation of the system x→ x+ ∆/q0:

δu(x, t)→ δu0A(x, t)ei∆eiq0x + c.c.

→ δu0A(x, t)eiq0(x+∆/q0) + c.c. . (6.24)
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(ii) parity symmetry: Eq. (6.23) should be unchanged under the double substitution A→ A∗,

x→ −x, which corresponds to an inversion of the coordinates in Eq. (6.20).

From translational symmetry we conclude that A must be complex. Algebraic products

of A and A∗ that lead to odd powers such as A, |A|2A, |A|4A, etc. are invariant under

both symmetries and are thus allowed, whereas even powers such as A2, |A|2, |A|2A2 or

certain other odd powers such as A3, |A|2A3 are ruled out by translation symmetry. Since

the equation for u(x, t) has a first time derivative and is dissipative, i.e., not time-reversal

invariant, there must also be a first time derivative in the amplitude equation. For r > 0 the

solution should grow, which is represented by the allowed term rA. Terms like ∂xA, although

consistent with parity symmetry, can be eliminated by setting Ā = Aeix. In general there

should be diffusion given by ∂2
xA. The nonlinear term, proportional to |A|2A, is allowed by

symmetry and is responsible for saturation of the growing solution. Higher powers of A and

∂xA are negligible for r � 1. In addition to the above symmetry arguments, Eq. (6.23) can

also be derived using a formal ‘multiple scales’ perturbation theory treating r and ∇A/A as

expansion parameters.

The simplest solution of the amplitude equation (6.23) is a constant

A = a = const , |a|2 =
r

g0

, (6.25)

which exists for g0 > 0. Note that if g0 < 0 one needs higher-order terms like |A|4A in the

amplitude equation to obtain solutions for r > 0. Thus for g0 > 0 and for small r � 1 the

amplitude |a| is also small. For r > 0 one can rescale Eq. (6.23)

A = (r/g0)1/2Ā , x = l0r
−1/2X , t = τ0r

−1T , (6.26)

leading to the scaled real Ginzburg-Landau equation (RGLE)

∂T Ā = Ā+ ∂2
XĀ− |Ā|2Ā . (6.27)

Here X ∼ r1/2 plays the role of slow scale or mesoscale close to the instability threshold.

Similarly T ∼ r represents the slow time.

Consider now a plane wave solutions of Eq. (6.27)

ĀK = aKe
iKX . (6.28)

Inserting Eq. (6.28) into Eq. (6.27) one finds

a2
K = 1−K2 , (6.29)
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so that the solution exists for −1 < K < 1.

Going back to the original scaling given by Eq. (6.22) one finds

δu(x, t) ∼ aKe
i(q0+r1/2K)x + c.c. . (6.30)

Thus above threshold plane wave solutions of Eq. (6.20) exist in the range q− ≤ q ≤ q+,

with q± = q0± r1/2. These solutions are referred to as ‘rolls’ or ‘stripes’ in Rayleigh-Bénard

convection.

q0

r

q

Eckhaus

neutral
curve

S U
q− q+

FIG. 11 Stability diagram of plane wave solutions of the real Ginzburg-Landau equation. In the

region marked S there are stable stripe solutions. These solutions still exist in the region marked

U, but they are unstable.

Now we can study the linear stability of the stripe solutions, considering perturbations

of the form

Ā(X,T ) = aKe
iKX + δĀ(X,T ) = ĀK + δĀ . (6.31)

The linearized equation for δĀ is given by

∂T δĀ = δĀ+ ∂2
XδĀ− 2|ĀK |2δĀ− Ā2

KδĀ
∗ , (6.32)

and similarly for δĀ∗

∂T δĀ
∗ = δĀ∗ + ∂2

XδĀ
∗ − 2|ĀK |2δĀ∗ − (Ā∗K)2δĀ . (6.33)

These are linear partial differential equations but the coefficients are not constant, since they

depend on ĀK(X,T ) which is periodic in space. Since the coefficients are periodic (∼ eiKX)

a solution can be searched in the form

δĀ = eiKX
[
δa+e

iQX + δa∗−e
−iQX] , (6.34)
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where δa±(t) ∼ eωKT . In this way one gets for ωK

ωK = (1−K2)−Q2 +
(
(1−K2)2 + 4K2Q2

)1/2
,

= −1− 3K2

1−K2
Q2 +O(Q4) . (6.35)

For 1/3 ≤ K2 ≤ 1 one has ωK ≥ 0 and therefore the plane wave solution ĀK becomes

unstable. This is the so-called Eckhaus instability. Thus plane wave solutions ĀK exist

for −1 < K < 1 but they are only stable in the subrange −1/
√

3 < K < 1/
√

3 (or

q−/
√

3 < q − q0 < q+/
√

3, see Fig. 11).

In higher dimensions one can also consider more complicated forms of perturbations

δĀ, when the Ginzburg-Landau equation contains in addition gradients in the y direction

(perpendicular to x). In this way one finds the stability domain for the plane wave solutions

of Eq. (6.20).

Finally we discuss the dynamics of the amplitude function given by the real Ginzburg-

Landau equation. Let us define a kind of free energy

Φ̄ =
1

2

∫
dx

[
−|Ā|2 +

1

2
|Ā|4 + |∂XĀ|2

]
. (6.36)

If Ā is a solution of the real Ginzburg-Landau equation Eq. (6.27) then

dΦ̄

dT
= −

∫
dx|∂T Ā|2 ≤ 0 . (6.37)

Thus all dynamics makes Φ̄ decrease and we refer to this as ‘potential dynamics’, analogous

to the situation in equilibrium. The system always ends up in a stationary state, a local

minimum of Φ̄. We note, however, that this situation is special to the real Ginzburg-Landau

equation. It is not typical for nonequilibrium systems.

2. The complex Ginzburg-Landau equation

Consider now the amplitude equation for a type IIIo instability (oscillatory-uniform)

where a uniform solution of Eq. (6.20) becomes unstable for R > Rc with ω0 6= 0, q0 = 0.

Assume for the growing solution near threshold (r � 1) the form

δu(x, t) = δu0

[
A(x, t)eiω0t + c.c

]
+ h.o.t. . (6.38)

The amplitude A(x, t) is again complex though its phase has a rather different significance

than for the type Is system. Here it is the local phase of the temporal oscillations, and a
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change of phase corresponds to a shift of the time coordinate. The magnitude and phase of

the amplitude A describe slowly varying spatial and temporal modulations of the spatially

uniform ‘fast’ oscillation eiω0t.

The equation for A(x, t) can again be inferred phenomenologically from symmetry argu-

ments and the lowest-order result is

τ0∂tA(x, t) = rA+ (1 + ic1)l20∂
2
xA− g0(1− ic3)|A|2A . (6.39)

The coefficients on the r.h.s. of this equation are in general complex (c1 6= 0, c3 6= 0) and as

discussed below this makes a huge difference in the dynamics. The complex coefficients arise

because the amplitude A∗ describes the amplitude of the time reversed oscillation e−iωt which

is different from the original oscillation eiωt, due to the absence of time inversion symmetry.

In the previous case, A∗ describes the oscillation of the space reversed component e−iq0x,

which is related to the original component eiq0x by inversion symmetry.

For r > 0 we can also rescale A, x, and t in Eq. (6.39) as in Eq. (6.26), to obtain the

so-called complex Ginzburg-Landau equation (CGLE)

∂T Ā = Ā+ (1 + ic1)∇2Ā− (1− ic3)|Ā|2Ā . (6.40)

Previously we considered the one-dimensional case, but for type IIIo systems the same

equation is obtained in higher spatial dimensions. The important difference with the previous

case is that here there is no potential Φ̄, and the dynamics of A is much more complicated

than a simple minimization as in Eq. (6.37).

Let us consider traveling wave solutions of Eq. (6.40)

ĀK = aKe
i(Kx−ΩKt) ,

a2
K = 1−K2 , ΩK = −c3 + (c1 + c3)K2 . (6.41)

The group velocity s is then given by

s = ∂KΩK = 2K(c1 + c3) . (6.42)

The linear stability of the traveling waves can be studied similarly to the real case by setting

Ā = ĀK + δĀ with

δĀ = ei(Kx−ΩKt)
[
δa+e

iQX + δa∗−e
−iQX] , (6.43)
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where δa± ∼ eΛKT . Solving linear equations for δa± one then finds ΛK(Q), which determines

the stability of the traveling wave solution ĀK with respect to perturbations with wave vector

Q. Consider the two-dimensional case and pick the direction of the wave vector K = Kx̂.

But the wave vector of the perturbations Q could be in any direction. In the limit |Q| � 1

one has in leading order:

ΛK(Q) = isQx −D‖(K)Q2
x −D⊥(K)Q2

y ,

D‖(K) = 1− c1c3 −
2(1 + c2

3)K2

1−K2
,

D⊥(K) = 1− c1c3 . (6.44)

The traveling wave solution Eq. (6.41) is stable for D‖ > 0, D⊥ > 0. The first instability

one encounters has D‖ ≤ 0, which gives for the wave vector K

K2 ≥ K2
BF , K

2
BF =

1− c1c3

3− c1c3 + 2c2
3

. (6.45)

This is the so-called Benjamin-Feir instability which is the analogue of the Eckhaus instabil-

ity for the real Ginzburg-Landau equation. Setting c1 = c3 = 0 in Eq. (6.45) gives K2 ≥ 1/3

as in Eq. (6.35).

Another new feature which appears in the CGLE is convective versus absolute instability.

For stationary instabilities (type Is, RGLE) we did not ask what the spatial form of the

perturbations δu or δĀ was, because it did not matter. For oscillatory instabilities (type IIIo,

CGLE) on the other hand, it matters. We should consider spatially localized perturbations

and ask if they grow. If they do, there are 2 possibilities: (i) they grow at a fixed location

– this is an absolute instability, (ii) they grow but are swept away – this is a convective

instability. The absolute instability is similar to the type Is situation. Convective instabilities

are a new feature of type IIIo systems and they occur as well in more general instabilities

such as pipe flow.

The criterion for absolute instability involves setting up a wave packet and seeing if

growth is faster than advection. Consider a localized perturbation of the form

δĀ(X,T ) =

∫
dQeiQX+ΩQT δA(Q, 0) , (6.46)

where δA(Q, 0) represents the perturbation at T = 0 and we inquire whether it grows with
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FIG. 12 Growth of a localized perturbation for an absolute instability (a) and a convective insta-

bility (b).

time. It can be rewritten as

δĀ =

∫
dQeiQX+ΩQT

∫
dX ′e−iQX

′
δA(X ′, 0) ,

=

∫
dX ′δA(X ′, 0)

∫
dQeiQ(X−X′)+ΩQT . (6.47)

The integral over Q can be calculated by stationary phase approximation in the complex

Q-plane. The major contribution to the Q-integral comes from the point where ∂QΩQ = 0.

Solving this condition one finds Q = Qs (complex) and the integral is then given by∫
dQeiQ(X−X′)+ΩQT ' eiQs(X−X

′)+ΩsT , (6.48)

where Ωs = ΩQs . The perturbation Eq. (6.47) is then

δĀ(X,T ) = eΩsT

∫
dX ′δA(X ′, 0)eiQs(X−X

′) , (6.49)

and for X = 0, carrying out the integral over X ′ one finds

δĀ(0, T ) = eΩsT δÃ(Qs) . (6.50)

Thus, an absolute instability takes place for Re Ωs > 0, where Qs is defined by the condition

∂QΩQ(Q = Qs) = 0. The criterion for convective instability is Re ΩQ > 0 for some Q

with a nonzero group velocity (s = ∂QIm ΩQ 6= 0), thus the perturbation is growing and

propagating (or advected) away.

Considering perturbations of traveling waves with growth rate ΛK(Q) given by Eq. (6.44),

the stationary phase point Qs is then given by

∂QΛK(Q) = 0 . (6.51)
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The condition Re ΛK(Qs) > 0 gives the range of K2 > K2
A with K2

A = 4(1 + c2
1), where

traveling waves are absolutely unstable. The criterion for convective instability gives K2 >

K2
C = K2

BF and one finds KA > KC . It is important that depending on c1, c3, one can have

K2
C < 0 and in this case there will be no stable traveling waves.

D. Defect solutions of the Ginzburg-Landau equations

The stripe patterns and plane waves considered up to now are only the simplest ‘ideal’

solutions of the Ginzburg-Landau equations, referring to an infinite system. There are of

course many other types of solutions, which appear under more realistic conditions. In this

section we study a class of patterns we call ‘defect solutions’. These are formed by piecing

together different ideal patterns, or by perturbing the patterns locally.

1. Defects in the real Ginzburg-Landau equation

The simplest ‘defect’ in one dimension is to consider Eq. (6.27) on a semi-infinite domain,

X > 0, with the boundary conditions Ā = 0 at X = 0, and Ā = aKe
iKX for X → ∞. It

is then found that the band −1 ≤ K ≤ 1 collapses to a single point K = 0, i.e. only a

constant satisfies both the Ginzburg-Landau equation (6.27) and the boundary conditions.

This constant for Ā corresponds to a pattern with q = q0 for u.

Another solution of Eq. (6.27) is a front in 1d. Consider for r > 0 the solution Ā(X, 0) = 0

at T = 0 which is unstable. Let us add a localized perturbation δĀ at X = 0. According to

the Ginzburg-Landau equation, δĀ will grow and eventually saturate its amplitude due to

the nonlinear term. Suppose it leaves behind a plane wave. In this process the solution is

propagating into the unstable state (Ā = 0), so there is a front velocity vf [see Fig. 13(a)].

What wave vector Kf is selected behind the front? Using the Ginzburg-Landau equation

one can calculate the selected wave vector Kf (see below).

Another example of a defect solution occurs in an instability of type Is in two dimensions.

The ideal pattern above the instability has the form of stationary stripes. Let us consider

so called domain boundaries between regions with different orientations of the stripes [see

Fig. 13(b)]. They are characterized by a wave vectorKl on the left andKr on the right. Using

the Ginzburg-Landau equation in 2d one can calculate the behavior of such configurations
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and analyze whether the domain boundary is stable or mobile (unstable).

(a)

(b)

(c)

(d)

FIG. 13 Defect patterns for the real Ginzburg-Landau equation: front in 1d (a), domain boundary

(b), dislocation (c) and target pattern (d) in 2d.

Stripe patterns in 2d can also have dislocations [see Fig. 13(c)], in which a stripe boundary

abruptly terminates, creating a pattern with wave vector K1 on top (in the far field) and

K2 on the bottom. If the dislocation moves upward we say the state K2 is preferred over

the state K1 and the opposite is true if the dislocation moves downward. We will see below

that such pattern competition allows one to define a ‘preferred’ wave vector.
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Target patterns [Fig. 13(d)] represent another type of stripe pattern in two dimensions.

One can analyze the existence and stability of such solutions and calculate the wave vector

Kt far from the target center. Here again we can ask, which wave vector will be selected in

the far field.

2. Defects in the complex Ginzburg-Landau equation

For the complex equation (6.40) in one dimension we can also create fronts [Fig. 13(a)],

with wave vector Kf . In two dimensions the best known example is the generalization of a

target, namely a spiral pattern represented in polar coordinates R, θ as (note, here R is the

radial coordinate, not the control parameter!),

ĀS(R, θ, T ) = a(R)ei[−ΩST+mθ+ψ(R)] , (6.52)

where in the far field ψ(R) ∼ KSR. It looks like a traveling wave far away from the center of

the spiral. Inserting Eq. (6.52) into the CGLE Eq. (6.40) one can find a(R). For a given KS

the frequency ΩS = Ω(KS) is determined by the dispersion relation of plane wave solutions,

Eq. (6.41). Depending on the sign of m the spiral wave unwinds or winds. Spiral patterns

are typical for systems with type IIIo instability.

FIG. 14 Defect pattern for the complex Ginzburg-Landau equation: spiral in 2d.

In three dimensions such solutions corresponds to a vortex line

ĀV (R, θ, z, T ) = a(R, z)ei[−ΩV T+mθ+ψ(R)+kzz] . (6.53)

In this simple example the vortex core is a line in the z direction and it is characterized by

the wave vector kz. Deforming the vortex line one can make, e.g., a ‘smoke ring’, typically

with kz = 0. It has a close analogue to classical hydrodynamic vortex rings and is also

relevant to the dynamics of superfluids described by the Gross-Pitaevsky equation.
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E. Pattern selection

The problem of pattern selection arises quite generally because the equations we are

considering have many solutions above threshold for given external conditions (fixed control

parameter R), whereas observed patterns constitute a much more restricted set. Thus,

among the allowed (i.e. linearly stable) solutions some seem to be preferred over others and

we would like to understand the selection process. The discussion of defect solutions in the

previous subsections leads to the following questions:

(i) Are there constraints in either space or time that reduce the multiplicity of allowed

solutions?

(ii) In situations where a multiplicity of solutions remains after constraints have been applied,

is there any ordering between the solutions such that one is preferred over the other?

As mentioned earlier, in equilibrium bulk systems the free energy provides the ordering

principle, so that the solution with the lowest value is preferred. We can thus anticipate

that for the real Ginzburg-Landau equation the potential (6.36) will play the same role and

the solution Ā = const (K = 0, corresponding to q = q0 for u) will be preferred. Indeed, in

contrast to the ideal case, the semi-infinite system with Ā(X = 0) = 0 has only the constant

as a solution. In addition, for each one of the defects we considered (front, dislocation,

target), the K = 0 solution, corresponding to q = q0 for u, is preferred.

We expect that any type Is system with potential dynamics will favor the ideal pattern

that minimizes the potential. Such systems, however, are the exception and many other type

Is cases with nonpotential dynamics have been studied both theoretically and experimentally.

In such systems it is found, for example, that dislocations select a unique wave vector qd

for each value of R at which the dislocation is stationary. Similarly, targets select a unique

qt in the far field, and fronts leave behind a definite qf . The interesting result, which has

been confirmed both experimentally and theoretically, is that in general qd(R), qf (R) and

qt(R) are all different for R > Rc, thus falsifying the claims of universal selection principles

for nonequilibrium steady states. On the other hand, for any type Is system with potential

dynamics (i.e. satisfying an equation like (6.27) with Φ̃ more general than (6.36), (6.37)),

different selection mechanisms represented by different types of defects all select the same

wave vector. As mentioned above, however, potential dynamics is the exception rather than

the rule for nonequilibrium steady states. For example, it no longer applies at the next order
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in the expansion in Eq. (6.22) for familiar examples such as Rayleigh-Bénard convection.

The simplest example of nonpotential dynamics is the complex Ginzburg-Landau equa-

tion (6.40), for which the wave vectors Kf and KS selected by the front and the spiral,

respectively, depend on c1 and c3 are are in general different. There is thus no universal

selection principle in this case even at lowest order in this Type IIIo case.

We conclude this brief discussion of pattern selection by considering the effects of noise,

either in the form of random initial conditions or as external forcing throughout the time

dependence. In the first case it has been conjectured that the fastest growing linear mode

will dominate the evolution at later times, but this idea is too simplistic and no general rule

has emerged. As regards external forcing, thermal noise, which was considered explicitly in

Sec. V above for the study of phase transitions, can be argued to have a negligible effect

on patterns at the macroscopic scales usually studied. Instrumental noise, on the other

hand, can certainly be important, especially in situations where deterministic constraints

are insufficient to define a unique pattern, but here again no general laws are known. The

reader interested in further information on pattern selection is referred to Chapter 8 of Cross

and Greenside (2009) and Sec. VI of Cross and Hohenberg (1993).

F. Solutions of the Ginzburg-Landau equations: temporal and spatiotemporal

chaos

1. Temporal chaos

We first briefly discuss the Lorenz model with three degree of freedom, x(t), y(t) and z(t)

ẋ(t) = −σ(x− y) ,

ẏ(t) = rx− y − xz ,

ż(t) = b(xy − z) , (6.54)

where r is the control parameter and σ, b some fixed numbers. Due to nonlinearity there

is no analytic solution of this model. It is found numerically that for r < 1 the solution is

uniform, x = y = z = 0 at long time, and for 1 < r < r1 there exist nonzero (fixed point)

solutions x = x̄, y = ȳ, z = z̄, where r1(b, σ) is some constant. For the standard values

b = 8/3, σ = 10 used by Lorenz we have r1 = 24.74, and for r > r1 the fixed point is unstable.

74



Coexisting with the fixed point solution, in the range r2 < r < r1 with r2 = 13.9, there

exists a periodic solution, called a limit cycle. This type of behavior is standard for ordinary

differential equations. What Lorenz found in addition, however was a great surprise: in a

domain r > r3, with r3 = 24.06 there was another solution that was neither constant nor

periodic in time, but irregular, with continuous Fourier spectrum. Irregular solutions from

deterministic equations were called chaotic. This was a great discovery by Lorenz in 1963.

Let us now consider a geometrical representation of the dynamics of the Lorenz model

Eq. (6.54) in terms of its phase space. The dimension of the phase space is D = 3, which

is the number of dynamical variables. The initial conditions are represented by points in

this phase space. The time evolution of the solution is represented by a trajectory in the

phase space. If the trajectories all go to some fixed point, this point is an attractor A∗ with

a dimension DA = 0. With the parameter values b = 8/3, σ = 10 chosen by Lorenz, for

r < 1 there is one fixed-point attractor at x = y = z = 0, for 1 < r < r1 there exists another

fixed-point attractor A∗ = (x̄, ȳ, z̄) with the dimension DA∗ = 0. The limit cycle with x(t),

y(t) and z(t) periodic in time for r2 < r < r1, is represented by a loop in the phase space

and the dimension of this attractor is DA = 1. For r > r3 a so-called chaotic or strange

attractor was found in another region of phase space. It is a complicated object in phase

space, which looks like a composition of butterfly wings. The dimension of this attractor

can be estimated and it was found to be DA = 2.06 < D, which is not an integer and it is

smaller than D but more than for a plane (2 < DA < D). Such attractors are called fractal

(Mandelbrot).

In general, if the dynamics is dissipative then there exists an attractor with a dimension

DA < D, where D is the dimension of the phase space. If the dynamics is regular, then DA

is an integer. If DA is non-integer then the dynamics is chaotic.

Thus chaotic dynamics is characterized by continuous spectra of dynamical variables and

by non-integer attractor dimension in the phase space. Another feature of chaotic dynamics,

which in many ways is even more basic, is sensitive dependence on initial conditions. If

one chooses two arbitrarily close points near the attractor then the trajectories emanating

from those points diverge arbitrarily far from each other after long times. This is the idea

of unpredictability. It can be quantified by the Lyapunov exponent which is defined in

the following way. Let us take ∆(t) = P1(t) − P2(t) as the distance between two points

emanating from close initial points P1(0) and P2(0) in the phase space. At long time the
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distance ∆(t) grows and one can calculate

lim
t→∞,∆(0)→0

∆(t) ∼ e−λ1t , (6.55)

where λ1 is called a Lyapunov exponent. If λ1 < 0 the solution is regular (fixed point or

limit cycle), but if λ1 > 0 the solution is chaotic. By generalizing ∆(t) to n-dimensional

volumes in phase space (with n ≤ D), one obtains a spectrum of Lyapunov exponents {λi}

with 1 ≤ i ≤ D and λi < λ1 for i > 1. Most directions have λi < 0 but if the largest

exponent λ1 is positive then the system is chaotic. Note the double limit in Eq. (6.55). The

attractor dimension DA can be evaluated once the positive Lyapunov exponents are known.

Consider now partial differential equations (PDEs). By definition the dimension of its

phase space is infinite, D = ∞, since we are dealing with a continuum model. We will see

that for dissipative PDEs the dimension of the attractors in the phase space remains finite

in a system of finite size, and thus � D. Let us consider in particular the RGLE or the

CGLE in 1d. In the scaling of Eqs. (6.27) and (6.40) the mesoscale is ξ = `0r
−1/2 = 1 and

the only remaining scale is given by the system size L (0 ≤ X ≤ L). It is the number

of meso-units in the system. We consider first a ‘small’ system where L = O(1). If the

dynamics of Ā is given by the RGLE, Eq. (6.27), which is potential, the attractor is a fixed

point with dimension DA = 0. For the CGLE in 1d, on the other hand, we have

∂T Ā = Ā+ (1 + ic1)∂2
XĀ− (1− ic3)|Ā|2Ā , (6.56)

and if c1c3 > 1 there are no stable plane waves [see Eq. (6.44)]. Taking L = O(1) with

periodic boundary conditions one indeed finds chaotic dynamics in numerical simulations.

What is the nature of this chaos and what is the dimension of the attractor? For L = O(1)

it has been shown that there exists a solution of the form

Ā(X,T ) =
3∑

n=1

an(T )φn(X) , (6.57)

where the φn(X) are suitably defined basis functions, and the complex coefficients a1(T ),

a2(T ), a3(T ) satisfy Lorenz-like ordinary differential equations. This reduced form with

phase space dimension D = 6 gives results very close numerically to what one finds from full

simulations of Eq. (6.56), where D = ∞. The reduced model with 6 real modes identifies

the so-called active modes in the system and it has an attractor dimension DA < 6. We will

call such Lorenz-like chaotic dynamics ‘temporal chaos’.
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In real experiments on Rayleigh-Bénard convection in cells with lateral size close to the

distance between plates, which means L = O(1), Ahlers was the first to find chaotic behavior

analogous to that of a Lorenz model.

2. Spatiotemporal chaos

Now we consider large systems, i.e., L � 1. These can be considered as consisting of

small subsystems with size Li = O(1) interacting with each other in space and time. For

each subsystem Li the dimension of the attractor DA
i
<∼ Di = O(1). Thus for the whole

system the dimension of the attractor DA(L) ∼ LDA
i , i.e., DA(L) scales with system size

L. More generally, in a system with physical dimension d, and volume Ld, we define the

dimension density of the attractor as

ρA = DA(L)/Ld , (6.58)

and if ρA remains finite as L → ∞ we call this ‘extensive chaos’ or ‘spatiotemporal chaos’.

Another way to define extensive chaos is to say that the number of positive Lyapunov

exponents increases linearly with the system volume.

The CGLE in 1d for c1c3 > 1 has been simulated for L = O(1000) for long times, and one

finds two regimes depending on c1, c3: (i) phase chaos and (ii) defect chaos. In the regime

of phase chaos we write

Ā(X,T ) = a(X,T )eiφ(X,T ) , (6.59)

and start with a(X, 0) ≈ 0.5. Then the amplitude a(X,T ) remains nonzero at all times.

The phase φ(X,T ) has variations but as long as a 6= 0 we can define a winding number

ν =

L∫
0

dXφ(X,T ) , (6.60)

which is independent of T [Fig. 15(a)].

In the defect chaos regime a(X,T ) vanishes at some values of X and T . At those points

φ jumps by a finite amount [Fig. 15(b)]. These points are referred to as ‘space-time defects’

in the phase φ. The density of defects nD in the domain 0 < T < T1, 0 < X < L, quantifies

the regime for large L and T . If nD > 0 we have defect chaos, whereas nD = 0 signifies

phase chaos. In Fig. 16 the phase diagram for the CGLE in 1d is shown in the c1− c3 plane.
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(a) (b)

FIG. 15 The phase φ(x, t) is plotted as a function of x, for different times. Part (a) shows phase

chaos, in which φ(x) is continuous for each value of t. Part (b) shows defect chaos, in which

discontinuities (space-time defects) appear whenever the amplitude a(x, t) vanishes.
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FIG. 16 Phase diagram for CGLE in 1d in the c1 − c3 plane. To the left of the BF line (c1c3 = 1)

plane wave modes are linearly stable. The region marked PC is phase chaos, DC is defect chaos

and the regime marked BC has at least two chaotic attractors (bichaos), depending on initial

conditions.

Thus the CGLE can be used to illustrate the passage from temporal (Lorenz-like) chaos

to spatiotemporal (extensive) chaos, simply by increasing L. Many questions remain about

the precise behavior of this nonequilibrium system with many degrees of freedom, but the

essential difference between temporal and spatiotemporal chaos is already illustrated by the

CGLE model. Similar behavior, with even richer structure, is found for the CGLE in three

dimensions, where extensive spiral chaos appears for suitable choice of parameters c1 and

c3.
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