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Summary

The similarity search in theoretical mass spectra generated from protein sequence databases
is a widely accepted approach for identification of peptides from query mass spectra pro-
duced by shotgun proteomics. Growing protein sequence databases and noisy query spectra
demand database indexing techniques and better similarity measures for the comparison of
theoretical spectra against query spectra. We employ a modification of previously proposed
parameterized Hausdorff distance for comparisons of mass spectra. The new distance out-
performs the original distance, the angle distance and state-of-the-art peptide identification
tools OMSSA and X!Tandem in the number of identified peptides even though the g-value
is only 0.001. When a precursor mass filter is used as a database indexing technique, our
method outperforms OMSSA in the speed of search. When variable modifications are not
searched, the search time is similar to X!Tandem. We show that the precursor mass filter is
an efficient database indexing technique for high-accuracy data even though many variable
modifications are being searched. We demonstrate that the number of identified peptides
is bigger when variable modifications are searched separately by more search runs of a
peptide identification engine. Otherwise, the false discovery rates are affected by mixing
unmodified and modified spectra together resulting in a lower number of identified pep-
tides. Our method is implemented in the freely available application SimTandem which
can be used in the framework TOPP based on OpenMS.

1 Introduction

High performance liquid chromatography combined with tandem mass spectrometry (HPLC-
MS/MS or shotgun proteomics) is a widely used technique for identification and quantification
of proteins and peptides in complex mixtures. Mixtures obtained by a cell lysis contain thou-
sands of proteins and a mass spectrometer produces tens of thousands of peptide mass spectra
(or query spectra) which must be annotated with peptide sequences [1].

Before a mass analysis, proteins in a sample are usually enzymatically digested to peptides. Af-
ter chromatographic separation, peptides are commonly subjected to an electro spray ionization
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leading to positively charged ions. After transfer into the mass spectrometer, the most intense
peptide ions are collected based on their mass-to-charge () ratios and fragmented in a colli-
sion chamber. A list of 7 ratios of fragment ions with intensities quantifying the abundance
of the measured ion (i.e., a list of peaks) forms a tandem mass spectrum. The most common
types of fragment ions occurring from collision induced dissociation techniques are y-ions and
b-ions. Therefore, these ion types serve as main features for the annotation of spectra with
peptide sequences.

The annotation of spectra with peptide sequences is often realized by means of the similarity
search in databases of theoretical spectra generated from databases of known protein sequences,
by the de-novo peptide sequencing, sequence-tag methods and comparison against a library of
experimental spectra[2]. When the similarity search in the database of theoretical spectra is
employed, protein sequences are algorithmically digested into shorter peptide sequences and
theoretical peptide spectra are generated. Spectra captured by a mass spectrometer (i.e., the
query set) are compared with the theoretical spectra using a pair-wise similarity function. For
each query spectrum, the most similar theoretical spectrum is selected. A peptide sequence
corresponding to the most similar spectrum and the query spectrum form a peptide-spectrum
match (PSM). Each PSM is accompanied by the score determined by the similarity function.
A natural and common similarity function for mass spectra is the cosine similarity [3]. We
proposed the parameterized Hausdorff distance which is able to identify more peptides than the
cosine similarity [4]. Tools based on the similarity search in databases of theoretical spectra like
SEQUEST [5], MASCOT [6], OMSSA [7], X!Tandem [8] or MyriMatch [9] implement their
own similarity functions.

In practice, many peptides carry additional chemical modifications which change masses of
amino acids, shift ** ratios of fragment ions and complicate the identification of peptide se-
quences [10]. Modifications can be artificially added to a sample because they enable more
precise analysis. They can arise during a sample preparation or during mass analysis. Post-
translational modifications arise during the lifetime of a protein molecule and they give new
properties to proteins, make stable conformations of proteins, regulate protein functions, etc.
Protein modifications for mass spectrometry are gathered in the database UNIMOD [11] which
currently contains 975 entries of known modifications.

Modifications are commonly split into two groups — fixed or variable. Fixed modifications
change all amino acids of the same type in a peptide, e.g., carbamidomethylation of cysteine.
When a fixed modification is searched, a mass of an amino acid is changed when theoretical
spectra are being generated, e.g., the mass of cysteine is increased by approx. 57.02 Da. How-
ever, variable modifications do not have to change all amino acids of the same type. While
processing of fixed modifications is almost for free in terms of computational complexity, pro-
cessing of variable modifications is time-consuming because theoretical spectra must be gener-
ated for each combination of searched variable modifications.

Since databases of protein sequences grow rapidly in recent years, a comparison of all spec-
tra in the query set against all theoretical spectra is time-consuming. Various database in-
dexing techniques have been proposed to speed up the similarity search in databases of the-
oretical spectra. There are approaches based on the properties of metric [12][13] and non-
metric [14] [15] spaces, inverted files [16] [17], suffix trees [18], longest common prefixes and
suffix arrays [19], machine learning approaches [20], support vector machines [21], neural net-
works [22], etc. Other approaches optimize peptide identification tools by parallelization [23],
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GPU processing [24], hardware acceleration [25] or by a combination of algorithmic and soft-
ware engineering techniques [26] [27].

Since the search space of putative peptides can be greatly reduced by incorporating the precur-
sor mass (i.e., the mass of a peptide ion before fragmentation), we utilize a simple database in-
dexing technique known as the precursor mass filter. When the precursor mass filter is utilized,
a query spectrum is not compared against all theoretical spectra generated from a database of
protein sequences but only with a small subset of spectra in a precursor mass error tolerance .
Because high-accuracy machines become easily available, the precursor mass filter is experi-
encing a renaissance as a database indexing technique for high-accuracy data [28] [29].

Even though different tools use different similarity functions, their performance can be com-
pared by statistical evaluation of results [30]. A widely accepted technique is to apply a target-
decoy approach. Protein sequences in a database are reversed and appended to the original
database. Original sequences are marked as target sequences while reversed sequences are
marked as decoy sequences. The false discovery rate can be then estimated as FFDR =
tdecoy PSMs - Gince FDR is a property of a set of PSMs, the g-value is defined as minimum

#target PSMs*
FDR threshold at which a given PSM is accepted as correct [31] [30].

2 Methods

We propose an approach for identification of peptides based on the similarity search of query
spectra in a database of theoretical spectra. We describe the mass spectra distance functions, the
method how we speed-up the database search using the precursor mass filter and the method
how we deal with variable modifications in mass spectra. The approach is implemented in
the freely available peptide identification engine SimTandem [32] which can be easily used
for a batch analysis in TOPP (The OpenMS Proteomics Pipeline) [33][34]. OpenMS is an
open-source C++ library for LC-MS/MS data management and analyses. It enables a statistical
evaluation of results from different peptide identification engines, thus the engines can be easily
compared.

2.1 Distance Functions

When the similarity search in a database of theoretical spectra is employed for identification
of peptides, a pair-wise similarity (or distance') function is a crucial component of each search
engine. The angle distance, the parameterized Hausdorff distance and a modification of the
parameterized Hausdorff distance are defined below.

2.1.1 Angle Distance

The angle distance d4 (normalized dot product, cosine similarity) is a commonly utilized
function for mass spectra comparison (Eq.3) [3]. A representation of mass spectra as high-
dimensional boolean vectors is usually used for this purpose. The range of Z* values in a

'Smaller distance means bigger similarity and vice versa.
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spectrum is split into subintervals. A width of a subinterval is determined by “* error tolerance
¢ (e.g., & = 0.5Da). When a peak falls into a subinterval, a boolean vector contains 1 at the
position corresponding to the subinterval, otherwise it contains O (Fig. 1).
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Figure 1: High-dimensional boolean representation of a theoretical spectrum containing y-ions.

Instead of storing high-dimensional sparse vectors, we use directly the vectors of 7 values
Z and ¥/ (say, a low-dimensional representation of vectors). Considering the low-dimensional
representation, two * values between compared spectra are matched when d, (7, y;) < &.
When the * values are matched, the 1 is added to a sum. The max is used to prevent duplicate
matches of the same “* value in one spectrum with more 7 values in the other spectrum, i.e.,
every match of an * value is counted only once. dim(Z) is the dimension of 7. Note that
subintervals are not bounded as shown in Fig. I because the differences between “* values are

computed.

o 0, ifl|z; —y:| >
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2.1.2 Parameterized Hausdorff Distance

The parameterized Hausdorff distance dyp (Eq.6) has been originally developed as a mass
spectra distance function suitable for utilization by non-metric access methods [14][15] [4].
For each ™ value zj, the 7 value yj; in the minimum distance dj,(z;, y/;) is found (Eq. 5). Then
the n'” root is applied on each of the minimum distances and a sum of roots is computed. When
the vector ¥ contains many irrelevant ”* values having small differences to ”* values in ¢/, the
sum of roots generates a big distance (i.e., the similarity between & and ¥ is poor). On the other
hand, when 7 contains a small number of irrelevant * values having big differences to ”* values
in 7/, the sum of roots generates a small distance (i.e., the similarity between Z and ¥ is good).
For n — oo, the n'" root converges to 1. Since numbers of 7 values in vectors I and ¢ may
be different, the sum is divided by dim(Z). The whole process is repeated with vectors & and 3/
switched and the maximum value is selected to obtain a symmetric measure. Since vectors of
7 values are implicitly sorted, dyp can be computed with linear time complexity [4].

Lets assume the following example. Let ¥ = {200, 300, 400, 500} be a vector of 2 values cor-
responding to a query spectrum. Let y; = {200, 300, 460,500} and y3 = {210, 305,420,475}
be vectors of " values corresponding to theoretical mass spectra. We can observe that 7 is
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closer to g1 in terms of mass spectra similarity. The 7* value equals to 400 in 7 is likely a noise
peak and the “* value equals to 460 is missing in Z. On the other hand, the spectrum Z' seems
to be completely different from 5.

Now assume that the Euclidean distance Lo (Z, %) \/ S (2 — g;)? is used for comparison of
mass spectra, then Lo(Z, y1) = 60 and Lo (%, y5) = 33.9. We can observe that L is not suitable
distance for mass spectra because 60 > 33.9 and thus 5 is closer to & than y;. In case of dyp
(e.g., withn = 2 and £ = 0), we get dyp(7,y1) = 1.9 and dyp(Z, y3) = 3.7. Since 1.9 < 3.7,
the g7 is closer to Z than 3 what is the desired result. For d4 (£ = 0), we get d(Z,y7) = 0.7
and d(Z,y3) = 5. In principle, d4 and dyp are similar, however, dgp generates a better
distribution of distances than d 4. Moreover, it has been shown that dyp outperforms d 4 in the
number of identified peptides [15].

Lo T; — if |75 — g5 >
dp (T, 75) = { |0 nl els|e wi= @
2 Yees \/mm e {dn (T3, 95) }
W, 9) dim(Z) )
dHP(fv g) - max(h(f, ?7)7 h(ﬁu f)) (6)

2.1.3 Modification of Parameterized Hausdorff Distance

We propose a modification of dyp called d7&" (Eq. 8) to increase the number of identified

peptides (Sec. 3.2). In contrast to dyp, the sum of Z* values in dp mateh i divided by the number

of matches of * values in a theoretical spectrum with = Values in a query spectrum, Ii.e.,
a(Z,v) (Eq. 2). The 1 is added to a(Z, y) to prevent from the division by zero when a (7, i) = 0.

sex {fming ey (da(, )}
dzm( D@ 5) + 1)

dmatch( —’7 g») — III&X(h match (f, g*) ’ h match (g‘) f)) (8)

h match (f) 37) o
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2.2 Precursor Mass Filter

Peptide precursor masses are known for both — theoretical and query spectra. Thus a query
spectrum does not have to be compared with all theoretical spectra D generated from a database
of protein sequences but only with a small subset D, C D within a precursor mass error
tolerance \. For efficient determination of Dy, D is sorted by precursor masses and D), is found
by a binary search of the precursor mass of a query spectrum. Afterwards, theoretical spectra
in D) are compared with the query spectrum using a distance function and the theoretical
spectrum having the smallest distance to the query spectrum is selected to form a PSM.
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2.3 Dealing with Modifications

Below, we briefly describe how we deal with variable modifications. Let m be the number
of searched variable modifications and let 77 be the maximum number of modifications which
may occur simultaneously in a peptide. A set T’ of all possible combinations of variable mod-
ifications is generated where each combination ¢ € 7' contains up to 1 modifications selected
from m input modifications. Because each modification can occur more than once in a peptide,
the number of combinations of modifications is the sum of k-combinations with repetitions

T=1+Y7, (m+,f _1>. The one is added to represent an unmodified peptide.

Lets assume an example where m = 3 and = 2. We have three modifications «, [ and 7
corresponding to, e.g., oxidation of methionine, dioxidation of tryptophan and deamidation of
asparagine. Then 7 = 10 combinations of modifications are generated in 7' = {0, {a}, {3},
{7}, {a,a}, {a, 8}, {a,v}, {8, 8}, {B,7}, {v,7}}. For each combination of modifications
t € T, the precursor mass of a query spectrum ¢ is shifted and corresponding theoretical spectra
D¥ in the precursor mass error tolerance A are selected from D.

Before a theoretical spectrum from Df is compared with ¢, we check whether a peptide cor-
responding to the theoretical spectrum can contain the desired modifications. In our example,
when ¢ = {«, 8}, the peptide must contain at least one methionine and one tryptophan. When
the peptide contains the desired amino acids, the theoretical spectrum is generated while masses
of amino acids impacted by the modifications are shifted (i.e., the mass of methionine is shifted
by a and the mass of tryptophan by (). Otherwise, the theoretical spectrum is not compared
with g. When the peptide contains more than one methionine or tryptophan, all possible theo-
retical spectra are generated and compared with ¢. Finally, the theoretical spectrum having the
smallest distance to ¢ is selected from all spectra compared with ¢ to form a PSM.

3 Resulis

We used HPLC-MS/MS spectra from E. coli and human. Separation of the E. coli digest was
performed using an easyLC HPLC system (Proxean) with a 2h segmented gradient. Peptides
eluting from the column were online injected into an LTQ-Orbitrap XL instrument (Thermo
Fisher Scientific), with top 10 selection of the most abundant ions for further fragmentation.
A dynamic exclusion list of 500 masses and exclusion time of 90 seconds was used to avoid
repeated fragmentation of the same ions. The query set E.coli contained 30,358 tandem mass
spectra. Human spectra were taken from 2 runs from a label-free human data set[35] — the
query set Hum48 contained 26,417 spectra and Hum49 contained 24,537 spectra. The data sets
are available on-line at [32].

The manually curated database containing 8,272 protein (332,862 peptide) sequences was used
with E.coli. The database of 177,640 human protein (9,308,438 peptide) sequences from
UniProtKB/Swiss-Prot (v. 06/2013) [36] was used with human query sets. Reversed decoy pro-
tein sequences were included in both databases. Theoretical spectra were generated with fol-
lowing settings — enzyme: trypsin ([KR]/P); max. missed cleavage sites: 1; length of peptide
sequences: 7-50 amino acids; precursor mass of peptides: 500-5,000 Da; fragment ions types:
y, b, y2T;  ratios of fragment ions: 200-2,000 Da; fixed modifications: carbamidomethylation
of cysteine. Query spectra were processed as follows — minimum number of peaks in a spec-
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Table 1: Numbers of peptides identified by different engines and search times [min:sec]. When
m = 0, variable modifications were not searched. When m = 5, five variable modifications were
searched. A cell having the biggest number of identified peptides among all engines is highlighted.

OMSSA X!Tandem
Query set | m g-value . g-value .
0.05 001 | 0001 | Lime 0.05 001 [ 0001 | me
ool 0 12,620 | 11,071 | 8,649 | 3.01 12,635 | 10,835 | 8,580 | 1:36
-colt 5 12,841 | 11,248 | 9,000 | 3:56 12,807 | 10,942 | 8,510 | 1:43
s 10 8262 | 7.480 | 6,646 | 2827 8561 | 7,349 | 5,660 | 448
um 5 10,806 | 9,598 | 7,960 | 30:29 11,595 | 9,701 | 7,583 | 5:58
omdo |0 9833 | 8,854 | 7,146 | 29:17 10,004 | 8,574 | 6,887 | 3:55
5 11,742 | 10477 | 8,773 | 31:38 12,582 | 10,664 | 8,687 | 5:40
da dyp
Query set | m g-value . g-value .
0.05 001 [ 0001 | Lime 0.05 001 [ 0001 | me
ool 0 14,024 | 11,204 | 5,340 | 0:37 14,173 | 12,228 | 9,551 | 0:41
-colt 3 14,146 | 11,323 | 2,015 | 1:.08 14,190 | 12,004 | 8,032 | 1.18
omas |0 7590 | 4,375 879 | 2:58 8,666 | 7,072 | 5,333 | 3:40
“ 5 10309 | 6,068 | 1,150 | 11:30 11,720 | 9,547 | 7,037 | 13:54
omdo |0 9,774 | 6,137 | 1,649 | 341 10371 | 8,711 | 7,003 | 3:49
um 5 11,854 | 7,349 | 1,247 | 12:19 12,460 | 10313 | 7,291 | 1421
dggztch
Query set | m g-value .
0.05 001 [ 0001 | Lime
ool 0 14,522 | 12,676 | 10,756 | 0:42
«colt 5 14,290 | 12,437 | 9,594 | 1.I8
0 9044 | 7,589 | 6,084 | 334
Hum48 1 —5 12,261 | 10,268 | 7,855 | 13:49
0 10,770 | 9,322 | 7,168 | 339
Hum49 1 —5 13,132 | 11,110 | 8,106 | 14:26

trum to be processed: 30; peak selection heuristic: the range of “* values was split by 50 Da,
5 most intense peaks were selected in each window and 50 most intense peaks were selected
from the unification of the most intense peaks in the windows. A = 10ppm, £ = 0.5Da and
n = 30 (in dgp and d7&*"). We used SimTandem v. 1.1.65 and a machine with Windows 7

x64, Intel Core 17 2GHz, 8 GB RAM and 5400 rpm HDD.

3.1 State-of-the-Art Tools

Numbers of identified peptides for different g-values and search times were measured for freely
available tools OMSSA (v.2.1.9 Win32) and X!Tandem (v.2013.02.01.1). The refinement
mode in X!Tandem was not used. Since X!Tandem returned some PSMs having variable mod-
ifications which were not searched, these identifications were excluded from the results. The
comparison was made using OpenMS/TOPP (v. 1.10). Simple pipelines in TOPPAS were cre-
ated for this purpose, e.g., OMSSAAdapter — Peptidelndexer — FalseDiscoveryRate — IDFil-
ter, where OMSSAAdapter calls the OMSSA search engine, Peptidelndexer annotates for each
search result whether it is a target or a decoy hit, FalseDiscoveryRate tool computes q-values
and IDFilter selects only those PSMs with g-values less or equal a specified tolerance. The
pipelines were processed without and with the support of variable modifications. When the
support of variable modifications was enabled, the following five modifications were searched
(m = 5) — oxidation of methionine, deamidation of asparagine, acetylation of any N-term,
pyro-glu from glutamine and pyro-glu from glutamic acid.

Results are shown in Tab. 1. OMSSA identified more peptides than X!Tandem in all query sets
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Figure 2: Numbers of peptides identified by SimTandem, OMSSA and X!Tandem (g-value = 0.01).

when g-value = 0.001. For g-value = 0.01, OMSSA identified more peptides than X!Tandem
in four cases. However, X!Tandem identified more peptides in human query sets when vari-
able modifications were searched. When g-value = 0.05, X!Tandem identified more peptides
than OMSSA in all query sets except the E. coli query set when modifications were searched.
X!Tandem was 1.9x faster than OMSSA on the E. coli query set when modifications were not
searched and 2.3 x faster when modifications were searched. On human query sets, X!Tandem
was 5.9x-7.5x faster than OMSSA when modifications were not searched and 5.1x-5.6x
faster when modifications were searched.

3.2 SimTandem

Numbers of peptides identified by SimTandem (i.e., by the precursor mass filter with d 4, dyp
or diatehy and search times are shown in Tab.1. When m = 5, we used n = 2. dpath
identified more peptide sequences than dyp in all cases. The number of identified peptides was
significantly smaller when d 4 was used and it drastically worsened with lower g-value. d/at"
identified more peptides than X!Tandem in all cases. OMSSA identified more peptides than
dmatch in three cases when g-value = 0.001.

The overlaps of identified peptides among OMSSA, X!Tandem and SimTandem (d3¢") for
g-value = 0.01 are summarized by Venn diagrams in Fig.2. We can observe that signifi-
cant numbers of peptides were identified by all three engines (from 6,252 to 9,500 peptides).
The numbers of peptides identified only by SimTandem are bigger than the numbers of pep-
tides identified only by OMSSA in all cases and the numbers of peptides identified only by
X!Tandem in five cases (except Hum48 when m = (). The numbers of peptides identified
only by X!Tandem are bigger than the numbers of peptides identified only by OMSSA in all
cases. The numbers of peptides identified only by SimTandem and OMSSA are bigger than the
numbers of peptides identified only by X!Tandem and OMSSA in all cases and bigger than the
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numbers of peptides identified only by SimTandem and X!Tandem in five cases (except Hum49
when m = 5). The numbers of peptides identified only by SimTandem and X!Tandem are
bigger than the numbers of peptides identified only by OMSSA and X!Tandem.

SimTandem (d 74"y was 4.3 x faster than OMSSA on E. coli query set when modifications
were not searched and 3 x faster when modifications were searched. On human query sets,
it was 8x faster than OMSSA when modifications were not searched and 2.2x faster when
modifications were searched. SimTandem was 2.2 x faster than X!Tandem on E. coli query set
when modifications were not searched and 1.3 x faster when modifications were searched. It
was also 1.1x-1.4x faster than X!Tandem when modifications were not searched in human
query sets. When modifications were searched in human query sets, X!Tandem was 2.3 x-2.6x
faster than SimTandem.

3.3 Index of the Root

Table 2: Numbers of peptides identified by d;p and d}}lﬁtc" for different index n of the root. The
best result in each column is highlighted.

g-value = 0.001 g-value = 0.01
n dHP d}}i}gteh dHP dﬁn}gtch
E.coli | Hum48 | Hum49 E.coli Hum48 | Hum49 E.coli | Hum48 | Hum49 E.coli | Hum48 | Hum49
1 208 23 56 2,320 200 1,009 240 23 56 6,161 1,134 1,865
2 1,411 154 346 6,578 1,747 3,355 2,502 422 504 9,959 3,528 4,613

5 5,173 1,173 2,662 10,020 4,383 6,168 7,468 2,646 3,570 12,378 6,571 8,220
10 7,554 3,691 5,230 10,478 5,425 7,169 10,555 5,132 6,345 12,602 7,314 9,060
20 9,255 4,907 6,685 10,615 5,779 7,153 11,926 6,778 8,192 12,677 7,537 9,241
30 9,551 5,333 7,003 10,756 6,084 7,168 12,228 7,172 8,711 12,676 7,589 9,322
50 10,009 5,598 7,336 10,682 6,128 7,192 12,396 7,393 8,994 12,685 7,611 9,305
100 10,173 5,775 7,357 10,705 6,167 7,053 12,418 7,507 9,117 12,705 7,640 9,294
00 10,120 5,678 7,153 10,046 5,757 7,223 12,341 7,197 9,173 12,211 7,273 9,250

We also tested the impact of the index n of the root in dyp and d%*" on the number of
identified peptides. Variable modifications were not searched. The results are shown in Tab. 2.
We can observe that the number of identified peptides is bigger with bigger n. However, when n
is too big, the number of identified peptides is smaller. For both g-value = 0.001 and g-value =
0.01, the most peptides were identified in four cases when n = 100, in one case when n = 30
and in one case when n = oo. In practice, the optimal n depends on the query set and should
be determined empirically. Commonly, we use an empirical value n = 30.

3.4 Precursor Mass Filter

Since the number of comparisons of a query spectrum with theoretical spectra is crucial for the
efficiency of precursor mass filter, average numbers of comparisons were measured in protein
sequence databases Swiss-Prot (v.06/2013) (human sequences only and all sequences) [36],
MSDB (v. 08-Sep-2006) [37] and NCBI RefSeq (v.55) [38]. The query set Hum48 was used.
Variable and fixed modifications were not searched. Results are shown in Tab. 3. For example,
399 theoretical spectra were compared with a query spectrum when human sequences from
Swiss-Prot were used and when A = 10 ppm. When the NCBI database was used, the num-
ber of comparisons was 60,638 for the same A\. For A\ = 2Da, the number of comparisons
was significantly bigger. For example, 15,183 theoretical spectra were compared with a query
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Table 3: Average numbers of comparisons of a query spectrum with theoretical spectra for dif-
ferent protein sequence databases and different precursor mass error tolerances \. Numbers of
protein and peptide sequences in tested protein sequence databases are also proposed (the num-
bers include also numbers of decoy sequences in the databases).

Database N}meer of Number of A
protein sequences | peptide sequences Sppm [ 10ppm [ I5ppm [ 0.5Da [ 1Da | 2Da
Swiss-Prot (human) 177,640 9,327,789 201 399 598 3,797 7,601 15,183
Swiss-Prot (complete) 1,080,522 52,728,460 1,063 2,106 3,157 21,404 42,923 85,714
MSDB 6,478,158 281,767,270 5,756 11,369 17,042 113,272 227,017 453,153
NCBI 34,737,538 1,533,987,691 30,606 | 60,638 91,004 | 612,225 1,227,339 | 2,451,235

spectrum when human sequences from Swiss-Prot were used and 2,451,235 comparisons were
made when the NCBI database was used. Since the organism is usually known for a query
set of spectra (e.g., E. coli or human) and the precision of modern instruments increases, the
number of spectra compared with a query spectrum is small and thus the precursor filter is an
efficient indexing technique for high-accuracy data.

3.5 Precursor Mass Filter and Variable Modifications

Table 4: Numbers of identified peptides, search times and total numbers of comparisons of Hum48
with spectra generated from human protein sequences from Swiss-Prot for increasing number
of searched variable modifications m € (1,5) and for increasing maximum number of variable
modifications in a peptide n € (1,5).

Variable modifications Max. number of variable modifications in a peptide 7
m searched 1 [ 2 T 3 T 4 7] 5

oxidation of methionine 0.001 7,085 7,108 7,109 7,109 7,109
g-value 0.01 8,669 8,685 8,680 8,680 8,680
1 0.05 10,304 | 10,345 | 10,342 | 10,341 10,341

Search time [min:sec] 4:29 5:07 5:24 5:59 6:03

Num. of comparisons [millions] 14.18 14.81 14.89 14.90 14.90

oxidation of methionine, 0.001 7,453 7,210 7,214 7,214 7,214
deamidation of asparagine g-value 0.01 9,243 9,263 9,244 9,245 9,245
2 0.05 11,022 | 11,074 | 11,064 | 11,064 11,064
Search time [min:sec] 7:02 9:01 9:32 9:59 11:27

Num. of comparisons [millions] 20.32 25.11 26.88 27.44 27.63

oxidation of methionine, 0.001 7,578 7,556 7,556 7,558 7,558
deamidation of asparagine, g-value 0.01 9,720 9,771 9,727 9,731 9,731
3 acetylation of any N-term 0.05 11,549 11,599 11,575 11,565 11,562
Search time [min:sec] 8:17 13:06 16:53 18:05 20:14

Num. of comparisons [millions] 31.36 44.88 50.57 52.45 53.05

oxidation of methionine, 0.001 7,853 7,832 7,831 7,833 7,833
deamidation of asparagine, g-value 0.01 10,140 10,242 10,172 10,176 10,176
4 acetylation of any N-term, 0.05 12,105 12,206 12,172 12,163 12,158
pyro-glu from glutamine Search time [min:sec] 8:42 13:40 18:46 20:40 22:41

Num. of comparisons [millions] 32.03 46.07 51.97 53.93 54.55

oxidation of methionine, 0.001 7,874 7,855 7,868 7,870 7,870
deamidation of asparagine, g-value 0.01 10,186 10,268 10,209 10,213 10,213
5 acetylation of any N-term, 0.05 12,155 12,261 12,220 12,212 12,212
pyro-glu from glutamine, Search time [min:sec] 9:33 13:49 19:26 21:39 26:37
pyro-glu from glutamic acid || Num. of comparisons [millions] 33.08 47.95 54.22 56.29 56.94

We also tested the effectiveness and efficiency of SimTandem (d4'") for increasing number

of searched variable modifications m and for increasing maximum number of variable modifi-
cations in a peptide 7. The results are presented in Tab. 4. We used the query set Hum48 and
the database of human protein sequences from Swiss-Prot. When variable modifications were
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not searched, the search time was 3:34 [min:sec] and the total number of comparisons of all
spectra from Hum48 against theoretical spectra was 10.58 millions of comparisons.

The search time quickly increases with bigger m and n. The reason is that theoretical spectra are
generated for each combination of variable modifications. However, the total number of com-
parisons increases slowly because many theoretical spectra do not have to be compared with
query spectra. Even though peptides corresponding to theoretical spectra have their precursor
masses within ), they do not contain amino acids affected by the searched variable modifi-
cations and thus they are not compared with query spectra (Sec.2.3). However, the testing,
whether peptides contain desired amino acids or not, causes overhead costs which increase the
search time. We can reduce the search time by using n < 2 or n < 3, because the number of
identified peptides does not increase significantly for bigger 7.

For g-value = 0.001 and m € (2, 5), the number of identified peptides is smaller for = 2 than
for n = 1. The same effect can be observed in all cases for g-value = 0.01 and g-value = 0.05
when 77 = 2 is changed to n = 3. The reason is that the spectra with variable modifications im-
pact the distribution of target and decoy PSMs and thus they negatively impact false discovery
rates and g-values [39] [40].

3.6 FDRs of Spectra with Variable Modifications

Table 5: Numbers of PSMs having variable modifications and search times [min:sec] in two cases —
when variable modifications are searched separately in five search runs (/mm = 1) and when variable
modifications are searched together in a search run (m = 5).

. . . E.coli Hum48 Hum49
Variable modifications q-value qvalue q-value
searched 0.05 ] 001 [ 0001 | "™ | 005 T 001 Jooor | ™ | 505 ] ool o001 | ™
oxidation of methionine 823 | 582 | 421 | 044 | 1,327 | L114 | 914 | 429 [[ 1,684 | 1454 | 1,185 | 4:37

deamidation of asparagine 394 177 116 0:44 911 642 441 5:09 659 463 310 5:02

acetylation of any N-term 251 56 12 0:47 774 512 360 6:17 346 144 98 6:20

pyro-glu from glutamine 139 [ 110 [ 92 [ 042 || 502 | 428 | 284 [ 4:02 195 [ 169 [ 134 [ 411
pyro-glu from glutamic acid 41 12 4 0:43 83 50 27 4:30 101 67 31 4:32
[ Total [[ 1,648 ] 937 | 645 [ 3:40 ][ 3,597 [ 2,746 | 2,026 | 24:27 ][ 2,985 [ 2,297 | 1,758 [ 24:42 |

oxidation of methionine,
deamidation of asparagine,
acetylation of any N-term, 1,207 | 820 558 0:59 3,469 | 2,706 | 1,985 9:33 2,742 | 2,211 | 1,598 9:39

pyro-glu from glutamine,
pyro-glu from glutamic acid

Since many searched variable modifications may impact the g-values, we have compared the
numbers of PSMs having variable modifications in two cases. First, we searched m = 5 modifi-
cations together in a search run of the peptide identification engine. Second, we run the engine
for each modification separately (i.e., we performed five searches when m = 1). We used
dmatch and 1) = 1. The results are summarized in Tab. 5. The total number of identified PSMs
from independent search runs is bigger than the number of PSMs identified in the search run
where all the modifications are searched together. Even though the searching for each modifica-
tion separately is time-consuming (2.6 x-3.7 x slower) because the search engine must be used
many times, the approach might be interesting for practical usage because of bigger number of
identified peptide sequences. The advantage of this approach has been also emphasized in [39].
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4 Conclusion

We have proposed a method for identification of peptides from tandem mass spectra based on
the similarity search in databases of theoretical spectra generated from databases of known
protein sequences. Our method employs a modification of parameterized Hausdorff distance
which outperforms the original distance and the angle distance in the number of identified
peptides. Moreover, it outperforms state-of-the-art peptide identification tools OMSSA and
X!Tandem. When the precursor mass filter is utilized as a database indexing technique, our
method is faster than OMSSA. When variable modifications are not being searched, its search
time is similar to the search time of X!Tandem. We have studied the efficiency of precursor
mass filter considering different protein sequence databases and different precursor mass error
tolerances. Since the accuracy of modern instruments increases in recent years, the precursor
mass filter is an efficient database indexing technique for high-accuracy data.

We analyzed the numbers of identified peptides and search times when variable modifications
were searched. Generally, when the maximum number of variable modifications in a peptide
is set up to 2 or 3, we can reduce the search time even though many variable modifications
are being searched. However, the number of identified peptides is smaller with bigger number
of searched variable modifications because the computation of false discovery rates is affected
by mixing of modified and unmodified spectra together. Thus it seems to be advantageous to
run the peptide identification engine for each variable modification or a small set of variable
modifications separately. Our method is implemented in the freely available peptide identifi-
cation engine SimTandem which can be used for a batch analysis in TOPP based on OpenMS.
Moreover, our results can be easily reproduced by TOPP.
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