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Abstract— In this paper, we present generic cloud performance models for evaluating Iaas, PaaS, SaaS, and 
mashup or hybrid clouds. We test clouds with real-life benchmark programs and propose some new 
performance metrics.  Our benchmark experiments are conducted mainly on IaaS cloud platforms over scale-
out and scale-up workloads. Cloud benchmarking results are analyzed with the efficiency, elasticity, QoS, 
productivity, and scalability of cloud performance. Five cloud benchmarks were tested on Amazon IaaS EC2 
cloud: namely YCSB, CloudSuite, HiBench, BenchClouds, and TPC-W. To satisfy production services, the 
choice of scale-up or scale-out solutions should be made primarily by the workload patterns and resources 
utilization rates required. Scaling-out machine instances have much lower overhead than those experienced in 
scale-up experiments. However, scaling up is found more cost-effective in sustaining heavier workload. The 
cloud productivity is greatly attributed to system elasticity, efficiency, QoS and scalability. We find that auto-
scaling is easy to implement but tends to over provision the resources. Lower resource utilization rate may 
result from auto-scaling, compared with using scale-out or scale-up strategies. We also demonstrate that the 
proposed cloud performance models are applicable to evaluate PaaS, SaaS and hybrid clouds as well.   

Index Terms— Cloud computing, performance evaluation, cloud benchmarks, and resources scaling. 
——————————   �   —————————— 

1 INTRODUCTION AND MOTIVATION 

he hype of cloud computing is entering the disillusionment 
stage, reaching the plateau of productivity in the next 

decade. Following a pay-as-you-go business model, cloud 
platforms are gradually adopted by the main stream of IT 
industry. Cloud computing attempts to provide an integrated 
platform to benefit many users at the same time. This multi-
tenant and on-demand service model is achieved through 
virtualization on all shared utilities and resources [6, 21]. 

This paper models cloud performance for IaaS, PaaS and 
SaaS clouds at different abstraction levels. We assesse various 
benchmarks targeted at clouds, and analyze new performance 
results. We assess the state of cloud computing from the 
perspectives of performance. This work is extended from 
previous works by  [2-4,7-11, 15, 16, 20, 22-27,30-37].  

Up to now, the original cloud design goals are only 
partially fulfilled. We are still climbing a steep hill to deliver 
sustained cloud productivity. To reduce the cost of leased 
resources and to maximize utilization, elastic and dynamic 
resource provisioning are the foundation of cloud performance.  

      NIST [28] has identified that cloud computing demands 

scalable performance, economics of scale, measurable 
productivity, high availability and energy efficiency. With 
guaranteed SLA (service-level agreement), cloud automatically 
allocates more resources by scale-up or scale-out resources 

[14,29], when the workload increases beyond certain threshold. 
The system releases unused resources by scale-down or scale-

in [5, 19, 30] when the load reduces.  

      Cloud scaling is enabled by using virtualized resources. 
Hence, the scale of computing power needs to be calculated at 
the abstraction level of virtual resources. To handle workload 
composed of large number of small jobs, performance 
concerns are the average response time and throughput, rather 
than completion time of individual tasks. Hence, scalability 
needs to upgrade the system capability to handle large number 
of small users. Cloud productivity is tied to the performance 
cost ratio.  

To meet the demand, we propose some new cloud 
performance metrics in terms of efficiency and productivity.  
The resources are scaled by the quantity and types of virtual 
machine instances. The scalability is driven by cloud 
productivity, taking both QoS and price into consideration. 
Various benchmark suites have been suggested to evaluate 
cloud performance under different workloads in the past.  

We chose a set of widely used cloud benchmarks to test 
the scale-out and scale-up capabilities of EC2-like cloud 
platforms. The workload patterns include large scale data 
processing and data analytics, web search and service. Five 
benchmarks applied on EC2 include the BenchCloud at USC, 
YCSB from CloudSuite [14], HI Bench [20], and TPC-W [35].  

      Cloud relies on virtualization technique to enable elastic 
resource provisioning or de-provisioning. Hence, the 
effectiveness of virtualization becomes crucial to cloud 
performance. From the software perspective, multi-tenant 
architecture is introduced with clouds to support big-data 
processing and Internet/web services.  

T
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         In the remaining sections, we cover cloud workload, 
benchmarks tested and performance metrics including some 
newly discovered ones. Then we provide an elasticity analysis 
and study the interplay between efficiency, productivity and 
scalability of cloud platforms. We also reveal the tradeoffs 
between scaling out and scaling up policies. Our benchmark 
experiments were conducted on Amazon EC2.     

2   SCALING STRATEGIES AND BENCHMARK SUITES  

         Due to multi-tenant demands, clouds are facing all 
sorts of workloads including multi-tasking, batch 
processing, streaming, data-mining and analytics.  The 
cloud workload must be matched with adequately 
configured resources to achieve high performance and 
sustained productivity.  

2.1 Auto-scaling, Scale-out, Scale-up and  
Mixed Strategies 

         Clouds are used primarily for data-intensive and 
latency-sensitive jobs, search engines, OLTP/business 
processing, social-media networking, data warehousing 
and big-data analytics. Cloud workloads are 
characterized by their dataset size, algorithms, memory-
access pattern, and service model applied. We demonstrate 

three cloud resource scaling techniques in Fig.1.  

      The Auto scaling shown in Fig.1c is a brutal-force 

strategy to increase or decrease resources in a cloud. The 

idea is to add more machine instances when a specific 

resource (like CPU) utilization rate exceeds a preset 

threshold during a fixed observation period.          

Practicing auto scaling can enhance the cloud 

performance at the expenses of always provisioning 

more resources above the workload demand.    

      As seen from Fig.1, auto-scaling is easy to implement 

with a utilization threshold approach. However, it tends 

to waste higher in over-provisioned resources. We 

illustrate the ideas of scaling up resources in Fig.1 (a) and 

scaling-out resources in Fig.1 (b).  These scaling 

strategies and their possible mixtures are characterized 

below:  

• Auto-scaling strategy applies a threshold to increase 
the machine instance automatically, once the 
instance utilization rate exceeds a preset threshold 
(say 85%) for a preset period (say 60 sec). Auto-
scaling tends to over-provision resources to satisfy 
the user at run time.  

• Scale-out strategy allows adding more machine 
instances or processing nodes of the same type based 
on the quota agreed in the service-level agreement 
(SLA). Obviously, scaling out appeals more to the 
use of homogeneous clusters with identical nodes.  

• Scale-up strategy is implemented with scaling the 
cloud from using small nodes to more powerful 
nodes with better processor, memory or storage.   

• Mixed scaling strategy allows one to scale up (or 
scale-down) the instance type and adjust the instance 
quantity by scale-out (or scale-in) resources at the 
same time. Mixed scaling appeals better with using 
heterogeneous clusters.  

 

 

 

 

 

 

 

 

 

         (a) Scale-up instance type (capacity)             (b) Scale-out in instance quantity             (c) Brutal-force auto-scaling 

Figure 1:  Auto-scaling, scale-out and scale-up machine instance resources in elastic IaaS clouds, where over-provisioning and 
under-provisioning of machine resources are shown in differently shaded areas above and below the workload curves. . 

 

       We will evaluate the relative performance of the three 
scaling strategies in subsequent sections. In general, the scale-
up approach (Fig.1a) takes longer overhead to reconfigure and 
has the lowest elasticity among all scaling approaches. Scaling-
up or down take longer time and thus results in both over-
provisioning and under-provisioning of resources as seen by 
the shaded areas above or below the workload curve.  

         Scale-out strategy (Fig.1b) matches the workload 
variation closely. Thus it has the lowest over- or under-
provisioning of resources. The auto-scaling (Fig.1c) wastes 
resources in over-provisioning. But it will not cause any 
interruption in client services committed. This is the main 
reason why scale-out is more often practiced in cloud 
platforms than the scale-up approach.   

2.2 Cloud Benchmark Suites Tested 

      Table 1 summarizes 5 open-source cloud benchmark suites 
we have tested. The Yahoo YCSB and TPC-W are developed 
by industry. The BenchClouds and CloudSuite are developed 

in the academia. The CloudSuite [9] was developed at 
EPFL in Lausanne. All source codes and datasets are 

available in these open-source benchmarks.  The BenchCloud 
is still under development at USC. This suite collects users 
programs and datasets mainly from social-media applications.  

       HI Bench is specifically tailored for running Hadoop 
programs on most clouds. The suite was developed for 
measuring the speed, throughput, HDFS bandwidth, and 
resources utilization in a large suite of programs. The 
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YCSB is a Yahoo! Cloud Serving Benchmark [7]. Other 
cloud benchmarks include the CloudCmp [16], Phoronix 
[17], TPC-W [18], CloudStone [19], and C-meter [20]. 

        Interested readers are refer to the assessment by Farber 
and Kounev [8] for cloud benchmarking trends. Two 

commercial cloud evaluations were conducted recently. 
Nine large cloud providers were evaluated by BitCurrent [3] 
and 144 cloud sites were examined by CloudHarmonics [6]. 
However, the performance metrics they have applied are far 
from being adequate to cover the QoS and productivity in 
clouds. Performance in cloud environment.  

TABLE 1. CLOUD BENCHMARKS, WORKLOADS, METRICS APPLIED AND SYSTEMS TESTED 

Benchmark 
and Reference 

Reported Applications  
and Workloads 

Performance  
Metrics  

Clouds  Applied and 
Workload Generation 

BenchCloud under 
development at USC 

Social-media applications with 
big-data processing 

Speedup, Efficiency, QoS, 
Scalability 

AWS EC2,   Twitter API-
workload   

CloudSuite  at EPFL, 
Lausanne [14] 

Data/Graphics analytics, Media 
Streaming and Web Services 

Latency,  WIPS, Speedup, 
Efficiency, Scalability  

AWS, GAE, Faban workload 
generator 

HI Bench 
at Intel [20] 

Terasort, Word count, DFSIO, 
Nutch indexing, Page Rank, etc. 

Speed,  HDFS bandwidth, 
utilizations (CPU, memory, IO)  

Hadoop Random TextWriter, 
TeraGen, enKMeansDataset 

TPC-W by Transaction 
Proc.Council [35] 

Web Search, and Analytical 
Query Processing 

WIPS, $/WIPS, TPS, QoS, 
Efficiency 

AWS EC2, Rackspace,  
TPC client workload 

YCSB  
by Yahoo! [11] 

Synthetic workload, data 
services,   

Latency, Throughput, Speedup,   
Scalability, Replication Impact 

Microsoft Azure,  AWS,  
HBase, Shared MySQL 

3. CLOUD PERFORMANCE METRICS  

         We apply an extended concept of performance to include 
capabilities and productivity.  The performance and capabilities 
are necessary to upgrade the productivity of a cloud. In Table 2, 
we divide cloud performance metrics at three levels: namely 
performance, capabilities and productivity.  

3.1 Three Performance Levels      

 

      Basic performance metrics include most traditional metrics 
such as speed, speedup, efficiency, utilization, etc. [11, 21-23]. 
Cloud capabilities are marked by network latency, data 
throughput, storage capacity, data analytics, and system 
recoverability. The third level deals with cloud productivity, 
which is revealed by QoS, SLA, security, Power, cost and 
availability, etc. Table 2 summarizes these metrics in 3 groups. 

TABLE 2.  PERFORMANCE, CAPABILITY AND PRODUCTIVITY METRICS FOR EVALUATING CLOUDS   

Abstraction 
Level 

Performance  
Metric 

Notation  
(Eq. #) 

Brief Definitions with Representative Units or Probabilities   

 

Basic 
Performance 
Metrics 
 

 

Execution time Te Time elapsed during program or job execution, (sec., hours) 

Speed Sr Number of operations executed per second, (PFlops, TPS, WIPS, etc.) 

Speedup Su  Speed gain of using more processing nodes over a single node 

Efficiency E Percentage of max. Performance (speedup or utilization) achievable (%) 

Scalability S (Eq.5) The ability to scale up resources for gain in system performance  

Elasticity El,  (Eq.14) Dynamic interval of auto-scaling resources with workload  variation 

 

Cloud 
Capabilities:  

 

Latency T Waiting time from job submission to receiving the first response. (Sec.)  

Throughput H Average number of jobs/tasks/operations per unit time (PFops, WIPS.) 

Bandwidth B Data transfer rate or I/O processing speed, (MB/s, Gbps) 

Storage Capacity Sg Storage capacity with virtual disks to serve many user groups 

Software Tooling  Sw Software portability and API and SDK tools for developing cloud apps. 

Bigdata Analytics An The ability to uncover hidden information and predict the future  

Recoverability Rc Recovery rate or the capability to recover from failure or disaster (%) 

 

Cloud 
Productivity 

 QoS of Cloud QoS The satisfaction rate of a cloud service or benchmark testing (%) 

Power Demand W Power consumption of a cloud computing system  (MWatt) 

Service cost Cost The price per cloud service (compute, storage, etc.) provided, ($/hour) 

SLA/Security L Compliance of SLA , security, privacy or copyright regulations 

Availability A Percentage of time the system is up to deliver useful work. (%) 

Productivity P , (Eq.4) Cloud service performance per unit cost, (TFlops/$, WIPS/$, etc.) 

       Most basic performance metrics and capability measures 

have defined in the past. Some elasticity, productivity and 

scalability measures are newly proposed here. We will 

demonstrate the power of using those new metrics in evaluating 

cloud performance in subsequent sections.  

3.2  Basic Performance Metrics  

These include traditional performance measures of 
speed, speedup, efficiency, etc. for parallel and distributed 
computing.  More in-depth definitions can be found in [12, 
21, 22, 23]. 
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� Speed (S): Number of millions of operations per second  
(Mops). The operation could be integer or floating-point 
like MFlops. The speed is also known as throughput by 
TPC-W benchmark, measured by millions of web 

interactions per second (WIPS).  

� Speedup (Su): Speed gain of using multiple nodes 

� Efficiency (Ef): Percentage of peak performance achieved 

� Utilization (U): Busy resources (CPU, memory, storage). 

� Scalability (Sc) : Scaling ability to upgrade performance.   

3.3 Cloud Capabilities  and Productivity 

These are macroscopic metrics that describe the 
hardware, software, reconfiguration and networking 
capabilities of a cloud as listed below:  These metrics are 
good indicators of cloud’s performance basis.  

� Latency (L):  System response time or access latency  

� Bandwidth (B): This is data transfer rate or I/O rate.  

�  Elasticity (El ): The ability for cloud resources to scale 
up/down or scale in/out to match with workload variation 

� Software (Sw) : Software portability, API and SDK tooling  

� Big-data Analytics:(An): The ability to uncover hidden 
information or predict trends in big data.  

For the first time, we introduce cloud productivity as a 
compound function of QoS, availability, power efficiency, 
and performance-cost ratio. These attributes are defined 
below. More details are given in subsequent sections.  

� Quality of Service (QoS): Satisfaction on user services 

� System availability (A): The system up time per year. 

� Service costs (Co): User renting costs and provider cost. 

� Power Demand (W): Cloud power consumption (MWatt). 

� SLA/Security (L) : Compliance of SLA, security, ETC. 

� Productivity (P) : QoS-satisfied performance per unit cost 

4. EFFICIENCY, PRODUCTIVITY AND SCALABILITY 

      In this section, we analyze three mutually related factors 
toward productive cloud performance. The scalability concept 
was developed with the parallel computing community  [22]. 
The elasticity was introduced with the inception of cloud 
computing [18]. Productivity of clouds is newly introduced in 
this paper extending our preliminary work reported in 
CloudCom 2014 [23]. We attempted to relate cloud productivity 
to QoS-satisfied performance over business gains in cloud 
computing systems. 

 

4.1 Cloud Efficiency and Productivity 

We specify a cloud configuration on the resources 
provisioned at a given time instance. The configuration   is 

described by a resources matrix 
  
as follows. 

 

 

                             (1) 

 

In this resource matrix, we have  

 1)    are machine instances; 

 2)    are resources types in instances; 

 3)    are resource quantity   . 

Consider a cluster configuration Λ. Let T(1) be the 
execution time of an application code on a 1-ECU instance. 
Let �(�)  be the execution time of the same code on a 
virtual cluster Λ. The speedup is defined by Speedup (Λ) = 
T(1) / �(�).   Assume that the cluster is built with n  
instance types. The type-I has ni instances, each with an 
ECU count ci. We calculate the total cluster ECU count by: 

                              N(�) =   ∑ 		
 × �
	


�


�                            (2)  

       This N(�) count sets a ceiling of the cluster speedup.  
Now, we are ready to define the cloud efficiency for the 
cluster  Λ in question as follow:  

              Efficiency (Λ) = Speedup (Λ) / N(�)  

               =  T(1) / 	{	�(�) ×	 ∑ 		
 × �
	


�


� }                   (3) 

      In general, the cloud productivity is driven by three 
technical factors that are related to the scaling factor. 

1) System performance such as throughput in terms of 
transactions per second or response time.  

2) System availability as an indicator of QoS measured 
by percentage of uptime.  

3)  Cost for rented resources measured by price.  

      Let Λ be a cloud configuration in use. We define the 
cloud productivity by three factors, all are functions of Λ.  

�(Λ) =
�(�)×�(�)

�(�)
                                    (4) 

Where �(Λ) is a performance metric used, which could the 

speed or throughput selected from Table 2.  The �(Λ) is the 
QoS of the cloud. For simplicity, one can approximate the 
QoS by the service availability measure. According to 
CloudHarmonics Report on 144 cloud web sites [5], more 

than half have 99% or higher availability. The	�(Λ) is the 

user cost to rent resources to form the virtual cluster Λ.  

4.2 Production-Driven Scalability   

 For different workload, scalable performance is often tied 
to different resource types, even though instances are often 
provisioned in configuration package.  The performance of 
CPU-bound jobs is primarily decided by machine instance 
numbers. Memory-bound problems are limited by the memory 
(including cache) allocated within the machine instances. The 
storage-bound problems are limited by the network latency and 
disk storage and I/O bandwidth encountered. 

      The cloud scalability is driven by the productivity and 
QoS of a cloud system. This measure is inversely 
proportional to the service costs As we scale from 
configuration Λ1 to another Λ2.  This metric evaluates the 
economy of scale by a pair of productivity ratio. The higher 
is the value of a scalability measure, the more opportunity 
exists to target the desired scaling scheme.  

�(Λ1, Λ2) =
�(� )

�(��)
=

�(� )×�(� )×�(��))

�(��)×�(��)×�(� )
                     (5) 
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With comparable QoS and cost estimation, the scalability is 
directly proportional to productivity (Eq.4).  Therefore, will 
demonstrate the measured productivity results and skip the 
scalability plots in subsequent sections.                         

        Table 3 shows some machine instances applied in our 
experiments on EC2. The provider rents resources by instance 
types and quantity. AWS has defined a term ECU (EC2 

Compute Unit) as an abstract unit to quantify the computing 
power of each instance type. By 2009 standard, the 
performance of a 1 ECU instance is equivalent to a CPU built 
with 1.2 GHz 2007 Xeon processor [1]. The memory and 

storage capacity also affect the ECU count. For example, a 
system may rent three instances on EC2 for general purpose 
applications with two instance types.. We use an instance 

vector ! = {"1. #$%&',"3. #$%&'} built with $)�.*+,-. = 1 

and $)/.*+,-. = 2 instances. To assess the cost effectiveness, 

we list also the instance renting prices in 2014.  

   TABLE 3.  MACHINE INSTANCE TYPES IN AMAZON EC2 IN 2014 

Instant  
Type 

ECU Virtual 
Cores 

Memory  
(GB) 

Storage  
(GB) 

Price   
($/hour) 

m1.small 1 1 1.7 1 ×160 0.044 

m1.medium 2 1 3.7 1×410 0.087 

m3.medium 3 1 3.75 1 x 4 SSD 0.07 

m1.xlarge 8 4 15 4×420 0.350 

m3.xlarge 13 4 15 2×40 (SSD) 0.280 

c1.xlarge 20 8 7 4×420 (SSD) 0.520 

c3.xlarge 14 4 7.5 2×40 (SSD) 0.210 

  

5. CLOUD PERFORMANCE MODELS 

       Depending on the cloud service models applied, the 
resources could be controlled by users, vendors, or by both 
jointly. As a comparison, control of desktop computing systems 
falls in the hands of users, except the control of networking 
facility which is shared. This adds a great burden on the part of 
users. The control of cloud resources shifts the burden from 
users to vendors as we change to IaaS, PaaS, and SaaS clouds. 

5.1 Generic Cloud Performance Model 

      First, we introduce a generic cloud performance model. 
Then we will show how to extend or refine the generic 
framework to model all types of cloud computing services. The 
performance of a cloud, denoted as F(Cloud), is modeled by a 
performance function F, consisting of a 5-tuple expression. 

    F (Cloud) = {Service Model,  Service Offerings,  

             Performance,  Capabilities,  Availability}                (6)   

where the Cloud is identified by the cloud site name. The 
Service Model could be one or more of the available service 
modes such as IaaS, PaaS, SaaS, DaaS (Data as a Service), 
TaaS (Testing as a Service), HaaS (Health-care as a Service), 
NaaS (Network as a Service), LaaS (Location as a Service), 
CaaS (Communication as a Service), etc.  

      The performance here refers to a subset of performance 
metrics selected from Category 1 in Table 2. To illustrate the 
modeling ideas, we first specify three basic cloud service 
models, namely IaaS, PaaS and SaaS. Then we show how to 
extend the model to cover hybrid clouds or cloud mashups.      

5.2 IaaS Performance Model   

       We test the following set of performance-attributes in 

evaluating an IaaS cloud. This model specification could be 

specially tailored to special user groups or providers. Figure 2 

shows 3 Keviate charts for 3 cloud service models.  Each spoke 

of the polygon represents an attribute dimension. The attribute 

scale is proportional to the directional length along the spoke. 

The further away from the center, the higher performance is  

expressed in a scale from 0 to 5. Where value “0” means the 

least performance and “5” the highest.  

 
                           (a)   IaaS (Amazon EC2) [3, 9, 30, 38] 

 
 (b)  PaaS (Google AppEngine) [3, 9, 13, 27] 

 

(c)  SaaS (Salesforces) [3, 9, 21, 37]. 

Figure 2   Performance maps of three representative platforms 
for IaaS, PaaS and SaaS clouds, where the polygon data points 
are extracted from the cited reports on Amazon EC2, Google 
AppEngine, and Salesforce cloud. 

      The polygon area offers an average or approximated 

indicator of the overall performance of the cloud along those 

dimensions.  Let  be a set of n performance 

attributes. In general, the larger is the area of the polygon 

(Eq.7), the higher is the average performance demonstrated. 

Here we assume that all six dimensions are equally weighted.   

                (7)       

     Three representative cloud configurations are modeled in 
Fig.2 along different sets of performance metrics. They differ in 
resources provisioned, performance level achieved, 
performance results recorded, etc. The runtime conditions 
cannot be fully predicted or captured by users. 

In general, we suggest the following 5-tuple to model the 
performance of an infrastructure IaaS cloud:  

0

2.5

5
Speedup(Su)

Scalability(S)

Elasticity(El)

Availability(A)

Costs(Co)

Network

Bandwidth(B)

0

2.5

5
Software(Sw)

SLA/Security(L)

Scalability(S)

Power Demand(W)

Latency(T)

Efficiency(E)

0

2.5

5
Speedup(Su)

P-Scalability(Φp)

Analytics(An)

Throughput(H)

Software(Sw)

Productivity(P)

},....,2,1|{ nipi =

∑ +×××= 1)2sin(5.0 ii ppnArea ππππ
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      F (Infrastructure cloud) = {< IaaS >, < Compute,  

         Storage >, <Su, El , S >, < B >, < A, Co > }                    (8)     

where the 6 metrics are selected  from Table 2. Figure 2(a) 
shows the Amazon EC2 performance map, where the polygon 
data points are extracted and normalized from previous reports 
in [3, 9,  30, 38]. With some modifications, the model can be 
applied to evaluate other IssS clouds like Rackspace, GoGrid, 
FlexiScale, Joyent [21]. 

5.3 PaaS and SaaS Cloud Performance 

      The PaaS cloud platforms are used mainly in developing 
user applications.  Therefore, Eq. 9 a special set of performance 
metrics are selected, different from those used to evaluate IaaS 
models. For application developers, the major concern is 
programmability or the effective use of software development 

kits (SDK), etc. as in Fig.2(b). Again the dimensional 
performance is based on previous reports [4, 10. 14, 27].  

   F (Platform Cloud) = { < PaaS >, < Apps Development,        

        TaaS>,  < E,  S  >, < B, Sw >, < W, L > }                          (9) 

where the 6 performance metrics are selected from in Table 2. 
This model can modified to evaluate many PaaS platforms like 
Microsoft Azure, Google AppEngine, and Salesforce 
Force.com, Amazon Elastic MapReduce, and Aneka [21]. 

       Multi-tenant architecture is reflected in a SaaS model. It 
allows for a single software instance to be shared by many 
tenants. Each user may work in a dedicated environment. Listed 
below are commonly concerned issues that relate to SaaS 
performance.  For simplicity, we show in Eq. 10 the SaaS map 
model in 6 performance dimensions.   

   F (Application Cloud) = { < SaaS >, < Marketing, Social  

       Media >, < Su, Φp  >, < H, Sw, An >, < P  > }                  (10) 

Where the six metrics are selected from Table 1. In Fig.2(c), we 
plot two performance polygons for Salesforce in CRM 
(customer relation management) applications. The data are 
points extrapolated from [4, 10, 21, 36].  This model can be 
modified to evaluate many SaaS clouds like Google Gmail, 
IBM Lotus Live, Microsoft Dynamic CRM, and Salesforce 
CRM, etc. 

5.4 Modeling Hybrid Clouds or Mashups 

       Private clouds are used by organization or enterprise 
employees. They are used for research/development or 
providing messaging or CaaS (Communication as a Service), 
etc. Private clouds have better security, cost factors and 
availability. Private cloud users are more concerned about raw 
speed, utilization and productivity, etc.  

        Hybrid clouds are built with private cloud interacting 
closely with some public clouds. They are also known as cloud 

mashups.  Given below in Eq. 11 is an example performance 
model for hybrid clouds or mashups. 

  F (Hybrid Cloud) = { < IaaS, PaaS, SaaS >,  
  < Social Media, Compute, Backup Storage, etc. >,   
  < Su, U, E,  Φ , Sr, Te >, < T, H, B, Sg, Sw >, < A, Co > }      (11) 

     The first relative performance model is specified in Eq.(19). 
The objective is to compare the relative performance of several 
benchmark suites running on the same cloud platform. This 
model specified in Eq.12 was applied to compare the 
performance of HI Bench and BenchClouds in Fig.11(a). 

F (YCSB, CloudStone, BenchCloud) =  { < AWS EC2 and 

S3>,  <YCSB, CS, BC >, < Raw speed (Sr), Utilization (U),  

Service Costs (C0), Productivity (P) > }                            (12) 

        Consider k cloud platforms <C1, C2, …, Ck>.         
Which are under the test by p benchmark programs < B1, 
B2, … ,Bp >.  Assume that the clouds are tested by m 
performance metrics < M1, M2, …, Mm >. The following 
model (E.q.13) reveals the relative performance of 
multiple cloud platforms. For example, EC2 and 
Rackspace are evaluated in Fig.11 (b) for the case of 
choosing k=2, p=1 and m=6.   

F (C1, C2, …,Ck ) =  {< C1, C2, …., Ck >, < B1, B2, …., Bp >, 

          < M1, M2, …., Mm > }                                        (13) 

6.  ELASTICITY OF CLOUD PERFORMANCE 

      Elasticity in computer systems cannot be achieved without 
virtualization. Multi-tenancy cloud architecture demands elastic 
resources with auto-scaling to yield scalable performance.  
Differences in abstraction levels (IaaS, PaaS, SaaS) affect the 
system reconfiguration capability or the elasticity of clouds. In 
the past, physical computer resources may take hours or days to 
reconfigure. Thus the elasticity is very low due to large 
reconfiguration overhead.   

      The elasticity was introduced by Herbst, et al [18] to 
evaluate cloud scalability from two perspectives : (1) How fast 
or timely to change the resources state in a cloud?   (2) How 
precisely the resources are provisioned to address the workload 
variations?  Elasticity has made possible to reconfigure within a 
very short time by machine virtualization.  

     This concept is illustrated in Fig.3, where the elasticity is 
measured with two parameters: speed and precision. Speed is 
calculated by the time delay (θ) of the provisioning or de-
provisioning process, while precision is the offset (µ) with 
under- or over-provisioning. The concept of elasticity is 
illustrated in Fig.3 in connection with these two parameters.  

             

 
Figure 3.  Illustration of cloud resource provisioning, where θ is 
the overhead time and µ is the offset between actual scaling 
and the auto scaling process.  

        Elasticity defines the degree to which a system is able to 
adapt to workload changes by provisioning and de-provisioning 
resources in an autonomic manner, such that at each time the 
available resources match the current demand as closely as 
possible”. Let θ be the average time to switch from an under-
provisioned state to an elevated state and µ be the offset 
between actual scaling and the auto scaling. The elasticity is 
defined by the following expression:    
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                            El  =  1 / (θ × µ)                               (14) 

         Figure 4 plots the elasticity as a function of the 
reconfiguration overhead (θ) under different provisioning 
offsets (µ) from the actual scaling curve. When the offset is 
small (µ=10%), the elasticity drops sharply as the overhead (θ) 
increases. When the offset gets to 70%, the elasticity drops to 
0.04 from 0.25, when the average provisioning time θ is at 40 
sec. Then the elasticity stay rather low flatly as θ increases.   

 

               Figure 4.  The cloud elasticity plotted from Eq.14.  

      The message being conveyed here is that in order to 
increase the elasticity of a cloud system, we should minimize 
the provisioning time and keep the provision offset as low as 
possible.  The elasticity is a necessary condition for scalability, 
but not sufficient. The built-in auto-scaling mechanism 
(illustrated in Fig.3) is greatly affected by the elasticity 
measure. The fluctuation of resource usage and the delay of 
instance replication or upgrading are all affecting the 
performance in cloud applications. 

7.  MEASURED CLOUD BENCHMARK RESULTS  

   We have performed extensive cloud benchmark 
experiments on the Amazon AWS EC2 with EMR (Elastic 

MapReduce) library support. These experiments execute five 
distinct benchmarks: BenchClouds, Yahoo! YCSB, HI Bench, 
and TPC-W as listed in Table 1. The purpose is to check the 
performance of EC2 under different benchmark programs over 
varying data sizes.  

    The experimental setting applies a fixed instance type to 
scale out. For scale-up experiments, we have to change the 
instance types by program direction. Manual scaling is applied 
under program control in all experiments. Auto-scaling is not 
applied in scaling experiments on EC2 due to its brutal force 
provisioning policy. Some load-balancing was automatically 
practiced on the EC2 under the control of the EMR library.   

7.1 Elasticity Effects in Scale-Out Strategy  

We have conducted three scale-out benchmark 
experiments on EC 2 using the USC Benchcloud, HI 
Bench, and TPC-W, respectively in Figs. 5 ~ 7.    

(A). Filtering of Twitter Spams on EC2 

This is a benchmark testing the performance a mashup of 
two clouds (Twitter and EC2). In testing the BenchClouds 
benchmark, we scan through large amount of social media data 
(Tweets) collected from the Twitter cloud. Elastic MapReduce 
(EMR) software on EC2 is used to perform the fast spam 
filtering operations. The purpose is to filter out unwanted 
Spams from large Tweet dataset in a very short time [31].  

In Fig.5, we apply the m1small machine instance as listed 
in Table 3. This instance has a computing power of 1 ECU 
(Elastic compute unit) with 1 vCPU. The instance has 1.7 GB 
of RAM memory and 160 GB storage. Each instance is charged 
with $0.044/hour with EMR surcharge applied. The data sets 
tested range from 10 GB to 100 GB and 1 TB.  

 
                                     (a) Spam filtering time                                                                 (b) Speedup                                      

 
     (c) Productivity                                                                    (d) Scalability for 1TB dataset 

   Figure 5.  Scale-out BenchClouds results on MapReduce filtering twitter spams over AWS EC2 of various sizes. Parts (a, b, c)  
                apply the same legend. Part (d) shows the scalability measure from 3 initial machine instances. 

 

          For a small 10GB dataset, there exists no apparent benefit 
by scaling out beyond 8 instances (Fig.12a). Efficiency drops 
sharply as the number of machine instances increase (Fig.12c). 
The filtering process reaches the peak speedup with 128 nodes. 
(Fig.12b). For a large dataset of 1 TB, the execution time 

decreases by 58 times (Fig12.5a) with 128 nodes. Thus good 
speedup of 58 and 45% efficiency were achieved at 128 nodes 
(Fig.12b, c). The small dataset shows poor productivity (such as 
40 at 32 nodes in Fig.12.d), while the large dataset results in a 
peak productivity value at 32 nodes.  
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     The scalability drops as we scale out from 2, 4, or 8 nodes 

up to 128 nodes (Fig.5.d) the drop in scalability (Fig.5.d) is 

closely correlated to the fast dropping in efficiency. On the 

other hand, the scalability in Fig.5.d varies closely with the 

change in productivity (Fig.5.c). The 1 TB curves (marked by a 

diamond legend) show that one can reach the peak productivity 

and thus peak scalability at 32 nodes. 

 (B).HI Bench Results on Word Count   

        In HI Bench scale-out experiments, we increase the 
quantity of the same machine instances used. We plot the 
efficiency and productivity results in Fig.6 by running the 
HiBench WordCount program using the EMR clusters up to 

16 m1.small nodes. In general, the efficiency (Fig.6a) 
decreases as we scale out to more nodes. However, for large 
data sets, the efficiency increases to a local peak at 8 nodes 
and then it decreases slowly beyond 8 nodes.  

        Depending on the data size, the productivity increases 
to different peak levels at different machine sizes. Foe 
example, the peak occurs at 12, 8 and 4 nodes for 10 GB, 5 
GB and 1 G, respectively. After the peak, the productivity 
decreases more rapidly for small data size and slowly or 
flatly for larger data sizes.  This trend is caused by the QoS 
and cost factors involved in Eq. (4).  Other programs in HI 
Bench, such as Sort, can be also applied in the scaling 
experiments to be reported in Subsection 7.5.  

        
                                          (a) Scale-out efficiency                                                                       (b) Scale-out productivity  
 
               Figure 6.  Scale-out performance of HiBench on EC2 built with up to 16 m1.small machine instances. Three curves  
                                correspond to executing 3 workload sizes in the Word Count program. 

 

(C). TPC-W Scale-Out Results 

       This experiment is designed to test the TPC-W 
performance on EC2 under scale-out workload. The workload 
is generated by TPC client. We consider the workloads from 
200 up to 2,400 users. In the scaling out process, we increase 
from 1, 4, 8 and 16 nodes up to 32 nodes. The m1.small 
instances are used in all scaling experiments. We report the 
throughput in WIPS (web interactions per section) and QoS 
measures in Figs. 7(a, b).  

      With small workloads (200 or 800 users), the WIPS count 
is rather flat after 4 nodes. The throughput reaches its peak of 
340 WIPS at 12 nodes for 2,400 users. With 4,000 users, the 
peak value of 560 WIPS is reached at 20 nodes. The QoS 
reaches its peak value (100%) quickly after increasing the 
nodes to 4, 12 and 20, respectively (Fig.7.b). Figure 7.c shows 
the variation of productivity for different workloads. Again, the 
peak values occur at 4, 12 and 20 nodes for 800, 2,400 and 
4,000 users, respectively.    

        The scalability plots in Fig7.d start from 1, 4, 8 and 16 

nodes.  Due to 2-order of magnitude difference of the 1-node 

curve (marked by x in Fig7.d), we apply the wider scale on the 

left y-axis for this curve. The remaining 3 curves are scaled by 

the right y-axis. Accordingly, the scalability with 800 users 

(Fig.7.d) has a sky rocket rise from 2 to 4 nodes. Similarly, we 

see the peak rises of p-Scalability at 4, 8 and 16 instances, 

respectively for more users.  All scalability drops steadily after 

reaching their peaks. TPC-W does not scale well beyond certain 

cluster size. 

7.2   Results of Scaling-Up Experiments   

 In scale-up experiments, we upgrade the machine instances 
from small to medium, large and extra-large types as given in 
Table 3 in order of increasing computing power (ECU and 
vCPU), memory and storage capacities. Of course, the renting 
cost increases from small to large, accordingly. Three scale-up 
experiments performed on the EC2 by running the YCSB, HI 
Bench, and TPC-W respectively.   

In YCSB experiments, the EC2 system scales over 5 large or 
xlarge instances along the x-axis in Fig.8. In TPC-W scale-up 
experiments, we follow the scaling sequence: m1.small, 

m1.medium, m3.medium, m1.lrage, and m1.xlarge.  All scaling 
are done by program control in the experiments. Auto scaling 
cannot be implemented to automate the scaling-up process due 
to heavy overhead or low elasticity encountered.  
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                                      (a) Throughput                                                                               (b) Quality of Service (QoS)                        

          
                                                   (c) Productivity                                                    (d) Scalability for 800 users, where the 1-curve (marked by x) applies 
                                                                                                                                         the right scale and remaining 3 curves apply the left scale. 

       Figure 7.  Scale-out performance of TPC-W benchmark on Amazon EC2 cloud over increasing workload from 200 to 4,000  
                       users.  Parts (a, b, c) have the same legend. Part (d) scales from 4 initial machine instances.  

 (A). Yahoo! YCSB Performance on EC2   

      We run the Yahoo! YCSB as part of the Cloudsuite data 
serving benchmark on AWS Hbase 0.92.0 cluster. We applied a 
write-intensive workload with 100K and 5M memory access 
operations on different types of instances.  We use the default 
setting of Hbase. Figures 8(a, b) report the throughput and QoS, 
respectively. The cluster scales up to m3.large nodes.  

Figures 8(a) shows that for all three workloads, performance 
increases apparently when scaling up from m1.large to 
m3.xlarge instance, however for c3.xlarge and c1.xlarge, 
throughput and execution time almost remain the same as 

m3.xlarge instance. From Fig.8 (b), the efficiency drops rapidly 
from m1.large to m1.xlarge and from c3.xlarge to c1.xlarge. 
This is due to the fact that scaling up does not catch the 
hardware resources increase. 

We plot the productivity in Fig 8(c) for 5M memory 
operations. Here, we the set the QoS  (cloud availability) to be 
100%. As we scale up, the productivity reaches the peak values 
for all workloads at c3.xlarge. Figure 8(d) is based on 5M 
operations. The message being conveyed is that YCSB shows 
heavy memory-intensive database operations, and we can reach 

the highest productivity at c3.xlarge instance.  

                
(a)  Throughput                                                                                                     (b) Efficiency 

           
                                       (c) Productivity                                                                                 (d)   Scalability for 5M memory writes 

Figure 8.  Scale-up performance of Yahoo! YCSB on EC2 over increasing  workload from 100K to 5 M memory-access operations, 
where  the same legend in Part (a) applies in all Parts.  All instance types are specified in Table 3.  
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 (B) TPC-W Scale-Up Performance  

         We run the TPC-W benchmark with various workloads on 
5 instance types with increasing computing power as seen in 
Table 3. The throughput increases with increasing workload in 
Fig.9 except the 200-user curve is rather flat due to lack of 
work for scaling up to more powerful nodes. In Fig.9.b, the 
QoS for the 800-user curve is the low for smaller instance types 
due to overloading them. The QoS increases quickly to 100%. 

          In Figs. 9(c), we scale up from 3 node types under the 
workload of 800 users. Based on Eq.4, we plot the productivity 
curves in Fig.10 (d). The low value for 800-user curve is caused 
by its low QoS curve observed in Fig.10.b. All three curves 

reach the peak with the use of m3.medium node.  We observe 
that with 800 or more users, the p-scalability reaches the peak 
with the m1.medium instance. After that, using more powerful 
nodes does not pay off. With even larger workload, say 4,000 
users, the peak scalability may move further towards the right 
with larger instance nodes.  

        Note that the TCP-W results plotted in Fig.9 have similar 
patterns as those YCSB results plotted in Fig.7. However, they 
do differ in magnitude and peak performances. The main reason 
lies in different instance types used and different workloads 
applied. The operations counted in YCSB differ from the user 
count in TPC-W workload. They differ in about two orders in 
magnitude.   

            
                                        (a) Throughput                                                     (b) Quality of service (QoS)                        

             
                                                              (c)  Productivity                                                            (d)    Scalability for 800 users 

Figure 9.  Scale-up performance of TPC-W benchmark on Amazon EC2 clouds of various instant types  
over increasing workloads from 200 to 800 users. 

7.3. Mixed Scale-Up and Scale-Out Performance 

 For mixed scaling, 4 cluster configurations are specified 
along the x-axis in Fig.10. The leftmost cluster has 8 small 
instances with a total ECU count of 8. The next has 4 
medium and 4 small instances with 12 ECUs. The next one 
has 3 large and 2 medium instances with 16 ECUs. The  
right cluster has 3 xlarge and 2 large instances with a total 
of 32 ECUs.  Figure 10 reports the HI Bench Word Count 
execution results.  

 
Mixed strategy offers a wider range of ECU increase.  

The monotonic increase in speed (Fig.10a) clearly supported 
this claim. For small data sizes (1 or 5 GB), the productivity 
(Fig.8b) also decreases with large cluster used. For very 
large data set (10GB), the productivity drops to a minimum 
point at the third large cluster and then increases again to a 
higher value for the rightmost cluster applied.  

 

        
                                      (a). Speed (throughput)                                                                     (b) Productivity 

Figure 10:  HiBench Word Count performance results on 4 EC2 clusters with mixed scale-up and scale-out nodes. 
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7.4  Effects of Changing Benchmarks  
 or Cloud Platforms   

Applying the relative performance models in Eqs.11 and 12, 
we compare three benchmark programs: HiBbench, YCSB and 
BenchClouds and two cloud platforms: EC2 and Rackspace. 
These comparative studies reveal the strength and weakness in 
different benchmarks or cloud platforms.  

(A). HI Bench vs. BenchCloud Results  

  Figure 11(a) compares the performance of three cloud 
benchmarks in 6 dimensions. The polygon data points are 
extracted and normalized from those in previous Figures. 
YCSB applies the scale-up workload with a higher 
throughput, productivity and scalability than the other two 
benchmarks.  

The HighBench and BenchClouds apply the Elastic 
MapReduce resources with scale-out workload, they end up 
with comparable performance and higher cost than using the 
YCSB. HI Bench performs better in efficiency and e-
scalability due to scaling out from a few to larger number of 
nodes.  In general, we conclude that scaling-out should be 
practiced when the elasticity is high and scaling-up is in favor 
of using more powerful nodes with higher efficiency.  

 (B)  TPC-W on EC2 vs. Rackspace Clouds  

      As plotted in Fig.11 (b), we run the same TCP-W 
benchmark with 800 users on both EC2 and Rackspace 
platforms. The data of EC2 is extracted from Fig.7. The 
Rackspace data are performed under similar workload and 
machine configurations. There is no performance difference in 
WIPS rate and QoS.  

 
(a) HI Bench and BenchCloud benchmark tested on EC2   

          (Data points  are normalized from Figs.5 and 6)  

 
                 (b).  EC2 and Rackspace tested with TPC-W 

Figure 11.  Relative performance of compute clouds running     

different benchmarks in (a) and the same benchmark in (b). 

       It is crucial to choose the proper set of performance 

metrics in cloud benchmarking experiments. From Fig.2 and 

Fig.10, we offered 5 different sets of performance metrics for 

modeling the IaaS, PaaS, SaaS, hybrid and mashup cloud 

configurations. Five benchmark programs are tested by which 

YCSB was embedded as part of the CloudSuite. These 

performance models can be modified to test other or new 

cloud benchmark suites as well. 

 8.   ELASTICITY ANALYSIS OF SCALING  
        PERFORMANCE   

        Scaling out, scaling-up and mixed strategies are evaluated 
below. We compare their relative merits through executing two 
benchmark programs, Sort and Wordcount in HI Bench suite, 
on the AWS EC2 platform. The workload for these two 
programs has 10 GB of data elements. We measure the HI 
Bench performance of these two programs along six 
performance dimensions: throughput, scalability, QoS, 

productivity, costs and efficiency.  

The QoS is mainly indicated by system availability 
which was recorded 99.95% ~ 100% for all cluster 
configurations. Cost wise for the Word Count, the scale-out 
small cluster (solid polygons in Fig.12 (a, d) has the least 
service costs. The scale-up clusters in Fig.12 (b, e) cost 
more and the mixed cluster is the most expensive one to 
implement. Mixed scaling demands lot more considerations 
on tradeoffs between performance and cost incurred.   

Speed wise, all mixed strategy for Sort (Fig.12c and 
Fig.12 (e) have the fastest throughput (or speed). The Word 
Count program shows slow throughput in all cases. The 
scale-up cluster shows very high efficiency for Word Count.  
The Sort clusters (dash-line polygons) show poor efficiency 
and throughput except high throughput for the mixed mode 
for sorting very large cluster in Fig.12 (f.)  

In Fig.12a, we see higher productivity for the large 
cluster (16 nodes) configuration. The peak values are 
application-dependent.  Different benchmarks may lead to 
different conclusions. In general, scaling-out should be 
practiced when the elasticity speed is high.  

These performance maps are compared in Table 4 in 
terms of their polygon area values.  Under each scaling case, 
we compare two cluster configurations. The polygon areas 
reported in Fig.12 and Table 4 simply demonstrate a radar-
chart method to compare the relative performance of testing 
various cluster configurations with a common benchmark. 

Table 4 Performance Polygon Areas on Radar Charts in Fig.12 

Scale-Out 
Mode  

(Figs.4a, d) 

Cluster Config. 2 small nodes 16 small nodes 

Word Count  34.53 46.85 
Sort  17.02 23.65 

Scale-Up  
Mode 

(Figs.4b, e) 

Cluster Config. 2 medium 

nodes 

2 xlarge nodes  

Word Count  37.25 31.42 
Sort  41.84 21.22 

Mixed 
Scaling Mode 

(Figs. 4c, f) 

Cluster Config. 4 medium  

and 4 small 

3 large and  

 2 xlarge 

Word Count  23.39 18.28 
Sort 22.81 11.90 
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   (a)  Word Count with scaling out                (b) Word Count with scaling up                  (c) Word Count with mixed scaling out/up 

         

(d)  Sort with scaling out                                     (e) Sort with scaling up                                  (f) Sorting with mixed scaling out/up 

                         Figure 12.   The performance maps of two HI Bench programs on two EC2 cluster configurations for the scale-out,  
                                       scale-up, and mixed scale-up/scale-out workloads over 10 GB of data elements. 

 
       In Table 5, we give a qualitative assessment of the 3 
scaling techniques evaluated in HI Bench experiments on 
various EC2 configurations. The assessment is based on those 
quantitative measures reported in previous sections. We take a 
macroscopic view of the reported numerical results to reach 
some generalized observations on cloud performance under 
various operating constraints. 

      Over all, we find that scaling-out is the easiest one to 
implement on homogeneous clusters. The elasticity overhead is 
also lower in these cluster configurations. Scaling up is more 
complex to implement than scaling out due to the switching of 
node types. This will reduce the elasticity speed and prolong 
the reconfiguration overhead. The mixed scaling is the most 
difficult one to implement but offers the best flexibility to 
match with the workload change. 

     Table 5:  Assessment of Three Scaling Techniques based 
          on HI Bench Benchmarking Findings on The EC2 

Impact 
Factors 

Scale-Out 
Technique 

Scale-Up 
Technique  

Mixed Scaling 
Technique 

Elasticity 
speed, scaling 
complexity and 
overhead  

Fast elasticity,  
possibly 
supported by 
auto-scaling and 
heuristics 

High overhead to 
reconfigure and 
cannot support 
auto scaling 

Most difficult to  
scale with wide 
range of machine 
instances 

Effects on  
performance,  
efficiency, and 
scalability 

Expect scalable 
performance if 
the application 
can exploit 
parallelism 

Switching among 
heterogeneous 
nodes may reduce  
scalability 

Flexible app , 
low efficiency, 
and resource 
utilization 

QoS, costs, 
fault recovery, 
and cloud 
productivity 

Cost the least,  
Easy to recover,  
Incremental 
productivity 

More cost-
effective,  but 
Reduced QoS may 
weaken the 
productivity 

High costs,  
difficult to 
recover, expect 
the highest 
productivity  

8.  CONCLUSIONS AND SUGGESTIONS 

      In general, the higher efficiency promotes the 

productivity, but the converse may not hold, necessarily. 
The QoS is based on user’s objective. Different users 
may set their own satisfaction threshold for the QoS 
they can accept. The efficiency is controlled by the 
providers considering the interest of all user interests at 
the same time. We summarize below our major research 

findings from the comprehensive cloud benchmark 
experiments performed in 2014.  Then, we suggest a few 
directions for further R/D in promoting cloud computing 
applications. 

8.1 Summary of Benchmarking Findings 

        Over all, we find that scaling-out is the easiest one to 
implement on homogeneous clusters. The elasticity overhead is 
also lower in these cluster configurations.  Scaling up is more 
complex to implement than scaling out due to the switching of 
node types. This will reduce the elasticity speed and prolong 
the reconfiguration overhead. The mixed scaling is the most 
difficult one to implement but offers the best flexibility to 
match with the workload change. Our research contributions 
are summarized below in 5 technical aspects:  

(1). New performance metrics and benchmarking models are 
proposed and tested in cloud benchmark experiments. We 
study the scalability performances driven by efficiency and 
productivity, separately. This approach appeals to different 
user groups with diversified performance demands.   

(2). Sustained performance of clouds comes mainly from fast 
elastic resources provisioning to match with the workload 
variation. Scaling-out should be practiced when the 
elasticity is high, Scaling-up is in favor of using more 
powerful nodes with higher efficiency and productivity.     

(3). To achieve productive services, both scale-up and scale-out 
schemes could be practiced. Scale-out reconfiguration has 
lower overhead to implement than those experienced in 
scaly-up experiments. The elasticity speed plays a vital role 
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in minimizing the over-provisioning or under-provisioning 
gaps of resources.  

(4). we reveal high scale-out performance in HI Bench and 
BenchClouds experiments. On the other hand, we show 
that scaling up is more cost-effective with higher 
productivity and p-scalability in YCSB and TPC-W 
experiments. These findings may be useful to predict other 
benchmark performance if they attempt to scale out or 
scale-up with similar cloud setting and workload. 

(5). The cloud productivity is greatly attributed to system 
elasticity, efficiency, and scalability driven by 
performance. The cloud providers must enforce 
performance isolation for quota-abiding users at the  

8.2 Suggestions for Further Work 

       Three suggestions are made below for further work. The 
ultimate goal is to generate commonly accepted cloud 
benchmarks and testing techniques. These tasks are naturally 
extendable from the cloud performance models being proposed.  

(6)  Other cloud benchmarks: CloudStone [35] CloudCmp [27], 
and C-meter [37], could be also tested with the new 
performance models presented. Future benchmarks are 
encouraged to evaluate PaaS and SaaS clouds.      

(7). To make clouds universally acceptable, we encourage 
cloud researchers and developers to work jointly in 
developing a set of application-specific benchmarks for 
important cloud and big-data application domains.  

(8). The cloud community is short of benchmarks to test cloud 
capability in big-data analytics and machine learning 
intelligence. This area is widely open, waiting for major 
research/development challenges.  
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