
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2014-07-0595 R1 (FINAL VERSION) 1

Cloud Performance Modeling with Benchmark
Evaluation of Elastic Scaling Strategies

 Kai Hwang, Fellow IEEE, Xiaoying Bai, Member IEEE, Yue Shi,

 Muyang Li, Wen-Guang Chen and Yongwei Wu, Member IEEE

Abstract— In this paper, we present generic cloud performance models for evaluating Iaas, PaaS, SaaS, and
mashup or hybrid clouds. We test clouds with real-life benchmark programs and propose some new
performance metrics. Our benchmark experiments are conducted mainly on IaaS cloud platforms over scale-
out and scale-up workloads. Cloud benchmarking results are analyzed with the efficiency, elasticity, QoS,
productivity, and scalability of cloud performance. Five cloud benchmarks were tested on Amazon IaaS EC2
cloud: namely YCSB, CloudSuite, HiBench, BenchClouds, and TPC-W. To satisfy production services, the
choice of scale-up or scale-out solutions should be made primarily by the workload patterns and resources
utilization rates required. Scaling-out machine instances have much lower overhead than those experienced in
scale-up experiments. However, scaling up is found more cost-effective in sustaining heavier workload. The
cloud productivity is greatly attributed to system elasticity, efficiency, QoS and scalability. We find that auto-
scaling is easy to implement but tends to over provision the resources. Lower resource utilization rate may
result from auto-scaling, compared with using scale-out or scale-up strategies. We also demonstrate that the
proposed cloud performance models are applicable to evaluate PaaS, SaaS and hybrid clouds as well.

Index Terms— Cloud computing, performance evaluation, cloud benchmarks, and resources scaling.
—————————— � ——————————

1 INTRODUCTION AND MOTIVATION

he hype of cloud computing is entering the disillusionment
stage, reaching the plateau of productivity in the next

decade. Following a pay-as-you-go business model, cloud
platforms are gradually adopted by the main stream of IT
industry. Cloud computing attempts to provide an integrated
platform to benefit many users at the same time. This multi-
tenant and on-demand service model is achieved through
virtualization on all shared utilities and resources [6, 21].

This paper models cloud performance for IaaS, PaaS and
SaaS clouds at different abstraction levels. We assesse various
benchmarks targeted at clouds, and analyze new performance
results. We assess the state of cloud computing from the
perspectives of performance. This work is extended from
previous works by [2-4,7-11, 15, 16, 20, 22-27,30-37].

Up to now, the original cloud design goals are only
partially fulfilled. We are still climbing a steep hill to deliver
sustained cloud productivity. To reduce the cost of leased
resources and to maximize utilization, elastic and dynamic
resource provisioning are the foundation of cloud performance.

 NIST [28] has identified that cloud computing demands

scalable performance, economics of scale, measurable
productivity, high availability and energy efficiency. With
guaranteed SLA (service-level agreement), cloud automatically
allocates more resources by scale-up or scale-out resources

[14,29], when the workload increases beyond certain threshold.
The system releases unused resources by scale-down or scale-

in [5, 19, 30] when the load reduces.

 Cloud scaling is enabled by using virtualized resources.
Hence, the scale of computing power needs to be calculated at
the abstraction level of virtual resources. To handle workload
composed of large number of small jobs, performance
concerns are the average response time and throughput, rather
than completion time of individual tasks. Hence, scalability
needs to upgrade the system capability to handle large number
of small users. Cloud productivity is tied to the performance
cost ratio.

To meet the demand, we propose some new cloud
performance metrics in terms of efficiency and productivity.
The resources are scaled by the quantity and types of virtual
machine instances. The scalability is driven by cloud
productivity, taking both QoS and price into consideration.
Various benchmark suites have been suggested to evaluate
cloud performance under different workloads in the past.

We chose a set of widely used cloud benchmarks to test
the scale-out and scale-up capabilities of EC2-like cloud
platforms. The workload patterns include large scale data
processing and data analytics, web search and service. Five
benchmarks applied on EC2 include the BenchCloud at USC,
YCSB from CloudSuite [14], HI Bench [20], and TPC-W [35].

 Cloud relies on virtualization technique to enable elastic
resource provisioning or de-provisioning. Hence, the
effectiveness of virtualization becomes crucial to cloud
performance. From the software perspective, multi-tenant
architecture is introduced with clouds to support big-data
processing and Internet/web services.

T

————————————————
• Manuscript submitted July 30, 2014, revised Dec.15, 2014, and accepted

Jan.16, 2015, to appear in IEEE Transactions on Parallel and Distributed

Systems. All rights reserved by IEEE publishers and the coauthors.

• K. Hwang is with Departments of Electrical Engineering and Computer
Science, University of Southern California. He is the corresponding author.
Contact him by email: kaihwang@usc.edu.

• X. Y. Bai is with Dept. of Computer Science and Technology, Tsinghua
University. China. Contact her at E-mail: baixy@ tsinghua.edu.cn.

• Y. Shi is with the Dept. of Electrical Engineering, University of Southern
California, Los Angeles, CA. Email: yueshi@usc.edu

• M. Y. Li is with Department of Computer Science and Technology,
Tsinghua University, China. Email: limuyang08@gmail.com.

• W. G. Chen is with Dept. of Computer Science and Technology, Tsinghua
University, China,. Contact him at: cwg@ tsinghua.edu.cn.

• Y. W. Wu is with the Dept. of Computer Science and Technology,
Tsinghua University, China,. Contact him at: wuyw@ tsinghua.edu.cn.

2 IEEE TPDS-2014-07-0595 R1

2

 In the remaining sections, we cover cloud workload,
benchmarks tested and performance metrics including some
newly discovered ones. Then we provide an elasticity analysis
and study the interplay between efficiency, productivity and
scalability of cloud platforms. We also reveal the tradeoffs
between scaling out and scaling up policies. Our benchmark
experiments were conducted on Amazon EC2.

2 SCALING STRATEGIES AND BENCHMARK SUITES

 Due to multi-tenant demands, clouds are facing all
sorts of workloads including multi-tasking, batch
processing, streaming, data-mining and analytics. The
cloud workload must be matched with adequately
configured resources to achieve high performance and
sustained productivity.

2.1 Auto-scaling, Scale-out, Scale-up and
Mixed Strategies

 Clouds are used primarily for data-intensive and
latency-sensitive jobs, search engines, OLTP/business
processing, social-media networking, data warehousing
and big-data analytics. Cloud workloads are
characterized by their dataset size, algorithms, memory-
access pattern, and service model applied. We demonstrate

three cloud resource scaling techniques in Fig.1.

 The Auto scaling shown in Fig.1c is a brutal-force

strategy to increase or decrease resources in a cloud. The

idea is to add more machine instances when a specific

resource (like CPU) utilization rate exceeds a preset

threshold during a fixed observation period.

Practicing auto scaling can enhance the cloud

performance at the expenses of always provisioning

more resources above the workload demand.

 As seen from Fig.1, auto-scaling is easy to implement

with a utilization threshold approach. However, it tends

to waste higher in over-provisioned resources. We

illustrate the ideas of scaling up resources in Fig.1 (a) and

scaling-out resources in Fig.1 (b). These scaling

strategies and their possible mixtures are characterized

below:

• Auto-scaling strategy applies a threshold to increase
the machine instance automatically, once the
instance utilization rate exceeds a preset threshold
(say 85%) for a preset period (say 60 sec). Auto-
scaling tends to over-provision resources to satisfy
the user at run time.

• Scale-out strategy allows adding more machine
instances or processing nodes of the same type based
on the quota agreed in the service-level agreement
(SLA). Obviously, scaling out appeals more to the
use of homogeneous clusters with identical nodes.

• Scale-up strategy is implemented with scaling the
cloud from using small nodes to more powerful
nodes with better processor, memory or storage.

• Mixed scaling strategy allows one to scale up (or
scale-down) the instance type and adjust the instance
quantity by scale-out (or scale-in) resources at the
same time. Mixed scaling appeals better with using
heterogeneous clusters.

 (a) Scale-up instance type (capacity) (b) Scale-out in instance quantity (c) Brutal-force auto-scaling

Figure 1: Auto-scaling, scale-out and scale-up machine instance resources in elastic IaaS clouds, where over-provisioning and
under-provisioning of machine resources are shown in differently shaded areas above and below the workload curves. .

 We will evaluate the relative performance of the three
scaling strategies in subsequent sections. In general, the scale-
up approach (Fig.1a) takes longer overhead to reconfigure and
has the lowest elasticity among all scaling approaches. Scaling-
up or down take longer time and thus results in both over-
provisioning and under-provisioning of resources as seen by
the shaded areas above or below the workload curve.

 Scale-out strategy (Fig.1b) matches the workload
variation closely. Thus it has the lowest over- or under-
provisioning of resources. The auto-scaling (Fig.1c) wastes
resources in over-provisioning. But it will not cause any
interruption in client services committed. This is the main
reason why scale-out is more often practiced in cloud
platforms than the scale-up approach.

2.2 Cloud Benchmark Suites Tested

 Table 1 summarizes 5 open-source cloud benchmark suites
we have tested. The Yahoo YCSB and TPC-W are developed
by industry. The BenchClouds and CloudSuite are developed

in the academia. The CloudSuite [9] was developed at
EPFL in Lausanne. All source codes and datasets are

available in these open-source benchmarks. The BenchCloud
is still under development at USC. This suite collects users
programs and datasets mainly from social-media applications.

 HI Bench is specifically tailored for running Hadoop
programs on most clouds. The suite was developed for
measuring the speed, throughput, HDFS bandwidth, and
resources utilization in a large suite of programs. The

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

3

YCSB is a Yahoo! Cloud Serving Benchmark [7]. Other
cloud benchmarks include the CloudCmp [16], Phoronix
[17], TPC-W [18], CloudStone [19], and C-meter [20].

 Interested readers are refer to the assessment by Farber
and Kounev [8] for cloud benchmarking trends. Two

commercial cloud evaluations were conducted recently.
Nine large cloud providers were evaluated by BitCurrent [3]
and 144 cloud sites were examined by CloudHarmonics [6].
However, the performance metrics they have applied are far
from being adequate to cover the QoS and productivity in
clouds. Performance in cloud environment.

TABLE 1. CLOUD BENCHMARKS, WORKLOADS, METRICS APPLIED AND SYSTEMS TESTED

Benchmark
and Reference

Reported Applications
and Workloads

Performance
Metrics

Clouds Applied and
Workload Generation

BenchCloud under
development at USC

Social-media applications with
big-data processing

Speedup, Efficiency, QoS,
Scalability

AWS EC2, Twitter API-
workload

CloudSuite at EPFL,
Lausanne [14]

Data/Graphics analytics, Media
Streaming and Web Services

Latency, WIPS, Speedup,
Efficiency, Scalability

AWS, GAE, Faban workload
generator

HI Bench
at Intel [20]

Terasort, Word count, DFSIO,
Nutch indexing, Page Rank, etc.

Speed, HDFS bandwidth,
utilizations (CPU, memory, IO)

Hadoop Random TextWriter,
TeraGen, enKMeansDataset

TPC-W by Transaction
Proc.Council [35]

Web Search, and Analytical
Query Processing

WIPS, $/WIPS, TPS, QoS,
Efficiency

AWS EC2, Rackspace,
TPC client workload

YCSB
by Yahoo! [11]

Synthetic workload, data
services,

Latency, Throughput, Speedup,
Scalability, Replication Impact

Microsoft Azure, AWS,
HBase, Shared MySQL

3. CLOUD PERFORMANCE METRICS

 We apply an extended concept of performance to include
capabilities and productivity. The performance and capabilities
are necessary to upgrade the productivity of a cloud. In Table 2,
we divide cloud performance metrics at three levels: namely
performance, capabilities and productivity.

3.1 Three Performance Levels

 Basic performance metrics include most traditional metrics
such as speed, speedup, efficiency, utilization, etc. [11, 21-23].
Cloud capabilities are marked by network latency, data
throughput, storage capacity, data analytics, and system
recoverability. The third level deals with cloud productivity,
which is revealed by QoS, SLA, security, Power, cost and
availability, etc. Table 2 summarizes these metrics in 3 groups.

TABLE 2. PERFORMANCE, CAPABILITY AND PRODUCTIVITY METRICS FOR EVALUATING CLOUDS

Abstraction
Level

Performance
Metric

Notation
(Eq. #)

Brief Definitions with Representative Units or Probabilities

Basic
Performance
Metrics

Execution time Te Time elapsed during program or job execution, (sec., hours)

Speed Sr Number of operations executed per second, (PFlops, TPS, WIPS, etc.)

Speedup Su Speed gain of using more processing nodes over a single node

Efficiency E Percentage of max. Performance (speedup or utilization) achievable (%)

Scalability S (Eq.5) The ability to scale up resources for gain in system performance

Elasticity El, (Eq.14) Dynamic interval of auto-scaling resources with workload variation

Cloud
Capabilities:

Latency T Waiting time from job submission to receiving the first response. (Sec.)

Throughput H Average number of jobs/tasks/operations per unit time (PFops, WIPS.)

Bandwidth B Data transfer rate or I/O processing speed, (MB/s, Gbps)

Storage Capacity Sg Storage capacity with virtual disks to serve many user groups

Software Tooling Sw Software portability and API and SDK tools for developing cloud apps.

Bigdata Analytics An The ability to uncover hidden information and predict the future

Recoverability Rc Recovery rate or the capability to recover from failure or disaster (%)

Cloud
Productivity

 QoS of Cloud QoS The satisfaction rate of a cloud service or benchmark testing (%)

Power Demand W Power consumption of a cloud computing system (MWatt)

Service cost Cost The price per cloud service (compute, storage, etc.) provided, ($/hour)

SLA/Security L Compliance of SLA , security, privacy or copyright regulations

Availability A Percentage of time the system is up to deliver useful work. (%)

Productivity P , (Eq.4) Cloud service performance per unit cost, (TFlops/$, WIPS/$, etc.)

 Most basic performance metrics and capability measures

have defined in the past. Some elasticity, productivity and

scalability measures are newly proposed here. We will

demonstrate the power of using those new metrics in evaluating

cloud performance in subsequent sections.

3.2 Basic Performance Metrics

These include traditional performance measures of
speed, speedup, efficiency, etc. for parallel and distributed
computing. More in-depth definitions can be found in [12,
21, 22, 23].

4 IEEE TPDS-2014-07-0595 R1

4

� Speed (S): Number of millions of operations per second
(Mops). The operation could be integer or floating-point
like MFlops. The speed is also known as throughput by
TPC-W benchmark, measured by millions of web

interactions per second (WIPS).

� Speedup (Su): Speed gain of using multiple nodes

� Efficiency (Ef): Percentage of peak performance achieved

� Utilization (U): Busy resources (CPU, memory, storage).

� Scalability (Sc) : Scaling ability to upgrade performance.

3.3 Cloud Capabilities and Productivity

These are macroscopic metrics that describe the
hardware, software, reconfiguration and networking
capabilities of a cloud as listed below: These metrics are
good indicators of cloud’s performance basis.

� Latency (L): System response time or access latency

� Bandwidth (B): This is data transfer rate or I/O rate.

� Elasticity (El): The ability for cloud resources to scale
up/down or scale in/out to match with workload variation

� Software (Sw) : Software portability, API and SDK tooling

� Big-data Analytics:(An): The ability to uncover hidden
information or predict trends in big data.

For the first time, we introduce cloud productivity as a
compound function of QoS, availability, power efficiency,
and performance-cost ratio. These attributes are defined
below. More details are given in subsequent sections.

� Quality of Service (QoS): Satisfaction on user services

� System availability (A): The system up time per year.

� Service costs (Co): User renting costs and provider cost.

� Power Demand (W): Cloud power consumption (MWatt).

� SLA/Security (L) : Compliance of SLA, security, ETC.

� Productivity (P) : QoS-satisfied performance per unit cost

4. EFFICIENCY, PRODUCTIVITY AND SCALABILITY

 In this section, we analyze three mutually related factors
toward productive cloud performance. The scalability concept
was developed with the parallel computing community [22].
The elasticity was introduced with the inception of cloud
computing [18]. Productivity of clouds is newly introduced in
this paper extending our preliminary work reported in
CloudCom 2014 [23]. We attempted to relate cloud productivity
to QoS-satisfied performance over business gains in cloud
computing systems.

4.1 Cloud Efficiency and Productivity

We specify a cloud configuration on the resources
provisioned at a given time instance. The configuration is

described by a resources matrix

as follows.

 (1)

In this resource matrix, we have

 1) are machine instances;

 2) are resources types in instances;

 3) are resource quantity .

Consider a cluster configuration Λ. Let T(1) be the
execution time of an application code on a 1-ECU instance.
Let �(�) be the execution time of the same code on a
virtual cluster Λ. The speedup is defined by Speedup (Λ) =
T(1) / �(�). Assume that the cluster is built with n
instance types. The type-I has ni instances, each with an
ECU count ci. We calculate the total cluster ECU count by:

 N(�) = ∑ 		
 × �
	

�

� (2)

 This N(�) count sets a ceiling of the cluster speedup.
Now, we are ready to define the cloud efficiency for the
cluster Λ in question as follow:

 Efficiency (Λ) = Speedup (Λ) / N(�)

 = T(1) / 	{	�(�) ×	 ∑ 		
 × �
	

�

� } (3)

 In general, the cloud productivity is driven by three
technical factors that are related to the scaling factor.

1) System performance such as throughput in terms of
transactions per second or response time.

2) System availability as an indicator of QoS measured
by percentage of uptime.

3) Cost for rented resources measured by price.

 Let Λ be a cloud configuration in use. We define the
cloud productivity by three factors, all are functions of Λ.

�(Λ) =
�(�)×�(�)

�(�)
 (4)

Where �(Λ) is a performance metric used, which could the

speed or throughput selected from Table 2. The �(Λ) is the
QoS of the cloud. For simplicity, one can approximate the
QoS by the service availability measure. According to
CloudHarmonics Report on 144 cloud web sites [5], more

than half have 99% or higher availability. The	�(Λ) is the

user cost to rent resources to form the virtual cluster Λ.

4.2 Production-Driven Scalability

 For different workload, scalable performance is often tied
to different resource types, even though instances are often
provisioned in configuration package. The performance of
CPU-bound jobs is primarily decided by machine instance
numbers. Memory-bound problems are limited by the memory
(including cache) allocated within the machine instances. The
storage-bound problems are limited by the network latency and
disk storage and I/O bandwidth encountered.

 The cloud scalability is driven by the productivity and
QoS of a cloud system. This measure is inversely
proportional to the service costs As we scale from
configuration Λ1 to another Λ2. This metric evaluates the
economy of scale by a pair of productivity ratio. The higher
is the value of a scalability measure, the more opportunity
exists to target the desired scaling scheme.

�(Λ1, Λ2) =
�(�)

�(��)
=

�(�)×�(�)×�(��))

�(��)×�(��)×�(�)
 (5)

kmija
×

=Λ][

},...,2,1|{ kj
j

vV ==

},...,2,1|{ mirR i ==

)1,1(kjmia ij ≤≤≤≤





















=Λ

mkmm

k

k

m

k

aaa

aaa

aaa

r

r

r

vvv

...

............

...

...

...

...

21

22221

11211

2

1

21

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

5

With comparable QoS and cost estimation, the scalability is
directly proportional to productivity (Eq.4). Therefore, will
demonstrate the measured productivity results and skip the
scalability plots in subsequent sections.

 Table 3 shows some machine instances applied in our
experiments on EC2. The provider rents resources by instance
types and quantity. AWS has defined a term ECU (EC2

Compute Unit) as an abstract unit to quantify the computing
power of each instance type. By 2009 standard, the
performance of a 1 ECU instance is equivalent to a CPU built
with 1.2 GHz 2007 Xeon processor [1]. The memory and

storage capacity also affect the ECU count. For example, a
system may rent three instances on EC2 for general purpose
applications with two instance types.. We use an instance

vector ! = {"1. #$%&',"3. #$%&'} built with $)�.*+,-. = 1

and $)/.*+,-. = 2 instances. To assess the cost effectiveness,

we list also the instance renting prices in 2014.

 TABLE 3. MACHINE INSTANCE TYPES IN AMAZON EC2 IN 2014

Instant
Type

ECU Virtual
Cores

Memory
(GB)

Storage
(GB)

Price
($/hour)

m1.small 1 1 1.7 1 ×160 0.044

m1.medium 2 1 3.7 1×410 0.087

m3.medium 3 1 3.75 1 x 4 SSD 0.07

m1.xlarge 8 4 15 4×420 0.350

m3.xlarge 13 4 15 2×40 (SSD) 0.280

c1.xlarge 20 8 7 4×420 (SSD) 0.520

c3.xlarge 14 4 7.5 2×40 (SSD) 0.210

5. CLOUD PERFORMANCE MODELS

 Depending on the cloud service models applied, the
resources could be controlled by users, vendors, or by both
jointly. As a comparison, control of desktop computing systems
falls in the hands of users, except the control of networking
facility which is shared. This adds a great burden on the part of
users. The control of cloud resources shifts the burden from
users to vendors as we change to IaaS, PaaS, and SaaS clouds.

5.1 Generic Cloud Performance Model

 First, we introduce a generic cloud performance model.
Then we will show how to extend or refine the generic
framework to model all types of cloud computing services. The
performance of a cloud, denoted as F(Cloud), is modeled by a
performance function F, consisting of a 5-tuple expression.

 F (Cloud) = {Service Model, Service Offerings,

 Performance, Capabilities, Availability} (6)

where the Cloud is identified by the cloud site name. The
Service Model could be one or more of the available service
modes such as IaaS, PaaS, SaaS, DaaS (Data as a Service),
TaaS (Testing as a Service), HaaS (Health-care as a Service),
NaaS (Network as a Service), LaaS (Location as a Service),
CaaS (Communication as a Service), etc.

 The performance here refers to a subset of performance
metrics selected from Category 1 in Table 2. To illustrate the
modeling ideas, we first specify three basic cloud service
models, namely IaaS, PaaS and SaaS. Then we show how to
extend the model to cover hybrid clouds or cloud mashups.

5.2 IaaS Performance Model

 We test the following set of performance-attributes in

evaluating an IaaS cloud. This model specification could be

specially tailored to special user groups or providers. Figure 2

shows 3 Keviate charts for 3 cloud service models. Each spoke

of the polygon represents an attribute dimension. The attribute

scale is proportional to the directional length along the spoke.

The further away from the center, the higher performance is

expressed in a scale from 0 to 5. Where value “0” means the

least performance and “5” the highest.

 (a) IaaS (Amazon EC2) [3, 9, 30, 38]

 (b) PaaS (Google AppEngine) [3, 9, 13, 27]

(c) SaaS (Salesforces) [3, 9, 21, 37].

Figure 2 Performance maps of three representative platforms
for IaaS, PaaS and SaaS clouds, where the polygon data points
are extracted from the cited reports on Amazon EC2, Google
AppEngine, and Salesforce cloud.

 The polygon area offers an average or approximated

indicator of the overall performance of the cloud along those

dimensions. Let be a set of n performance

attributes. In general, the larger is the area of the polygon

(Eq.7), the higher is the average performance demonstrated.

Here we assume that all six dimensions are equally weighted.

 (7)

 Three representative cloud configurations are modeled in
Fig.2 along different sets of performance metrics. They differ in
resources provisioned, performance level achieved,
performance results recorded, etc. The runtime conditions
cannot be fully predicted or captured by users.

In general, we suggest the following 5-tuple to model the
performance of an infrastructure IaaS cloud:

0

2.5

5
Speedup(Su)

Scalability(S)

Elasticity(El)

Availability(A)

Costs(Co)

Network

Bandwidth(B)

0

2.5

5
Software(Sw)

SLA/Security(L)

Scalability(S)

Power Demand(W)

Latency(T)

Efficiency(E)

0

2.5

5
Speedup(Su)

P-Scalability(Φp)

Analytics(An)

Throughput(H)

Software(Sw)

Productivity(P)

},....,2,1|{ nipi =

∑ +×××= 1)2sin(5.0 ii ppnArea ππππ

6 IEEE TPDS-2014-07-0595 R1

6

 F (Infrastructure cloud) = {< IaaS >, < Compute,

 Storage >, <Su, El , S >, < B >, < A, Co > } (8)

where the 6 metrics are selected from Table 2. Figure 2(a)
shows the Amazon EC2 performance map, where the polygon
data points are extracted and normalized from previous reports
in [3, 9, 30, 38]. With some modifications, the model can be
applied to evaluate other IssS clouds like Rackspace, GoGrid,
FlexiScale, Joyent [21].

5.3 PaaS and SaaS Cloud Performance

 The PaaS cloud platforms are used mainly in developing
user applications. Therefore, Eq. 9 a special set of performance
metrics are selected, different from those used to evaluate IaaS
models. For application developers, the major concern is
programmability or the effective use of software development

kits (SDK), etc. as in Fig.2(b). Again the dimensional
performance is based on previous reports [4, 10. 14, 27].

 F (Platform Cloud) = { < PaaS >, < Apps Development,

 TaaS>, < E, S >, < B, Sw >, < W, L > } (9)

where the 6 performance metrics are selected from in Table 2.
This model can modified to evaluate many PaaS platforms like
Microsoft Azure, Google AppEngine, and Salesforce
Force.com, Amazon Elastic MapReduce, and Aneka [21].

 Multi-tenant architecture is reflected in a SaaS model. It
allows for a single software instance to be shared by many
tenants. Each user may work in a dedicated environment. Listed
below are commonly concerned issues that relate to SaaS
performance. For simplicity, we show in Eq. 10 the SaaS map
model in 6 performance dimensions.

 F (Application Cloud) = { < SaaS >, < Marketing, Social

 Media >, < Su, Φp >, < H, Sw, An >, < P > } (10)

Where the six metrics are selected from Table 1. In Fig.2(c), we
plot two performance polygons for Salesforce in CRM
(customer relation management) applications. The data are
points extrapolated from [4, 10, 21, 36]. This model can be
modified to evaluate many SaaS clouds like Google Gmail,
IBM Lotus Live, Microsoft Dynamic CRM, and Salesforce
CRM, etc.

5.4 Modeling Hybrid Clouds or Mashups

 Private clouds are used by organization or enterprise
employees. They are used for research/development or
providing messaging or CaaS (Communication as a Service),
etc. Private clouds have better security, cost factors and
availability. Private cloud users are more concerned about raw
speed, utilization and productivity, etc.

 Hybrid clouds are built with private cloud interacting
closely with some public clouds. They are also known as cloud

mashups. Given below in Eq. 11 is an example performance
model for hybrid clouds or mashups.

 F (Hybrid Cloud) = { < IaaS, PaaS, SaaS >,
 < Social Media, Compute, Backup Storage, etc. >,
 < Su, U, E, Φ , Sr, Te >, < T, H, B, Sg, Sw >, < A, Co > } (11)

 The first relative performance model is specified in Eq.(19).
The objective is to compare the relative performance of several
benchmark suites running on the same cloud platform. This
model specified in Eq.12 was applied to compare the
performance of HI Bench and BenchClouds in Fig.11(a).

F (YCSB, CloudStone, BenchCloud) = { < AWS EC2 and

S3>, <YCSB, CS, BC >, < Raw speed (Sr), Utilization (U),

Service Costs (C0), Productivity (P) > } (12)

 Consider k cloud platforms <C1, C2, …, Ck>.
Which are under the test by p benchmark programs < B1,
B2, … ,Bp >. Assume that the clouds are tested by m
performance metrics < M1, M2, …, Mm >. The following
model (E.q.13) reveals the relative performance of
multiple cloud platforms. For example, EC2 and
Rackspace are evaluated in Fig.11 (b) for the case of
choosing k=2, p=1 and m=6.

F (C1, C2, …,Ck) = {< C1, C2, …., Ck >, < B1, B2, …., Bp >,

 < M1, M2, …., Mm > } (13)

6. ELASTICITY OF CLOUD PERFORMANCE

 Elasticity in computer systems cannot be achieved without
virtualization. Multi-tenancy cloud architecture demands elastic
resources with auto-scaling to yield scalable performance.
Differences in abstraction levels (IaaS, PaaS, SaaS) affect the
system reconfiguration capability or the elasticity of clouds. In
the past, physical computer resources may take hours or days to
reconfigure. Thus the elasticity is very low due to large
reconfiguration overhead.

 The elasticity was introduced by Herbst, et al [18] to
evaluate cloud scalability from two perspectives : (1) How fast
or timely to change the resources state in a cloud? (2) How
precisely the resources are provisioned to address the workload
variations? Elasticity has made possible to reconfigure within a
very short time by machine virtualization.

 This concept is illustrated in Fig.3, where the elasticity is
measured with two parameters: speed and precision. Speed is
calculated by the time delay (θ) of the provisioning or de-
provisioning process, while precision is the offset (µ) with
under- or over-provisioning. The concept of elasticity is
illustrated in Fig.3 in connection with these two parameters.

Figure 3. Illustration of cloud resource provisioning, where θ is
the overhead time and µ is the offset between actual scaling
and the auto scaling process.

 Elasticity defines the degree to which a system is able to
adapt to workload changes by provisioning and de-provisioning
resources in an autonomic manner, such that at each time the
available resources match the current demand as closely as
possible”. Let θ be the average time to switch from an under-
provisioned state to an elevated state and µ be the offset
between actual scaling and the auto scaling. The elasticity is
defined by the following expression:

The step jump
by auto scaling

 The actual scaling
curve.

θ

µ

Time

R
es

o
u

rc
es

p

ro
v
is

io
n

ed

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

7

 El = 1 / (θ × µ) (14)

 Figure 4 plots the elasticity as a function of the
reconfiguration overhead (θ) under different provisioning
offsets (µ) from the actual scaling curve. When the offset is
small (µ=10%), the elasticity drops sharply as the overhead (θ)
increases. When the offset gets to 70%, the elasticity drops to
0.04 from 0.25, when the average provisioning time θ is at 40
sec. Then the elasticity stay rather low flatly as θ increases.

 Figure 4. The cloud elasticity plotted from Eq.14.

 The message being conveyed here is that in order to
increase the elasticity of a cloud system, we should minimize
the provisioning time and keep the provision offset as low as
possible. The elasticity is a necessary condition for scalability,
but not sufficient. The built-in auto-scaling mechanism
(illustrated in Fig.3) is greatly affected by the elasticity
measure. The fluctuation of resource usage and the delay of
instance replication or upgrading are all affecting the
performance in cloud applications.

7. MEASURED CLOUD BENCHMARK RESULTS

 We have performed extensive cloud benchmark
experiments on the Amazon AWS EC2 with EMR (Elastic

MapReduce) library support. These experiments execute five
distinct benchmarks: BenchClouds, Yahoo! YCSB, HI Bench,
and TPC-W as listed in Table 1. The purpose is to check the
performance of EC2 under different benchmark programs over
varying data sizes.

 The experimental setting applies a fixed instance type to
scale out. For scale-up experiments, we have to change the
instance types by program direction. Manual scaling is applied
under program control in all experiments. Auto-scaling is not
applied in scaling experiments on EC2 due to its brutal force
provisioning policy. Some load-balancing was automatically
practiced on the EC2 under the control of the EMR library.

7.1 Elasticity Effects in Scale-Out Strategy

We have conducted three scale-out benchmark
experiments on EC 2 using the USC Benchcloud, HI
Bench, and TPC-W, respectively in Figs. 5 ~ 7.

(A). Filtering of Twitter Spams on EC2

This is a benchmark testing the performance a mashup of
two clouds (Twitter and EC2). In testing the BenchClouds
benchmark, we scan through large amount of social media data
(Tweets) collected from the Twitter cloud. Elastic MapReduce
(EMR) software on EC2 is used to perform the fast spam
filtering operations. The purpose is to filter out unwanted
Spams from large Tweet dataset in a very short time [31].

In Fig.5, we apply the m1small machine instance as listed
in Table 3. This instance has a computing power of 1 ECU
(Elastic compute unit) with 1 vCPU. The instance has 1.7 GB
of RAM memory and 160 GB storage. Each instance is charged
with $0.044/hour with EMR surcharge applied. The data sets
tested range from 10 GB to 100 GB and 1 TB.

 (a) Spam filtering time (b) Speedup

 (c) Productivity (d) Scalability for 1TB dataset

 Figure 5. Scale-out BenchClouds results on MapReduce filtering twitter spams over AWS EC2 of various sizes. Parts (a, b, c)
 apply the same legend. Part (d) shows the scalability measure from 3 initial machine instances.

 For a small 10GB dataset, there exists no apparent benefit
by scaling out beyond 8 instances (Fig.12a). Efficiency drops
sharply as the number of machine instances increase (Fig.12c).
The filtering process reaches the peak speedup with 128 nodes.
(Fig.12b). For a large dataset of 1 TB, the execution time

decreases by 58 times (Fig12.5a) with 128 nodes. Thus good
speedup of 58 and 45% efficiency were achieved at 128 nodes
(Fig.12b, c). The small dataset shows poor productivity (such as
40 at 32 nodes in Fig.12.d), while the large dataset results in a
peak productivity value at 32 nodes.

0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180 200 220 240

E
la

st
ic

it
y

 ,
E

l

Average provisioning time θ (sec)

μ=10% μ=30%

μ=50% μ=70%

1

10

100

1,000

10,000

100,000

1 2 4 8 16 32 64 128

E
x

x
e

cu
ti

o
n

 t
im

e

(s
e

c)

Number of instances

1TB 100GB 10GB

0

20

40

60

1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of instances

0

0.5

1

1.5

1 2 4 8 16 32 64 128

E
ff

ic
ie

n
cy

Number of instances

0

2

4

6

8

1 2 4 8 16 32 64 128

S
ca

la
b

il
it

y

Number of instances

8 IEEE TPDS-2014-07-0595 R1

8

 The scalability drops as we scale out from 2, 4, or 8 nodes

up to 128 nodes (Fig.5.d) the drop in scalability (Fig.5.d) is

closely correlated to the fast dropping in efficiency. On the

other hand, the scalability in Fig.5.d varies closely with the

change in productivity (Fig.5.c). The 1 TB curves (marked by a

diamond legend) show that one can reach the peak productivity

and thus peak scalability at 32 nodes.

 (B).HI Bench Results on Word Count

 In HI Bench scale-out experiments, we increase the
quantity of the same machine instances used. We plot the
efficiency and productivity results in Fig.6 by running the
HiBench WordCount program using the EMR clusters up to

16 m1.small nodes. In general, the efficiency (Fig.6a)
decreases as we scale out to more nodes. However, for large
data sets, the efficiency increases to a local peak at 8 nodes
and then it decreases slowly beyond 8 nodes.

 Depending on the data size, the productivity increases
to different peak levels at different machine sizes. Foe
example, the peak occurs at 12, 8 and 4 nodes for 10 GB, 5
GB and 1 G, respectively. After the peak, the productivity
decreases more rapidly for small data size and slowly or
flatly for larger data sizes. This trend is caused by the QoS
and cost factors involved in Eq. (4). Other programs in HI
Bench, such as Sort, can be also applied in the scaling
experiments to be reported in Subsection 7.5.

 (a) Scale-out efficiency (b) Scale-out productivity

 Figure 6. Scale-out performance of HiBench on EC2 built with up to 16 m1.small machine instances. Three curves
 correspond to executing 3 workload sizes in the Word Count program.

(C). TPC-W Scale-Out Results

 This experiment is designed to test the TPC-W
performance on EC2 under scale-out workload. The workload
is generated by TPC client. We consider the workloads from
200 up to 2,400 users. In the scaling out process, we increase
from 1, 4, 8 and 16 nodes up to 32 nodes. The m1.small
instances are used in all scaling experiments. We report the
throughput in WIPS (web interactions per section) and QoS
measures in Figs. 7(a, b).

 With small workloads (200 or 800 users), the WIPS count
is rather flat after 4 nodes. The throughput reaches its peak of
340 WIPS at 12 nodes for 2,400 users. With 4,000 users, the
peak value of 560 WIPS is reached at 20 nodes. The QoS
reaches its peak value (100%) quickly after increasing the
nodes to 4, 12 and 20, respectively (Fig.7.b). Figure 7.c shows
the variation of productivity for different workloads. Again, the
peak values occur at 4, 12 and 20 nodes for 800, 2,400 and
4,000 users, respectively.

 The scalability plots in Fig7.d start from 1, 4, 8 and 16

nodes. Due to 2-order of magnitude difference of the 1-node

curve (marked by x in Fig7.d), we apply the wider scale on the

left y-axis for this curve. The remaining 3 curves are scaled by

the right y-axis. Accordingly, the scalability with 800 users

(Fig.7.d) has a sky rocket rise from 2 to 4 nodes. Similarly, we

see the peak rises of p-Scalability at 4, 8 and 16 instances,

respectively for more users. All scalability drops steadily after

reaching their peaks. TPC-W does not scale well beyond certain

cluster size.

7.2 Results of Scaling-Up Experiments

 In scale-up experiments, we upgrade the machine instances
from small to medium, large and extra-large types as given in
Table 3 in order of increasing computing power (ECU and
vCPU), memory and storage capacities. Of course, the renting
cost increases from small to large, accordingly. Three scale-up
experiments performed on the EC2 by running the YCSB, HI
Bench, and TPC-W respectively.

In YCSB experiments, the EC2 system scales over 5 large or
xlarge instances along the x-axis in Fig.8. In TPC-W scale-up
experiments, we follow the scaling sequence: m1.small,

m1.medium, m3.medium, m1.lrage, and m1.xlarge. All scaling
are done by program control in the experiments. Auto scaling
cannot be implemented to automate the scaling-up process due
to heavy overhead or low elasticity encountered.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16

E
ff

ic
ie

n
cy

of instances

10GB 5GB 1GB

0

5

10

15

20

25

30

35

40

1 2 4 8 12 16
P

ro
d

u
ct

iv
it

y
 (

M
B

/s
ec

/$
)

of instances

10GB 5GB 1GB

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

9

 (a) Throughput (b) Quality of Service (QoS)

 (c) Productivity (d) Scalability for 800 users, where the 1-curve (marked by x) applies
 the right scale and remaining 3 curves apply the left scale.

 Figure 7. Scale-out performance of TPC-W benchmark on Amazon EC2 cloud over increasing workload from 200 to 4,000
 users. Parts (a, b, c) have the same legend. Part (d) scales from 4 initial machine instances.

 (A). Yahoo! YCSB Performance on EC2

 We run the Yahoo! YCSB as part of the Cloudsuite data
serving benchmark on AWS Hbase 0.92.0 cluster. We applied a
write-intensive workload with 100K and 5M memory access
operations on different types of instances. We use the default
setting of Hbase. Figures 8(a, b) report the throughput and QoS,
respectively. The cluster scales up to m3.large nodes.

Figures 8(a) shows that for all three workloads, performance
increases apparently when scaling up from m1.large to
m3.xlarge instance, however for c3.xlarge and c1.xlarge,
throughput and execution time almost remain the same as

m3.xlarge instance. From Fig.8 (b), the efficiency drops rapidly
from m1.large to m1.xlarge and from c3.xlarge to c1.xlarge.
This is due to the fact that scaling up does not catch the
hardware resources increase.

We plot the productivity in Fig 8(c) for 5M memory
operations. Here, we the set the QoS (cloud availability) to be
100%. As we scale up, the productivity reaches the peak values
for all workloads at c3.xlarge. Figure 8(d) is based on 5M
operations. The message being conveyed is that YCSB shows
heavy memory-intensive database operations, and we can reach

the highest productivity at c3.xlarge instance.

(a) Throughput (b) Efficiency

 (c) Productivity (d) Scalability for 5M memory writes

Figure 8. Scale-up performance of Yahoo! YCSB on EC2 over increasing workload from 100K to 5 M memory-access operations,
where the same legend in Part (a) applies in all Parts. All instance types are specified in Table 3.

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32

T
h

ro
u

g
h

P
u

t
(W

IP
S

)

Number of Instances

200

800

2400

4000

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32

Q
o

s(
%

)

Number of Instances

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32

P
ro

d
u

ct
iv

it
y

Number of Instances

0

0.5

1

1.5

0

500

1000

0 4 8 12 16 20 24 28 32

S
ca

la
b

il
it

y

of Instances

From 1 From 4

From 8 From 16

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

m1.large m1.xlarge m3.xlarge c3.xlarge c1.xlarge

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Instance type

0.1 M

1 M

5 M

0

50

100

150

200

m1.large m1.xlarge m3.xlarge c3.xlarge c1.xlarge

P
ro

d
u

ct
iv

it
y

(M
o

p
s/

s/
$

)

Instance type

0

0.5

1

1.5

2

2.5

3

m1.large m1.xlarge m3.xlarge c3.xlarge c1.xlarge

S
ca

la
b

il
it

y

Instance type

0

0.2

0.4

0.6

0.8

1

1.2

m1.large m1.xlarge m3.xlarge c3.xlarge c1.xlarge

E
ff

ic
ie

n
cy

Instance type

10 IEEE TPDS-2014-07-0595 R1

10

 (B) TPC-W Scale-Up Performance

 We run the TPC-W benchmark with various workloads on
5 instance types with increasing computing power as seen in
Table 3. The throughput increases with increasing workload in
Fig.9 except the 200-user curve is rather flat due to lack of
work for scaling up to more powerful nodes. In Fig.9.b, the
QoS for the 800-user curve is the low for smaller instance types
due to overloading them. The QoS increases quickly to 100%.

 In Figs. 9(c), we scale up from 3 node types under the
workload of 800 users. Based on Eq.4, we plot the productivity
curves in Fig.10 (d). The low value for 800-user curve is caused
by its low QoS curve observed in Fig.10.b. All three curves

reach the peak with the use of m3.medium node. We observe
that with 800 or more users, the p-scalability reaches the peak
with the m1.medium instance. After that, using more powerful
nodes does not pay off. With even larger workload, say 4,000
users, the peak scalability may move further towards the right
with larger instance nodes.

 Note that the TCP-W results plotted in Fig.9 have similar
patterns as those YCSB results plotted in Fig.7. However, they
do differ in magnitude and peak performances. The main reason
lies in different instance types used and different workloads
applied. The operations counted in YCSB differ from the user
count in TPC-W workload. They differ in about two orders in
magnitude.

 (a) Throughput (b) Quality of service (QoS)

 (c) Productivity (d) Scalability for 800 users

Figure 9. Scale-up performance of TPC-W benchmark on Amazon EC2 clouds of various instant types
over increasing workloads from 200 to 800 users.

7.3. Mixed Scale-Up and Scale-Out Performance

 For mixed scaling, 4 cluster configurations are specified
along the x-axis in Fig.10. The leftmost cluster has 8 small
instances with a total ECU count of 8. The next has 4
medium and 4 small instances with 12 ECUs. The next one
has 3 large and 2 medium instances with 16 ECUs. The
right cluster has 3 xlarge and 2 large instances with a total
of 32 ECUs. Figure 10 reports the HI Bench Word Count
execution results.

Mixed strategy offers a wider range of ECU increase.

The monotonic increase in speed (Fig.10a) clearly supported
this claim. For small data sizes (1 or 5 GB), the productivity
(Fig.8b) also decreases with large cluster used. For very
large data set (10GB), the productivity drops to a minimum
point at the third large cluster and then increases again to a
higher value for the rightmost cluster applied.

 (a). Speed (throughput) (b) Productivity

Figure 10: HiBench Word Count performance results on 4 EC2 clusters with mixed scale-up and scale-out nodes.

0

50

100

150

T
h

ro
u

g
h

P
u

t
(W

IP
S

)

Instance Type

200 400

600 800

0

20

40

60

80

100

120

Q
o

s(
%

)

Instance type

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ro

d
u

ct
iv

it
y

Instance type

0

2

4

6

8
S

ca
la

b
il

it
y

Instance type

0

10

20

30

40

50

m1.small(8) m1.medium(4)
and

m1.small(4)

m1.large(3) and
m1.medium(2)

m1.xlarge(3)
and m1.large(2)

S
p

ee
d

 (
M

B
/s

ec
)

Instance Type and Number

10GB 5GB 1GB

0

5

10

15

20

25

30

35

m1.small(8) m1.medium(4)
and m1.small(4)

m1.large(3) and
m1.medium(2)

m1.xlarge(3) and
m1.large(2)P

ro
d

u
ct

iv
it

y
 (

M
B

/s
ec

/$
)

Instant Type and Number

10GB 5GB 1GB

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

11

7.4 Effects of Changing Benchmarks
 or Cloud Platforms

Applying the relative performance models in Eqs.11 and 12,
we compare three benchmark programs: HiBbench, YCSB and
BenchClouds and two cloud platforms: EC2 and Rackspace.
These comparative studies reveal the strength and weakness in
different benchmarks or cloud platforms.

(A). HI Bench vs. BenchCloud Results

 Figure 11(a) compares the performance of three cloud
benchmarks in 6 dimensions. The polygon data points are
extracted and normalized from those in previous Figures.
YCSB applies the scale-up workload with a higher
throughput, productivity and scalability than the other two
benchmarks.

The HighBench and BenchClouds apply the Elastic
MapReduce resources with scale-out workload, they end up
with comparable performance and higher cost than using the
YCSB. HI Bench performs better in efficiency and e-
scalability due to scaling out from a few to larger number of
nodes. In general, we conclude that scaling-out should be
practiced when the elasticity is high and scaling-up is in favor
of using more powerful nodes with higher efficiency.

 (B) TPC-W on EC2 vs. Rackspace Clouds

 As plotted in Fig.11 (b), we run the same TCP-W
benchmark with 800 users on both EC2 and Rackspace
platforms. The data of EC2 is extracted from Fig.7. The
Rackspace data are performed under similar workload and
machine configurations. There is no performance difference in
WIPS rate and QoS.

(a) HI Bench and BenchCloud benchmark tested on EC2

 (Data points are normalized from Figs.5 and 6)

 (b). EC2 and Rackspace tested with TPC-W

Figure 11. Relative performance of compute clouds running

different benchmarks in (a) and the same benchmark in (b).

 It is crucial to choose the proper set of performance

metrics in cloud benchmarking experiments. From Fig.2 and

Fig.10, we offered 5 different sets of performance metrics for

modeling the IaaS, PaaS, SaaS, hybrid and mashup cloud

configurations. Five benchmark programs are tested by which

YCSB was embedded as part of the CloudSuite. These

performance models can be modified to test other or new

cloud benchmark suites as well.

 8. ELASTICITY ANALYSIS OF SCALING
 PERFORMANCE

 Scaling out, scaling-up and mixed strategies are evaluated
below. We compare their relative merits through executing two
benchmark programs, Sort and Wordcount in HI Bench suite,
on the AWS EC2 platform. The workload for these two
programs has 10 GB of data elements. We measure the HI
Bench performance of these two programs along six
performance dimensions: throughput, scalability, QoS,

productivity, costs and efficiency.

The QoS is mainly indicated by system availability
which was recorded 99.95% ~ 100% for all cluster
configurations. Cost wise for the Word Count, the scale-out
small cluster (solid polygons in Fig.12 (a, d) has the least
service costs. The scale-up clusters in Fig.12 (b, e) cost
more and the mixed cluster is the most expensive one to
implement. Mixed scaling demands lot more considerations
on tradeoffs between performance and cost incurred.

Speed wise, all mixed strategy for Sort (Fig.12c and
Fig.12 (e) have the fastest throughput (or speed). The Word
Count program shows slow throughput in all cases. The
scale-up cluster shows very high efficiency for Word Count.
The Sort clusters (dash-line polygons) show poor efficiency
and throughput except high throughput for the mixed mode
for sorting very large cluster in Fig.12 (f.)

In Fig.12a, we see higher productivity for the large
cluster (16 nodes) configuration. The peak values are
application-dependent. Different benchmarks may lead to
different conclusions. In general, scaling-out should be
practiced when the elasticity speed is high.

These performance maps are compared in Table 4 in
terms of their polygon area values. Under each scaling case,
we compare two cluster configurations. The polygon areas
reported in Fig.12 and Table 4 simply demonstrate a radar-
chart method to compare the relative performance of testing
various cluster configurations with a common benchmark.

Table 4 Performance Polygon Areas on Radar Charts in Fig.12

Scale-Out
Mode

(Figs.4a, d)

Cluster Config. 2 small nodes 16 small nodes

Word Count 34.53 46.85
Sort 17.02 23.65

Scale-Up
Mode

(Figs.4b, e)

Cluster Config. 2 medium

nodes

2 xlarge nodes

Word Count 37.25 31.42
Sort 41.84 21.22

Mixed
Scaling Mode

(Figs. 4c, f)

Cluster Config. 4 medium

and 4 small

3 large and

 2 xlarge

Word Count 23.39 18.28
Sort 22.81 11.90

0

2.5

5
Throughput(H)

e-Scalability(Φe)

p-Scalability(Φp)

Productivity(P)

Costs(Co)

Efficiency(E)

HiBench BenchClouds YCSB

0

2.5

5
WIPS

e-Scalability

p-Scalability

Productivity

Efficiency

QoS

RackSpace BC2EC2

12 IEEE TPDS-2014-07-0595 R1

12

 (a) Word Count with scaling out (b) Word Count with scaling up (c) Word Count with mixed scaling out/up

(d) Sort with scaling out (e) Sort with scaling up (f) Sorting with mixed scaling out/up

 Figure 12. The performance maps of two HI Bench programs on two EC2 cluster configurations for the scale-out,
 scale-up, and mixed scale-up/scale-out workloads over 10 GB of data elements.

 In Table 5, we give a qualitative assessment of the 3
scaling techniques evaluated in HI Bench experiments on
various EC2 configurations. The assessment is based on those
quantitative measures reported in previous sections. We take a
macroscopic view of the reported numerical results to reach
some generalized observations on cloud performance under
various operating constraints.

 Over all, we find that scaling-out is the easiest one to
implement on homogeneous clusters. The elasticity overhead is
also lower in these cluster configurations. Scaling up is more
complex to implement than scaling out due to the switching of
node types. This will reduce the elasticity speed and prolong
the reconfiguration overhead. The mixed scaling is the most
difficult one to implement but offers the best flexibility to
match with the workload change.

 Table 5: Assessment of Three Scaling Techniques based
 on HI Bench Benchmarking Findings on The EC2

Impact
Factors

Scale-Out
Technique

Scale-Up
Technique

Mixed Scaling
Technique

Elasticity
speed, scaling
complexity and
overhead

Fast elasticity,
possibly
supported by
auto-scaling and
heuristics

High overhead to
reconfigure and
cannot support
auto scaling

Most difficult to
scale with wide
range of machine
instances

Effects on
performance,
efficiency, and
scalability

Expect scalable
performance if
the application
can exploit
parallelism

Switching among
heterogeneous
nodes may reduce
scalability

Flexible app ,
low efficiency,
and resource
utilization

QoS, costs,
fault recovery,
and cloud
productivity

Cost the least,
Easy to recover,
Incremental
productivity

More cost-
effective, but
Reduced QoS may
weaken the
productivity

High costs,
difficult to
recover, expect
the highest
productivity

8. CONCLUSIONS AND SUGGESTIONS

 In general, the higher efficiency promotes the

productivity, but the converse may not hold, necessarily.
The QoS is based on user’s objective. Different users
may set their own satisfaction threshold for the QoS
they can accept. The efficiency is controlled by the
providers considering the interest of all user interests at
the same time. We summarize below our major research

findings from the comprehensive cloud benchmark
experiments performed in 2014. Then, we suggest a few
directions for further R/D in promoting cloud computing
applications.

8.1 Summary of Benchmarking Findings

 Over all, we find that scaling-out is the easiest one to
implement on homogeneous clusters. The elasticity overhead is
also lower in these cluster configurations. Scaling up is more
complex to implement than scaling out due to the switching of
node types. This will reduce the elasticity speed and prolong
the reconfiguration overhead. The mixed scaling is the most
difficult one to implement but offers the best flexibility to
match with the workload change. Our research contributions
are summarized below in 5 technical aspects:

(1). New performance metrics and benchmarking models are
proposed and tested in cloud benchmark experiments. We
study the scalability performances driven by efficiency and
productivity, separately. This approach appeals to different
user groups with diversified performance demands.

(2). Sustained performance of clouds comes mainly from fast
elastic resources provisioning to match with the workload
variation. Scaling-out should be practiced when the
elasticity is high, Scaling-up is in favor of using more
powerful nodes with higher efficiency and productivity.

(3). To achieve productive services, both scale-up and scale-out
schemes could be practiced. Scale-out reconfiguration has
lower overhead to implement than those experienced in
scaly-up experiments. The elasticity speed plays a vital role

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

2 m1.small instances

16 m1.small instances

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

2 m1.medium instances
2 m1.xlarge instances

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

4 m1.medium and 4 m1.small instances

3 m1.large and 2 m1.xlarge instances

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

2 m1.small instances

16 m1.small instances

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

2 m1.medium instances

2 m1.xlarge instances

0

2.5

5
Throughput

Scalability

QoS

Productivity

Costs

Efficiency

4 m1.medium and 4 m1.small instances
3 m1.large and 2 m1.xlarge instances

HWANG, ET AL, CLOUD PERFORMANCE MODELING AND BENCHMARK EVALUATION OF ELASTIC SCALING STRATEGIES PAGE 13

13

in minimizing the over-provisioning or under-provisioning
gaps of resources.

(4). we reveal high scale-out performance in HI Bench and
BenchClouds experiments. On the other hand, we show
that scaling up is more cost-effective with higher
productivity and p-scalability in YCSB and TPC-W
experiments. These findings may be useful to predict other
benchmark performance if they attempt to scale out or
scale-up with similar cloud setting and workload.

(5). The cloud productivity is greatly attributed to system
elasticity, efficiency, and scalability driven by
performance. The cloud providers must enforce
performance isolation for quota-abiding users at the

8.2 Suggestions for Further Work

 Three suggestions are made below for further work. The
ultimate goal is to generate commonly accepted cloud
benchmarks and testing techniques. These tasks are naturally
extendable from the cloud performance models being proposed.

(6) Other cloud benchmarks: CloudStone [35] CloudCmp [27],
and C-meter [37], could be also tested with the new
performance models presented. Future benchmarks are
encouraged to evaluate PaaS and SaaS clouds.

(7). To make clouds universally acceptable, we encourage
cloud researchers and developers to work jointly in
developing a set of application-specific benchmarks for
important cloud and big-data application domains.

(8). The cloud community is short of benchmarks to test cloud
capability in big-data analytics and machine learning
intelligence. This area is widely open, waiting for major
research/development challenges.

ACKNOWLEDGEMENTS:

 The research reported here was supported in parts by National
Basic Research (973) Program of China under the Grant No.
2011CB302505, by the High-Tech Research and Development
(863) Programs of China under Grant No. 2012AA012600, and by
National Science Foundation of China under Grants No. 61472196,
61433008 and 61073003. Kai Hwang wants to thank the
subsequent funding supports of his academic visits of THU by

EMC Co. and Intellectual Ventures Inc. The support of this work
by University of Southern California is also appreciated.

REFERENCES

[1] Appuswamy, R., et al, “Scale-Up vs Scale-Out for Hadoop:
Time to Rethink”, Proc.. of ACM SoCC’13, Santa Clara,
Oct.2013

[2] Bai, X., Wang, Y., Dai, G., Tsai, W. T. & Chen, Y., “A
Framework for Collaborative Verification and Validation of
Web services”, Component-Based Software Engineering ,
Springer, 2007.

[3] Binnig, C., Kossmann, D., Kraska, T., and Loesing, S. (2009,
June). “How is the weather tomorrow? towards a benchmark
for the cloud”, ACM Second Int’l Workshop on Testing

Database Systems, June 2009.

[4] Bitcurrent, Inc., “Cloud Computing Performance Report”,
http://www.bitcurrent.com, 2010.

[5] Bondi, A. , “Characteristics of Scalability and their Impact on
Performance”, Proc. of the 2nd Int’l Workshop on Software

and Performance, 2000..

[6] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic,
I. (2009). Cloud computing and emerging IT platforms:
Vision, Hype, and Reality for delivering computing as the 5th
utility. Future Generation Computer Systems, 25(6), 599-616.

[7] J. Cao, K. Hwang, K. Li, and A. Zomaya, "Optimal
Multiserver Configuration for Profit Maximization in Cloud
Computing", IEEE Trans. Parallel ,and Distributed Systems,
Vol. 24, No.6, June 2013

[8] Chen, G., Bai, X., Huang, X., Li, M. and L. Zhou, L.
“Evaluating Services on the Cloud Using Ontology QoS
Model,” Proc. IEEE Int’l Symp. on Service Oriented System

Engineering, 2011.

[9] Chen, Y., Ganapathi, A., Griffith, R., & Katz, R. , “The Case
for Evaluating MapReduce Performance using Workload
suites. IEEE Int,l Symp. on Modeling, Analysis & Simulation

of Computer and Telecom Systems (MASCOTS), 2011.

[10] CloudHarmony, “Benchmark Evaluation of 114 Public
Clouds”, http://cloudharmony.com/clouds, 2014

[11] Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., and
Sears, R., “Benchmarking Cloud Serving Systems with
YCSB”, Proc. of the 1st ACM symp. on Cloud computing,

2010, pp.143-154.

[12] Dongarra, J. Martin,and J. Worlton,“Computer Benchmarking:
Paths and Pitfalls”, IEEE Spectrum, July 1986.

[13] Farber M. and Kounev, S., “Existing Cloud Benchmark
Efforts and Proposed Next Steps”, Slide Presentation,
Karlsruhe Institute for Technology (KIT), Aug.31, 2011.

[14] Ferdman, M., et al, “Clearing The Clouds: A Study of
Emerging Scale-Out Workloads on Modern Hardware”, The
ACM 17th Int’l Conf. on Architectural Support for

Programming Languages and Operating System (ASPLOS),
London, UK, March 2012.

[15] E. Folkerts, A. Alexander, K. Sacks, A. Iosup, Markl, and
Tosun, C. “Benchmarking in The Cloud: What It Should, Can
and Cannot Be”, The 4th TPC Technology Conf. on

Performance Evaluation and Benchmarking, Istanbul, Turkey,
August 2012.

[16] Gao, J., Bai, X., and Tsai, W. T., “Cloud-Testing: Issues,
Challenges, Needs and Practice”, Int’l Journal Software

Engineering: 2011.

[17] Gupta, A.and Kumar, V. “Performance Properties of Large
Scale Parallel Systems”, Proc. of the 26th Hawaii

International Conference on System Sciences, 1993

[18] Herbst, N. Kounev, S. and Reussner, R., “Elasticity in Cloud
Computing: What It Is, and What It Is Not”, Inte’l Conf. on

Autonomic Computing (ICAC 2013), San Jose, June 2013.

[19] Hill, M. “What is Scalability ?”, ACM SIGARCH Computer

Architecture News, 1990.

[20] Huang, S., Huang, J., Dai, J., and Xie, T., and Hong, B., “The
Hi-Bench Benchmark Suite: Characterization of The
MapReduce-based Data Analysis, Int’l Conf. on Data

Engineering Workshops, March 2010.

[21] Hwang, K., Fox, G. and Dongarra, J, Distributed and Cloud

Computing, Morgan Kaufmann Publisher, 2012.

[22] Hwang, K. and Xu, Z. Scalable Parallel Computing, Chapter
2 on Performance Benchmarking, McGraw-Hill, 1998.

[23] Hwang, K. Yue Shi and X, Bai, “Scale-Out and Scale-Up
Techniques for Cloud Performance and Productivity”, IEEE

Cloud Computing Science, Technology and Applications
(CloudCom 2014) , Singapore, Dec. 18, 2014.

[24] Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer,
T., and Epema, D. “Performance Analysis of Cloud
Computing Services for Many-Tasks Scientific Computing”.
IEEE Trans. on Parallel and Distributed Systems 2011.

14 IEEE TPDS-2014-07-0595 R1

14

[25] Krebs, R. Momm, C. and Knounev, S., “Metrics and
Techniques for Quantifying Performance Isolation in Cloud
Environments, ACM QoSA’12, Bertino, Italy, June 2012.

[26] Li, A., Yang, X., Kandula, S., and Zhang, M., “CloudCmp:
Comparing Public Cloud Providers”, Proc. of the 10th Annual

Conference on Internet Measurement. Nov. 2010.

[27] Li, Z., O'Brien, L., Zhang, H., and Cai, R., “On a Catalogue of
Metrics for Evaluating Commercial Cloud Services.
ACM/IEEE 13th Int’l Conf. on Grid Computing, Sept. 2012.

[28] Mell, P. and Grance, T. “The NIST Definition of Cloud
Computing”, NIST special pub. 800(145), July 2011

[29] Michael, M., Moreira, J., Shiloach, D., and Wisniewski, R.
“Scale-up x Scale-out : A Case Study using Nutch/Luene”,
IEEE Int’l Parallel and Distri. Proc. Symp. March 26, 2007.

[30] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R. Fahringer,
T. and. Epema, D., “A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing,” Proc. Int’l

Conf. on Cloud Computing, Springer 2010.

[31] Pham, C. “QoS for Cloud Computing”, Slide presentation,
Univ. of Pau, France, May 10, 2011.

[32] Plummer, D., et al,”Five Refining Attributes of Public and
Private Cloud Computing”, Gartner Research, 2009.
http:www.gartner.com/DisplayDocument?doc-cd=167182.

[33] Sharma, U. Shenoy, P., Sahu, S. and Shaikh,A. "A Cost-
Aware Elasticity Provisioning System for the Cloud," IEEE

Int’l Conf. on Distributed Comp. Systems, June, 2011.

[34] Smith, W., “TCP-W: Benchmarking : An E-commerce
Solution”, Intel, 2005.

[35] Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J.,
Wong, H., Patil, and Patterson, D. “Cloudstone: Multi-
platform, Multi-language Benchmark and Measurement Tools
for Web 2.0”, Proc. of First Workshop on Cloud Computing

and App., Oct. 2008.

[36] Tsai, W., Huang, Y., and Shao, Q., “Testing the scalability of
SaaS applications. IEEE Int’l Conf. on Service-Oriented

Computing and Applications”, 2011.

[37] Yigitbasi, N., Iosup, A., Epema, D., and Ostermann, S. “ C-
Meter: A Framework for Performance Analysis of Computing
Clouds”, IEEE/ACM Proc. of 9th Int’l Symp. on Cluster

Computing and the Grid, (CCGrid). 2009.

Kai Hwang is a Professor of EE/CS at
the University of Southern California.
He is also an EMC-endowed visiting
Chair Professor at Tsinghua University,
China. He earned the Ph.D. degree
from UC Berkeley. An IEEE Life
Fellow, he has published extensively in
the areas of computer architecture,
parallel processing, network security,
P2P/Grid and cloud computing.
 The Google Scholars has cited his
works more than 14,000 times with an
h-index of 50. His latest book:
Distributed and Cloud Computing:
(Morgan Kaufmann Publisher) was
praised by the American Library
Association as one of the best academic
volumes published in 2012. The IEEE

CloudCom has extended him a Life-
Time Achievement Award in 2012.
Contact him via Email:
kaihwang@usc.edu

 Xiaoying Bai is an Associate Professor
of Computer Science and Technology
at Tsinghua University, China. She
received the Ph.D. in Computer
Science from Arizona State University.
She specializes in software
engineering, web services and cloud
computing. Dr. Bai has published 90
research papers. She can be reached
via: baixy@tsinghua.edu.cn.

 Yue Shi is a PhD student of Electrical
Engineering at the University of
Southern California. She received the
B.S from Huazhong Univ. of Science
and Technology in China and M.S.
degree at USC. She is interested in big
data analytics, mobile and cloud
systems, social networks and mashup
applications. She can be reached by:
yueshi@usc.edu.

Muyang Li is currently a graduate

student at Tsinghua University working

toward M.S. degree in Computer

Science. He received his B.S. degree

in Computer Science and Technology

from Tsinghua University in 2013. He

has accepted to join Google in 2015.

Presently, he can be reached by Email:

limuyang08@gmail.com

 Wen-Guang Chen is a Professor of
Computer Science and Technology at
Tsinghua University, where he
received the B.S. and Ph.D. degrees in
computer science in 1995 and 2000
respectively. His research interest
covers the areas of parallel and
distributed computing, programming
model, cloud computing, and
performance evaluation. Contact him
via: cwg@tsinghua.edu.cn

 Yongwei WU received PhD degree
from Chinese Academy of Sciences in
2002. Presently, he is a Professor in
Computer Science and Technology at
Tsinghua University, China. His
research interests include parallel and
distributed processing, distributed file
system, and cloud storage. An IEEE
member, he can be reached via Email:
wuyw@tsinghua.edu.cn.

