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Abstract. In social psychology, emotional contagion describes the widely ob-
served phenomenon of one person’s emotions being influenced by surrounding
people’s emotions. While the overall effect is agreed upon, the underlying mech-
anism of the spread of emotions has seen little quantification and application to
computational agents despite extensive evidence of its impacts in everyday life.
In this paper, we examine computational models of emotional contagion by im-
plementing two models ([2] and [8]) that draw from two separate lines of conta-
gion research: thermodynamics-based and epidemiological-based. We first per-
form sensitivity tests on each model in an evacuation simulation, ESCAPES,
showing both models to be reasonably robust to parameter variations with certain
exceptions. We then compare their ability to reproduce a real crowd panic scene
in simulation, showing that the thermodynamics-style model ([2]) produces supe-
rior results due to the ill-suited contagion mechanism at the core of epidemiolog-
ical models. We also identify that a graduated effect of fear and proximity-based
contagion effects are key to producing the superior results. We then reproduce
the methodology on a second video, showing that the same results hold, implying
generality of the conclusions reached in the first scene.

1 Introduction

Emotional contagion, the tendency for one’s emotions to reflect the emotions of others,
has been shown to arise in a wide range of scenarios in everyday life [10]. Its effects are
felt every time someone cheerfully walks into the room with a big smile and brightens
up everyone’s day. Extensive work has been done in researching emotional contagion’s
role in occupations that require an employee to promote certain emotions in clients
via displayed emotions, such as bill collectors promoting anxiety or flight attendants
creating good cheer [9, 15]. Less often, but with far more severe implications, it is also
felt during the spread of fear and anxiety that surrounds any crowd-based disaster.

Virtual agents designed for these domains must also incorporate the effects of emo-
tional contagion. For example, virtual patients in clinical training applications must
incorporate not only the linguistic response of a real patient to a clinician’s questions
[11] but also a real patient’s emotional response to a clinician’s demeanor that results
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from emotional contagion. Similarly, an evacuation training simulation must include
not only emotional contagion between simulated agents and its impact on escape be-
havior, but also exhibit emotions accurately to the user to mimic the contagion effects in
a true evacuation [18]. With the growing awareness of the powerful impact that emotion
has on human behavior, the contagion of these emotions can no longer be marginalized
in virtual agents and must be accurately modeled and incorporated.

Recent work has sought to quantify the qualitative findings of social psychology
into useable models, primarily drawing from two bodies of research on similar phe-
nomena. Researchers at VU University introduced one of these in [2] (ASCRIBE) that
used a deterministic, interaction-based model derived directly from a social psychology
theory of emotional contagion [1]. This model is a prototypical example of the heat dis-
sipation phenomena studied in thermodynamics wherein neighboring substances will
transfer energy to each other at rates unique to each substance (i.e., specific heat). In
contrast, Durupinar [8] used a probabilistic threshold model wherein successive interac-
tions with emotionally ‘infected’ people raises the chance of infection with an emotion.
This model is a standard one from the extensive epidemiology literature that models the
spread of diseases [6, 12, 14], the research in diffusion of innovations [16], and social
contagion work [17].

Although both models come from studies of contagion phenomena, they use fun-
damentally different mechanisms. While work could proceed using both approaches by
extending existing models to accurately reproduce increasingly complex situations, it
remains unclear which contagion paradigm should be used in emotional contagion. Per-
haps a new mechanism should be designed, but the lack of data in this domain makes
evaluation very difficult. We not only empirically compare these two paradigms but be-
gin to identify the key features that should be added to the underlying contagion mech-
anisms to further improve their fidelity in reproducing human emotional contagion.

We begin by using the ESCAPES evacuation simulation [18] to explore the im-
pact of replacing the original ESCAPES model with these two models on predicted
outcomes, showing substantial differences in their predictions, motivating the need for
an accurate model of emotional contagion in this context. Even in simulation, we are
able to identify key differences that indicate epidemiological / social contagion models
are less suited to modeling emotional contagion. Next, we attempt to reproduce real
video footage of a panic situation using each of the models, showing the ASCRIBE
model to indeed be superior to both the Durupinar model and the original ESCAPES
model, beating out the Durupinar model by 14% per agent per frame during the 15s
scene. To identify which of the key features causes the differences in the results, we
test hybrid models to conclude that while adding a ‘decay’ feature (as found in the Du-
rupinar model) to the ASCRIBE model does not improve it, removing proximity effects
and fear’s graduated effect on speed substantially worsen the model. Finally, we per-
form the same evaluation on a second video and show the ASCRIBE model to again be
superior, outperforming the Durupinar model by 12% per agent per frame during the
four-second scene.
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2 Related Work

Seminal works in social psychology first began the discussion around emotional conta-
gion. In particular, Hatfield et al. [10] first codified the observed phenomena that were
just beginning to receive researcher attention. Follow-up work by the co-authors as well
as in related fields such as [1, 9, 15] in managerial and occupational sciences continued
to detail the effects of the phenomenon in new domains. Recently, there have been
works beginning to quantify emotional contagion and explore cross-cultural variations
in attributes that affect emotional contagion [7, 13].

From a computational perspective, the previously mentioned work from VU Uni-
versity and Durupinar are two of the most recent models of emotional contagion upon
which a few follow-up works have been based [3]. As mentioned in Section 1, the AS-
CRIBE model resembles heat dissipation models found in basic physics wherein each
substance has its own heat dissipation rate and heat absorption rate. The Durupinar
model draws inspiration from a long line of contagion models [6, 12] that was popular-
ized in the diffusion of innovations [16] literature and has also seen heavy use in other
types of social (e.g., belief, behavior, idea) contagion [17].

Although not the focal point, the ESCAPES evacuation simulation [18] serves as the
test bed for our models of emotional contagion, so we describe it briefly here. ESCAPES
focuses on the features identified by experts that particularly effect airport evacuations,
including first time visitors’ incomplete knowledge of the area, the presence of families,
and the presence and effects of authority figures [5]. ESCAPES also models fear’s im-
pact on behavior as an increase in speed of more fearful agents, mimicking their attempt
to escape quickly [4]. Finally, ESCAPES uses a basic model of emotional contagion,
wherein agents inherit the highest fear level of neighboring agents. We use ESCAPES
to evaluate the spread of emotion through the crowd, illustrating substantial differences
in the contagion process when using different models of emotional contagion.

3 ASCRIBE model

Introduced in 2009 by researchers at VU University [2] and built upon in multiple works
including [3], the ASCRIBE model iterates through all agents and deterministically
calculates new emotional levels based on a set of individual and pairwise parameters
that we describe here. The mechanism used resembles heat dissipation modeling in
physics, wherein each material has a specific heat capacity, which can be likened to a
person’s susceptibility to other people’s emotions in emotional contagion. As such, the
model moves a crowd towards a weighted-average of the group’s emotional levels, just
as heat will dissipate until adjacent temperatures are the same, barring generative heat
sources.

The model defines 5 parameters for every pairwise interaction based on theory put
forth in [1]: level of sender’s emotion qS , level of receiver’s emotion qR, sender’s ex-
pressiveness εS , receiver’s openness δR, and the channel strength between S and R
αSR. All values are numbers in the interval [0, 1]. At each time step, each agent calcu-
lates the average emotional transfer from all relevant agents. Specifically, the differen-
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tial equations for emotional contagion in a group G of agents is:

dqR/dt = γR(q
∗
R − qR)

for all R ∈ G, where γR is the overall strength at which emotions from all other
group members are received, defined by γR = ΣS∈G\{R}γSR. q∗R is the weighted
combination of emotions from the other agents, defined with a weight factor:

wSR = εSαSR/ΣC∈G\{R}εCαCR

q∗R = ΣS∈G\{R}wSRqS

Specifically, from a sender S to a receiverR, the strength of the emotion qS received
would be γSR = εS · αSR · δR. [2] details the mathematical formulation, but the emo-
tional level of an agent converges towards a weighted average of the group’s emotional
level. The speed at which this convergence occurs as well as the weighting depend on
the parameter settings for the channel strength, expressiveness, and openness for each
agent as well as, of course, their individual emotional levels.

The latest version of the model [3], extends the original emotional contagion model
and includes beliefs and intentions and belief/intention contagion as well. However, as
our goal is to empirically evaluate emotional contagion models and the latest work ex-
tends far beyond simply emotional contagion, we leave its validation to future work.
Thus, we do not use the extended model but instead modify the initial model by incor-
porating a proximity effect as done in [3].

4 Durupinar Model

Durupinar [8] uses a probabilistic threshold model based on epidemiological models
of disease contagion. While many types of epidemiological models exist [6, 12, 14, 17],
Durupinar implements a version with only susceptible and infected states (as opposed to
recovered, innoculated, etc. states). The epidemiological model’s applicability to emo-
tional contagion was not discussed in [6], from which Durupinar drew, but its use by
Durupinar assumes similarity between disease spread and emotion spread that we criti-
cize in this work.

Each agent begins with a randomized threshold drawn from a pre-determined log-
normal distribution. At each time step, for each agent, a random agent is chosen from
the relevant population group. If the agent is infected, it generates a random dose drawn
from a pre-determined log-normal distribution and passes it to the original agent. If the
agent is not infected, then a dose of 0.0 is generated. Each agent maintains a running
history of the last K doses received. If the cumulative total of all doses in the agent’s
history exceeds his threshold, the agent enters the infected state. This causes the emo-
tion level to be set to 1.0 with an exponential decay towards 0.0, at which point the
agent re-enters the susceptible state. A non-zero emotion level indicates that the agent
has the emotion, but the actual value does not hold meaning other than to track the de-
cay. The random dose and threshold are generated from log-normal distributions with
user-specified averages and standard deviations and K is a static global variable.
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5 Simulation Experiments

The ASCRIBE model and the Durupinar model use very different mechanisms to recre-
ate emotional contagion. Thus, we evaluate the impact of these differences in two ways,
beginning first with simulation. We ran the evacuation simulation, ESCAPES, using
each model to perform sensitivity analysis as well as identify any qualitative trends that
might support or discredit either one of the models. We can also evaluate the model’s
robustness to errors in parameter estimation, which is extremely important in emotional
and crowd modeling which usually lack high fidelity, fine-grain data.

Fig. 1. Evacuation scenario.

For all the experiments discussed in this section, the same map was used (spatial
layout can be seen in Figure 1) and 30 trials were run for each setting. It features 2 large
spaces, each with an exit (marked with dots), connected by hallways which are lined
with smaller spaces that represent shops. 15 seconds into the simulation, an event occurs
at the center of the scenario, inciting fear and a need to evacuate that is communicated
by authority figures to pedestrians. For initial fear levels, we define a ‘seeing distance’,
σd. Agents within this distance of an event will immediately have a fear level of 0.75
in the ASCRIBE model and 1.0 in the Durupinar model, since the Durupinar model
does not feature a continuous measure of fear. We also define a ‘hearing distance’, ωd,
within which the agent will receive 0.1 in the ASCRIBE model and 1.0 in the Durupinar
model. The scenario features 100 normal pedestrians, including 10 families of 4 each, as
well as 10 authority figures that patrol the scenario. In Sections 5.1 and 5.2 we evaluate
model robustness and then identify qualitative differences in Section 5.3.

5.1 ASCRIBE model

In examining the contagion effect, the parameters of interest in the ASCRIBE model
were the individual expressiveness settings and individual openness settings. The chan-
nel strength is set to 1 if an agent is nearby and 0 otherwise, as done in [3]. Given that
we had a whole population of agents, we elected to use randomly drawn values for ex-
pressiveness and openness based on a normal distribution. We explored variations of
the averages and standard deviations (SD) used, but surprisingly, none yield substantial
changes in the outcome of the simulation from both a contagion perspective (i.e., how
the fear spread) and a safety analysis. The only exception was, unsurprisingly, when
the receiver openness or sender expressiveness parameters varied tightly around a very
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low mean, leaving many agents with 0.0 openness or expressiveness. This caused the
majority of agents to remain at their initial fear level which was vastly different from
the mean convergence behavior seen in the other settings.

Figure 2a plots the percentage of people with low fear (≤ 0.1) on the y-axis and the
time step on the x-axis, while Figure 2b shows the same results for high- fear people.
In both figures, openness varied from 0.1 to 0.9 in increments of 0.2 while keeping a
SD of 0.1 and sender expressiveness was fixed with an average of 0.5 with a SD of
0.1. In Figure 2a, when an event first occurs, those near it become fearful and slowly
raise nearby peoples’ fear as they move towards exits, causing a steady decline in the
percentage of people with fear less than 0.1 that only rises again as fearful agents make
their way out of the simulation. Note how the dotted line (0.1) dips much lower than the
other lines, showing the exception mentioned above. In Figure 2b, agents near the event
have their fear raised very high, but as they encounter zero-fear agents, their fear levels
are brought down below 0.75 and never again rise higher since no new events occur.
The tightness of the lines implies that the trend is robust to variations in the average
receiver openness except at very low settings. Similar tightness of lines was observed
in variations of sender expressiveness, with the same exception.

We also conducted experiments exploring the second-order effects on safety, as
measured by the ESCAPES system. In particular we examined the evacuation rates of
pedestrians as well as the number of collisions experienced on average. Neither set of
results showed significant variation through the parameter space, indicating the results’
robustness to parameter variation.

(a) Percent low-fear agents (b) Percent high-fear agents

Fig. 2. Variations in Openness

5.2 Durupinar Model

Sensitivity analysis of the Durupinar model is considerably more delicate than the AS-
CRIBE model, because although there are only 5 key parameters for the whole popu-
lation (as compared to 2 per individual plus 1 for each pair for the ASCRIBE model)
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they are very fragilely related. Thus, we begin with experimentally chosen default val-
ues and vary each parameter to identify key sensitivities. In particular, we begin with a
baseline of K of 4, dose average of 2, dose standard deviation of 0.5, threshold average
of 7, and threshold standard deviation of 2.

Figure 3a shows the percentage of no-fear pedestrians (= 0) on the y-axis and
time steps on the x-axis, with each line representing a different setting of K. Figure
3b shows the percentage of newly fearful pedestrians (defined as ≥ 0.75) during the
same variations of K. Unsurprisingly, altering any one of the parameters’ averages or
standard deviations individually alters the magnitude of the contagion effect, but not
the overall trends. The exceptions are at values far from the baseline. For example, at
extremely low values forK or dose distribution average and at extremely high values for
threshold distribution average, when very few agents become fearful at all, as seen in the
dottedK = 2 line in Figure 3a. This implies that the model remains robust to parameter
changes with respect to the contagion trends that emerge as long as parameter values
are chosen within a tolerance of the baseline. Similar results were found for variations
of threshold and dose strength averages and standard deviations.

We again explored the second-order impacts of parameter variations on the safety
of the evacuation by measuring the evacuation rates and average number of collisions
of pedestrians in the simulation. As in the ASCRIBE experiments, we again found no
significant variation as long as the parameters varied across the non-trivial parameter
space.

(a) Percent no-fear pedestrians (b) Percent new-fear pedestrians

Fig. 3. Variations of K

5.3 Key Differences

In Sections 5.1 and 5.2 we have shown the ASCRIBE model to be robust to parameter
variations (except at the extreme of zero) and the Durupinar model to be robust if we
stay within a tolerance of a baseline. In conducting these simulation tests and taking a
closer look at the contagion effect, we already find that a number of key differences can
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be identified between the two models. One difference can be seen by comparing Figures
2b and 3b, where the spikes occurring throughout the graph indicate that Durupinar
model produces newly fearful agents throughout the life of the simulation, regardless
of the nature of the event, and the ASCRIBE model only exhibits a spike due to the
impact of the event. Under the Durupinar model, fear can be transferred indefinitely
under certain parameter settings. In the ASCRIBE model, encounters with agents who
are less fearful will slowly erode the average fear level, eventually reaching zero after
sufficiently many agents have been encountered.

Also, combining the binary fear metric with a speed modifier, as done in ESCAPES,
results in only extremes of movement speeds. While one could argue that this is a re-
sult of the simulation, the model itself cannot incorporate any gradation of effect. For
example, even if we directly map the fear level (as it decays) to the speed modifier, an
agent that is near zero-fear (and is hence traveling slowly) can infect another agent who
will then dart off at maximal speed since he begins at maximal fear, as evidenced by
the spikes in Figure 3b. This may occur as a result of physiological or informational
changes, but no evidence suggests this would occur from emotional contagion alone. A
more fundamental alteration is needed to change this aspect of epidemiological / social
contagion models for convincing application to emotional contagion.

Finally, as mentioned, the Durupinar model does not include a proximity of effect,
whereas the ASCRIBE model does. This obviously means that the Durupinar model
could potentially cause contagion of emotions to agents randomly throughout the world
of the simulation, a very unrealistic effect, as emotional contagion requires some form
of interaction by definition. As seen in a comparison between Figures 2a and 3a, the Du-
rupinar model induces more fearful agents far more rapidly than the ASCRIBE model
does because its contagion calculation incorporates the entire population immediately.

6 Scene Reproduction

Now we discuss the validation method used to evaluate the models of emotional conta-
gion, first used in [3]. In their work, VU University researchers used a 15-second portion
of a crowd panic scene in Amsterdam caused by a screaming person4 as their dataset
for validating their general mental state contagion model. In processing the data, the re-
searchers traced the locations of 35 people scattered through the crowd through the 15
seconds, converted these into top-down coordinates and built a simulator to reproduce
the paths of the people in simulation. The operating hypothesis was that a simulator
without their mental state contagion model would not be able to reproduce the scene
as accurately as a simulator with it. To test this hypothesis, the researchers tuned pa-
rameters associated with each agent’s maximum speed, a global parameter specifying a
‘sight range’ within which agents could ‘see’ the event, and an initial desire to remain
in place. The tuning was done via hill-climbing to minimize the error produced by the
simulator, testing each parameter and moving a single parameter at a time in the direc-
tion of highest error reduction until a local optimum was reached. Error was defined as
the sum of the average distances from each simulated agent to the corresponding real

4 http://youtu.be/0cEQp8OQj2Y
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people’s locations over the life of the simulation. Then, they incorporated the mental
state contagion model, tuning a parameter associated with the proximity of contagion
and showed that lower error was achieved with this addition.

We replicate their methodology using the ESCAPES simulator, setting 3 exit lo-
cations towards which agents proceed when the simulation starts. The locations were
chosen to roughly mimic the real situation, leading to most agents moving in the same
direction as the people did. Some agents did not move precisely in the simulated di-
rection as a result of obstructions that we did not model and a person very close to the
screaming person that barely moved. The primary task was to match the crowd’s loca-
tion over time, first without contagion effects and then with each contagion model in
turn. Since people’s directions did not vary based on the emotion, the contagion model
could only impact the speed of each agent.

The speed of an agent, without incorporating contagion effects, is based on the emo-
tional level multiplied by the maximum speed multiplied by a distance-based modifier.
The distance-based modifier is σs if the agent is within sight range and ωs if the agent is
only within hearing distance. We include these tunable speed modifiers so that the sim-
ulation is robust to the choice of initial fear levels, which is particularly helpful given
the lack of data surrounding how to set the initial fear levels.

For each contagion model, we use the default settings discussed in Section 5, with
the exception of the ASCRIBE model’s channel strength, which we set to 1.0 or 0.0 de-
pending on the proximity of other agents, as was done in [3]. In the ASCRIBE model,
we follow [3] and fix Receiver Openness and Sender Expressiveness each to 0.5 for
every agent, but allow the proximity parameter to be tuned. In the Durupinar model, we
set the dose history to 6, the mean and standard deviation of the dose strength distri-
bution to 2 and 0.5, and the mean and standard deviation of the threshold distribution
to 7 and 2. The ESCAPES contagion model, used as a baseline for comparison, only
requires tuning of the proximity parameter as it simply brings all agents to the highest
level of fear found in surrounding agents. In an attempt to not only identify which model
is more appropriate but also to discern key features from unsupported augmentations,
we used each model as given, then turned on/off implementations of ‘decay’, emotional
level impacting speed, and proximity effects. For each parameter setting, 30 trials were
run.

6.1 Amsterdam Crowd

We first use the Amsterdam crowd scene featured in [3]. In their results, VU Univer-
sity researchers found that the inclusion of contagion effects achieved significantly less
error in reproducing the movement of a selection of 35 agents from the crowd scene.
Examination of the dataset revealed that 60-70% of the error in each of the models’ re-
sults can be attributed to 12 agents near the explosion. We show the error breakdown in
Figure 4. Two other categories of error are shown as well: faraway agents, and the agent
closest to the yelling. The agent closest to the yelling barely moved in the video, which
is a situation that the cognitive model of ESCAPES does not naturally simulate. Hence,
all models produce large errors quite unrelated to the underlying emotional contagion
model. The faraway agents, by contrast, move extremely little, making it easy to fit
any model to them by simply forcing those agents to remain completely still. Thus, the
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largest portion of the error, that caused by the agents near the event (except the closest
agent) also provides the most potential for the emotional contagion models to differ.

Fig. 4. Error attribution

(a) Base models

Model Overall Near
None 0.375 0.699
ESCAPES 0.375 0.698
ASCRIBE 0.362 0.663
Durupinar 0.383 0.758

(b) ESCAPES

Model Overall Near
Base 0.375 0.698
Decay 0.379 0.703
No Speed 0.381 0.721
No Prox 0.385 0.721

(c) ASCRIBE model

Variation Overall Near
Base 0.362 0.663
Decay 0.363 0.687
No Speed 0.387 0.767
No Prox 0.414 0.797

(d) Durupinar model

Model Overall Near
Base 0.383 0.758
No Decay 0.387 0.771
Speed 0.388 0.784
Prox 0.380 0.754

Table 1. Average error (in pixels) per agent per frame

The results from the different variations of each model is listed in Table 1. Table
1a shows the results for the base models as defined previously, illustrating OVERALL
error (for all 35 agents) as well as the error associated with the most substantial group
of agents, the 12 NEAR the event, excepting the closest agent. Table 1b shows the vari-
ations associated with the original ESCAPES formulation. The second line of the table
indicates that a ‘decay’ feature was added to the base model. The third line indicates
that we turned on/off the effect that different levels of fear have on speed. When off,
this means that any level of fear causes agents to travel at maximum speed. When on,
the speed of travel is proportional to the fear level. Finally, the fourth row represents
whether the contagion effect was moderated with a tuned proximity effect. Tables 1c
and 1d show the analogous set of variations for the ASCRIBE and Durupinar models.

No results from the ESCAPES contagion formulation were statistically significantly
better than the No Contagion case, as measured with a one-tailed t-test. This indicates
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that the ESCAPES contagion model does not add anything in the context of this dataset.
In sharp contrast, all results for ASCRIBE and Durupinar were statistically significantly
different from the No Contagion case, although in the case of Durupinar, they were
significantly worse (p < 0.001). As found in [3], the ASCRIBE model’s formulation
provided substantial improvements in the simulation’s ability to reproduce this scene
(14% superior to Durupinar for NEAR agents in the Base cases for the 15s clip).

For ESCAPES, no feature change offered statistically significantly different results
from the base case, implying that in this formulation, for this data set, adding ‘decay’
did not help and the presence of ‘speed’ and ‘proximity’ features did not add value
to the model either. In the ASCRIBE model, adding ‘decay’, removing ‘speed’, and
removing ‘proximity’ all had statistically significantly negative impacts on the results
(p < 0.001). This implies that the ‘speed’ and ‘proximity’ features were crucial to
generating the positive result in the Base case and adding ‘decay’ does not improve it.
Finally, removing ‘decay’ produced significantly worse results in the Durupinar model,
and the other two variations did not produce statistically different results.

These results imply that the ASCRIBE model’s contagion mechanism and current
formulation provides the highest fidelity in modeling this dataset versus other variations
and models tested. To properly frame the magnitude of improvement, consider a crowd
being modeled for five minutes. In real terms, the 14% average difference between AS-
CRIBE and Durupinar amounts to over two meters of error over the 12 NEAR agents
in a single frame. ‘Small’ errors like this in the first 15s can easily snowball into a com-
pletely different crowd structure after five minutes, suggesting much larger implications
to this 14% improvement.

(a) Amsterdam video (b) Greece video

Fig. 5. Amsterdam and Greece video screenshots
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6.2 Greece Crowd

Since one dataset could be particularly well-suited to the ASCRIBE model, we elected
to perform the same process on a second video from recent protests in Greece5, where
officers fired tear gas into the middle of a small crowd. The clip used was from 0:16
to 0:20, from which 24 frames were extracted for analysis. 10 figures throughout the
crowd were traced for the duration of the clip. Conversion of the pixel coordinates
into top-down coordinates was done by first estimating true axes in the top-down view
by tracing the sidewalk and steps that were perpendicular to the sidewalk. Then, the
distance to each of the axes was calculated (where ‘distance’ is measured from the
point to the axis, parallel to the other axis) and used as the new coordinates.

Even in such a short video clip with such a small crowd that we are able to match
extremely well, the emotional contagion models still showed significant differences.
Surprisingly, the original ESCAPES model performs extremely well, matching the AS-
CRIBE model’s accuracy. However, as before, we see the Durupinar model again per-
forming substantially worse than all other models, implying some generality of the
previous result. In fact, this scene is an even stronger testament than the previous one,
as the ASCRIBE model performs 12% better than Durupinar in the Base case per agent
per frame during only a four-second clip as opposed to the 15s Amsterdam clip. For
both the original ESCAPES model and the ASCRIBE model, removing fear’s impact
on speed and the proximity effect statistically significantly worsen’s the model’s accu-
racy (p < 0.001). Surprisingly, the ASCRIBE model benefits from the addition of a
decay component (p < 0.001), implying that a decay effect may be context-dependent.

(a) Base models

Model Error
None 1.635
ESCAPES 1.478
ASCRIBE 1.478
Durupinar 1.656

(b) ESCAPES

Model Error
Base 1.478
Decay 1.474
No Speed 1.567
No Prox 1.658

(c) ASCRIBE

Variation Error
Base 1.478
Decay 1.466
No Speed 1.653
No Prox 1.660

(d) Durupinar

Model Error
Base 1.656
No Decay 1.653
Speed 1.669
Prox 1.654

Table 2. Average error (in pixels) per agent during the simulation

7 Conclusions

In this work, we have made the first attempt to compare existing models of emotional
contagion and identify key attributes of appropriate models using real data. The AS-
CRIBE model produced a 14% improvement per agent per frame over the Durupinar
model in a 15s clip and a 12% improvement in only a four-second clip. After attempts to
transform the Durupinar model into one more similar to the ASCRIBE model with little
success. This suggests that the primary cause of the statistically significantly worse per-
formance found with the epidemiological / social contagion model is in the mechanism

5 http://www.youtube.com/watch?v=NsoDwM_KKfo
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of contagion itself, which is probabilistic and uses a binary representation of the ef-
fect. Although the ASCRIBE model requires setting (N2 +N) parameters to model N
agents, even when we do away with them by fixing openness/receptiveness and only for-
mulaically varying channel strength, the model produces superior results, implying that
the underlying heat dissipation-style mechanism is better-suited to the phenomenon. In
actual crowd modeling, simulators could use population averages for the parameters, as
found in recent work [7, 13] (instead of arbitrarily setting them at 0.5), resulting in a
simplified model with one or two global parameters similar to ‘specific heat capacities’
for people’s emotional transfer strength and one formulaic descriptor of proximity’s
impact. This leaves a simple, data-driven model of emotional contagion with empirical
evidence supporting its superior performance.

As we deepen our understanding of how quickly and how strongly emotional con-
tagion occurs, we can greatly improve the fidelity of simulations designed to reproduce
and predict human behavior in emotionally-charged situations. In addition, this work
serves as a first step towards honing in on the key factors that influence the speed
and strength of emotional contagion. Armed with this knowledge, the design of vir-
tual agents can more accurately mimic human responses to emotional situations in their
interactions with other agents as well as humans. For example, virtual patients that un-
derstand questions and respond properly [11] will also react to the user’s smiles, nods
and other facial/vocal features to train clinicians to control the emotional contagion
they inevitably cause. Virtual agents in emergency response simulations will not only
be able to exhibit appropriate behaviors for a trainee to view and interact with, but also
have a more accurate emotional effect on the user that will prepare him/her for the psy-
chological strains that will inevitably arise. Only with the comprehensive quantitative
understanding of emotional contagion that we have begun developing here will we be
able to produce truly interactive, human-like agents.
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