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The Basics 
Lexical analysis or scanning is the process where the stream of characters making up the 
source program is read from left-to-right and grouped into tokens.  Tokens are sequences 
of characters with a collective meaning. There are usually only a small number of tokens 
for a programming language: constants (integer, double, char, string, etc.), operators 
(arithmetic, relational, logical), punctuation, and reserved words. 
 
 
 
 
 
 

 
while (i > 0) 
  i = i - 2; 
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T_WHILE 
T_LPAREN 
T_IDENTIFIER 
T_LESSTHAN 
T_INTCONSTANT 
T_RPAREN 
T_IDENTIFIER 
T_EQUALS 
T_MINUS 
T_INTCONSTANT 
T_SEMICOLON 

 
The lexical analyzer takes a source program as input, and produces a stream of tokens as 
output. The lexical analyzer might recognize particular instances of tokens such as: 
 

3 or 255 for an integer constant token 
"Fred" or "Wilma" for a string constant token  
numTickets or queue for a variable token 

 
Such specific instances are called lexemes.  A lexeme is the actual character sequence 
forming a token, the token is the general class that a lexeme belongs to.  Some tokens 
have exactly one lexeme (e.g., the > character); for others, there are many lexemes (e.g., 
integer constants). 
 
The scanner is tasked with determining that the input stream can be divided into valid 
symbols in the source language, but has no smarts about which token should come 
where. Few errors can be detected at the lexical level alone because the scanner has a 
very localized view of the source program without any context. The scanner can report 
about characters that are not valid tokens (e.g., an illegal or unrecognized symbol) and a 
few other malformed entities (illegal characters within a string constant, unterminated 
comments, etc.)  It does not look for or detect garbled sequences, tokens out of place, 
undeclared identifiers, misspelled keywords, mismatched types and the like. For 
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example, the following input will not generate any errors in the lexical analysis phase, 
because the scanner has no concept of the appropriate arrangement of tokens for a 
declaration. The syntax analyzer will catch this error later in the next phase. 

 
int a double } switch b[2] =; 

 

Furthermore, the scanner has no idea how tokens are grouped.  In the above sequence, it 
returns b, [, 2, and ] as four separate tokens, having no idea they collectively form an 
array access. 
 
The lexical analyzer can be a convenient place to carry out some other chores like 
stripping out comments and white space between tokens and perhaps even some 
features like macros and conditional compilation (although often these are handled by 
some sort of preprocessor which filters the input before the compiler runs). 
 
Scanner Implementation 1: Loop and Switch 
There are two primary methods for implementing a scanner.  The first is a program that 
is hard-coded to perform the scanning tasks.  The second uses regular expression and 
finite automata theory to model the scanning process. 
 
A "loop & switch" implementation consists of a main loop that reads characters one by 
one from the input file and uses a switch statement to process the character(s) just read.  
The output is a list of tokens and lexemes from the source program. The following 
program fragment shows a skeletal implementation of a simple loop and switch scanner. 
The main program calls InitScanner and loops calling ScanOneToken until EOF.  
ScanOneToken reads the next character from the file and switches off that char to decide 
how to handle what is coming up next in the file.  The return values from the scanner 
can be passed on to the parser in the next phase. 
 
#define T_SEMICOLON  ';'     // use ASCII values for single char tokens 
#define T_LPAREN  '(' 
#define T_RPAREN  ')' 
#define T_ASSIGN  '=' 
#define T_DIVIDE  '/' 
 ... 
 
#define T_WHILE  257         // reserved words  
#define T_IF  258 
#define T_RETURN  259 
 ... 
 
#define T_IDENTIFIER  268    // identifiers, constants, etc. 
#define T_INTEGER  269 
#define T_DOUBLE   270 
#define T_STRING  271 
 
#define T_END  349           // code used when at end of file  
#define T_UNKNOWN  350       // token was unrecognized by scanner 
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struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  



  4  

        token->val.stringValue[i] = ch; // gather lowercase 
      ungetc(ch, fp);  
      token->val.stringValue[i] = '\0'; 
      if (lookup_symtab(token->val.stringValue) == NULL) 
        add_symtab(token->val.stringValue); // get symbol for ident 
      return T_IDENTIFIER; 
 
    case '0': case '1': case '2': case '3':  //....  and other digits 
      token->type = T_INTEGER; 
      token->val.intValue = ch - '0';     
      while (isdigit(ch = getc(fp))) // convert digit char to number 
        token->val.intValue = token->val.intValue * 10 + ch - '0'; 
      ungetc(ch, fp);    
      return T_INTEGER; 
 
    case EOF: 
      return T_END; 
 
    default:    // anything else is not recognized 
      token->val.intValue = ch; 
      token->type = T_UNKNOWN; 
      return T_UNKNOWN; 
  } 
} 
 
The mythical source language tokenized by the above scanner requires that reserved 
words be in all upper case and identifiers in all lower case.  This convenient feature 
makes it easy for the scanner to choose which path to pursue after reading just one 
character.  It is sometimes necessary to design the scanner to "look ahead" before 
deciding what path to follow— notice the handling for the '/' character which peeks at 
the next character to check whether the first slash is followed by another slash or star 
which indicates the beginning of a comment.  If not, the extra character is pushed back 
onto the input stream and the token is interpreted as the single char operator for 
division. 
 
Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design 
and purpose of solving a specific instance rather a general problem.  For a sufficiently 
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s 
needed— it requires no other tools.  The gcc front-end uses an ad hoc scanner, in fact. On 
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of 
code is correct is much harder to justify if your lexer does not see the extent of use that 
gcc’s front-end experiences. 
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Scanner Implementation 2: Regular Expressions and Finite Automata 
The other method of implementing a scanner is using regular expressions and finite 
automata. Below is a review of some background material on automata theory which we 
will rely on to generate a scanner. 
 
Regular expression review 
We assume that you are well acquainted with regular expressions and all this is old 
news to you. 
 

symbol an abstract entity that we shall not define formally (such as “point” 
in geometry). Letters, digits and punctuation are examples of 
symbols. 

alphabet a finite set of symbols out of which we build larger structures.  An 
alphabet is typically denoted using the Greek sigma ∑, e.g.,  
∑ = {0,1}. 

string a finite sequence of symbols from a particular alphabet juxtaposed.  
For example: a, b, c, are symbols and abcb is a string. 

empty string denoted ε (or sometimes ∂) is the string consisting of zero symbols.  
formal language ∑* the set of all possible strings that can be generated from a given 

alphabet. 
regular expressions  rules that define exactly the set of words that are valid tokens in a 

formal language.  The rules are built up from three operators: 
concatenation xy  
alternation x|y x or y 
repetition  x* x repeated 0 or more times 

 
Formally, the set of regular expressions can be defined by the following recursive rules:  
 
 1) Every symbol of ∑ is a regular expression 
 2) ε is a regular expression 
 3) if  r1 and r2 are regular expressions, so are 
 (r1)  r1r2 r1 | r2 r1* 
 4) Nothing else is a regular expression. 
 
Here are a few practice exercises to get you thinking about regular expressions again.  
Give regular expressions for the following languages over the alphabet {a,b}: 
 
 all strings beginning and ending in a ______________________ 

all strings with an odd number of a's ______________________ 
 all strings without two consecutive a's______________________ 
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We can use regular expressions to define the tokens in a programming language.  For 
example, here is a regular expression for an integer, which consists of one or more digits 
(+ is extended regular expression syntax for 1 or more repetitions) 
 
 (0|1|2|3|4|5|6|7|8|9)+ 

 
Finite automata review 
Once we have all our tokens defined using regular expressions, we can create a finite 
automaton for recognizing them.  To review, a finite automata has: 
 

1) A finite set of states, one of which is designated the initial state or start state, 
and some (maybe none) of which are designated as final states. 

2) An alphabet ∑ of possible input symbols. 

3) A finite set of transitions that specifies for each state and for each symbol of the 
input alphabet, which state to go to next. 

 
  a b 

(start) x: y z 

 y: x z 

(final) z: z z 

 

      
 
 
 
 
 
 
What is a regular expression for the FA above? _______________________________ 
 
What is a regular expression for the FA below? _______________________________ 
 
     
 
 
 
 
 
Define an FA that accepts the language of all strings that end in b and do not contain the 
substring aa.  What is a regular expression for this language? 
 

x y 

z 

a 

a 

a b 

b b 

a 

b 

a,b 

b 

a 
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Now that we remember what FAs are, here is a regular expression and a simple finite 
automata that recognizes an integer.   
  

 (0|1|2|3|4|5|6|7|8|9)+ 

 
 
 
 
 
 
 
 
 
Here is an FA that recognizes a subset of tokens in the Pascal language: 
 

- 1

2

3

4

5

6

7

8 9

A

B C

D

E

F

G

H

letter
letter| digit

digit
digit

{

*

+,-

: =

< >

=

> =

=

.

;

(

)

}

Anything but }

}

 
 
This FA handles only a subset of all Pascal tokens but it should give you an idea of how 
an FA can be used to drive a scanner.  The numbered/lettered states are final states.  The 
loops on states 1 and 2 continue to execute until a character other than a letter or digit is 
read.  For example, when scanning "temp := temp + 1;" it would report the first token 
at final state 1 after reading the ":" having recognized the lexeme "temp" as an identifier 
token. 

digit 

not digit not digit 

digit 
int 
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What happens in an FA-driven scanner is we read the source program one character at a 
time beginning with the start state.  As we read each character, we move from our 
current state to the next by following the appropriate transition for that.  When we end 
up in a final state, we perform an action associated with that final state.  For example, the 
action associated with state 1 is to first check if the token is a reserved word by looking it 
up in the reserved word list.  If it is, the reserved word is passed to the token stream 
being generated as output.  If it is not a reserved word, it is an identifier so a procedure 
is called to check if the name is in the symbol table.  If it is not there, it is inserted into the 
table. 
 
Once a final state is reached and the associated action is performed, we pick up where 
we left off at the first character of the next token and begin again at the start state.  If we 
do not end in a final state or encounter an unexpected symbol while in any state, we 
have an error condition.  For example, if you run "ASC@I" through the above FA, we 
would error out of state 1. 
 
From regular expressions to NFA 
So that’s how FAs can be used to implement scanners.  Now we need to look at how to 
create an FA given the regular expressions for our tokens.  There is a looser definition of 
an FA that is especially useful to us in this process.  A nondeterministic finite automaton 
(NFA) has: 
 

1) A finite set of states with one start state and some (maybe none) final state  

2) An alphabet ∑ of possible input symbols. 

3) A finite set of transitions that describe how to proceed from one state to another 
along edges labeled with symbols from the alphabet (but not ε).  We allow the 
possibility of more than one edge with the same label from any state, and some 
states for which certain input letters have no edge. 

 
Here is an NFA that accepts the language (0|1)*(000|111)(0|1)* 

 
 
 

 
 
 
 
Notice that there is more than one path through the machine for a given string.  For 
example, 000 can take you to a final state, or it can leave you in the start state.  This is 
where the non-determinism (choice) comes in.  If any of the possible paths for a string 
leads to a final state, that string is in the language of this automaton. 

0 
0,1 

1 

0 

1 1 

0,1 0 
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There is a third type of finite automata called ε-NFA which have transitions labeled with 
the empty string.  The interpretation for such transitions is one can travel over an empty-
string transition without using any input symbols. 
 
A famous proof in formal language theory (Kleene’s Theorem) shows that FAs are 
equivalent to NFAs which are equivalent to ε-NFAs.  And, all these types of FAs are 
equivalent in language-generating power to that of regular expressions.  In other words, 

 
If R is a regular expression, and L is the language corresponding to R, then there 
is an FA that recognizes L.  Conversely, if M is an FA recognizing a language L, 
there is a regular expression R corresponding to L.  
 

It is quite easy to take a regular expression and convert it to an equivalent NFA or ε-
NFA, thanks to the simple rules of Thompson’s construction: 
 
Rule 1: There is an NFA that accepts any particular symbol of the alphabet: 
 
 
 
 
 
 
Rule 2: There is an NFA that accepts only ε: 

 
 
 

 
Rule 3: There is an ε-NFA that accepts r1|r2: 

 
 
 
 
 
 
 
 
 

 
 
Rule 4: There is an ε-NFA that accepts r1r2: 
 
 
 

x 

∑ -x ∑ 

∑ 

∑ 

ε 

ε 

ε 

ε 

Machine for R1 

Machine for R2 

Q2                            

Q1                           

ε ε ε 

Machine for R1 Machine for R2 

Q2                            Q1                           
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Rule 5: There is an ε-NFA that accepts r1*: 

 
 
 
 
 
 
 
 
 

Going Deterministic: Subset Construction 
Using Thompson's construction, we can build an NFA from a regular expression, we can 
then employ subset construction to convert the NFA to a DFA.  Subset construction is an 
algorithm for constructing the deterministic FA that recognizes the same language as the 
original nondeterministic FA.  Each state in the new DFA is made up of a set of states 
from the original NFA.  The start state of the DFA will be the start state of NFA.  The 
alphabet for both automata is the same. 
 
So, given a state of from the original NFA, an input symbol x takes us from this state to 
the union of original states that we can get to on that symbol x.  We then have to analyze 
this new state with its definition of the original states, for each possible input symbol, 
building a new state in the DFA.  The states of the DFA are all subsets of S, which is the 
set of original sets.  There will be a max of 2n of these (because we might need to explore 
the entire power set), but there are usually far fewer. The final states of the DFA are 
those sets that contain a final state of the original NFA. 
 
Here is an example: 
 
 
 
 
 
 
 
This is non-deterministic for several reasons.  For example, the two transitions on ‘b’ 
coming out of the final state, and no ‘b’ transition coming out of the start state.  To create 
an equivalent deterministic FA, we begin by creating a start state, and analyzing where 
we go from the start state in the NFA, on all the symbols of the alphabet.  We create a set 
of states where applicable (or a sink hole if there were no such transitions).  Notice if a 
final state is in the set of states, then that state in the DFA becomes a final state. 

ε ε 

ε 

Machine for R1 

Q1                           

ε 

a 

b 

a 

a a 

b 

X1 X2 X3 

X4 
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(after creating start state and 
filling in its transitions) 
 
 
 
 

 

(after filling in transitions 
from {X2} state) 

 
 

 

We continue with this process analyzing all the new states that we create.  We need to 
determine where we go in the NFA from each state, on all the symbols of the alphabet. 

 

 

 

(after filling in transitions 
from {X3, X4} state) 

 

 

 

And finally, filling in the transitions from {X2, X3} state brings us full circle.  This is now 
a deterministic FA that accepts the same language as the original NFA.  We have 5 states 
instead of original 4, a rather modest increase in this case. 
 

a 

a,b 

b {X1} 
{X2} 

a 

a,b 

b 
{X1} {X2} 

a 

b 

{X3,X4} 

a 

a,b 

b 
{X1} {X2} 

a 

b 

{X3,X4} 

{X2,X3} 

a 

b 

a 

a,b 

b 
{X1} {X2} 

a 

b 

{X3,X4} 

{X2,X3} 

a 

b 

a b 
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The process then goes like this: from a regular expression for a token, we construct an 
NFA that recognizes them using Thompson’s algorithm.  NFAs are not useful as drivers 
for programs because non-determinism implies choices and thus, expensive exhaustive 
backtracking algorithms.  So, we use subset construction to convert that NFA to a DFA.  
Once we have the DFA, we can use it as the basis for an efficient non-backtracking 
scanner. 
 
lex: a scanner generator 
The reason we have spent so much time looking at how to go from regular expressions 
to finite automata is because this is exactly the process that lex goes through in creating 
a scanner. lex is a lexical analysis generator that takes as input a series of regular 
expressions and builds a finite automaton and a driver program for it in C through the 
mechanical steps shown above.  Theory in practice! 
 
Programming Language Case Study: FORTRAN I 
The first version of FORTRAN is interesting for us for a couple reasons.  First of all, the 
language itself violates just about every principle of good design that we specified in a 
previous handout.  Secondly, the process of developing the first FORTRAN compiler 
laid the foundation for the development of modern compilers. 
 
Here is a brief description of FORTRAN I: 
 

• Variables can be up to five characters long and must begin with a letter.  
Variables beginning with i, j, k, l, m and n are assumed by the compiler to be 
integer types, all others are reals. (This restriction may very well be the reason 
why programmers continue to use i as the name of the integer loop counter 
variable…) 

• Variable declarations are not required, except for arrays.  Arrays are limited to 
3 dimensions. 

• Computations are done with the assignment statement where the left side is a 
variable and the right-side is an equation of un-mixed types. 

• The control structures consisted of: 

o unconditional branch: GOTO <statement number> 

o conditional branch: GOTO (30,40,50) I1 where I1 has a value of 1, 2 or 3 
to indicate which position in the list to jump to. 

o IF statement: IF (A+B-1.2) 7, 6, 9 transfers control to statement 
labeled 7, 6, or 9 depending on whether (A+B-1.2) is negative, zero or 
positive. 
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o DO statement: DO 17 I = 1, N, 2 which specifies that the set of 
statements following, up to and including that labeled 17, is to be 
executed with I first assigned value 1, incrementing by 2, up through 
N. 

• No user-defined subroutines allowed, although several built-ins were 
provided including READ and WRITE for I/O. 

• Blanks are ignored in all statements, e.g., all the following are equivalent: 

o DIMENSION IN DATA(10000) 
o DIMENSIONINDATA(10000) 
o D I M E N S I O N I N D A T A ( 1 0 0 0 0 ) 

 

• Reserved words are valid variable names, e.g., DIMENSION IF(100) declares an 
array called IF. 

The task of building the first compiler was a huge one compared to what we face today.  
First of all, we can see there were considerable challenges in the definition of the 
language itself.  Allowing variables to have the same name as reserved words makes the 
scanning process much more difficult (although they didn’t really do “scanning” in the 
first compiler).  Not requiring variable declarations meant the compiler had to remember 
lots of rules, and try to infer data type from context.  In addition, these early compiler-
writers had no formalisms to help as we do today, e.g., regular expressions and context-
free grammars.  Everything had to be designed and written from scratch.  These formal 
techniques and the automatic tools based on them, allow us to build a fairly involved 
compiler over the course of eight weeks, which is a far cry from 18 person-years. 
 
The first FORTRAN compiler itself started as three phase but by the end, it had 
expanded to six.  The first phase read the entire source program, filing all relevant 
information into tables, and translating the arithmetic expressions into IBM 704 machine 
code.  The second phase analyzed the entire structure of the program in order to 
generate optimal code for the DO statements and array references.  Phase 3 was the code 
generator as we know it.  After a certain amount of work on phase 2, additional phase 
were added (3, 4, 5 with 6 becoming the code generator) to do further optimizations.  
Recall that optimization was key to the acceptance of the compiler since early FORTRAN 
programmers were skeptical of a machine creating truly optimal assembly code. 
 
Comparing this structure to our "modern" compiler structure, we see that it does not 
map too well.  In the original FORTRAN compiler, expressions are scanned, parsed and 
code-generated in the first and immensely complicated kitchen-sink of a first phase. One 
could view almost all of their inner four phases as just one great big optimization phase.  
So this compiler looks very different from what we know.  Still, the same tasks were 
performed although in some cases less efficiently than what we can do today.  The most 
important achievement, besides creating the first working compiler (which was a 
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considerable achievement), was the foundations laid in optimization techniques.  We 
will see that many of these techniques are still used in modern compilers today. 
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