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Abstract

We describe the design and implementation of a specialized shape anal-
ysis tool based on 3-valued logic. Our analyzer can reason about programs
manipulating recursive data structures, such as singly- and doubly-linked
lists, yielding precise results that are comparable to those of the well-
known reference implementation, in only a fraction of the time. In partic-
ular, (a) we apply a new and effective technique for performing structure-
based abstraction refinement, and (b) introduce a new definition for or-
dering of abstract heap descriptors which leads to a significant deflation in
the sets of abstract states explored by the analysis. Although currently re-
stricted by design in its applicability for different flavors of analyses, we ar-
gue that—thanks to a modular and extendable architecture—generalizing
the capabilities of our tool can be achieved by means of further mostly
straightforward (yet non-trivial) software engineering effort.

1 Introduction

The ability to reason about the set of heap configurations that a computer
program may exhibit, without actually running the program, has many uses
in program analysis and verification. These include whole-program verification
tasks, like verifying the absence of null dereferences; proving correctness of heap
intensive programs, such as heap sorting algorithms [6]; and checking properties
of heap references throughout the program, such as dead objects analysis and
its applications to static garbage collection [2]. Shape analysis also generalizes
alias analysis, and therefore can replace less precise techniques such as pointer
analysis, that are traditionally used for this purpose.

Nonetheless, shape analysis appears to be among the hardest problems in
static program analysis: proving even simple properties of very small programs
manipulating dynamically allocated data structures is generally undecidable,
and even the compulsory use of conservative abstraction methods following [3]
yields non-trivial frameworks, in turn inducing considerable complexity issues.
Sources for such issues include the size of an abstract domain of this kind, as
well as the complexity of the algorithms used for implementing the abstraction,
transformations, and various domain operators.



X = null;
while (...) {
y = new DLL();

if (x != null) x.p = v;
y.n = x;
X =Y,

}

Yy = X5
while (v != null) {

t = y.n;
t;

Figure 1: A Java program which constructs and traverses a doubly-linked list

1.1 3-Valued Logic Shape Analysis

We consider a shape analysis framework which models heap topology and re-
lated properties using logical structures, and applies first-order logic formulas to
model program semantics [11]. Although analyses instantiated by this frame-
work give precise and meaningful results compared to actual (concrete) heap
structures exhibited by a program, it is not widely studied, let alone deployed
in actual production-level compilers or analysis tools. Indeed, the TVLA [7]
reference implementation was used to demonstrate the analysis precision and
adaptivity to a wide variety of shape-related problems. However, analyzing even
tiny programs manipulating linked lists can take as long as seconds. Designed as
an extensible analysis generator, TVLA is obviously underoptimized compared
to a (presumed) specialized implementation. Still, we can observe at least two
aspects which make a reference implementation inherently cumbersome.

Costly abstraction refinement and validation. A significant portion of the
analysis time—mnamely, up to 90%—is due to particular algorithms that
are being used for abstraction refinement.

State set inflation. The huge abstract domain underlying the analysis—whose
induced complexity is double-exponential by the number of abstraction
predicates (essentially, the number of reference variables in the program)—
leads very quickly to a blow-up in the number of heap states being tracked
by the analysis, even for mildly complicated programs.

Fig. 1 shows a simple program that constructs and traverses a doubly-linked
list. Analyzing an automatically generated dataflow representation of it using
the default shape abstraction for linked lists [7] yields a total of 113 abstract



heap structures and takes 1.4 seconds to complete with stock TVLA. A slightly
more complicated example—a singly-linked list manipulating program that has
3 loops, one of which removes an arbitrary element from the list—results in a
total of 485 abstract heap descriptors and takes as long as 12 seconds to com-
plete. This demonstrates the steep abstract states inflation and the respective
time penalty experienced with programs of increasing complexity.

1.2 Main Results

This paper describes the fresh implementation of a 3-valued logic based shape
analysis tool. Our analyzer is intently restricted compared to the fully-parameterized
reference implementation, but appears to be better suited for performance and
scalability thanks to a graph-based representation of structures and few other
enhancements, which naturally lend themselves to implementation of efficient
analysis-specific algorithms such as computing meet/join operations, comput-

ing transitive closure of binary predicates, and applying semantic updates to
3-valued structures. In particular, our framework suggests the following major
contributions and artifacts.

Specialized structure-based refinement. While using a meet operator for
abstraction refinement has already been suggested [2] it was never put
into practice with the 3-valued logic framework. We take this concept to
the extreme, performing merely all refinement tasks using a sequence of
meet and join operations with sets of predefined structures. Technically,
we were able to produce results that are as precise as those achieved using
more powerful algorithms, in only a fraction of the time.

Loose embedding. We identify a case for overly elaborate abstract states that
neither contribute to precision nor bear a significant descriptive insight as
for the represented set of concrete states. Consequently, we propose an
alternate definition of embedding of 3-valued logical structures by which
“special case” descriptors are unnecessary (redundant) in the presence of a
“general case”, by allowing abstract summary heap nodes to represent no
concrete nodes at all, yet still retain connectivity between other elements of
the heap in a conservative manner. This extension instantly constrains the
abstract domain, and therefore the set of abstract states explored during
the analysis. With proper further adjustments to the semantics of abstract
transformers, we are able to restate the soundness of the framework.

Implementation and preliminary results. We have implemented the above
techniques in our new shape analyzer and applied it to a small set of in-
teresting micro-benchmarks, showing an overall speed-up of up to 124 and
an up to 15 times smaller memory footprint.

1.3 Outline

The rest of this paper is organized as follows. In Section 2 we introduce 3-valued
logic based heap abstraction, and bound the scope of the analyses addressed



Predicates Intended Meaning

eq(v1, v2) vy equals v

p(v) Variable p points to object v

f(v1,v9) The f field of v; points to vo

Tp, (V) v is reachable from variable p along a sequence of f fields

sf(v) Several f fields point to v

cr(v) v resides on a directed cycle of f fields

bt . The f5 field of an object pointed by the f field of v points back
towv

Table 1: Predicates used in the analysis of programs manipulating doubly-linked
lists, with p (f) instantiated over the set of refernece variables (fields)

by this work. Section 3 outlines the design and implementation of our shape
analysis framework, with structure-based refinement being explained in greater
detail in Section 4 . Section 5 describes the loose embedding approach for
constraining the effect of abstract state set inflation. Initial experimental results
are given in Section 6. Section 7 discusses related work, and Section 8 concludes.

2 3-Valued Logic Shape Analysis

We explain the heap state abstraction and abstract transformers following [11],
which underly our technique for static shape analysis.

2.1 Concrete Program States

We represent concrete program states using 2-valued logical structures.

Definition 1 (Concrete state). A 2-valued logical structure over a vocabulary
(set of predicates) P is a pair S = (U, ) where U is the universe of the 2-valued
structure, and ¢ is the interpretation function mapping predicates to their truth-
value in the structure: for every predicate p € P of arity k, ¢(p) : U¥ — {0,1}.

We require that the set of predicates includes the binary predicate eq, bearing
the semantics of equality between individuals. Table 1 shows the set of predi-
cates used in the analysis of the program in Fig. 1, with p and f instantiated over
{x,y,t} and {n, p}, respectively.! Note the use of instrumentation predicates—
like transitive reachability, shared referencing, cyclicity, and back-pointing—in
addition to core shape predicates, the importance of which in retaining abstrac-
tion precision has been widely discussed [7, 11].

A concrete state is depicted as a directed graph, where each individual in the
universe is a node. The set of unary predicates that hold for each node appear
right next to it. A unary predicate representing a reference variable that points

1 Note that bs, s, is only instantiated for pairs of distinct reference fields.
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Figure 2: (a) A concrete program state arising after the execution of the state-
ment t = y.n in Fig. 1; (b) An abstract program state approximating (a)

to some node v is depicted as an arrow from the variable’s name to v. A binary
predicate f which holds for a pair of individuals v; and vs is drawn as a directed
edge from v; to vy, and labeled f. The predicate eq is not shown, since any two
nodes are different and every node is equal to itself.

Fig. 2(a) shows a concrete program state arising after the execution of the
statement t = y.n at the second loop of the program in Fig. 1. We denote the
set of all 2-valued logical structures over a set of predicates P by 2-STRUCT[P],
abbreviated to 2-STRUCT under the simplifying assumption that P is fixed.

2.2 Abstract Program States

We represent abstract program states using Kleene 3-valued logic [11], an exten-
sion of Boolean logic which introduces a third value %, denoting a truth value
that may be either 0 or 1. We utilize the partial order defined by 0 C % and
1C %, with the join operation defined accordingly.

Definition 2 (Abstract state). A 3-valued logical structure over a set of
predicates P is a pair S = (U, ) where U is the universe of the 3-valued structure,
and ¢ is the interpretation function mapping predicates to their truth-value in
the structure: for every predicate p € P of arity k, «(p) : U¥ — {0,1,3}. A

summary node in an abstract state is an individual u for which eq(u,u) = %

An abstract state is also depicted as a directed graph, where parenthesized



predicates (unaries) and dotted arrows (binaries) denote % values, and summary
nodes appear as double-lined nodes. Fig. 2(b) shows an abstract state with two
summary nodes, representing any number of one or more concrete nodes at the
infix and suffix of the list, respectively.

We denote the set of all 3-valued logical structures over a set of predicates
P by 3-STRUCT[P], abbreviated to 3-STRUCT. Note that Definition 2 gen-
eralizes Definition 1, therefore 2-STRUCT C 3-STRUCT.

We define a partial order on structures based on the concept of embedding,
and extend it to a preorder on sets of structures.

Definition 3 (Embedding). Let S = (U,:) and S’ = (U’, ') be two structures
and let f : U — U’ be a surjection. We say that f embeds S in S’, denoted
ST’ 8, if for every predicate p € P*¥) and k individuals u1, ..., ux € U,

P (ur, . u) T (Fw),. .., flur)) - (3.1)

We say that S is embedded in S’, denoted SES’, if there exists a function f
such that ST/ S’. We also say that S’ approzimates S.

The concrete structure in Fig. 2(a) is embedded in the abstract structure in
Fig. 2(b) by the mapping depicted with the bold arrows.

Definition 4 (Powerset embedding). Given two sets of structures XS, XS’ C
3-STRUCT, XS C XS iff for all S € XS there exists S’ € XS’ such that S C 5’.

In the following, we restrict sets of 3-valued structures by disallowing non-
maximal structures. This ensures that the above Hoare order is indeed a proper
partial order. The set Ds_srrucT, consisting of all finite sets of 3-valued struc-
tures that do not contain non-maximal structures, along with the partial order
given by Definition 4, form the abstract domain underlying our framework. We
use the same order to define the concretization of a set of 3-valued structures,

given by v(XS) = U xg/c xg X5

2.3 Bounded Program States

Note that the size of a 3-valued structure is potentially unbounded, therefore
3-STRUCT contains sets with an infinite number of structures, and is in turn
infinite. We use fundamental abstraction method [11] to convert a state descrip-
tor of any size into a bounded (abstract) one.

A 3-valued structure S = (U, ¢) is said to be bounded if for every two distinct
individuals uy,us € U there exists a unary predicate p such that p®(u;) and
p® (ug) evaluate to distinct definite truth values (i.e., 0 and 1). The abstract do-
main Dp_srrucr is a finite sub-lattice of D3_grrucor, containing all (finite) sets
of bounded structures that do not contain non-maximal structures. The struc-
ture abstraction function —referred to as canonical abstraction [11]—maps a
potentially unbounded 2-valued structure into a bounded 3-valued structure.
Namely, ﬁ((U, L)) = (U',!"), where U’ consists of the disjoint subsets of U for
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Figure 3: Structure refinement using focus: (a) the original inbound structure;
(b) structures resulting from focus using the formula Jv’.y(v") A n(v',v)

which no unary predicate evaluates to distinct definite values, and the interpre-

tation ¢/ of each p € P*) and k individuals c1,...,c, € U’ is given by
p (e, .. en) = |_| po(ur, ... up) .
Ui EC;

Fig. 2(b) shows the bounded structure obtained from Fig. 2(a) (note that
S T B(S) for all S). Powerset abstraction is given by a(XS) = | |gc xg{3(9)}.2

2.4 Abstract Semantics

The abstract interpretation framework of [11] models the semantics of program
transformations using first order logic formulas with transitive closure. For
example, the update to the value of the unary predicate ¢ through program
statement t = y.n from the example in Fig. 1 is modeled by t(v) « v’
y(v") An(v',v). The embedding theorem [11] ensures that the result of a trans-
formation on any abstract state is a sound approximation of the best trans-
former.? Yet, as straightforward evaluation of update formulas over bounded
abstract states leads to considerable loss of precision, and since a best trans-
former is generally intractable,* we achieve partial concretization by means of
two auxiliary operations [11].

Focus. Given a first-order logic formula ¢, this operation performs semantic
reduction of a 3-valued structure such that the evaluation of ¢ on any
resulting structure yields a definite truth value (i.e., 0 or 1). Fig. 3(a)
shows a canonically bounded doubly-linked list structure that is being
focused—prior to an update due to t = y.n—using the formula Jv’.y(v')A

2The operator || is the least upper bound on the lattice Dp_sTrUCT-

3Note that concretization due to the best transformer is such that guarantees further
integrity constraints [11], implied by the interpretation of instrumentation predicates.

4Recent work [12] has deployed a theorem prover in order to elevate the applicability of
best transformers for the case of 3-valued logic abstraction.



n(v’,v). The resulting structures are shown in Fig. 3(b). However, note
that focus might lead to structures that do not necessarily satisfy the
integrity constraints, such as the leftmost structure in Fig. 3(b), where
vg represents concrete nodes reachable from y by a sequence of n fields,
yet all outbound n references from vy are interpreted to be 0. Also, focus
might yield structures that are not as precise as could be with respect to
the values of instrumentation predicates, such as the middle structure in
Fig. 3(b), whose back p edge from us to uj could be tightened to 1, and
whose self-loop n and p edges on ug could be tightened to 0.

Coerce. The functionality of this operator is two-fold: by exhaustively eval-
uating formulas derived from structure integrity rules, it both dismisses
structures for which some constraint is breached and also tightens predi-
cate values where such a tightening is accommodated by the constraints.
Thus, a coerce step normally follows a focus operation, so as to comple-
ment the weaknesses of the latter.

A refinement process using the above steps is guaranteed to retain soundness
of abstract states—up to the consistency of the semantics of integrity rules—for
any given focus formula and abstraction instrumentation. It should be noted
that the above—in particular the coerce step—are by far the most time con-
suming phases of the analysis in practice, suggesting that an alternate approach
may be highly improve efficiency.

3 Specialized 3-Valued Logic Analyzer

We describe the characteristics of our implementation of a restricted variant of
the parametric 3-valued domain analysis framework in [11].

3.1 Restricted Abstraction

Aiming at a fast and practical analysis tool, we restrict ourselves to a “skim”
and specialized variant of the 3-valued logic abstraction, which we believe can
provide a good trade-off between versatility and performance.

Limited predicate arity. As opposed to TVLA, in which predicates in the
abstraction can be defined to be of any arity £ > 0, we restrict our frame-
work to only support nullary, unary, and binary predicates. This is guided
by the fact that the heap relations modeled by shape analysis always cor-
respond to either of those types of predicates: method-local reference vari-
ables are normally modeled by unary predicates,® and reference fields are
modeled by binary predicates. We also want to model Boolean variables
and fields, in order to increase the precision of our abstract interpreter:

5In this context, it is worth mentioning that one approach for interprocedural shape analysis
extends this notion, by modeling local references as binary relations between stack objects
(frames) and heap objects.



local Boolean variables are modeled by nullary predicates, and Boolean
object fields are modeled by unary predicates. In the case of our spe-
cialized abstraction, all instrumentation properties are modeled by unary
predicates (see below).

Fixed abstraction instrumentation. Our proposed implementation supports
a fixed set of instrumentation predicates with predefined semantics, that
can be either instantiated or not during the initialization of the analysis.
The supported predicates includes the ones shown in Table 1.

Reachability. For each pair consisting of a (unary) predicate x repre-
senting a reference variable, and a (binary) predicate f representing
a reference field, a (unary) instrumentation predicate 7, ; can be
generated. If 5 ¢(v) holds, then v represents an object that is reach-
able from reference variable x through a sequence of (zero or more) £
dereferences. Note that tracking the value of such a predicate might
require an explicit evaluation of transitive binary closure, to be dis-
cussed later.

Cyeclicity. For a (binary) predicate f representing a reference field, a
(unary) instrumentation predicate c¢; can be generated. If cy(v)
holds, then v represents an object which resides on a cycle formed by
a sequence of (one or more) f references.

Sharing. For a (binary) predicate f representing a reference field, a
(unary) instrumentation predicate sy can be generated. If sy(v)
holds then v represents an object that is being pointed from more
than one object through an f field.

Back-reference. For a pair of (binary) predicates fi, fo representing
reference fields, a (unary) instrumentation predicate by, f, can be
generated. If by, r,(v) holds then v represents an object whose ref-
erence to some object via an f1 field implies a back-reference via an
f2.

The above set has been used as a standard abstraction for precise reasoning
in various shape related tasks. While more complicated instrumentation
properties may lead to greater precision—binary reachability instrumen-
tation is one example—we chose not to support them currently. Also
note that application specific predicates, used for proving more delicate
properties of heap structures—e.g., field or object liveness, sortedness of
objects, and so on—can be added on top of the existing abstraction at a
later phase. With loss of generality, we currently only care for the general
purpose abstraction.

Although in this framework we do not implement automated inference of
instrumentation values—which can be derived from their declarative def-
inition by means of finite differencing [10]—the fact that we implement
a fixed set of transformers implies that both correctness and precision of
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Figure 4: Block diagram of the specialized analyzer implementation

their value assignment is controlled by the framework itself, and imple-
mented within the fixed set of provided transformers (see below).

Hard-coded transformers. Similar to the above, our proposed framework
supports a fixed set of transformers which we believe to suffice for mod-
eling the semantics of common imperative languages with pointers and
destructive updates. Specifically, we support an empty statement; assign-
ment of either a null value, a reference variable, or a field dereference, to
either a reference variable or field; conditional control statement with ref-
erence equivalence or Boolean values; object allocation and deallocation;
and procedure call/return statements. We assume the use of a simplify-
ing front-end to yield a canonical intermediate form conforming to this
set of transformations. At this point we do not support array operations,
and our current support for procedure call/return does not implement
context-sensitivity, which we consider future work.

Our set of transformers is derived from a mature TVLA analysis speci-
fication, which is believed to be sound and quite precise with respect to
the abstraction instrumentation. The details of the abstract transformer
semantics are omitted for brevity.

Note that the above assumptions do not pose a constant restriction on the
generality of our implementation, other than the one bounding the arity of
predicates, as all others are transient constraints which can be relaxed at a later
time.

3.2 Architecture

The block diagram in Fig. 4 shows the architecture of our framework. Blocks
having the same color indicate a related or dependent functionality. As shown,
our implementation of the 3-valued abstraction domain, along with that of
canonical abstraction, are independent from any particular analysis layout. The
latter is defined using the analysis-dependent modules, including the schema

10



(responsible for predicate definition and layout, construction of analysis-specific
instrumentation scheme, etc.), the refinement module (responsible for construct-
ing and applying refinement operators), and the associated abstract transform-
ers module. A monotone framework front-end provides a unified interface to a
singleton analysis instance. A simple analyzer, capable of parsing TVLA-like
specification, constructing an analysis, and conducting the chaotic iterations
algorithm, is provided for evaluation purposes.

The above diagram suggests that further extensions to the analysis engine,
like support for additional abstraction or instrumentation features, can be un-
dertaken without needing to modify the abstract domain implementation. Sim-
ilarly, optimization of domain related operators and algorithms can be carried
out independently from overlying abstraction semantics.

3.3 3-Valued Logic Abstraction Domain

We describe the outline of our topology-based approach for representing and
manipulating 3-valued structures and powerset elements.

3.3.1 3-valued structures

We represent 3-valued structures using directed graphs with attribute vectors
attached to graph nodes and edges, corresponding to values of unary and binary
predicate, respectively. Nullary predicate values are stored separately.

The use of a graph-based representation has several justifications. Initially,
it is a concise representation exploiting the sparsity of concrete (and abstract)
heap configurations: as evident from abstract transformer semantics, the com-
putation of most updates only cares for non-false predicate values, hence a sparse
data structure is likely to be an advantage. Furthermore, we believe that the
greatest advantage lies within the fact that—unlike structure-oblivious hash-
based representation—the preservation of actual structure topology promotes
faster evaluation of transformer updates due to the ability to easily extract se-
quences of “heap paths”. For example, consider the following formula used for
updating the value of a reference variable predicate when applying the trans-
former corresponding to t = y.n,

t(v) «— W' 1 y(@') AnQ',v) .

A naive evaluation (associated with a structure-oblivious representation) would
have to consider every possible pair of nodes in order to evaluate the conjunc-
tion. On the contrary, a sparse topology-aware representation may consider,
for each node v’ that is referred to by y, only the subset of nodes {v | v € U}
for which n(v’,v) is not false (i.e., there exists a graph edge with non-false n
attribute). Since structures are likely to be sparse, the resulting evaluation
process is expected to be more economical than an exhaustive one. Put in a
general way, it is expected to promote faster computation wherever an existen-
tial formula is used to infer non-false binary connectivity, a common case in the
analysis transformations specification.

11



Our representation is also likely to minimize overhead when transitive closure
of binary relations needs to be computed. For example, consider the following
formula used for updating the value of reachability instrumentation predicates
upon an assignment statement t = y.n,

o V (30 () A (!, )
if I, 0" y(v) A by p(v') An(v,v"),
0" y(W) An 0" A fE(U7,0)

otherwise,

71, (V)

evaluated for each reference field f # n for which r, ; is defined. (Note, that
due to the Kleene way of logical value interpretation, it might be the case that
both sub-formulas need to be evaluated.) Here, the notation f* stands for a
transitive conjunctive closure of the binary predicate f over sequences of pairs
of individuals: while the naive way of evaluation (associated with a structure-
oblivious representation) would have to consider all the nodes on each iteration
of the transitive expansion, our implementation can compute a complete closure
in strictly linear time.5

3.3.2 Domain operators

Our framework implements the join and meet operators, as well as the em-
bedding relation (C), based on a fast heuristic-based method for computing
structure embedding and correspondence relations, as described in [1]. The
general approach applies a 3-phase algorithm, in which (a) a matching graph
approximating the set of all possible relations (i.e., correspondence relations
or embedding functions) is constructed based on unary predicate consistency;
(b) exhaustive enumeration of all possible generalized perfect matchings is per-
formed using an effective heuristic strategy; then (c) full consistency of higher-
arity predicates is asserted for each matching, asserting the required relation
(embedding) or generating a set of structures (meet).

Making the matching procedure parametric by the matching quotas as-
sociated with nodes, we are able to find candidate relations for either meet
structures—requiring that any node is matched exactly once (non-summaries)
or at least once (summaries) at each operand structure—or embedding rela-
tions, requiring that an embedded structure’s nodes are matched exactly once.
We require a logical consistency to be either that of agreement (meet) or em-
bedding (join), accordingly. Note that this flexibility also allows us to easily
re-use our matching procedure to decide and infer different relations, such as
the ones implied by the loose embedding adjustments of Section 5: all it takes is
changing the matching quotas such as to allow summary nodes to be matched
zero or more times, and extend the consistency checking procedure for the case
of loose embedding accordingly.

6Moreover, in the case of the above formula, our specialized transformer implementation
combines both efficient existential quantification and a fast transitive closure computation,
yielding a rather economical evaluation process compared to the exhaustive one.

12



While the matching procedure underlying the enumeration of either relation
is quite efficient, our experience has been that the operators’ implementation
spends most of its time in constructing matching graphs, validating matching
results, and constructing intermediate structures (in the case of meet). The
former hints that an efficient representation of node attributes (unary predi-
cates), such that supports fast Kleene operators over whole attribute vectors, is
highly desirable. The other two strengthen this intuition, but also hint that a
topology-aware representation of binary predicate interpretation may promote
the validation and generation of intermediate structure. We therefore expect
our implementation to improve in that respect as well.

Our implementation of the bounded 3-valued structures powerset domain
strictly complies with the definitions in Section 2, ensuring that the implemen-
tation of meet and join following [1] yields precise values with regard to the
domain of bounded structures that we use. Furthermore, although both meet
and join were shown to be hard problems over the domain of unbounded 3-valued
structures, we are able to infer them both in a surprisingly effective manner. In
particular, our algorithm decides embedding of canonically bounded structures
in strictly polynomial time.”

3.4 Analysis Specification

Our framework deploys an effective technique for representing an analysis’ se-
mantic specification, and applies a new method for achieving fast and precise
abstraction refinement without the use of dedicated, general-purpose seman-
tic refinement algorithms mentioned in Section 2.4. The latter technique is
explained in detail in Section 4.

We provide an infrastructure for constructing per-program analysis, by means
of adding predicates that correspond to program-specific variables and fields.
While this is pretty straightforward, we use a graph-based representation for
capturing the relations between those predicates and their induced instrumen-
tation. For example, assuming a schema which contains a single unary predicate
x and two binary predicates f; and fa, we represent their interrelated instru-
mentation predicates so that they can be effectively retrieved and traversed
when applying transformation updates. This way, an instrumentation predi-
cate 75 1, is attached to the directed edge (z, f1), instrumentation predicates
by, 1, and by, 5, are attached to directed edges (f1, f2) and (f2, f1), respectively,
and instrumentation predicates cy, and sy, are attached to nodes f; and fs,
respectively. This layout promotes faster access to predicates that are relevant
to an update transformation, as in the case of the update formula for r, ; in
Section 3.3.1, applied to each f # n for which 7, s is defined.

"The meet operator was shown particularly hard, even for bounded structures.
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Figure 5: A (simplified) structure-based filter requiring that y != null

4 Structure-Based Refinement

The fact that a meet operator can be used to perform abstraction refinement—
both focusing an abstract structure prior to update, as well as filtering structures
based on some semantic condition—has already been discussed elsewhere [1].
Conforming to this approach, a 3-valued structure is used to express the de-
sired semantic condition, and a meet operation is used to extract the subset
of structures that are both represented by a given abstract state and comply
with the semantic condition expressed by the refining structure. We have taken
this approach to the extreme, essentially doing all abstraction refinements us-
ing meet (and join) operations. We exemplify this approach by describing a
simplified structure-based refinement operator for the abstract transformer of
t = y.n from Fig. 1. This refinement operator—requiring that the n field of the
object pointed by y, and the y reference itself, are definite—is by far the most
complicated one, mainly due to the subtle subcases that need to be considered
for obtaining sufficient precision.

4.1 Sufficiently Tight and Effective Refinement

We first require that any semantically sane input structure is such whose y
predicate evaluates to 1 for exactly one individual (i.e., the dereference y.n must
succeed). This condition can be easily enforced via a meet-based precondition
using the set of structures shown in Fig. 5 (with the simplification of ignoring
x and t, and their induced instrumentation).

For the actual purpose of refining the y.n dereference, we can initially use
a set of structures consisting of the three distinct cases where y.n is either (a)
null, (b) a self-loop, or (c) points to a different node. Note that any of these
general cases needs yet to be split into disjoint subcases, indicating whether
additional nodes—other than the one pointed by y and (possibly by) y.n—may
exist. Such a refinement set (again with the simplification of ignoring z and t),
is shown in Fig. 6.

In this example, the refining structures impose very few constraints on the
values of binary predicates between the different nodes—other than focusing the
n field of the object pointed by y—and, consequently, on those of instrumenta-
tion predicates. Still, for the case of a null y.n (the two uppermost structures
of Fig. 6(a)) they do require that any node other than the one pointed by y
has ry , evaluated to 0. Therefore, in applying the refining set in Fig. 6 to
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Figure 6: A (simplified) structure-based refining set for t = y.n: (a) cases of
null or self-loop y.n; (b) cases of y.n pointing to a different node
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the structure in Fig. 3(a) our operator does not yield the leftmost structure of
Fig. 3(b) in the first place, as opposed to the traditional focus operation. (This
does not ensure the integrity of structures resulting from refinement in general,
though.)

The refining set of Fig. 6 does yield the two rightmost structures in Fig. 3(b).
While these are conservative and semantically sane refinements of Fig. 3(a), they
are evidently not as tight as could be, as explained in Section 2.4. As this over-
compromises the precision of our transformer in this case, we first try to further
focus the back p edge to the node pointed by vy.

A strawman solution to this can be found in the form of further sub-case
refinement, namely by semantically reducing the refining structures in Fig. 6(b)
down to the point where the back p edge is either 0 or 1, corresponding to the
value that b,, ), takes for the node pointed by y. For example, we can replace the
left-hand side structure in Fig. 6(b) by two similar structures, with the difference
being that one has both b, ,(v1) and p(ve,v1) evaluating to 1, and the other
has their value being 0. This enforces a definite truth value for the back p edge
from the node pointed by v.n to the node pointed by v in the refinement result.

By applying further reduction in the same style we can tighten the value of
the n (p) self-loop on the y.n pointed node of the middle structure in Fig. 3(b), in
correlation with the value of ¢, (respectively, ¢,) for that node.® However, such
a level of enumeration will lead to a number of structures that is exponential by
the number of tightened instrumentation predicate values—in this case by, ,(v1),
cn(v2), and c¢p(ve)—resulting in 8 disjoint structures. This combinatorial effect
gives little hope for scaling a precise enough operator of this kind to cases
with even slightly more predicate interdependences. We manage to avoid this
explosion in the size of the refining set by exploiting the following properties.

Distributivity of meet over join. As already noted in [2], for all sets of
structures XST(XRUXR') = (XSTXR)U(XST XR'). We can therefore
split the structures in Fig. 6 such that XR corresponds to Fig. 6(a) and XR’
corresponds to Fig. 6(b), with the guarantee that ({S} M XR) U({S} N XR')
yields the same result as plain meet using the whole refining set.

Associativity of meet. As XST(XR) M XR,) = XS XR, M XR, (the latter
being left associative) for all sets of structures, we can avoid the com-
binatorial blow-up in the number of structures resulting from the fur-
ther reduction of the structures of Fig. 6(b), as explained above. Here
we exemplify this for the leftmost structure of Fig. 6(b) only: let XR,
XR}, and XRj be the sets containing a pair of structures as shown in
Fig. 7(a), Fig. 7(b), and Fig. 7(c), respectively. We observe that the
elaborate set of reduced refinement structures described above is obtained
by XR|MXR,MXRS, as each of these operands requires that by, ,(v1),
cn(v2), or ¢,(v2) has a definite value but keeps the others indefinite ().
Therefore, {S} M XR] M XR, M XRY gives us the desired level of tightness,

8For expository reasons, here we ignore the case of a two-node cycle, which is also correlated
with the value of ¢n(v2) and cp(v2).
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without needing to store the fully expanded set of structures. Note that
any of XR, consists of exactly two complementary structures, hence the
successive application of meet operations is likely to reduce the number
of unfocused predicates at each step, down to the point where a single
fully-tightened structure is obtained.

We can therefore obtain the desired refinement operation by means of
{S}NXR)U({S}NXR| N XR,MXRY) |

for any given structure S, keeping our refining sets of structures at a total linear
size.

Few observations apply to this approach: first, it is important to note that
such a formulation in fact shifts the exponential behavior from the size of a
single refining structure to the worst case complexity of the additional meet
and join operations, yet we expect it to result in an effective computation in
practice thanks to the “pruning” nature of a staged refinement of this kind, and
the practical effectiveness of our operators. Second, it is important to note that
any of the reductions shown in Fig. 7 affects the values of predicates other than
the particular predicate being tightened, suggesting an even further tightening
on each step in the refinement process. Third, while a manual process of partial
reductions suggests possible sources of unsoundness, we can generally obtain
the refining sets by applying safe refinement operations to an initial refining
structure, this way ensuring correctness without involving runtime invocation
of such algorithms. Such an approach is not implemented currently.

Finally, we should comment that the actual refinement operators used in
our framework are significantly more complicated, as they enumerate further
implied sub-cases, but otherwise are mostly technical and tedious.

4.2 Enforcing Integrity

As hinted above, a structure resulting from a structure-based refinement oper-
ation does not necessarily satisfy the integrity constraints implied by its instru-
mentation predicates. In one instance of such a problem, a refinement operator
yields a structure that has a summary node whose r, ,, interpretation evaluates
to 1, but all inbound n interpretations evaluate to 0. We consider the use of
structure-based filtering for dismissing such a structure prior to the transfor-
mation update, mimicing the role of coerce in that respect. While arbitrary
first-order logic conditions may not necessarily be expressible using 3-valued
structures, we can still handle this particular case using our approach.
Specifically, here it is sufficient to determine whether a structure has some
node that is neither pointed by y nor has an inbound n field pointing from any
other node which may be referenced by vy, yet for which ry ,, evaluates to 1—
namely Jv.ry . (v) A 7y(v) AVV.(y(v') = -n(v',v)). The set of structures
shown in Fig. 8 represents this condition (with the simplification of ignoring x
and ¢, and their induced instrumentation). By the embedding theorem we have
that, for any structure embedded in any of these structures, the above formula

18



Tyn (Ty,p) (ry,n) (ry,p) Ty,n(ry,p)
(bn.p) (bp,n) (bn.p) (bp,n)(br.p) (bp,n)

(Cn) (Cp) (Cn) (Cp) (Cn) (CP)
(sn) (sp) (sn) (sp) (sn) (sp)

Figure 8: A (simplified) structure-based filter for capturing structures contain-
ing a node for which r, ,, evaluates to 1, but otherwise is referenced by neither
y, nor an n field from a node referenced by y

must evaluate to 1, implying a breached integrity constraint. We therefore check
embedding of each structure resulting from a refinement operation against the
above set, dismissing structures for which such a relation exists.

5 Loose Embedding

Analyzing the program in Fig. 1 with our framework described so far yields a
total of 113 structures, with an average of 3.2 structures per CFG node and a
peak of 9 disjoint abstract states for a single node. This large number seems
counterintuitive to the actual simple essence of what the program does. In the
following we highlight one source of this inflation and suggest a way to avoid it.

5.1 State-Space Inflation in Loops

Fig. 9 shows three of the abstract structures representing disjoint sets of con-
crete heap states, arising immediately past the statement t = y.n during the
analysis of the program in Fig. 1. The structure in Fig. 9(b) represents the
set of concrete doubly-linked lists whose head is pointed by x, followed by a
sequence of (one or more) nodes, followed by a pair of nodes pointed by y and
t, respectively, and finally followed by a sequence of (one or more) nodes form-
ing the list suffix. This structure describes a general case that the program
exhibits at this program point, providing a conservative approximation of the
set of concrete states incurred by the program, and also contributing a general
insight regarding the state of the computation at this point in the program.
On the contrary, the two other structures in Fig. 9 describe what could be
considered a slight variant of the general case. Specifically, Fig. 9(a) represents
the set of lists that lack the suffix nodes and Fig. 9(c) represents the set of
lists that lack the infix nodes. A fourth structure arising at the same program
point—which represents a list with neither infix nor suffix nodes—is not shown.
As is evident from the example, the total number of disjoint abstract states
used for representing all possible concrete states is exponential by the number
of summary nodes appearing in the general case. The special case descriptors
are inevitable by construction of the abstraction framework, given that the loop
traverses all nodes of the list. Yet, informally speaking, they seem to contribute
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Figure 9: Abstract heap states arising after the statement t = y.n in Fig. 1.
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very little information compared to what the general case already expresses,
consequently fortifying the analysis with only little precision, at a high cost.

5.2 Relaxed Definition of Embedding

Recall that the definition of D3_srrier uses a notion of embedding in order to
eliminate non-maximal structures, this way prohibiting expressive redundancy
and ensuring a strict partial order. In attempt to make the special cases of
Fig. 9 non-maximal (and therefore disposable) we aim at embedding them into
the general case by relaxing the definition of embedding in the following manner.

Allow summaries to represent zero nodes. We allow summary nodes to
be excluded from the range of an embedding function, overruling the
surjectivity requirement. The individuals of Fig. 9(a) can therefore be
mapped to a subset of the individuals of Fig. 9(b), as indicated by the
bold arrows, excluding only the suffix summary node us from the range of
the embedding function. Yet, it is clear that the requirement for predicate
interpretation consistency in Definition 3 is satisfied. This allows for the
structure in Fig. 9(b) to embed the structure in Fig. 9(a), making the
latter disposable.

Retain connectivity via non-mapped summaries. Consider the mapping

from individuals of Fig. 9(c) to those of Fig. 9(b), depicted by the bold
arrows: the fact that ug is excluded from the range of the function breaks
the connectivity of the structure in Fig. 9(b) compared to that of the
structure in Fig. 9(c). In particular, while n(v1,v2) = 1 in the former,
n(f(v1), f(v2)) = n(ui,uz) = 0 in the latter, prohibiting embedding by
this function.
We therefore further permit predicate interpretation consistency of any
binary predicate to be checked against the constrained transitive closure
of that predicate in the target structure, such that is only computed via
summaries excluded from the range of the function under consideration.
Since n(u1,us) A n(uz,us) = 3, the extended consistency requirement is
satisfied, making the mapping in the diagram an admissible embedding
function.

We now give the formal definition of the above relaxed embedding relation.

Definition 5 (Loose embedding). Let S = (U,:) and S’ = (U’,/) be two
structures and let f : U — U’ be a function, such that eg(v,v) = % for all nodes

v €V = U’ \range(f). We say that f loosely embeds S in S’, denoted S Ef S’
if (3.1) holds for all nullary and unary predicates and all nodes, and for every
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predicate p € P2 and a pair of individuals u,us € U,°
S s’
p” (ur,u2) Cp~ (f(wa), fuz))

vV (pS/(f(Ul)aUl)/\< A pS/(Ui,UiH))/\PS/(Uk,f(W)))

V1,0 EV 1<i<k—1

We say that S is loosely embedded in S’, denoted S T S, if there exists a function
f such that SE7 9.

Note that the above definition immediately extends to the definition of the
abstract domain D3 grrucr and its associated operators (join and meet), as
well as its derived sub-domain of bounded states. It also extends to the definition
of abstraction and concretization, accordingly.

5.3 Abstraction Monotonicity

We first observe that loose embedding indeed relazes traditional embedding,
and that it induces a transitive relation. The former follows from the fact that
Definition 5 generalizes Definition 3, therefore a traditionally embedded pair is
also loosely embedded using the same function. As for the latter, by composing
two functions loosely embedding S7 in S and Sy in S3, respectively, we get
a third function which loosely embeds S; in Ss3: the consistency of predicate
interpretations follows from the transitivity of Kleene logic value ordering.
Note that loose embedding is not antisymmetric for the case of general 3-
valued structures, therefore induces a partial preorder, in turn implying a pow-
erset preorder relation. However, we can show it is a strict partial order for the
domain of bounded structures, implying that « is still a well-defined function.

Lemma 6. Let S; = (Ul, Ll), Sy = (UQ,LQ) € Dp_struct such that Sp Eh So
and So E'fz S1. Then S1 and Sy are structurally isomorphic.

Proof. We first argue that S; has an empty universe iff Ss has an empty universe,
implying an isomorphism. Otherwise, let v € U; be some individual such that
fi(v) = u € Uy and f2(u) ='. By transitivity of Kleene logical values it follows
that p(v) Cp(v') for any unary predicate p € P(1). Therefore, by the definition
of bounded states we have that v = v/, hence fo = f1 ', and both functions
are surjective. It follows that S C/1 Sy and Sy T2 S1, hence by antisymmetry
of traditional embedding we have that S; and S5 are isomorphic. O

We now state the monotonicity of our abstraction with the extension for
loose embedding.

9We assume that an empty conjunction evaluates to 1 and that an empty disjunction
evaluates to 0.
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Lemma 7. Let D, ﬁ, DB—STRUCT/; and O/ : D2—STRUCT — DB—STRUCTI be
defined analogously to their corresponding definitions in Section 2, substitut-
ing traditional embedding with loose embedding. The abstraction function o' is
monotonic.

Proof. By the definitions of « and o, and since C generalizes C, we have for
any XS € Da.srrucT

o' (XS) = |_|

Let XSl,XSQ € Ds_sTrucT be such that XS, C XSQ, and let S; € a’(XSl).
We have that S; € a(XS1), therefore by monotonicity of o and by Definition 4
there exists Sy € a(XS3) such that S; C So, implying S; £ Sy. If Sy € o/ (XS3)
then there is nothing to show. Otherwise, by the definition of o’ and loose join
there exists some S} € o/ (XS5) such that Sy C S5, then by transitivity of loose
embedding we have S; C S5. Hence, by (loose extended) Definition 4 we have
o/ (XS1) C o/ (XS5). O

{8(8)} = DS’Ea(XS){S/} C a(XS) .

SeXs

5.4 Local Soundness

The proposed extensions of embedding invalidate the foundations of soundness
provided by the embedding theorem. We therefore adjust the semantics of
logical formula evaluation in accordance with these extensions.

First-order quantification. We interpret each occurrence of the form Ju.¢ as
Ju.eq(u, u) A ¢, this way assuring that any predicate which is existentially
quantified over a summary node is “lowered” to %, accounting for the case
where no corresponding node exists in some concrete setting which could
cause the formula to evaluate to a (definite) 0. Similarly, we interpret
each occurrence of the form Vu.P as Vu.—eq(u,u) V P, this way assuring
that any universally quantified predicate is “raised” to % for any summary
node, accounting for the absence of corresponding nodes in some concrete
settings which could cause the the formula to evaluate to a (definite) 1.

Binary predicate interpretation. We interpret each binary predicate be-
tween vy and vy as the constrained transitive closure of that predicate,
namely considering the conjunction of this predicate’s values along any
sequence of (zero or more) summary nodes between v1 and ve. As opposed
to Definition 5, here we cannot consider the set of non-image summaries,
as no embedding function is due. Instead, we consider any summary node
for the purpose of transitive closure, but also bound the truth value of
such a transitive interpretation by % in order to ensure that the result is
a conservative approximation with respect to any embedding function.
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More formally, we interpret p(u1, us) as

plur,ug) v \/ (p(ulvvl)

V1,..., 05 EU

A ( /\ —eq (v, vi) A p(v;, vi+1)) A =eq(vg, vi) A p(vg, 1@))
1<i<k—1

This implies that only summary nodes (eq(v,v) = 1) can affect the inter-
pretation when considered as intermediate individuals for binary transitive
closure, and that such an effect is constrained to lift the interpretation up
to the non-definite (%) value. In turn, this guarantees that the interpreta-
tion of a binary predicate retains Kleene ordering across loose embedding
functions, ensuring a conservative approximation.

The above extensions suffice to retain the soundness of our local transform-
ers, consequently implying global soundness. Note, however, that they also
imply potential sources of imprecision, as well as added computational effort,
especially when transitive binary closure needs to be evaluated. Nonetheless, as
binary edges adjacent to summary nodes are commonly indefinite in the first
place, we do not expect a significant loss of precision due to the contamination
of formula evaluation with % values. Also, we expect the excess algorithmic
overhead to be absorbed by our highly effective approach for conducting com-
putations over 3-valued structures. It is worth mentioning that loose embed-
ding also deflates some of our structure-based refinement operators, like the two
single-noded structures in Fig. 6(a) which are now embedded in their respective
general case counterparts.

6 Experimental Results

Table 2 presents analysis statistics for a set of five small Java programs, ma-
nipulating singly- or doubly-linked lists, executed on a 1.6 GHz Pentium-M,
512 Mb machine running Linux. This benchmark, along with approximate anal-
ysis statistics using the TVLA reference implementation on similar hardware,
were adopted from [2]. The results suggest several insights regarding the ef-
fectiveness of our framework. First, it is shown to converge significantly faster
than the reference implementation, ranging from a factor of 40 (using strict em-
bedding on a simple singly-linked list traversal) to a factor of 124 (using loose
embedding on a program which deletes an arbitrary element from a singly-
linked list). Although this kind of an improvement was expected—our analyzer
is restricted by construction and therefore better tweaked for performance—the
actual speed-up factor is quite encouraging. The time spent on abstraction re-
finement by our analyzer, ranging between 30-73% of the total analysis time,
suggests that our structure-based approach is relatively time effective compared
to the remaining operations. However, the fact that refinement takes a larger
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stats || reference specialized strict specialized loose
loc loop|| tot |mem||tot ave top|tot reflmem||tot ave top|tot refjmem
sll-loop 33 900{1000{{109 3.3 9| 20 6| 88| 59 1.8 4| 11 5| 72
sll-reverse|| 52 3000{2000{|226 4.4 9| 34 12| 188|104 2.0 4| 28 14| 129
sll-delete || 49 12400(3200]|485 9.9 48|202 59| 379(|215 4.4 20|100 44| 235
dll-loop 35 1400(1300((113 3.2 9| 27 18| 463|| 61 1.7 4| 19 11| 441
dll-pairs || 42 3000{2000{|191 4.6 15| 69 50| 896([105 2.5 8| 43 31| 846

NN W W

Table 2: Benchmark results for five Java programs processing singly- and
doubly-linked lists. Columns denote program statistics (number of CFG loca-
tions and loops), running statistics using TVLA (total analysis time and peak
memory consumption), and running statistics using the specialized framework
in strict and loose embedding mode (total, average, and top number of struc-
tures for a CFG node, analysis total and refinement times, and peak memory
consumption). Time is in miliseconds, memory is in kilobytes

portion in the doubly-linked list case suggests that it may not scale very well
as dependencies among predicates increase. Memory consumption is generally
lower than that of TVLA, but then again seems not as low in the heavier ab-
straction (doubly-linked list) as in the lighter abstraction (singly-linked list).
Yet this issue has not been the focus of our performance optimization—one ex-
ample is the use of dense vector representation of node (unary) and edge (binary)
attributes—and could probably be improved significantly in the future.

Second, the use of loose embedding appears quite effective in both deflat-
ing the number of structures—45-55% and 46-58% deflation in total and top
number of structures, respectively—as well as shortening total analysis time, by
17-50%. The case of sll-delete is particularly notable, as one of its loops may
terminate abruptly, allowing a greater number of abstract states to “escape”
and propagate to other CFG nodes. Here, the use of loose embedding seems to
bear the greatest gain in state set deflation, flattening peak number of states
from 48 to 20 and from 9.9 to 4.4 on average, consequently yielding a signifi-
cant drop in the running time of the analysis. Finally, it is worth mentioning
that the actual (graphical) results of an analysis using loose embedding are by
far more comprehensible—and therefore, more usable—compared to those of a
traditional (strict) analysis. We consider this a nice practical outcome, which
supports our view of the problem with strict embedding abstraction.

7 Related Work

This work shares common goals with a few other efforts, all aimed at improving
the scalability and applicability of shape analysis to practical uses. In two cases,
powerset heap abstractions were compressed into singleton sets [5] or partially
disjunctive sets [8] by means of merging (joining) predicates values and allowing
individuals to represent no concrete nodes, or merging structures bearing iso-
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morphic sets of individuals, respectively. Our loose embedding approach seems
to resemble the former to some extent, as both allow certain nodes to repre-
sent no concrete nodes, and use a relaxed notion of first-order quantification in
formulas. It also shares a similar approach to the latter, as both attempt to
reduce the number of structures describing “similar” cases based on some crite-
ria. Nonetheless, by carefully defining the notion of descriptive redundancy, and
by extending the notion of embedding relation—rather than overloading pred-
icates or joining structures—our approach has the advantage of not inducing
imprecision on surviving representative abstract states.

Other approaches deviate from 3-valued canonical abstraction and examine
the use of predicate abstraction for analyzing shape properties [9, 4]. While
such approaches were shown to yield precise and descriptive results, their con-
tribution to scalability of shape problems is in question due to the large number
of predicates required for sufficient precision.

As far as we know, our work is the first attempt to deploy practical structure-
based abstraction refinement, and may serve as a point of reference for future
efforts.

8 Conclusion

We described a new implementation of a 3-valued logic based shape analysis
tool which uses an effective structure-based approach for abstraction refinement,
and deflates abstract state sets using an alternate definition of abstract states
ordering. We applied it to a small set of benchmark programs, with encouraging
results, regarding both the effectiveness of the analysis framework, as well as the
successful restraining of powerset abstract states exhibited by the analysis. We
believe that the next step in this direction is to further extend and examine the
applicability of our analyzer to different (and more complex) heap structures
on the one hand, and to assess the usefulness of loose embedding for programs
of higher complexity in attempt to assert its expected advantages, on the other
hand.
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