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Abstract
Beneath the surface, software usually depends on com-
plex linker behaviour to work as intended. Even linking
hello_world.c is surprisingly involved, and systems soft-
ware such as libc and operating system kernels rely on a
host of linker features. But linking is poorly understood by
working programmers and has largely been neglected by
language researchers.

In this paper we survey the many use-cases that linkers
support and the poorly specified linker speak by which they
are controlled: metadata in object files, command-line op-
tions, and linker-script language. We provide the first val-
idated formalisation of a realistic executable and linkable
format (ELF), and capture aspects of the Application Binary
Interfaces for four mainstream platforms (AArch64, AMD64,
Power64, and x86). Using these, we develop an execut-
able specification of linking, covering (among other things)
enough to link small C programs (we use the example of
bzip2) into a correctly running executable. We provide our
specification in Lem and Isabelle/HOL forms. This is the first
formal specification of mainstream linking. We have used the
Isabelle/HOL version to prove a sample correctness property
for one case of AMD64 ABI relocation, demonstrating that
the specification supports formal proof, and as a first step to-
wards the much more ambitious goal of verified linking. Our
work should enable several novel strands of research, includ-
ing linker-aware verified compilation and program analysis,
and better languages for controlling linking.

1. Introduction
Programming language research focusses largely on the
source-language semantics of programs and their compilation
to machine code, as do the vast majority of programmers.
But, beneath the surface, much real code crucially depends
on complex linker behaviour to work as intended: as we shall
see, even statically linking a small C program with a C library
turns out to be an involved process and remarkably subtle.
Unlike compilation, the linking process remains largely
invisible and poorly studied, for programmers and researchers
alike.

Consider, for example, the familiar C malloc() and calloc()
functions in Fig. 1, abstracted from their GNU C library
implementation. What does this code do? Looking just at

void∗ _int_malloc(mstate av, size_t bytes)
{ ... }

void∗ __libc_malloc(size_t bytes)
{ ...

void ∗mem = _int_malloc(av, sz);
...

}
void∗ __libc_calloc(size_t bytes)

{ ...
void ∗mem = _int_malloc(av, sz);
...

}
strong_alias (__libc_malloc, __malloc)
strong_alias (__libc_malloc, malloc)
strong_alias (__libc_calloc, __calloc)
weak_alias (__libc_calloc, calloc )

Figure 1. Outline of the GNU C library’s malloc and calloc

the function definitions from a C-language point of view, it
‘obviously’ implements __libc_malloc and __libc_calloc
using a third internal helper function _int_malloc(). But this
is not actually true: those two functions are not guaranteed to
always call the helper as defined in this file. Then C has no
notion of aliases, but the code depends on these for defining
malloc and calloc. What happens if the user supplies their
own malloc, as many programs do? What other definitions
does the file export?

Conventional source-language semantics do not attempt
to address these questions. In practice linker features are used
to control name binding and symbol visibility, among many
other things. Many tools and libraries rely on the ability to
replace or interpose on bindings. This is not a fringe issue: a
significant fraction of real codebases rely on linker features
to realise their intended semantics. For codebases lower
in the stack, this is obvious: a typical Unix system kernel
(e.g. Linux) and core libraries (e.g. glibc) make considerable
use of such features. Surprisingly many user-level codebases
also use a ‘long tail’ of linker features: it is common for
mature libraries to use symbol versioning; many codebases
selectively replace library functions like malloc; applications
often ship wrapper scripts which play tricks with dynamic
linking before executing their main binary; and so on. To
say anything about the correctness of these binaries requires
understanding linking in detail.
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In other words, much software is not written merely in a
programming language like C, but also in ‘linker speak’—our
term for the collection of languages by which the linker is in-
voked and controlled. These include the linker command-line,
metadata contained within object files, assembler and com-
piler directives that generate that, and in fact an entire script
language used exclusively by the linker. Linker-speak is cur-
rently specified haphazardly or not at all. As a result it is often
used often in unportable or fragile ways, often without de-
veloper understanding, if even correctly. Linkers are seldom
well-tested, and for many purposes, the implementation is its
own oracle: unlucky developers grappling with corner-case
behaviour must simply work with (or around) the linker’s
observed behaviour. Both users and implementers lack any
recourse to a reference, standard or specification.

The few existing texts, most recently by Levine [22],
explain the core mechanisms in detail but say little about
the programmer-facing features of modern linkers.

The challenge of verified toolchains makes these problems
even more acute: existing approaches to verified compilation
typically do not address linking at all, or address only the
aspects of linking that can be understood in terms of a
conventional source-language semantics. Previous semantic
work on linking has studied it only in a highly idealised
form. But truly accounting for linking must rest on accurate
modelling of a large, usable subset of its features.

In this paper, we describe the first detailed, accurate formal
semantics for linking. Our semantics covers a large fraction
of contemporary Unix linker features, and tightly models the
behaviour of widely-used existing linkers on realistic link
jobs. Our research contributions are as follows.

• We review and clarify the roles played by linking and load-
ing in mainstream systems, emphasising how linkers are not
merely concerned with separate compilation, but rather that
‘linker-speak’ has real semantic effects. Linkers complement
and supplement programming languages, offering features
such as memory layout control, versioning and interposition
that are not exposed by programming languages.
• As a foundation for the semantics of linking on modern
Unix platforms, we describe a complete, validated model
of the Executable and Linkable (ELF) binary file format as
it is really used—derived from the System V ABI specific-
ation [37], as extended by four platform ABIs for popular
commodity microprocessor families (AARCH64, AMD64,
IA32 and Power64), and additionally incorporating various
extensions, notably the widely-used GNU extensions. We
validate this by testing on 7054 binaries found in the wild.
To our knowledge this is the first formal model of a realistic
and widely-used linking and executable format, and the first
formal elucidation of components of the platform ABI. It
can be (and already has been) used as a front-end for other
tools that need to read in ELF files, e.g. [10, 14].
• Using this model, we describe an executable specification
of static linking of ELF binaries. This includes the link-time

semantics for a large fraction of ELF features, together with
the linker command line and the embedded script language
that controls linker operation. It is sufficiently complete to
statically link small C programs against a real (large) C
library, covering a broad range of features.
• We demonstrate that our definitions are suitable for use
in formal proof by using an Isabelle/HOL extraction of our
model to prove a simple but nontrivial correctness property
of AMD64 relocation. Further, we provide termination
proofs (around 1500 lines of Isabelle/HOL source) for all
functions used internally by the linker and the ELF model,
obtaining a guarantee that our linker terminates on all inputs.
We believe that these proofs are the first formal proofs of a
property related to any aspect of ‘realistic’ linking.

Our models of ELF files and of static linking are expressed
as pure functional specifications in Lem [27], which we use
to generate both executable OCaml code and theorem-prover
definitions for reasoning. The termination and relocation
proofs mentioned above use a complete Isabelle/HOL version
of our definitions, comprising 33 500 lines of commented Isa-
belle source, and these proofs demonstrate the suitability of
our definitions for use in formal proof. Larger developments
may (as usual) require reformulating some of the definitions
for ease of proof. Our Lem source and theorem-prover defini-
tions are in the supplementary material.

Our ultimate aim is for a specification that can be used in
many modes: as an actual linker producing working output;
as a concise and highly readable reference implementation
capturing the semantics of linking and ELF; as an input to
proof-assistant mechanised reasoning about linking, and as a
basis for empirical testing of linkers. More needs to be done
in all these directions, but this work may already be of use to
four quite disparate communities:
• developers of new or existing linkers, who may use our
model as a trusted external test oracle, both for link correct-
ness and some aspects of ABI compliance.
• authors of certified compilers (e.g. [1, 20, 21, 38]) inter-
ested in producing ABI-compliant linkable ELF binaries,
extending their source languages with elements of linker-
speak, or creating a trustworthy link checker. Current efforts
at checking the host linker’s output, such as CompCert’s
cchecklink, lack a detailed model of the linker’s actions, so
cannot check that the linker has not inserted malicious extra
content—which might even take the form of metadata rather
than instructions [33].
• designers of source-level verification tools built atop the
formal guarantees programming language standards and cer-
tified compilers provide. As our opening example showed,
linking is able not only to refine but to override source-level
semantics, so source-level reasoning alone is not sound un-
less augmented with knowledge of linker features—that our
semantics can provide.
• researchers seeking to improve languages and toolchains,
particularly for systems code: such work must somehow
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accommodate the various roles of linker-speak, whether by
embracing it as it currently exists, or by replacing it.

Our ELF specification, linker implementation, and Isa-
belle/HOL theories are freely available from a public Bit-
Bucket repository.1 For reviewing, all of our anonymised
resources have been available as supplementary material.

2. Background
We focus on linking in System V-derived Unix environments.
These include modern GNU/Linux and BSD variant environ-
ments. The de facto standard executable and linkable format
in this environment is ELF, the Executable and Linkable
Format. Microsoft Windows and Apple Mac OS (Darwin) ex-
hibit broadly similar feature sets, each with analogous formats
and mechanisms, but System V is generally a superset of both.
We follow Gingell et al. [12] in referring to the Unix linker
command ld as the batch linker.

A batch linker takes multiple modules of relocatable
object code as input. These may be in the form of .o files, or
groups of .o files bundled as ‘archives’ in a .a file. As output, a
batch linker produces a single ‘linked’ binary. These binaries
are usually executables and embody the input modules. The
main work of the linker is to select and combine the necessary
inputs, to organise them into a single logical memory image,
and to concretise the symbolic references between them
(encoded as metadata in the input files) into bit-patterns in
the output binary.

Object files consist principally of sections, symbols, and
relocations. Sections are chunks of bytes (code or data),
treated as indivisible units by the linker: they may be moved
or combined, but not broken apart. Symbols give names
to particular positions within a section usually reflecting
the source-level definition they represent. In an input file,
a symbol may be recorded as undefined, meaning that the
object file references it, but it does not exist in that file.

Individual references are represented by relocation re-
cords, sometimes called ‘fixups’. These record that a range of
bytes within some section must be ‘fixed up’ to point to the
intended referent, denoted by a symbol. Before linking these
bytes hold a placeholder value generated by the compiler,
whilst after linking, they hold the encoded address of the
referent. Relocations are tied closely to the encoding of in-
structions, and each relocation record selects an architecture-
specific type of relocation, or calculation for fixing up the
bytes. This calculation varies according to the architecture’s
addressing modes, address field widths, and particular choice
of pointer encodings.

A completely self-contained output binary is said to be
‘statically linked’. Modern batch linkers allow some bindings
to be deferred until a later dynamic linking step. These
references are represented as relocation records and symbol
metadata in the output binary, much like in the input files.

1 URL removed for double-blind reviewing.

The main purpose of dynamic linking is to support shared
libraries which enable code to be shared between multiple
processes at run time, thus saving memory. Shared library
binaries themselves are also produced by the batch linker,
and internally are not much different from executables.

Having composed a memory image out of its inputs, and
applied relocations, the linker finally outputs a serialised form
of this memory image into the output binary, such that it can
be re-created by the loader. A modern Unix typically contains
two loaders: one in the kernel, used for statically linked
binaries, and one in user-space used for dynamic linking
(ld.so). Concretely, any given ELF file provides one of two
views: the linkable view, where the file is partitioned into
sections as described above, and the loadable view, where
files are partitioned into segments. It is these segments that
are collated and mapped into memory by the loader to create
an executable process image.

The relationship between linker features and programming
language features is complex. Many languages are said to
have a ‘module system’, having certain features correspond-
ing to those of a linker. Although we mostly save discussion
of this correspondence for later (see §8) it is worth remarking
that while a typical module system provides mechanisms deal-
ing in both abstract and concrete modules, linking is entirely
concrete. Linkers have no notion of module instantiation, nor
of parameterisation; they focus only on the interconnection of
concrete modules. As we will see, this still encompasses a sur-
prising variety of features, many of which have no analogue
in language module systems.

The disparate and patchy specification of linking and its
associated formats has posed a particular challenge for us
in this work. Focussing first on the ELF format, a skeleton
definition of the ELF file format is provided in the System
V ABI [37], and using this specification enough structure
is defined to properly parse and serialise ELF files to and
from disk. However, to interpret the contents of a file more
detail is needed, and architecture-specific supplements to
the core specification are provided for each microprocessor
family. These supplementary documents may complement,
override, or fill in detail entirely missing from the core ELF
specification.

Operating systems may also augment the format with their
own extensions, specifying new file components that they
may interpret or expect. For example, many Linux ELF bin-
aries contain GNU extensions. These augment the standard
ELF file format, detailing new structural elements that the
operating system can interpret or will expect. Some of these
extensions are collated in a document called the Linux Stand-
ard Base (‘LSB’) [23], though many are either documented
informally in mailing list messages or not documented at all.

To capture enough of the structure of ELF files executed
‘in the wild’, the core specification along with microprocessor-
and operating system-specific supplementary material must
all be taken into account. We note here, however, that in
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practice there is no clean separation of the latter two sets
of supplementary material. For example, the AMD64 ABI
explicitly makes reference to GNU-specific extensions (see
§4.2 of [25]).

Linking itself is also poorly specified, and ironically Unix
linking has become less well specified over time. System
V Unix’s documentation included a detailed description of
the linker, but this was removed when the ELF format was
introduced (in revision four), leaving only a manual page. The
POSIX Standard [15] even omits this, instead stating that its
C and Fortran compilers ‘conceptually consist of a compiler
and link editor’. Although successive linkers, notably the
GNU linker, offer fairly detailed manuals, these are hardly
normative and omit many details.

3. Understanding linking
Linking is used to implement separate compilation of lan-
guages including C, C++, Fortran, Ada, Objective-C, and
many others. If linking were only about separate compil-
ation, it would have a natural specification in terms of these
languages’ source program semantics. Previous formal mod-
els of linking [5, 9, 13, 24, 40] have worked along these lines,
seeking to provide a formal basis for separate compilation
with verified safety properties. Previous research on linking in
the context of verified compilation [17, 35] has done likewise.

However, linking is not simply a matter of separate com-
pilation. Systems code and application code alike use linker
features to achieve effects that are unrelated to separate com-
pilation, which mostly cannot be expressed in the relevant
source language(s), and which, in some cases, actively break
the naive semantics of the source language. In this section we
survey these features.

3.1 Linker-speak overview
Linker-speak consists of a collection of notations, which
collectively can be thought of as a separate programming
language in which part of every compiled system is expressed.
We survey various examples shortly; in brief, the notations
break down as follows.

Arguments —these are command-line options supplied
when invoking the linker. In the case of dynamic linking,
environment variables serve the analogous purpose.

Scripts —most batch linkers embed a script language, used
pervasively. Although programmers rarely see it, every
link job is controlled by a unique ‘control’ script, consist-
ing mostly of rules such as

.data : { ∗(.data .data.∗) }

which says that the output .data section should consist of
the concatenation of all input files’ sections with name
.data or matching wildcard .data.*. The language also
includes arithmetic and some forms of conditional (but no
recursion or unbounded looping). The user may supply
their own script, overriding the built-in default. Link jobs

may also include extra ‘implicit’ scripts, supplied on the
command line as if they were object files. These are
written in a subset of the same command language, and
are typically defining symbols and/or sections in a textual
rather than binary notation, effectively as ‘proxy’ object
files.

Metadata —object files contain symbols, sections, reloca-
tion records and other metadata, on which link semantics
crucially depend. Many of these object file features have
corresponding forms in assemblers (‘directives’ or pseudo-
ops) and compilers (attributes), allowing the programmer
to control the metadata in the assembled or compiled ob-
ject file.

Our work provides a formal specification of large subsets
of all of these notations. Specifically, we focus on the linker-
speak of the AT&T System V linker and its descendents. In
the following, any linker options or script syntax refer to that
accepted by the GNU BFD linker (still the default on both
GNU/Linux and BSD environments, and modelled on the
AT&T System V linker).

3.2 Linker-speak use-cases
Memory placement Systems code often needs to reside
at particular places in memory. For example, typical Unix
kernels occupy the higher portion of the address space. This is
specified by a combination of linker scripts and section name
attributes. A compiler or assembler exposes a mechanism for
definitions to be placed in named sections, while the linker
script allows sections to be assigned to addresses, and/or to
be ordered relative to one another. For example, on the PA-
RISC architecture, Linux uses the following linker script to
enforce a particular relative ordering of page table data. C
structure layout cannot be used, because the definitions must
be addressable symbolically from assembly as well as from
C. In C they are declared with section attributes:

pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((
__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));

and the sections are then placed appropriately by the linker
script.

/∗ Put page table entries (swapper_pg_dir) as the first thing
∗ in .bss . This will ensure that it has .bss alignment (PAGE_SIZE).
∗/

. = ALIGN(bss_align);

.bss : AT(ADDR(.bss) − LOAD_OFFSET) {
∗(.data .. vm0.pmd)
∗(.data .. vm0.pgd)
∗(.data .. vm0.pte)
∗(.bss .. page_aligned)
∗(.dynbss)
∗(.bss)
∗(COMMON)

}

Memory placement is not expressible in source languages,
but code often depends on it—for example, on some archi-
tectures, kernels recognise their own addresses by testing
whether they encode a negative signed value. Control of
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memory placement may also be used for optimisation, to
improve spatial locality [29].

Encapsulation Hiding implementation details is often
achieved using linker features. Source-language encapsu-
lation features, such as C’s static modifier, map directly
to linker features, such as ELF’s local symbols. However,
linkers expose at least three other encapsulation facilities
that are not supported in this way: (1) ELF symbol visibility
attributes, allowing names to be scoped at the coarser granu-
larity of dynamically-linked binaries (instead of single object
files); (2) archives, since inclusion in an archive restricts an
object’s visibility to other modules in the link; (3) dynamic ex-
port control (--export-dynamic), which determines which
definitions are available for binding or interposition by the
dynamic linker. In addition to the linker command line, com-
piler options (such as gcc’s -fvisibility=hidden) can hide
more definitions by default, lessening a library’s dynamic
linking overheads (Drepper [8] advises using it as a matter
of course). Unfortunately -fvisibility=hidden breaks the
source semantics of C++ code if it throws exceptions out of
the library.2 In general, linker features operate neither wholly
above nor wholly below the language level; their use may
affect both user code and language implementation intern-
als. At present, using them correctly requires developers to
understand both.

Build-time substitution Link-time mechanisms may be
used to substitute one definition for another. ELF linking is
designed expressly to allow this. For example, the semantics
of archives are such that a C program may supply its own
malloc.o while still linking with the remainder of the C lib-
rary archive (libc.a). Indeed, it is a common performance
optimisation to supply a malloc() implementation tailored to
the program’s allocation behaviour. Multiple definitions in
.o files are generally not allowed. A linker option (such as
-z muldefs) can relax this rule, causing earlier definitions
(leftmost in command-line order) to take precedence over
later ones. Multiple definitions are also allowed if all are
marked ‘weak’; an ordinary (strong) definition takes preced-
ence, but otherwise the first weak definition is chosen. (We
will see uses of weak symbols shortly, under ‘optionality’ and
‘topology alternatives’.)

Load-time substitution (‘overriding’) Dynamic linkers of-
fer another substitution feature: LD_PRELOAD. This envir-
onment variable can supply a named library, whose defini-
tions take precedence over those in all other libraries (but
not those in the executable). For example, it can be used to
supply a new malloc at load time, which will be used ahead
of the malloc in libc.so, but not ahead of any malloc() in the
executable. Using LD_PRELOAD requires brittle assump-
tions about how the rest of the program is linked (e.g. here
that it dynamically links against malloc()). This is because in

2 This is documented at https://gcc.gnu.org/wiki/Visibility as re-
trieved on 2015/11/19.

general, the split between what is statically linked and what is
dynamically linked is an implementation detail of the library.
Even if the program appears to be linked dynamically against
a library, say libc.so, that library’s developer retains the op-
tion to link certain content statically. The GNU C library’s
libc.so exploits this to link its stat() implementation static-
ally (essentially to work around possible changes to the stat
structure layout). This is achieved by having libc.so be the
following linker script, which acts as a proxy pulling in both
the real shared object and an archive defining stat. (It also
pulls in the dynamic linker, which supplies some definitions
logically belonging to the C library.)
OUTPUT_FORMAT(elf64−x86−64)
GROUP ( /lib/x86_64−linux−gnu/libc.so.6
/usr/ lib /x86_64−linux−gnu/libc_nonshared.a
AS_NEEDED ( /lib/x86_64−linux−gnu/ld−linux−x86−64.so.2 ) )

A side-effect is that LD_PRELOAD substitution of stat() is
not possible. A similar side-effect occurs when using linker
options to force early binding within libraries (-Bsymbolic)—
usually motivated by the performance gained by avoiding
indirection.

Interposition Interposition can be thought of as substitu-
tion where the prior definition is re-used by the substituted
one—typically for instrumentation. LD_PRELOAD can be
used for this too: the preloaded instrumentation can deleg-
ate to the original implementation by looking it up using
dlsym(). An allocation profiler for programs dynamically
linking against malloc could use this technique.3 However, a
program batch-linking its own malloc.o would require a dif-
ferent mechanism: the linker’s --wrap option. Linking with
--wrap malloc redirects malloc to __wrap_malloc, which
may call __real_malloc to reach the original definition. The
semantics of --wrap are subtle: it affects only references to
undefined symbols. This means references within the defining
file (say, a call from calloc() to malloc()) are not redirec-
ted. (Strictly this depends on the compiler, which is free to
separate the definition from the reference, if it chooses.) In
general, the user-facing semantics of features like --wrap

depend on how the compiler/assembler has mapped source-
level definitions and references onto linker-level sections,
symbols and relocation records—itself perhaps a function of
compiler/assembler options, source-level attributes, internal
implementation decisions, and so on.

Optionality Weak symbols allow codebases to reference op-
tional features. Unresolved weak symbols are specified to
take the value 0, so the absence of a definition can be identi-
fied by a null pointer test. In practice, code like the following
(from the GNU C library’s freopen()) is commonplace.
if (&_IO_stdin_used == NULL)
{
/∗ do something ... ∗/

}
else /∗ ... ∗/

3 Using this for malloc() is particularly tricky because a typical dlsym()
implementation itself calls malloc(), setting up infinite regress.
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According to the C11 standard, the address-of operator
always returns a pointer to an object or function (§6.5.3.2
pt 3), which is necessarily distinct from the null pointer
(§6.3.2.3 pt 3). However, in order to exploit weak symbols,
real implementations cannot assume this.

Uniqueness and deduplication Some programs depend on
global uniqueness properties. For example, in C++, two point-
ers to the same function must always compare equal. When
header files include inlineable functions that are address-
taken, implementing this becomes difficult because the out-
of-line code is repeated in multiple compiler outputs. This is
solved by using linker features to deduplicate these multiple
copies, ensuring a unique definition. Modern ELF versions
support this using section groups4; sections are grouped by a
tag string, and all but one of the group is discarded. Link-time
uniqueness is a useful mechanism, allowing the the optim-
isation of replacing value equality (of immutable objects)
with pointer equality, and is exploited by some user-level
libraries [18] as well as by compilers.

Aliases In most programming languages, a definition has
exactly one name. At link time, however, the same range
of bytes may have multiple symbol names, each denoting
the same address but with different metadata. Compilers
typically expose this functionality using attributes. In our
opening example, the same function has names malloc and
__libc_malloc, thanks to the strong_alias macros expand-
ing to alias("malloc"). (We will elaborate on this use of
aliases shortly, in ‘topology alternatives’.) Attributes often
encode details crucial to a program’s intended meaning, but
without a rigorous specification of linker features, are prone
to miscompilation. We encountered a bug in the CIL [28] C
translator, which implements the alias attribute incorrectly
by duplicating the function body in a separate definition, vi-
olating the intended property that all aliases have the same
address. CIL cannot compile a working glibc for this reason
(among others).

Topology alternatives Aliases are often combined with
substitution, visibility and optionality (weak) features to yield
output objects which form different link graphs in different
link contexts. The GNU C library’s fprintf() implementation
exhibits this (shown after preprocessing and lightly edited).
/∗ Write formatted output to STREAM from the format string FORMAT.
∗/
/∗ VARARGS2 ∗/
int
__fprintf (FILE ∗stream, const char ∗format, ...)
{
/∗ snip ∗/

}
extern __typeof (__fprintf) fprintf __attribute__ ((alias ("__fprintf")));
/∗ We define the function with the real name here. But deep down in

libio the original function _IO_fprintf is also needed. So make
an alias . ∗/

extern __typeof (__fprintf) _IO_fprintf __attribute__ ((weak,
alias ("__fprintf")));

4 . . . although it is sometimes called ‘link once’, after an earlier GNU
extension, or ‘COMDAT’ after the equivalent Windows linker feature.

The effect of the two aliases is that local code which wants
to be sure of calling the local definition (perhaps because
it consumes private state, or just to avoid the overhead of
calling to an object further away) can use the name __fprintf.
The standard name fprintf is also provided; if a substitute is
provided by the user (much like the malloc substitution we
considered earlier), this will not affect local calls to __fprintf.
Similarly, the alias _IO_fprintf is defined for use by the libio
subsystem: depending on the build, this may or may not
supply its own definition, so this alias is made weak.

Introspection Linker features are used to allow programs
to introspect on their own structure. The end, etext and
edata symbols allow programs to test whether a pointer
falls within the executable’s data or text segments. This is
used variously in profiling code, garbage collectors, other
dynamic analyses, diagnostic pretty-printing (e.g. printing a
pointer-to-data differently from a pointer-to-text) and so on.
Dynamic linkers offer a richer interface in terms of dlsym()
(name-to-address) and dladdr() (address-to-name) functions.
Some systems code relies on the ability to introspect its own
structure, often during initialization. The GNU C library’s
static-linking initializers use specially placed symbols to
initialize a table at start-up. For similar reasons, the Linux
kernel makes use of a GNU linker extension in which certain
sections are automatically given marker symbols.

Versioning Shared libraries must allow old clients to be
executed against a newer library binary. To prevent interface
changes from breaking old clients, modern dynamic linkers
support symbol versioning—allowing multiple versions of
an interface to be exposed by a single backward-compatible
binary. The linker script language and assembler pseudo-
operations have extensions to support versioning, while
versioning interacts with introspection: symbol names are
no longer enough to identify a unique definition, so to avoid
ambiguity, symbol versions must be supplied (using the
dlvsym() call).

3.3 Higher-layer conventions
Compilers and libraries use the linker features to achieve
common ends by adopting common conventions. Specific
languages often define per-platform ABI conventions to
allow different implementations to interoperate. We call this
federated compilation, as a strictly stronger requirement than
separate compilation. The linker neither knows nor enforces
these conventions, so a specification of linking per se needn’t
concern itself with them. However, the same arguments
motivate a formal specification for them much as for linker-
speak. Some specific aspects are as follows.

Code and data conventions ABIs specify calling conven-
tions and some aspects of data representation typically in
terms of the C language. This includes representations for
integers and pointers. A C++ ABI specifies how this must be
extended for C++.
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Name mangling ELF symbol names are arbitrary se-
quences of non-zero bytes, so can include any source-
language identifier. However, most language implementa-
tions restrict symbols to the narrower set of names accepted
by the assembler. C identifiers fall within this set by design,
but C++ names include punctuation such as ‘::’, which is
not assembler-friendly, explaining why C++ ABIs define a
name-mangling scheme.

Code models Code models are conventions about how near
or far a given definition might lie from a reference to it. Com-
pilers allow a code model to be selected on the command line,
and uses it to choose among the allowable addressing modes
during instruction selection. Mismatched code models cause
link errors, caused by overflow in a relocated field (a refer-
encing instruction unable to reach its referent). Code models
also define mechanisms to achieve position independence of
shared libraries—meaning the code can run at any address
without fixup, entailing it may be shared across multiple pro-
cesses at different mapping addresses.5 Although the linker is
oblivious to the details of these models, it is responsible for
generating certain support structures they require, based on
the relocations present in the input. We will see more detail
in §5.2.

3.4 Perspectives
Faced with the task of placing these complex features on a
semantically firmer footing, several reactions are possible.
Here we state some perspectives on this.

A long tail of features Linker features can be viewed as
a ‘long tail’: there are many, realising many disparate use
cases, none is substantially more important than any other,
but amounting to a considerable total. This contrasts with the
usual idealised view of linking as merely a mechanism for
separate compilation, where one would expect that all require-
ments could be met with a simple, compositional model made
up of relatively few concepts. The many disparate linker fea-
tures we have seen are united by (only) two properties: they
make sense only when multiple modules are brought together,
and putting them within one language implementation or an-
other would be suboptimal for reasons of both duplication (if
every language implementation provided its own mechanism)
and fragmentation (since each would doubtless realise these
features differently). It is therefore not appropriate to regard
linker complexity as mere ‘feature creep’ to be swept away by
some elegant new design; somehow, in a practical toolchain,
the long tail of disparate requirements must be catered for.

Sticking with current designs Even accepting this long-tail
property, designing new linker mechanisms and languages
remains appealing, especially with the usual language re-
searcher’s aims of being more expressive, more composi-

5 It says nothing about whether the code’s semantics depend on its load
address; position-independent code is perfectly well able to introspect its
own load address, or more generally, to branch on pointers.

tional, and so on. However, the value of any new design is
predicated on achieving uptake, which is a tall order given
the value practitioners place on compatibility and familiarity.
The alternative is to take current behaviour as a given, and
formalise it as-is. Although deliberately limiting, this has
the greatest potential to yield high-assurance linkers that can
actually be used in practice, so is the approach we adopt. For-
tunately, as we will see, the effort involved is not intractably
huge.

4. The model: ELF
Our ELF model provides types describing the concrete struc-
ture of an ELF file on disk along with more abstract types
for ease of manipulation of a file’s contents. Functions for
parsing and blitting files to lists of bytes and for interpreting
the structural elements of a file are provided. For example,
functions are provided for the decoding of the section header
string table, or producing a containment mapping of sections
in segments. Platform-specific logic is kept separate from the
main body of the formalisation via the use of higher-order
functions, with ABI- or GNU-specific logic handled by func-
tion arguments. The formalisation consists of 9 500 lines
of commented Lem code for core ELF, with approximately
2 000 lines for the GNU extensions and 4 000 lines for the
AARCH64, AMD64, IA32 and Power64 platform ABIs.

The ELF model is currently used by ppcmem2 [10, 14],
a tool for exploring relaxed-memory behaviour on IBM
POWER and ARMv8. It is used to extract an executable
process image and the initial values of global variabes from
binaries, generating an initial machine state for the emulator.

4.1 Validation
We validated our model against a wide-range of ELF execut-
able and linkable binaries on multiple machine architectures.
Validation was conducted using two widely-deployed and ma-
ture GNU tools—hexdump and readelf—as trusted oracles
against a set of validation binaries. On AARCH64, AMD64,
IA32 and Power64 we tested against 576, 1650, 3222, and
1606 binaries, respectively—7054 in total, obtained from
/usr/bin and /usr/lib on typical Linux distributions for
the latter three platforms, and the contents of /system/bin
and /system/lib of an Android 5.1.1 smartphone for ARM.

Using our model we wrote a tool that emulated a subset
of readelf’s functionality. Using an automated diff tool,
the output of the real readelf was compared with the out-
put of our tool on the validation binaries, testing the parsing
and decoding of the file-header, section header table, pro-
gram header table, dynamic section, relocation sections, and
symbol and string tables.

Using hexdump, a ‘roundtripping’ property of the pars-
ing and blitting functions was also validated, ensuring that
parsing and then immediately blitting a binary preserved byte-
for-byte compatibility with the original file. This requires the
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tracking of ‘dead’ data in between the structural elements of
a file to ensure that the byte-for-byte condition holds.

Validating the model against binaries found ‘in the wild’
on real machines revealed many sources of incompleteness in
the various source specification documents. For example,
constructions relating to the ELF prelinker, such as the
dynamic section type DT_GNU_PRELINKED are found in a large
number of deployed ELF binaries, yet are not mentioned in
any specification document, being mentioned only in passing
in mailing list messages (see e.g. [16]), and prior to validation
were unknown to us.

One of our aims with this work is to create a comprehens-
ive, validated set of definitions suitable for software verifica-
tion purposes, serving as a foundation for further work in the
area. Toward this end we have extracted Isabelle/HOL theory
files from our Lem source model and provided hand-written
termination proofs for recursive functions in the ELF model
and in the linker that sits atop this model, gaining a guarantee
that our linker terminates on all inputs (the linker is described
in the next section, §5). This Isabelle/HOL code has been
used in an experiment with formal proof, described in §6.

Whilst we prefer to use Isabelle/HOL, we are aware that
the formal methods community has not come to a consensus
on a single theorem proving environment to work with, and
other researchers may wish to use Coq, or HOL4, or another
system, when working with our definitions. HOL4 and Coq
theories, extracted from our Lem model, are therefore also in
preparation and will be made available when ready.

We started experimenting with Isabelle/HOL extractions
of our Lem model quite early in the development process,
and our use of formal proof was a key component in the
validation process of the ELF model. In particular, many low-
level bugs in the ELF formalisation were discovered not by
the testing-based validation process described above, but by
failed proof attempts. For example, an incorrect byte-ordering
in the parsing functions for eight-byte types used by the ELF
format was discovered due to a failed proof attempt when
using an early version of our Isabelle/HOL extraction.

5. The model: linking
Building on this formalisation of ELF, we can now formalise
the operation of a linker and relevant linker-speak features.
We focus on static linking of executables in this paper.

5.1 Overview
Our formalisation takes the form of an executable specific-
ation that can operate as both a linker and a link checker. It
is designed around the abstraction of memory images and
associated annotation metadata. Linking is expressed as a
transformation of memory images. Each input ELF file is
represented abstractly as a partial memory image, consist-
ing of collection of elements, mostly mirroring ELF sections.
Byte ranges within elements are labelled with metadata tags,
mostly mirroring ELF metadata such as symbols, relocations,

and section properties. At the end of the linking process, a
single memory image is assembled, which is transformed
back into an ELF file.

The specification is invoked the same way as the emulated
linker, supporting the same command-line options. To use
it as a link checker, it is run with a pre-existing output file
(named with -o, as usual), whose memory image is checked
against the one produced by the specification. Incidental
details of the input ELF file, such as the ordering of ELF
symbols or section headers, not significant; only the memory
image, in terms of contents and addresses, is significant.

Checking is complicated by the surprising amount of non-
deterministic choice, or ‘looseness’, available to the linker.
The very simplest link jobs are entirely deterministic, but
many linker features introduce opportunity for per-linker vari-
ation. At present, the variation must be captured explicitly
in the specification as ‘personality functions’: the core spe-
cification is factored so that each kind of nondeterminism is
resolved by a separate function, allowing emulation of differ-
ent linkers. Linker personalities are complex. At present, our
specification includes a single personality, based on the GNU
BFD and gold linkers, but we have uncovered certain bugs
and complications which prevent it from precisely emulating
either one. For example, even with optimisations and relax-
ations disabled, the GNU linker sometimes rewrites instruc-
tions in the input binaries—a divergence our memory-image
check (correctly) flags up. For this reason, realistically-sized
link jobs (e.g. those including a C library) currently do not
pass the checker. Modelling the GNU linker’s optimisations
in greater detail, including allowing personality functions to
rewrite instructions, would address this. We discuss further
‘loose’ aspects of linker behaviour in §5.3.

The notion of memory images generalises to symbolic
memory images, in which each memory image element’s
address and content may be expressed in terms of symbolic
variables and unordered concatenations of fragments, rather
than precise addresses and bytes. This approach potentially
allows a family of possible links to proceed at once, accom-
modating the looseness inherent in checking for ‘any valid
link’ without the need for a precise specification of person-
ality. Designing such a symbolic representation, and finding
efficient ways to test its satisfiability, is a complex problem
which our ongoing work is addressing.

5.2 Linking bzip2

In the C programming language, a simple program such as
‘hello, world!’ exercises very few features of the language,
and can be compiled even by a toy compiler. However, for
a linker, even the smallest C program amounts to a complex
job, since it links with the C library—one of the most com-
plex libraries on the system, in terms of the linker features
it exercises. Our model can currently cope with the large
link jobs that arise from linking small but real (non-toy) C
programs. In this section we outline what happens when such
a C program, bzip2, compiled with gcc for x86-64, is linked
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let command_line_table = [
(["−o"; "−−output"], (["FILE"], []), fun args −> set_or_replace_opt (OutputFilename(head (fst args))), "Set output file name");
(["−Bsymbolic−functions"], ([], []), fun args −> set_or_replace_opt (BindFunctionsEarly), "Bind global function references locally ");
(["−Ttext−segment"], (["ADDR"], []), fun args −> set_or_replace_opt (TextStart(parse_addr (head (fst args)))), "Text segment address");
(["−("; "−−start−group"], ([], []), fun _ −> (fun state −> start_group state), "Start a group");
(["−)"; "−−end−group"], ([], []), fun _ −> (fun state −> end_group state), "End a group");
(∗ ... ∗) ]

Figure 2. Excerpt from the specification of GNU linker command-line options

against uClibc6, a fully-featured C library slightly simpler
than the standard GNU C library (and avoiding a GNU exten-
sion, IRELATIVE relocations, currently preventing our model
from using glibc; support is in progress). Our formalisation
captures (executably) each of the steps described.

Parse command line This stage is responsible for identify-
ing input files and link options. Our link command, slightly
simplified to omit directory names and library path lookups,
is as follows.

ld -m elf_x86_64 -static -o bzip2 crt1.o crti.o crtbeginT.o \
blocksort.o bzip2.o bzlib.o compress.o crctable.o \
decompress.o huffman.o randtable.o \
libm.a -( libgcc.a libgcc_eh.a libc.a -) crtend.o crtn.o

Only the .o files on the middle two lines came from
compiling the program; those above and below are supplied
by the compiler (libgcc.a, crt{1,i,n}.o) and C library (libc.a,
crt{beginT,end}.o). Other options are modifiers; some apply
to the whole link (like -m elf_x86_64, selecting x86-64
output) while the rest affect only the input files that follow
them, or until negated: here -( is negated by -).7 These
bracket options set up ‘groups’ of archives, affecting symbol
resolution semantics: groups permit cyclic references among
archives, while normally archives can only be referenced
by objects appearing to their right. Some options may be
meaningfully repeated (such as --defsym name=expr, which
defines a new symbol). The command line is formalised as
an interpreter, whose state is the collection of input files and
currently active modifiers. A list of option definitions defines
the next-state function: this list (see Fig. 2) resembles the
linker’s --help text, but supplies each option’s semantics
as a function from state to state. Complex options such as
--push-state exist, requiring that a state include both a
current value and a stack of previously saved values.

Resolve symbols to objects Although ‘only’ 17 files appear
in the command, the four archives contain a total of 1095
objects, in addition to the 13 objects named directly. To
discard those that are unneeded, the linker next resolves
symbol references between all 1108 objects. The semantics
of symbol resolution are complex, as we noted regarding the
treatment of archives and groups. Our semantics is factored
into an ‘eligibility predicate’ answering whether a given

6 http://uclibc.org/
7 Confusingly, -static is also of this kind: if any -lX options preceded it,
the libraries they denote might be linked dynamically, meaning the output
would not be a (fully) statically linked binary.

let def_is_eligible = (fun (∗ ... ∗) −>
let (∗ snip more supporting definitions ... ∗)
in
let ref_and_def_are_in_same_archive
= match (def_coords, ref_coords) with
(InArchive(x1, _) :: _, InArchive(x2, _) :: _) −> x1 = x2
| _ −> false

end in
(∗ main eligibility predicate ∗)
if ref_is_defined_or_common_symbol then def_sym_is_ref_sym
else
if ref_is_unnamed then false (∗ never match empty names ∗)
else
if def_in_archive <> Nothing then
(∗ Weak references ∗can∗ be resolved to archive members...
∗ if the reference itself is also in the archive . ∗)
((not ref_is_weak) || ref_and_def_are_in_same_archive)
&& (

ref_is_leftmore
|| ref_and_def_are_in_same_archive
|| ref_is_in_group_with_def

)
else true

in let eligible_defs = List . filter def_is_eligible
defs_and_linkables_with_matching_name

in (∗ ... ∗)

Figure 3. Excerpt from the eligibility predicate used to form
symbol bindings

reference can bind to a given definition, and an ordering
on eligible definitions such that the first eligible definition
is the intended referent. The predicate is shown (slightly
appreviated) in Fig. 3. The ordering is based on command-
line order, but also accounts for the semantics of substitution:
definitions in relocatable files take precedence over archives,
hence providing the semantics necessary for the malloc.o
substitution example (§3.2). Once all symbol references are
resolved, any unreferenced objects can be excluded. In our
case, this leaves 141 objects in the link.

Generate support structures The linker must generate sup-
port structures used by certain code models and relocation
schemes. In most ABIs, these include the GOT (global offset
table; a table of pointers) and PLT (procedure linkage table; a
table of trampolines). These are used for indirect addressing,
when code compiled with narrow addressing modes must
reach definitions located far away. The linker generates a
GOT consisting roughly of one entry for each distinct symbol
definition used in a GOT-based relocation. Although support
structures are a function of the overall link contents, they
must be generated early, before the linker script runs, to give
the linker script control over their placement hence before any
output memory image exists. This requires ad-hoc modelling;
for example, the GNU linker pretends that these structures

9 2016/4/8

http://uclibc.org/


reside in the first input object. To link bzip2, the GOT is ne-
cessary mainly to support relocation schemes for thread-local
storage (required for the thread-local errno). We must also
support TLS relocations (below).

Optimise relocations and instructions Immediately before
generating these support structures, many linkers apply op-
timisations to the relocations and, in some cases, to the in-
structions that use them. For example, in our bzip2 link, to
avoid use of the GOT when static-linking, the GNU linker
will turn the following mov, which loads an address from the
GOT

48 8b 05 00 00 00 00 mov 0x0(%rip),%rax
‘---------’ to be relocated:

R_X86_64_GOTPCREL __libc_stack_end-0x4

into the following lea which calculates it directly.

48 8d 05 3d 1e 20 00 lea 0x201e3d(%rip),%rax
‘---------’ applied relocation:

R_X86_64_PC32 __libc_stack_end-0x4

Some ABI documents list ‘standard’ optimisations that
may be applied. A linker is free to use them or not.8 Our
model currently lacks knowledge of the instruction set archi-
tecture, so does not capture these optimisations. Since the
GNU linker does not currently provide any way to disable
these optimisations (even when supplying options intended
to disable optimisations), we diverge from it here: our GOT
will contain more slots, subsequent address assignments will
be skewed, and more instructions will indirect via the GOT.

Compose output sections The main pass over the linker
control script assigns input sections to output sections. The
default GNU linker script is 226 lines long. Our formalisation
defines the linker script language’s abstract syntax in Lem,
using Lem for arithmetic and pattern-matching logic. We then
manually translated the default script into an AST value in
Lem. For example, a fragment of the original linker script
. preinit_array :
{

PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP ( ∗(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);

}

is represented as the following.
OutputSection(AlwaysOutput, Nothing, ". preinit_array ", [

DefineSymbol(IfUsed, "__preinit_array_start", hidden_sym_spec)
; InputQuery(KeepEvenWhenGC, DefaultSort, filter_and_concat (

fun s −> name_matches ".preinit_array" s))
; DefineSymbol(IfUsed, "__preinit_array_end", hidden_sym_spec)

])

Section composition is mostly concatenation, but ELF sec-
tion flags can mark sections as mergeable. Most commonly
these are sections containing strings, signified by an addi-
tional section flag. Again, it is up to the linker whether or not
sections are merged. Symbol definitions made in the script
can substitute (§3.2) for definitions in the input files. (This

8 . . . the newer gold linker does not currently apply them.

means that the reachability calculation used to discard un-
wanted inputs was not definitive: it may have included some
objects that are no longer needed, since the relevant bindings
were altered during script execution.)

Garbage collection To provide a finer-grained removal of
unwanted input, and to compensate for the problem that, as
we noted, the initial reachability calculation is subject to
invalidation, the command line may request an additional
garbage collection pass (--gc-sections). This also entails
delaying address assignment, to avoid allocating addresses
for sections that will be collected. Normally --gc-sections

is not used, and we currently do not model it.

Assign addresses to symbols Another pass over the linker
script now assigns addresses to output sections. Addresses
can be computed explicitly in the script using arithmetic, and
can depend on the size and address of any section placed
earlier in the script. By default, addresses are computed using
a location counter that is automatically incremented, rounded
up to account for section alignments specified in input files.

Apply relocations Once addresses have been assigned, relo-
cations can be applied. This is actually where linking happens.
Our bzip2 requires 1941 relocations of six different kinds: 32,
32S, GOTPCREL, PC32, PLT32, GOTTPOFF. The last of these is
a thread-local relocation, supplying the relocated instruction
not with an address but with an offset in the thread-local array.

Generate output Finally, we have a relocated memory im-
age. We can compare this against the input bzip2 object; this
comparison fails because the GNU linker has altered some
instructions (and generated a smaller-than-expected GOT).
Our image nevertheless otherwise corresponds very closely to
the GNU linker output; it can be serialised straightforwardly
into an output ELF file and executed with identical behaviour
(including passing test cases).

5.3 Looseness
Linking is deterministic in simple cases. For example, a link
job controlled by a known linker script and whose input
consists only of simple freestanding object files will produce
a deterministic memory image—unless it contains common
symbols, orphan sections, section groups, mergeable sections,
or if the linker must insert padding or generate non-trivial
support structures. Nearly all real link jobs have some of these
properties. Here we summarise these sources of looseness.

Output ordering When concatenating a collection of .text
sections, say, the sections must generally be ordered by
the order of the originating objects on the command line.
However, archive members are ordered in (to quote the GNU
ld manual) ‘the order in which they are seen during the
link’, a detail of the linker’s dependency graph traversal
algorithm. As a result, archive members may appear in
different orders. The same ordering nondeterminism applies
to common symbols.
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let amd64_reloc r =
match (string_of_amd64_relocation_type r) with (∗ byte width ∗) (∗ truncate / sign−ext ∗) (∗ calculation ∗)
| "R_X86_64_64" −> fun (img, p, rr ) −> (8, fun (s, a) −> i2n ( (n2i s) + a ))
| "R_X86_64_PC32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i s) + a − p ))
| "R_X86_64_PLT32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_plt_slot_addr img rr s)) + a − (n2i p) ))
| "R_X86_64_GOTPCREL" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_got_slot_addr img rr s)) + a − (n2i p) ))
| "R_X86_64_32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n ( (n2i s) + a ))
| "R_X86_64_32S" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i s) + a ))
| "R_X86_64_GOTTPOFF" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_got_slot_addr img rr s)) + a − (n2i p) ))

(∗ ... ∗)

Figure 4. Excerpt (slightly simplified) from the specification of x86-64 relocations, used in linking our bzip2 example. The
parameters p, s and a denote respectively (as in the ABI specification) the relocation site address, symbol address and addend.

Padding lengths and values When padding sections to sat-
isfy alignment constraints, both the amount and the contents
are not fully determined. Superfluous padding is never desir-
able, so arguably a bug; we filed a bug on the gold linker9

inserting too much padding and of the wrong byte values.
In practice, linkers use zeroes to pad data sections, and nop-
sequences to pad code. The latter are essential to allow con-
trol to flow between abutting sections even in the presence
of padding. This is sometimes done (e.g. the GNU C library
splits some code between crti.o and crtn.o, such that control
flows across the join). For an n-byte nop, many choices of
instruction may be available, depending on the architecture.

Relocation, optimisation, merging, section groups As
covered in §5.2, linkers are free to optimise certain relo-
cations, sometimes replacing instructions. They are also
free to merge mergeable sections, or not. Sections that are
members of section groups (§3.2) compose differently from
ordinary sections: all but one section in the group is discarded,
but the choice of which to discard is left to the linker.

Segment padding At boundaries between segments (a.k.a.
memory mappings), the linker’s address assignment al-
gorithm faces trade-offs about disk space (zeroes in the output
file) and memory (wasted space in mapped pages). The GNU
linker script language’s ALIGN_DATA_SEGMENT feature
inserts an amount of padding calculated to optimise this trade-
off. Our specification revealed an inconsistency between the
GNU linker’s manual and behaviour.10

Orphan section placement Sections not matched by any
clause in the linker script are still included in the output. They
can be placed in any output section having suitable flags; the
choice is left to the linker.

Linker-generated structures The GOT, PLT and other run-
time structures (§5.2) are effectively lists, whose order is
arbitrary. In practice, the order adopted often reflects the
linker-internal hash table implementation.

Relaxation A family of linker optimisations known as ‘re-
laxations’ can rewrite content at relocation site (choosing a
shorter calling sequence, say) and section boundaries (over-
lapping leading and trailing padding in exception handling

9 removed for blind review
10 filed as binutils bug XXX (removed for blind review), now fixed.

information, say). These are mostly specific to the instruc-
tion set; as before, although conceptually a linker need not
understand instruction encodings, most do.

Phase anomalies A linker necessarily makes multiple
passes over its inputs. Passes include enumerating inputs,
calculating output section layout, calculating addresses, ap-
plying relocations, and so on. Some linker features interact
in ways which induce circular dependencies between these
passes, which the linker resolves in arbitrary and undocu-
mented ways. One example is input enumeration: the linker
‘pulls in’ archive members to provide symbols required by
other input objects. However, the linker script might sub-
sequently provide its own definition for some symbol, ob-
viating the need for a definition pulled in. Whether such
obviated inputs are removed from the link is a phase-order
detail; in in our experience they are not. Contents of GOTs
and other support structures also tend to reveal these phase
details (since the GOT must be sized before linker scripts are
fully evaluated, hence before symbol bindings are finalised).

6. Formal proof
As a first step in using our definitions for formal proof, we
have proved a simple but nontrivial correctness property of
the relocation process, a central mechanism involved in link-
ing. We use an Isabelle/HOL extraction of Fox’s X86-64
model [11], relying on Fox’s specification of X86-64 instruc-
tion encoding, in conjunction with our own Isabelle/HOL
definitions extracted from the Lem model in the proof.

We fix two single-instruction programs, both consisting
of an X86-64 unconditional MOV instruction that loads the
immediate constant 5 to an absolute address in memory,
say to a C global variable. This address is not fixed, as we
quantify over the absolute target of the move instruction. The
first of the two programs will have the target address of the
move supplied by our linker’s relocation mechanism, and we
therefore initially set the target address to zero. The second
of the two programs will remain untouched by relocation and
has the quantified address as the target address of the move.

We construct a relocation entry describing a relocation
that will be applied by the linker to the first of our two
programs described above, and define two sections: a .text

section that will contain our encoded program, and a .data
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section which we will use as scratch space for writing to with
our MOV instruction. Both sections have fixed start addresses
and fixed sizes. We create a symbol, arbitrarily called test,
whose reference is within the bounds of the .text section and
whose definition is within the bounds of the .data section. A
symbol’s reference denotes the location where relocation will
take place, and therefore coincides with the memory address
of the address field of the encoded instruction in the .text

section. A symbol’s definition denotes where the relocated
address field will point to after relocation, and therefore
points to a memory address that exists within the bounds
of the .data section.

Call an address valid when it lies within the bounds of
the .data section, and call a finite map from 64-bit words to
8-bit bytes a flat memory. We prove that for any valid address
a, a ‘correct’ flat memory can be obtained from the memory
image produced by the linker’s relocation machinery after
relocating test. Here, a flat memory is ‘correct’ when it is
pointwise equal to the flat memory obtained from encoding
our fixed instruction with address field set to a and the base
address at which the encoded bytes reside in memory set to
equal the start address of the .text section. Note that the
theorem statement is parametric in the address at which the
symbol’s definition resides, and this prevents us from simply
executing the linker’s relocation machinery to establish that
the statement holds, necessitating the use of proof.

This theorem is about relocation, and not about linking as
a whole. Nevertheless, the theorem is nontrivial as it does in-
volve reasoning about the linker’s relocation and symbol res-
olution machinery, aspects of the AMD64 ABI, and internal
data structures used within the linker. Further, we believe that
this theorem is interesting for two reasons. First, though the
correct execution of much real-world software depends cru-
cially on relocation being applied correctly, relocation itself
is hard to validate adequately by testing due to each ABI sup-
plying a unique set of relocation types, necessitating a large
number of test cases to guarantee full coverage. This problem
becomes more profound as the number of relocation types
supplied by an ABI grows. Though the AMD64 ABI spe-
cifies around 20 different relocation types, the ARM64 and
Power64 ABIs supply around 120 and 80 custom relocation
types, respectively, causing a combinatorial explosion in the
size of test suite needed to ensure adequate coverage. Formal
proof therefore can be profitably used to achieve a level of
certainty that relocation is being correctly applied that is hard
to achieve by any other means. Second, we believe that this
theorem is the first formal proof of any property related to
relocation, and the first formal proof of any property related
to linking for realistic executable and linkable formats.

For the purposes of our paper the theorem serves to
demonstrate that our definitions can be used for formal proof,
and we see this theorem merely as a stepping stone to a wider
application of formal proof in this area. In particular, we
see no real impediment to extending our theorem detailed

above to all relocation types supplied by the AMD64 ABI, all
instructions supplied by the X86-64 instruction set, and to an
arbitrarily large sequence of instructions. Further properties
that could be proved about our linker are discussed in §8.

A significant portion of the total amount of effort spent
trying to prove our theorem was spent proving generic
lemmas about the internal data structures, ordering functions,
and so on, used within the linker that can be reused. In total,
the proof of the theorem consisted of around 4,500 lines of
tactic-driven Isabelle/HOL proof script. Of this total, around
1,500 lines of proof script were dedicated to manual proofs
of termination for all recursive functions, and around 2,500
lines of proof script were dedicated to generic lemmas about
the internal data structures of the linker. All of these lemmas
can be reused in any further verification project, with around
500 lines of proof script being specific to the proof at hand.

7. Related work
We believe we are the first to provide a comprehensive,
validated formalisation of a realistic linking and executable
file format, the first to formalise large parts of the Application
Binary Interface of common commodity platforms, the first
to build an executable specification of ‘realistic’ linking, and
the first to formally prove any property related to any aspect
of ‘realistic’ linking. Whilst Kennedy et al. [19] are able to
generate Microsoft Portable Executable (PE) files from a Coq
formalisation of X86, they formalise only enough of the PE
format to obtain a working executable from machine code.

Previous theoretical work has addressed some limited
aspects of linking. Cardelli’s work on program fragments
and modularisation [5] primarily viewed linking as a way
of facilitating the separate compilation of modular programs
(see Cardelli’s Theorem 7.3, for example), and formalised
linking via the use of linksets. This approach, focusing on
separate compilation, was followed by considerable further
theoretical work [9, 13, 24, 40]. However, as we stress in
this paper, the linker has many roles over and above that of
separate compilation, that these works do not address.

Closely related to the theoretical work above is work on
module systems. As we noted earlier in §2, linking contrasts
with the module systems of many programming languages by
being almost entirely concrete, having no notion of module
parameterisation, nor of module instantiation. The linker is
responsible only for creating the concrete ‘wiring’, or bind-
ing topology, of the output binary, but not for instantiating
abstract modules, with the programmer having little direct
control of which module gets wired to which other. Rather,
bindings are formed entirely according to symbol names,
without regard to the name of the module (file) supplying
or requiring them. This makes a linker’s role in ‘program-
ming in the large’ comparable to a (somewhat inexpressive)
module interconnection language [7]. Subsequent work in
this area has extended Unix-style batch linking with explicit
hierarchy [31] and dynamic linking with greater run-time
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interposability [32]. Linkers’ substitution and interposition
features (see §3.2) correspond to features in certain ‘mixin’-
style module systems [3, 4]; in particular, dynamic linking has
been shown to relate closely to mixin layer composition [34].

Verified compilation projects have also touched on aspects
of linking. The CompCert compiler generates assembly code
which is assembled and linked via the host toolchain. Rather
than formalise linking directly, a post-hoc tool [36, Section
7] checks that the output binary reproduces the expected
reference graph. The check is necessarily very partial: the host
toolchain requires extra code to be linked in for its operation
(e.g. C library startup code), which the checker must trust.
This approach is also limited to separate compilation of
a single language, and does not apply to realistic existing
codebases using languages besides C, including linker-speak.

Compositional CompCert [35] extends the compiler and
proofs to handle the separate compilation of modules, obtain-
ing the first verified separate compiler for C, but required
significant changes to the compiler’s proof of correctness.
The scale of these modifications motivated the more light-
weight approach taken by Kang et al. [17]. This work limited
the code being linked to that produced by CompCert, and
therefore required far fewer changes to the CompCert proofs.
Like the theoretical work mentioned earlier, these extensions
still view linking primarily as a means of achieving separate
compilation, and ignore the many other roles of the linker.

Wang et al. [39] verified a compiler for the Cito program-
ming language in Coq. One novelty of this compiler was the
ability to link compiled Cito programs against assembly code
produced by other compilers, and reason about the linked
code with a Hoare-style program logic. Again, this work only
considers linking as a vehicle to enabling separate compila-
tion, albeit in a mixed-language setting.

Other verified compilers have tended to ignore linking,
with the exception of the Piton project [26] which included a
simple link-assembler for a low-level assembly-like language.
The CerCo compiler [1] is limited to single-module programs,
as are the C0 compiler [30], Chlipala’s compiler [6], and the
CakeML compiler [20] to name some notable recent projects;
the latter uses the host toolchain to link in a small amount of
native code to implement string input-output routines.

8. Future work
Our aim in this paper, by bringing linking into the realm of
mechanised semantics, is to provide a concrete foundation
for several strands of new research.

Specification of higher-level ABI conventions Federated
compilation relies on ABI conventions above the linker level,
include calling conventions and data layout (§3.3). Formal
specification of these, although separable from linking, is are
essential to any full specification of a toolchain.

Relating source languages to linker abstractions Lan-
guage implementers need ways to state their assumptions and

guarantees about the link-time environment and its mappings
to and from the source language. This could then enable
accurate source-level reasoning about linker-supplied defin-
itions like the introspective end symbols, or linker-invoked
features such as visibility attributes, aliases, and so on.

Program analyses accounting for linker-speak Program
analysis of real codebases involving linker-speak must ac-
count for its semantics. Several approaches are possible:
link-time reasoning near the machine level, perhaps follow-
ing Balakrishnan and Reps [2] in seeking visibility of er-
rors introduced during compilation, or perhaps performing
intermediate-language reasoning in a linking-aware context,
analogous to current approaches to link-time optimisation in
LLVM and gcc.

User-facing improvements Much of the user-facing com-
plexity of linking can be argued as unnecessary. Linker-speak
is not a well-designed language: its incantations often imple-
ment simple properties using low-level mechanisms. Linker
behaviour (particularly errors) have a habit of mystifying pro-
grammers, even experienced language implementers. (Two
anecdotes in this space include GHC bug 8935, in which
GHC developers initially mistook the completely standard
semantics of dlsym() for a bug, or OCaml Mantis issue 6462
which incorrectly blames a program corruption bug on a
claimed lack of support in the linker.) Weighty documents
of intricate user advice, like Drepper’s [8], suggest a need
for higher-level policy-like abstractions, from which a smart
toolchain can figure out how to perform the link. We would
also like ways to factor linker-speak so as to avoid the po-
tential for link-time interference between user-supplied and
toolchain-required link behaviour (as with our -fvisibility
example, §3.2).

Extending and enhancing verified compilers Our models
are a potential means of enhancing the ‘trust story’ of existing
verified compilers by eliminating the dependency on the un-
trusted host toolchain, and any post hoc link validation tools,
when producing binaries. We aim to extend the CakeML
compiler to produce ABI-compliant binaries directly.

Further verification We plan to extend the work detailed
in §6. In particular, there we consider the commutation of a
single relocation type with a single, fixed machine instruction.
Extending this to all relocation types supplied by a given ABI
against arbitrary numbers of machine instructions supplied
by an instruction set, thus establishing the correctness of
relocation for a given ABI, is left for further work.

In the longer term we aim to establish the total correct-
ness of our linker. This is an ambitious goal, as what total
correctness for a ‘realistic’ linker, providing many services to
users over and above the facilitation of separate compilation,
means is not a priori clear.
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