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Abstract

This paper proposes a new method of forming basis assets. We use return

correlations to sort securities into portfolios and compare the inferences drawn

from this set of basis assets with those drawn from other benchmark portfolios.

The proposed set of portfolios appears capable of generating measures of risk-return

trade-off that are estimated with lower error. In tests of asset pricing models, we

find that the returns of these portfolios are significantly and positively related to

both CAPM and CCAPM risk measures, and there are significant components of

these returns which are not captured by the 3-factor model.



1 Introduction

A fundamental object in asset pricing is the investment opportunity set, the set of assets

that investors use in making portfolio decisions. The pioneering work of Markowitz

(1952), Cass and Stiglitz (1970) and Ross (1978) shows that this set can be reduced to a

group of portfolios that dominate the opportunity set represented by individual assets.

The subsequent empirical literature that tests the implications of asset pricing models has

used this insight to focus on models’ ability to describe the returns on a relatively small

set of portfolios rather than a large number of individual assets. The implicit assumption

in this literature is that the portfolios analyzed span the ex ante opportunity set available

to investors. We term this representative set of portfolios a set of basis assets.

In recent years, it has become increasingly common to use size- and book-to-market

sorted portfolios as basis assets, and ask whether asset pricing models can explain the

dispersion in the returns on these portfolios. Forming portfolios based on these char-

acteristics has the advantage that it generates a large dispersion in returns, and hence

presents a challenge to any asset pricing model. Fama and French (1996), for example,

show that their three-factor model can explain more than 90% of the returns of these

portfolios, and that the unexplained portion of returns is economically small. However,

the practice of using characteristic-sorted portfolios as basis assets has sparked a debate

about whether they are appropriate to use in order to draw inferences about asset pricing

models. Cochrane (2001) advances the opinion that such a procedure is precisely what

researchers should do, as this approach generates dispersion in expected returns along

dimensions of interest. In contrast, Lo and MacKinlay (1990) suggest that sorting on

characteristics that are known to be correlated with returns generates a data snooping

bias.1 Conrad, Cooper, and Kaul (2003) show that the increasing tendency of researchers

to sort on multiple characteristics, and consequently form larger numbers of portfolios,

exacerbates the data-snooping bias. In this case, the dispersion may weaken or disappear

in out-of-sample tests because the relation between returns and the characteristic is not

robust over time.

In addition to the concern about data-snooping, Daniel and Titman (2005) argue that

firm characteristics such as book-to-market equity serve as a ‘catch-all’, and capture dif-

ferences in the sensitivities of firms’ returns to a number of different fundamental factors.

1Berk (2000) and Kan (1999) extend this analysis to consider sub-sorts within groups of characteristic-
sorted portfolios. These authors suggest that the characteristics upon which researchers sort, such as
size, may be mechanically related to expected returns.
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Consequently, asset pricing model tests on size- and book-to-market-sorted portfolios will

find that factors based on these characteristics are important, but are unable to inform

us as to the importance of other, perhaps more fundamental factors, because there is in-

sufficient variation along any other specific factor in these portfolios. Daniel and Titman

go on to argue that a new set of portfolios is required if statistical tests of asset pricing

models are to have sufficient power to reject the model, or identify important factors. As

Jagannathan and Wang (1996), p. 36 suggest, “... we need to devise methods for evalu-

ating the economic importance of the data sets used in empirical studies of asset-pricing

models.”

In this paper, we suggest a particular approach for forming basis assets that we argue

is well-motivated economically, alleviates some of the problems inherent in the usual

approaches to forming these assets, and may have the ability to generate more informative

tests of asset pricing models. The method that we propose focuses on the properties of

the covariance matrix of returns rather than the ex post vector of mean returns. This

focus is sensible since the covariance matrix is the central object in the portfolio theory

pioneered by Markowitz (1952). In particular, we suggest that the appropriate sort

should attempt to group (separate) firms that are highly (less) correlated, as opposed to

grouping firms that have similar realized returns. We utilize a correlation-based distance

measure to form portfolios. In focusing on the covariance matrix as an interesting object

for economically differentiating sets of basis assets, we also examine an important, but

little discussed, characteristic of sorted portfolios: the conditioning of the covariance

matrix formed by the basis assets. This feature of the covariance matrix is a critical

determinant of the precision with which any inferences related to the basis assets can be

drawn.

We use cluster analysis and a distance measure proposed by Ormerod and Mounfield

(2000) to sort firms into portfolios. A small number of these portfolios generates signif-

icant dispersion in subsequent returns: the spread in average returns when ten cluster

portfolios are formed is 47 basis points per month. This dispersion in mean returns is

comparable to, or better than, that observed in the ten size-, book-to-market- or beta-

sorted portfolios, of 51, 54 and 18 basis points per month, respectively. When 25 cluster

portfolios are formed, the spread in mean returns increases substantially to 79 basis

points per month; this large dispersion is accompanied by substantially higher volatility

of returns. In general, the maximum Sharpe ratio of the opportunity set formed from clus-

ter portfolios is somewhat smaller than the maximum Sharpe ratios of the opportunity

set formed using characteristic-sorted portfolios. Nonetheless, these results suggest that
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forming benchmark assets using the past co-movement of individual securities’ returns

can generate significant differences in future returns, without the potential data-snooping

bias associated with the use of characteristics that have already been shown to be related

to dispersion in returns.

We present the results of a battery of tests to gauge the statistical and economic

advantages and weaknesses of this alternative method of estimating the investor’s oppor-

tunity set. We show that the clustering procedure generates significantly smaller correla-

tions across portfolios than characteristic-based sorting methods. As a consequence, the

cluster portfolios’ covariance matrix is better conditioned than the alternative portfolios.

We examine the implications of the relative conditioning of the different sets of basis

assets for asset pricing inferences. The relatively poor conditioning of the characteristic-

sorted basis assets leads to efficient frontiers which are more sensitive to small changes

in the data. In contrast, the cluster portfolios, with their better conditioning, generate

inferences that are relatively insensitive to small perturbations in the data. In addition,

measurement error in the data is associated with a positive bias in the Sharpe ratio,

and we find that this bias is larger for basis assets (such as size-sorted portfolios) whose

covariance matrix is relatively ill-conditioned.

Finally, we compare the inferences drawn from the cluster portfolios to those drawn

from size- and book-to-market sorted portfolios using two standard approaches in the

empirical literature. First, we perform Gibbons, Ross, and Shanken (1989) tests to gauge

the performance of the CAPM and the Fama and French (1993) three-factor model in

describing the returns on the two sets of basis assets. The Gibbons, Ross, and Shanken

specification test suggests that the models perform similarly using both the cluster and

characteristic-sorted portfolios. However, we observe larger pricing errors, and a relatively

poor model fit, in the individual cluster portfolios compared to the characteristic-sorted

portfolios. That is, there appear to be some features of the cluster portfolios returns

which cannot be explained by the CAPM or the three-factor model.

Second, we use cross-sectional regression tests to test the CAPM, consumption CAPM

(CCAPM), three-factor model, and the conditional CAPM of Jagannathan and Wang

(1996) on the cluster portfolios and characteristic-sorted portfolios. Generally, we find

strong evidence that traditional risk measures, such as CAPM and CCAPM betas, are

significantly and positively related to cluster portfolio returns; this result is robust to the

inclusion of firm characteristics such as size and book-to-market. Further, the conditional

specification in Jagannathan and Wang (1996) describes a large portion of the cross-

sectional variation in average returns on the cluster portfolios. However, the three Fama
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and French (1993) factors explain virtually none of this variation. In contrast, when size

and book-to-market sorted portfolios are used as basis assets, only the characteristics

and their factor-mimicking portfolio risk exposures are significantly related to returns;

traditional beta risk measures are significantly negatively related to the returns of these

portfolios when characteristics are included.

Despite the characteristics’ lack of explanatory power in specification tests using the

cluster portfolios, we show that the cluster portfolios exhibit significant cross-sectional

differences in size and book-to-market, as well as CAPM beta. This evidence suggests

two conclusions. First, it indicates that there is sufficient dispersion in the characteristics

to enable a powerful test of the relation between cluster portfolio returns and these

characteristics. Second, the evidence provides insight into the question of whether the

characteristics are related to the co-movement that determines the cluster grouping. The

results suggest that the co-movement that determines membership in a particular cluster

is related to fundamental economic characteristics of the firm.

The remainder of the paper is outlined as follows. In Section 2, we discuss the

theoretical reasoning underpinning the formation of basis assets for asset pricing tests.

In addition, the specific clustering procedure following Ormerod and Mounfield (2000)

is discussed. Section 3 describes the data that we use, and examines the effects of

differences in the conditioning of covariance matrices on test results, Section 4 examines

the economic differences associated with different sets of basis assets when testing asset

pricing models, Section 5 describes differences in the average characteristics of the cluster

portfolios and Section 6 concludes.

2 Forming Basis Assets

2.1 Definition of the Basis

The challenge that we consider is to find a set of portfolios that best characterizes an

investor’s opportunity set, consisting of all marketed securities as the basis assets. Prac-

tical constraints, including econometric problems, data availability, and computational

resources, prevent researchers from considering the entire set of marketed claims. In-

stead, the opportunity set is reduced to a “representative set” of portfolios that seeks

to approximate the investor’s opportunity set as well as possible. In typical applica-

tions, researchers analyze between 10 and 100 portfolios of stocks in order to judge the
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opportunity set available to investors or to analyze pricing models.

Various rules for the division of assets in portfolios have been proposed in the liter-

ature. These rules are based on firm-specific characteristics that are hypothesized to be

related to dispersion in expected returns, or on characteristics that have been shown to be

related to dispersion in subsequent realized returns. Using characteristics, rather than

variables that a particular theory implies are related to expected return, is appealing

insofar as the procedure generates dispersion in returns (and therefore empirical power

in tests of asset pricing models). The principal difficulty with using characteristics that

are known to be related ex post to mean returns is that this procedure induces a data

snooping bias. In Lo and MacKinlay (1990), for example, the authors argue that one will

always be able to find ex post deviations from a “true” asset pricing model and, moreover,

that such biases will appear to be significant when they are considered in a group. Con-

sequently, finding that firm characteristics are related ex post to average returns and then

grouping firms into portfolios based on these characteristics may constitute a grouping

of ex post deviations from a pricing model. Unfortunately, the magnitude of this bias is

difficult to quantify in practice. MacKinlay (1995) presents evidence that suggests that

this bias may be quite severe in the context of size- and book-to-market portfolios.

Consequently, the decision about the choice of basis assets in an asset pricing test

poses a significant conundrum for the researcher. On one hand, the researcher could

choose a set of variables which are ex ante related to expected returns on the basis of

a theoretical model of asset prices. However, if the model is not correctly specified or

returns are sufficiently noisy, these variables may have no significant relation to estimates

of expected returns and, consequently, generate insufficient dispersion in returns for the

empirical tests to have power. In contrast, sorting on the basis of characteristics known

to be related to ex post returns generates dispersion in average returns, lending apparent

power to the test of the asset pricing model. However, data snooping issues limit the

conclusions that one can draw from such tests. And, as a practical matter, the ability

of some characteristics to produce dispersion in returns can vary substantially through

time. For example, much of the well-known relation between size and returns appears

to evaporate after 1985. A similar effect has occurred over the 1990s to the returns on

book-to-market portfolios.

What then is the correct approach for identifying a basis for tests of asset pricing

models, given that we wish to minimize the bias induced by searching over ex post average

returns, while generating sufficient dispersion over these returns in order to generate

empirical power? In this paper, we use a statistical method, cluster analysis, to generate
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a set of basis assets in which stocks should be highly correlated within groups, but have

minimal correlation across groups. King (1966) argues that this criterion defines a set

of basis assets well, and suggests that industry-sorted portfolios generate such a basis.

Daniel and Titman (1997) use a similar argument to suggest that size and book-to-market

do not represent risk exposures because the within-group covariation of these firms is not

high.

2.2 Cluster Analysis

The goal of cluster analysis is to reduce the dimensionality of a set of data by sorting

individual observations into groups that are either similar (within the group) or different

(across groups). “Similarity” and “difference” are calculated using some measure taken

between the data points; for example, a Euclidean norm might be used as a distance

measure. In our setting, we are particularly concerned with the covariance or correlation

matrix of returns. Consequently, we specify a distance measure that is based on the

correlation between the returns on two firms.

The intuition behind this measure is straightforward. Consider the problem of how a

new security affects the menu of opportunities facing a hypothetical investor. Barring the

trivial case in which this new security is perfectly correlated with an existing asset (or a

combination of these assets), the new security will contribute something to the investor’s

set of choices. However, if the new asset is highly correlated with another security (or

portfolio of securities), then grouping it with the highly correlated assets costs relatively

little, and maintains a small number of portfolios. In contrast, an asset that has a low

degree of correlation with other assets would add relatively more to the opportunity set,

and may warrant being placed in a separate portfolio.2

The distance measure dij suggested in Ormerod and Mounfield (2000) captures the

intuition behind the use of the correlation coefficient well:

dij =
√

2 ∗ (1− ρij) (1)

where ρij denotes the sample correlation between the return on firms i and j.3 Firms

2As an additional justification behind this criterion, we will analyze the contribution of the correlation
structure of the assets to the stability of the covariance matrix. The stability of the covariance matrix
is important since, as mentioned above, this matrix is a central object in most asset pricing analyses.

3The conditions required for a measure to be a proper or admissible distance metric rule out the use
of covariance, although standardized measures of comovement, as Ormerod and Mounfield (2000) show,
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with perfectly correlated returns will be assigned a distance of 0 to each other, whereas

perfectly negatively correlated firms are assigned the maximum distance of 2. Ormerod

and Mounfield (2000) show that this function satisfies the conditions that are required

to be used as a distance metric in a clustering algorithm.4

Once the initial distance measures are calculated, we must specify the method by

which these distance measures are used to identify groups. We use Ward’s minimum

variance method [Ward (1963)]. In this method, one seeks to minimize the increase in

the sum of squared errors generated when combining any two smaller clusters. The sum

of squared errors for any cluster is the sum of the squared distances between each cluster

member and the cluster centroid; it can also be calculated as the average (across cluster

members) squared distance between all members of the cluster.

The algorithm for applying this distance measure is intuitive. Firms are initially each

placed into their own individual clusters; thus, if there are N firms, the algorithm starts

with N clusters. By definition, the sum of squared errors at this point is zero; each

firm is its own centroid. The algorithm proceeds sequentially by optimally joining the

individual firms, and later, groups of firms. That is, for every possible combination of

smaller clusters i and j, the algorithm seeks to minimize the following:

Dij = ESS(Cij)− [ESS(Ci) + ESS(Cj)] (2)

where ESS(Cij) is the error sum of squares obtained in the new aggregate cluster, and

ESS(Ci), ESS(Cj) are the error sum of squares for clusters i and j, respectively. Thus,

Ward’s method seeks to minimize the information loss, or the deterioration in fit, that

occurs as clusters are combined. This procedure can be repeated until only two clusters

remain; the researcher may stop the clustering process at any desired number of portfo-

lios. In practice, we also analyze differences in results when the final number of clusters

changes.

The clustering algorithm we use throughout the paper is designed to maximize within-

meet these conditions. Consequently, the distance metric we use in our analysis is based on correlation,
rather than covariance.

4There are other distance measures, and clustering algorithms, that can be specified. For example,
Brown, Goetzmann, and Grinblatt (1997) also form portfolios using a clustering method; they use the
resulting portfolios as factors, and find that these factors have relatively high explanatory power for
industry returns, both in-sample and out-of-sample. However, the distance measure in their algorithm
is related to the difference in observed mean returns, rather than co-movement in returns. In our
analysis of conditioning, we explore further the benefits of focusing on co-movement in grouping firms
into portfolios.
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group correlation, minimize across-group correlations and thus reduce the off-diagonal

terms in the correlation matrix of returns. Note the contrast between the cluster algo-

rithm’s focus on the correlation matrix, as opposed to the typical sorting method’s focus

on ex post mean returns. While the focus on mean returns seems sensible, given the desir-

ability of generating dispersion in returns, the covariance matrix is at the heart of much

of the estimation performed in the asset pricing literature. Because of the sensitivity

of inference to the properties of the covariance matrix, we suggest that the assets con-

structed by our algorithm may possess certain advantages. In particular, we suggest that

the covariance matrix resulting from our clustering procedure is better conditioned, i.e.,

has a lower condition number. Appendix A1 describes the general implications of better

conditioning for inferences related to asset pricing models, and we investigate the specific

consequences of the differences in conditioning across cluster and characteristic-sorted

portfolios in Section 3.2.

3 Data

Our starting point for analysis is all CRSP-covered firms with common shares outstand-

ing over the period 1955 through 2003. We are particularly interested in comparing

the clustering methodology, and the portfolios generated, to characteristic-based sorts.

Consequently, we reduce the set of firms according to the availability of data for the char-

acteristics. In particular, we follow the procedures outlined in Fama and French (1993)

and Fama, Davis, and French (2000) for defining the set of firms to be covered. More

specifically, we analyze the intersection of CRSP and Compustat data where firms’ book

values as of June of the portfolio formation year are available. To avoid Compustat bias

issues, firms are included in the sample only if they have been covered by Compustat for

at least two years.

At each time t we start with a set of individual firms’ return data covering the months

t−60 through t−1. For the calculation of betas (for the characteristic-sorted portfolios)

and correlations (for the clustering algorithm), we require that a firm has a minimum of

36 months of returns data available in this period. The correlation matrix of the returns

on the firms over this time period is computed, and the distance measures from equation

(1) are calculated from these correlations. In each subperiod, we trim the extreme 2.5% of

distance measures (and the corresponding firms) because the clustering algorithm tends
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to bias toward maintaining these firms in their own clusters.5 The clusters are then

determined by using these distance measures and the algorithm described above. Using

this cluster assignment, we form a value-weighted portfolio return of the securities in that

cluster for months t through t + 11. Thus, all our analysis will be conducted on returns

that are ‘out of sample’ relative to the period from which the clusters are formed. At the

end of the month t + 11, we roll the entire analysis forward by one year, and continue

throughout the entire sample period. We form portfolios of 10 and 25 clusters using the

algorithm described in the previous section.

One issue that arises in this procedure is that there need be no time consistency in

the cluster numbers we use as identifiers. That is, if 25 clusters are formed from 1965

through 2000, there is no requirement that “Cluster 1” in 1965 be related to “Cluster

1” in 1966. Although the clustering procedure minimizes within-group distances and

maximizes across-group distances, the cluster number itself has no intrinsic meaning.

In order to add some structure, we impose an auxiliary criterion. In each year τ , we

compute the similarity in member firms of cluster j to all clusters i formed in year τ − 1,

where similarity is defined as the number of firms common to the cluster in each year. We

assign to cluster j in year τ the index variable associated with the most similar cluster i at

τ − 1. As a result, across adjacent years each cluster i will have the most consistent firm

membership possible through our sample period. Clearly, this criterion is not the only

possible method for ranking the clusters; moreover, the index number associated with

a cluster does not affect its composition in any way.6 However, the procedure assures

some time consistency in the cluster definitions without losing the ex ante spirit of the

portfolio formation exercise.

3.1 Descriptive Statistics

Summary statistics for 10 and 25 cluster portfolios are presented in Tables 1 and 2,

respectively. In Table 1, Panel A, we see that the clustering method results in significant

dispersion in the means and the standard deviations of the resulting portfolios. The

5For one randomly chosen subperiod, we examined the proportion of firms removed from the sample
after trimming 2.5% of the pairwise distance measures. The trimming based on distance removed
approximately 2.5% of firms.

6As a robustness check on this auxiliary criterion, we have also used Sharpe ratio, volatility, and
the cluster number initially assigned by the clustering algorithm as identifying variables for clusters as
we move through the sample period; our results are qualitatively similar. That is, for each method
we generate roughly similar dispersion in returns, and lower cross-correlations in returns, compared to
characteristic-sorted portfolios.
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means vary from 0.87% per month to 1.34% per month, generating a dispersion in mean

returns of 47 basis points per month; standard deviations range from 5.03% per month

to 8.11% per month, with an average of 6.01%. The average number of securities in each

of the ten portfolios is reasonably large; the smallest number of securities in any portfolio

during any subperiod is 25, and the average number of securities in each portfolio is 294.

There is a tendency for the number of securities in each portfolio to increase through the

sample period, corresponding to an increase in the overall sample; the number of firms

increases from 906 to 5242 through the sample period.

In Table 1, Panel B, we present the correlation matrix for the returns of the ten cluster

portfolios. The algorithm generates portfolios that have relatively low cross-correlations.

Although the clustering algorithm is designed to group highly correlated securities, it is

important to realize that the result in Panel B is not guaranteed, since the clustering al-

gorithm uses historical returns, while the correlations presented in Panel B are for returns

subsequent to those used by the clustering algorithm. Given the relatively large number

of securities in the portfolios, it is surprising how low some of these correlations are; for

example, the correlation between portfolios 1 and 10 is only 0.51, and no correlations

exceed 0.68. The average pair-wise correlation is 0.51.

As a point of comparison, we also present summary statistics for portfolios formed on

three widely-used firm characteristics: the book-to-market ratio, the market capitaliza-

tion of equity and the market beta. Firms are sorted into decile portfolios on the basis

of either size or book-to-market ratio at the end of June of each year; firms are sorted

into decile portfolios based on beta estimates calculated over the immediately preceding

60-month period. Summary statistics for these portfolios are also presented in Table 1,

Panel A. The dispersion in mean returns generated by these portfolios is similar to that

generated by the clustering algorithm. The difference in mean returns on high and low

book-to-market portfolios is 0.54% per month, whereas the difference in mean returns on

small and large capitalization stocks is 0.51% per month. The dispersion in beta-sorted

portfolio returns is substantially smaller, at 18 basis points per month. Further, these

portfolios exhibit appreciably higher inter-portfolio correlations than the cluster portfo-

lios; the average correlations for the book-to-market, size portfolios and beta portfolios

are 0.84, 0.89 and 0.80, respectively.

We also report skewness, beta, kurtosis and co-skewness measures for the cluster

portfolios, as well as the characteristic-sorted portfolios, in Table 1, Panel C. The cluster

portfolios tend to have positive skewness, in contrast to all three sets of characteristic-

sorted portfolios. In addition, the magnitude of the skewness is somewhat larger. In
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terms of co-skewness, there are no substantive differences between any of the four sets of

portfolios.

In Table 2, we present the results after forming 25 cluster portfolios. When a larger

number of clusters is formed, there is a marked increase in the dispersion in mean returns.

These results are displayed in Panel A, and indicate a minimum mean return of 0.80%

and a maximum of 1.60%, for a dispersion in mean returns of 79 basis points per month

(the difference is due to rounding). Thus, increasing the number of clusters to 25 yields

more than a 30 basis point increase in the spread in average monthly returns. This

increased dispersion in mean returns comes at the cost of somewhat higher standard

deviation, however. The standard deviation of returns in the cluster portfolios ranges

from 4.91% to 8.56%. The pair-wise correlations across returns in the set of portfolios

(not shown) decrease; the average correlation falls to 0.42. For comparison, we also

compute summary statistics on a set of 25 size- and book-to-market-sorted portfolios

constructed as in Fama and French (1993). The 25 portfolios yield a spread of 0.69%

per month, ranging from a low of 0.87% per month to a high of 1.56% per month.

The average pairwise correlation across these portfolios, 0.81, is comparable to the sets

of 10 portfolios sorted on individual characteristics and substantially higher than the

correlations among the 25 cluster portfolios. In other (unreported) comparisons, we find

that, as in Table 1, the 25 cluster portfolio returns are positively skewed, whereas the

size- and book-to-market sorted portfolios are negatively skewed. In addition, there are

no significant differences in co-skewness between the two sets of portfolios.

In Panel D of Table 1 and Panel B of Table 2, we present the maximum Sharpe

ratios for the mean-variance frontier generated by each of these sets of basis assets. For

both sets of cluster portfolios, 10 and 25, we see that the higher standard deviation in the

individual portfolios, particularly relative to the book-to-market sorted portfolios, results

in a lower Sharpe ratio for the mean-variance frontier, compared to the characteristic-

sorted portfolios. For the ten cluster portfolios, the Sharpe ratio of 0.196 is lower than

the book-to-market portfolios’ Sharpe ratio of 0.239 although it is slightly higher than

the size- and beta-sorted portfolios’ Sharpe ratios of 0.180 and 0.184, respectively. The

Sharpe ratio of the 25 cluster portfolios, at 0.241, is also substantially lower than the

ratio observed in the Fama-French portfolios of 0.407.7

7When short sales are precluded, the performance of the cluster portfolios improves further relative
to the characteristic-sorted portfolios. Specifically, the maximum constrained Sharpe ratios of portfolios
of the 10 size-, book-to-market-, and beta-sorted portfolios are 0.143, 0.178, and 0.142 respectively,
compared to 0.171 for the 10 cluster-sorted portfolios. The constrained Sharpe ratio of the 25 size- and
book-to-market portfolios is 0.187, compared to a constrained Sharpe ratio of 0.193 for the 25 cluster
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Overall, the clustering algorithm is able to generate significant dispersion in expected

returns. When ten portfolios are formed, the dispersion is roughly comparable to that

observed in portfolios sorted along size or book-to-market characteristics, and higher than

that generated by sorting on beta. When 25 cluster portfolios are formed, the dispersion

is higher than that observed in size and book-to-market sorted portfolios, although this

higher dispersion is accompanied by substantially higher standard deviation of returns.

Finally, we calculate the condition numbers of the covariance matrices of the ten

cluster portfolios, the ten book-to-market, size- and beta-sorted portfolios, the twenty-

five cluster portfolios, and the twenty-five size- and book-to-market-sorted portfolios.

The set of ten cluster portfolios has a condition number of 26; the condition numbers of

the (ten) size-sorted, book-to-market-sorted and beta-sorted portfolios are all larger, at

548, 138 and 159, respectively, indicating that they are less well-conditioned. Comparing

the two sets of 25 basis assets, the condition number of the twenty-five portfolios sorted

on the basis of size and book-to-market is 671, whereas the condition number of the

25 cluster portfolios is 50–again, the cluster algorithm generates a better conditioned

covariance matrix.

To interpret these differences in condition numbers, we examine both asymptotic p-

values as well as bootstrapping results. Edelman and Sutton (2005) derive asymptotic

results for the tails of the distribution of (the square root of the) condition numbers of

Wishart matrices that we have calculated above. Using their results, none of the condi-

tion numbers reported above are significantly different at conventional levels. However,

when we compare these condition numbers to those obtained from bootstrapping (with-

out replacement) the individual securities into 10 (25) randomly chosen value-weighted

portfolios, we find that the characteristic-sorted portfolios have strikingly large condition

numbers, with empirically observed p-values less than 0.05, while the cluster portfolios

have empirically observed p-values of greater than 0.95.8 Consequently, in the next sec-

tion, we explore the specific effect that these differences in conditioning have on inferences

with respect to Sharpe ratios (or efficient frontiers) formed by these different sets of basis

assets.

portfolios.
8These results are available on request from the authors.
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3.2 Consequences of Conditioning: Sharpe Ratios and Efficient

Frontiers

We analyze the impact of the differences in the conditioning of the covariance matrix of

characteristic-sorted and cluster portfolios on applications in asset pricing by performing

a simulation experiment similar to that analyzed in MacKinlay (1995). The simulation

experiment adds random pricing errors of varying magnitude to the mean returns on

the two different sets of basis assets and examines the resulting changes in the investor’s

opportunity set; details of this simulation are described in Appendix A2. In Table 3, we

present means, medians, and standard deviations of maximum Sharpe ratios for three

values of the standard deviation of the measurement error. Panel A presents results for

sets of 10 portfolios and Panel B presents results for sets of 25 portfolios. Additionally,

we present the efficient frontiers corresponding to the data, the 5th and 95th percentiles

of simulated Sharpe ratios in Figures 1 and 2.

It is apparent from Panel A of Table 3 that an increase in the standard deviation

of the measurement error (σµ) increases the variation in the Sharpe ratios of all sets

of basis assets. However, the range is always much larger for the characteristic-sorted

portfolios. Further, the volatility in Sharpe ratios is always largest for the size-ranked

portfolios, which have a much larger condition number than the other characteristic-

sorted portfolios, and smallest for the cluster portfolios, which have the smallest condition

number. That is, the condition number acts as an amplifier to the noise with which the

mean return is measured.

The effect of the measurement error on the simulated efficient frontiers is also pre-

sented in Figure 1. The 5th and 95th percentiles for the cluster portfolios from the

simulations (the dashed frontiers) plot almost on top of the empirically observed (solid)

efficient frontier. However, the same bounds for the size and book-to-market portfolios

are always larger, corresponding to much greater variation in the (estimated) opportunity

set that investors face. This variation is associated with the larger condition number of

the covariance matrix of characteristic-sorted portfolio returns. For example, note that

the range of efficient frontiers varies more for the single-sorted size portfolios; recall that

these portfolios are associated with a relatively high condition number of 548. The book-

to-market portfolios, with their condition number of 138, generate less variable frontiers.

Clearly, conditioning matters when making inferences about the investor’s opportunity

set.
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Panel B of Table 3 and Figure 2 presents similar results for sets of 25 portfolios. The

standard deviation of Sharpe ratios for the 25 size- and book-to-market sorted portfolios

is generally more than three times the standard deviation of the Sharpe ratios for the

cluster portfolios for all three values of the standard deviation of measurement errors.

Figure 2 also shows the importance of conditioning in the sensitivity of the efficient

frontier to measurement errors in mean returns. Intuitively, measurement error in the

mean returns gets translated, through the condition number of the covariance matrix, to

higher variability in the investor’s opportunity set.

Importantly, it is not just the volatility of the efficient frontier that is affected by

measurement error in the data. The higher condition numbers of the characteristic-sorted

portfolios are associated with an increase in the average Sharpe ratio in the simulations

as measurement error increases. For example, in Table 3, Panel A, note that as σµ, or

the standard deviation in the measurement error, increases from 1 to 5 basis points, the

average Sharpe ratio increases by 37 basis points for the cluster portfolios. In contrast,

the average Sharpe ratio increases by 202 basis points (from 0.2395 to 0.2597) for book-

to-market sorted portfolios, and by 595 basis points (from 0.1831 to 0.2426) for the ten

size-ranked portfolios. Intuitively, since the Sharpe ratio is the maximum price of risk in

the sample, the higher volatility in the opportunity set results in a higher Sharpe ratio

for covariance matrices which are more ill-conditioned. The upward bias in the average

Sharpe ratio across the 5000 simulations is seen clearly in Figure 3. In this figure, we

present the relation between measurement error and the average Sharpe ratio across 5000

simulations for the four sets of ten basis assets. Note that the sensitivity of the average

Sharpe ratio to measurement error (or the slope of the line) is the largest for the size-

sorted portfolios, which is the most ill-conditioned set of basis assets, and lowest for the

cluster portfolios, which have the lowest condition number of all four sets of portfolios.

These results are related to those in MacKinlay (1995). In his paper, he examines

the effects of two types of model error: risk-based factors (i.e., missing factors) and

non-risk-based factors, which he describes as data-snooping, market frictions or market

irrationalities. Measurement error in the data would fall in the second, non-risk-based

category. MacKinlay (1995) notes that the distribution of the test statistic for squared

Sharpe ratios follows a noncentral F-distribution for both risk-based and non-risk-based

factors. However, there is an upper bound on the noncentrality parameter for risk-based

factors, which is due to a link between the magnitude of the excess returns and their

volatility. For non-risk-based factors, there is no such link, and hence no upper bound on

the noncentrality parameter. In his sample, he shows that the differences between these
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two types of distributions are large; non-risk-based model errors can lead to very large

Sharpe ratios.

Our results indicate that the differences in the distributions, and hence the expected

difference in the Sharpe ratios, are particularly large when the covariance matrix of the

test assets is ill-conditioned. To demonstrate this, we compare the squared Sharpe ratio

observed for each set of basis assets to a null hypothesis in which the CAPM holds, and an

alternative hypothesis where deviations are caused by non-risk-based factors. Following

MacKinlay (1995), we assume that the test statistic for the squared Sharpe ratio under

the alternative hypothesis is drawn from a non-central F-distribution with a noncentrality

parameter given by:

λ = T (µ̂− µ)′ Σ−1 (µ̂− µ) (3)

where (µ̂− µ) is equivalent to the simulated measurement error in our rexperiment (and

so would have standard deviation equal to σµ). The simulated distributions under the null

and alternative hypotheses are plotted in Figure 4 and correspond to MacKinlay’s (1995)

Figure 1, in which he shows the rightward shift in the F-distribution compared to the

null for deviations due to risk-based and non-risk-based factors.

For brevity, we present results only for the sets of 25 portfolios. As shown in the

figure, the Sharpe ratio of the tangency portfolio generated by the cluster portfolios is

not significantly different from the null hypothesis, while the Sharpe ratio of the size

and book-to-market portfolios is quite high compared to the distribution under the null.

However, when evaluated under the non-risk-based alternative (associated with our simu-

lated measurement error), the difference in the inferences regarding the portfolios’ squared

Sharpe ratios vary dramatically across the two types of basis assets. Measurement errors,

market frictions, irrationalities and data-snooping biases have only a small effect on the

distribution of Sharpe ratios, and hence on inferences, when the covariance matrix of

returns is relatively well-conditioned. In contrast, the distribution of the squared Sharpe

ratio for the size- and book-to-market portfolios shifts far to the right. Moreover, the

observed squared Sharpe ratio of the size- and book-to-market-sorted portfolios is not

statistically different than zero under the alternative distribution, with a p-value of 0.69.

As a consequence, a Sharpe ratio which was considered very unlikely under the null is

not startling at all in the presence of small measurement errors and a poorly conditioned

covariance matrix. That is, an ill-conditioned covariance matrix combined with even eco-

nomically small errors in the returns data could easily generate a spuriously large Sharpe

ratio.
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In the simulation results discussed above, we have assumed that the measurement er-

ror is uncorrelated across portfolios. In Appendix A2, we discuss other experiments where

the measurement error is assumed to be correlated across portfolios. The results suggest

that positively correlated measurement errors reduce the advantages of better condition-

ing, although, except in extreme cases, conditioning continues to affect the precision of

inferences and potential bias in the Sharpe ratio. Negatively correlated measurement

errors (which might obtain if, as Lo and MacKinlay (1990) suggest, characteristic-sorted

portfolios also contain a sorting on measurement errors) increases the advantages of

better conditioning. These results demonstrate that the sources of, and correlation in,

measurement errors are an important determinant of the consequences of ill-conditioning.

Overall, these results indicate that the outside observer’s inferences regarding the

ability of characteristic-sorted portfolios to capture the opportunity set of investors are

more sensitive to measurement errors in the vector of mean returns. Ill-conditioning

in the basis assets serves to magnify the effect of measurement error in returns in the

generation of the efficient frontier. Importantly, measurement error can affect both the

precision with which the opportunity set is measured, as well as the maximum Sharpe

ratio associated with the opportunity set.

4 Tests of Asset Pricing Models

In the previous section, we discuss the statistical properties of the cluster portfolios,

and show that conditioning affects the precision with which the opportunity set and,

consequently, properties such as the Sharpe ratio, are measured. In this section, we

investigate the economic differences in the cluster portfolios compared to characteristic-

sorted portfolios when testing asset pricing models.

4.1 Multivariate tests

We first perform multivariate specification tests of two asset pricing models using the

characteristic and cluster portfolios: the Sharpe-Lintner CAPM and the Fama and French

(1993) three-factor model. Results of these tests are presented in Tables 4 - 7. Results for

the CAPM are standard. The Gibbons, Ross, and Shanken (1989, GRS hereafter) test

indicates that the CAPM is rejected using the 10 cluster, size-sorted and book-to-market

sorted portfolios with low p-values, but fails to reject the CAPM with a p-value of 0.273
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using the beta-sorted portfolios. In contrast, the GRS tests fail to reject the three-factor

model for the cluster portfolios, beta-, size- and book-to-market sorted portfolios. Thus,

multivariate model specification inferences using the cluster- and the characteristic-sorted

portfolios are similar.

Although the GRS test results suggest that all four sets of assets have similar im-

plications for the validity of these pricing models, it is instructive to also examine the

results for individual portfolios. In Table 5, the estimates of three-factor regression in-

tercepts for the size-sorted and book-to-market-sorted portfolios are very small. These

intercepts range from -5 to 8 basis points for the size-sorted and -6 to 14 basis points for

the book-to-market portfolios. These small intercepts are consistent with the results in

Fama and French (1996), and lead to a small GRS test statistic, and a failure to reject

the three-factor model. In contrast, although the GRS test fails to reject for the cluster

portfolios, the estimates of the intercepts are much larger, ranging from -14 to 37 basis

points per month. The reason for the failure to reject in this case is not small pricing

errors, but the relatively large covariance matrix associated with the intercepts. That

is, the R2 presented in Tables 4 and 5 are substantially lower for the cluster portfolios

than for any of the characteristic-sorted portfolios. These low R2 measures translate

into larger residual variances, larger intercept standard errors, and thus a lower GRS

test statistic. Using the cluster portfolios, we see the mirror image of the interpretation

in Fama and French (1996); while they emphasize that the three-factor model, with its

superior fit, can make even small intercepts distinguishable from zero, when we use the

cluster portfolios to test the model, the low explanatory power of the model makes even

large intercepts indistinguishable from zero.9

We present results of tests of the CAPM and three-factor model using 25 test portfolios

9We explored the possibility that the low R2 for the cluster portfolios is driven by instability in the
cluster portfolios’ composition. Specifically, we examined the time-series standard deviation of factor
loadings for cluster and characteristic-sorted portfolios, as well as autocorrelations in these loadings.
While the standard deviation of the factor loadings in the overall sample period for cluster portfolios is
higher for the market, SMB and HML factors (by 50%, 60% and 18%, respectively), the autocorrelations
of the loadings across the 2 sets of basis assets are quite similar (and above 0.9 in all cases.) We also
break the sample period into four equal-length subperiods and compare the R2’s for the cluster and
characteristic-sorted portfolios, for the CAPM and the three-factor model. If instability in the cluster
portfolios’ composition, and hence a lack of comparability through time in the factor loadings, is driving
the low R2 in the overall sample period results, the difference in R2 should diminish when subsamples are
analyzed, since the cluster portfolios would exhibit greater stability over shorter sample periods. In fact,
with one exception (the first subperiod of 1959-1970, for the CAPM model, where the R2 for the clusters
is 0.153 and for the characteristic-sorted portfolios is 0.135), the difference in explanatory power across
the cluster and characteristic-sorted portfolios is even larger than in the overall sample. Consequently,
it does not appear that instability in the cluster portfolios, and consequently in their loadings, is the
source of the difference in R2’s in Tables 4-7.
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in Tables 6 and 7. As shown in the tables, when 25 cluster or size- and book-to-market

portfolios are used to test model specification, both the CAPM and the three-factor

model are strongly rejected. As in tests using ten portfolios, although the inferences from

the GRS test statistic are similar across the sets of basis assets, the results for individual

portfolios are quite different. The regression R2’s again suggest a systematically poorer fit

of the time series of the cluster portfolios than the characteristic portfolios. Additionally,

the regression intercepts of the cluster portfolios are again substantially larger in absolute

value than those of the characteristic portfolios.

The results from these specification tests indicate that while multivariate tests of the

CAPM and three-factor model lead to similar inferences, individual cluster portfolios

have substantially larger pricing errors, and the CAPM and Fama-French factors fit the

cluster portfolios returns substantially less well than the traditional characteristic-sorted

portfolios. Since the three-factor model was generated, at least in part, by fitting the

returns process in the characteristic-sorted portfolios, its superior fit on these portfolios

is not surprising.10 What may be surprising is the model’s relatively poor fit for the

cluster portfolios. Substantial portions of cluster portfolio returns are unexplained by

the three-factor model. As a consequence, and related to the arguments in Daniel and

Titman (2005), the cluster portfolios may have the ability to provide more powerful tests

of some asset pricing models.

4.2 Cross-sectional regression tests

In addition to the multivariate tests of return-based factor models above, we perform

cross-sectional tests of the CAPM, Consumption CAPM, three-factor model, and the

conditional CAPM of Jagannathan and Wang (1996) (which includes factors related to

labor income and time-variation in risk premia, captured in the default spread.) To gain

a better understanding of where the pricing models may fail using different sets of basis

assets, we include other right-hand-side variables, such as firm size and book-to-market

10For example, the size-sorting in the 25 Fama-French portfolios can easily be seen in the magnitude
of the coefficients on SMB in Table 8, Panel B. The coefficient, γ, declines steadily across the S1-S5
sort dimension and is negative for the S5 (largest) firms; the range in γ is large, from a maximum of
1.10 to -0.22. In contrast, while there is significant variability in the γ coefficient across the cluster
portfolios in Panel A, the dispersion is much smaller–only one coefficient is (insignificantly) negative,
and the coefficient ranges from -0.05 to 0.52. In Section 5, we examine whether there is statistically
significant dispersion in such characteristics as market value across the cluster portfolios; however, it is
worth pointing out that the average γ across the cluster portfolios is consistent with the γ of the mid-cap
firms (or size categories 3 and 4) in the Fama-French sorting. Thus, the cluster portfolios do not appear
to be dominated by small (or large) capitalization firms.
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equity. Because our (real) consumption data are measured quarterly, all tests are run on

real quarterly returns. Results are reported in Table 8.

There are striking differences in inferences across the two sets of portfolios. The

cluster portfolios’ returns are positively and significantly related to both CAPM betas

and consumption betas (regressions 1 and 3, respectively). The relation between returns

and (both) betas are unaffected by the inclusion of firm size and book-to-market equity

characteristics, which are not significantly related to returns (regressions 2 and 4). In

contrast, when the Fama-French portfolio returns are the dependent variable (in Panel

B), the coefficient on CAPM beta is negative and insignificant (regression 1); when

size and book-to-market variables are included (in regression 2), the coefficient on beta

remains negative and becomes significant. The coefficient on the consumption CAPM

beta is positive and significant for the Fama-French portfolios (regression 3), but does

not survive the inclusion of size and book-to-market characteristics (regression 4).

Not surprisingly, the size- and book-to-market sorted portfolio returns are much more

strongly related to SMB and HML, as well as size- and book-to-market characteristics,

than the cluster portfolios. As a result, the R̄2 of cross-sectional regressions using the

Fama-French portfolios are higher when these variables are included in the specification.

In fact, the cluster portfolio returns have no significant relation to size and book-to-

market characteristics or the exposure to the SMB and HML factors, in any of the

specifications. One concern is that we fail to find a significant role for the size and book-

to-market characteristics in pricing the cluster portfolios due to insufficient dispersion in

these characteristics. We examine this issue in the next section.

Perhaps the most striking performance differences in the two sets of basis assets is

the conditional CAPM of Jagannathan and Wang (1996); see regression 5 in both panels.

The adjusted R2 of the model for the cluster portfolios exceeds 40%, the coefficient on

market beta is positive, and the coefficient on default spread is negative. The prices of

market beta and default spread beta are both statistically different than zero. Thus,

the results indicate that exposure to the market portfolio return and the default spread

have reasonable explanatory power for the cross-section of cluster-sorted portfolio re-

turns. Further, these conclusions remain after controlling for size and book-to-market

characteristics, which do not have significant explanatory power for the cluster portfolio

returns. In contrast, when tested on the characteristic-sorted portfolios, the conditional

CAPM has roughly half of this explanatory power and generates a negative and statisti-

cally insignificant market beta coefficient, as well as a significantly positive coefficient on

default spread (which does not survive the inclusion of portfolio size and book-to-market
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variables).

In general, we find large differences in the results of the cross-sectional regression

tests across the two sets of assets. Traditional measures of risk, such as CAPM and

consumption CAPM betas, are positively and significantly related to the returns of cluster

portfolios, even when firm characteristics such as size and book-to-market are included

in the regression. In addition, the magnitude of the market risk premia implied by the

estimate of γm for cluster portfolios is economically plausible, implying an annualized

market risk premium of 4.15% to 7.71% per year. There are also significant differences in

the relation of other variables, such as the default spread beta, to the portfolio returns.

Because the Fama-French portfolio returns are designed to have maximum dispersion

along size- and book-to-market dimensions, the R̄2 of the cross-sectional regressions is

much higher for these portfolios than the cluster portfolios when the characteristics or

characteristic-based risk measures are included in the regression. However, the inclusion

of size- and book-to-market factors result in prices of CAPM and Consumption CAPM

beta risk that are either insignificant, or significant and negative.

The differences in the results of our cross-sectional tests across the two sets of port-

folios are consistent with arguments in Daniel and Titman (2005). The authors suggest

that sorting on size- and book-to-market maximizes dispersion in these characteristics at

the expense of masking dispersion in exposures to other fundamental factors. The dis-

persion in size, book-to-market, and their associated factor exposures is obviously much

higher for the characteristic-sorted portfolios than the cluster portfolios. However, the

dispersion of market beta is only slightly higher for the characteristic portfolios than the

cluster portfolios. Despite this fact, the price of cluster portfolio beta risk is positive

and significant, in contrast to the price of characteristic portfolio beta risk. Since our

clusters are formed on the basis of comovement among securities, these portfolios may

be more related to fundamental risk factors in the economy. Consequently, rejecting a

particular asset pricing model because of its inability to explain the returns of (some)

cluster portfolios may provide additional information about the mis-specification, or the

specific identity of omitted risk factors, in the model.

5 Characterizing Clusters

In the cross-sectional tests above, we find evidence that the cluster portfolios are posi-

tively and significantly related to both betas and consumption betas; these results are
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robust to the inclusion of other characteristics, such as firm size and book-to-market eq-

uity. One possible explanation for these results is that the cluster portfolios do not have

sufficient dispersion along the dimension of the firm characteristics which we include in

the tests. In contrast, of course, the 25 size- and book-to-market sorted portfolios are

designed to have maximum dispersion along these dimensions. In this section, we ex-

plore the relation between the cluster portfolios we form and a number of characteristics.

These results are useful not only because they address the question of statistical power in

the cross-sectional tests, but because they help to characterize the nature of the cluster

portfolios.

The clustering algorithm is silent on the nature of the factors that influence correlation

between securities.11 However, there are well-known techniques that can be used to

characterize, or profile, the groups that result from a cluster analysis. For example,

one could profile the clusters using discriminant analysis, with the cluster variable as

the dependent variable in an analysis that asks what factors influence cluster or group

membership.

Although we do not perform an exhaustive search of the possible factors, we examine

whether or to what extent well-known and well-used factors or characteristics relate

to the clusters formed using this grouping algorithm. Since our cluster portfolios have

positive (value) weights on the individual securities in each portfolio, we are easily able

to measure portfolio characteristics such as size, book-to-market, etc. Specifically, in

Table 9, we characterize the cluster portfolios’ average (log) market capitalization, book-

to-market equity and market beta; we also test whether there is significant dispersion

among the cluster portfolios along these dimensions. For each characteristic, we calculate

the value at the end of the 60 month period of returns used to generate the clusters; this

value is thus taken immediately before the 12 months over which the cluster identification

is held constant. Similarly, the beta is calculated over the 60-month window preceding

the cluster identification in the table. These portfolio characteristics are then averaged

over all subperiods.

Clearly, there is significant dispersion along these well-known firm characteristics

between the cluster portfolios. For example, the average betas in the cluster portfolios

vary from 0.81 to 1.12, and this range is highly significant. The differences among

portfolios’ market capitalization and book-to-market are significant as well. Overall,

11Despite the fact that the clustering algorithm does not identify factors, we note that any econometric
method that seeks to estimate factors from the covariance matrix of returns, such as factor analysis,
would benefit from the superior conditioning of the cluster portfolios’ covariance matrix.
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these results suggest that clusters are related to firm characteristics and that the evidence

in the cross-sectional tests that betas are priced, while characteristics are not, does not

seem to be driven by a lack of significant dispersion in the characteristics.12

Clearly, there are other methods of forming portfolios, such as principal components

analysis, which also seek to capture the information in a large matrix of returns by

forming a small number of (well-chosen) portfolios. In Appendix A3, we examine the

relation between cluster portfolios and the principal components extracted from security

returns. We present evidence that, despite the binding constraints applied to the clus-

tering method, the cluster portfolios have similar advantages to principal components

and these portfolios are easier to form and characterize. Consequently, they may provide

more useful information to identify economically important sources of comovement than

principal components analysis.

5.1 Clusters and Industries

As mentioned above, King (1966) presents evidence that firms in similar industries have

higher cross-correlations. We compare the ability of industry and cluster portfolios to

group on the basis of comovement. The cross-correlations of the industry portfolios are

presented in Table 10. The average cross-correlations of the ten industry portfolios, at

0.63, is higher than the cross-correlations of the cluster portfolios, and the dispersion in

subsequent returns, at 27 basis points per month, is significantly lower as well.

The lower cross-correlations in the cluster portfolios suggest that these portfolios may

be more similar to ”pure plays” on fundamental factors than are industry portfolios.

To explore this further, we run the following sets of regressions. First, we examine the

increase in explanatory power in a regression of cluster portfolio returns as we sequentially

add additional industry portfolios; we then reverse the experiment, and regress industry

portfolio returns on cluster portfolios. If cluster portfolios are more similar to a single

fundamental factor, then the increase in explanatory power in industry returns as we add

cluster portfolios should be higher than that observed when we add additional industry

12Note that although the clustering algorithm sorts on covariances between individual securities, this
does not imply that we are sorting on betas. The covariances between the returns of individual securities
may reflect many other factors besides their correlation with a common market return. For comparison,
we also examined the relation between the returns of principal component-mimicking portfolios and
characteristics. The correlations between “average” characteristics and subsequent returns were not as
strong as the relation for the cluster portfolios. For example, the correlation between market value and
returns was 0.04, while the relation between book-to-market and returns was both smaller and negative
(-0.38). The relation between beta and returns was also negative, at -0.32.
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portfolios to explain cluster portfolio returns.

Specifically, we begin with individual cluster portfolios as the dependent variable,

and the single industry portfolio on the right-hand-side with which the cluster is most

closely associated. Taking the residual from this regression, we examine the increase in

explanatory power as we add industry portfolios as independent variables one at a time.

We then repeat this exercise, exactly reversing the role of cluster and industry portfolios.

The results are presented in Table 11 and Figure 5.

In Table 11, we present the increase in explanatory power as we add the first five

portfolios to each regression. In Figure 5, we present the average (across ten cluster

(industry) portfolios) of the R2 obtained as we add all ten industry (cluster) portfolios to

the regression. The increase in explanatory power as we add cluster portfolios is larger;

the slope of the top line in Figure 5 is steeper than the bottom line, which represents

adding industry portfolios to the regression. Moreover, the total explanatory power with

ten cluster portfolios is higher than with ten industry portfolios.13 Overall, these results

suggest that cluster portfolios are related to industry portfolios, but industry portfolios

are more cross-correlated, have lower incremental explanatory power, and explain a lower

cumulative fraction of returns, than cluster portfolios.

Finally, we report evidence on the stability of the clusters, which one would expect to

find if the determinants of cluster membership are related to economic characteristics of

the firms, which changed only slowly over time. Specifically, we estimate the propensity

of firms in a particular cluster i at time t to have been in the same cluster in the previous

period. For the set of ten cluster portfolios, the average propensity of firms to remain

in similar clusters for overlapping samples (non-overlapping 5-year) samples is 20.3%

(9.8%) per year. The stability of clusters is lower than that of the portfolios formed on

the basis of firm characteristics, but there are also large differences in stability across the

characteristics. For example, while market capitalization is quite stable, with persistence

across one-year periods (5-year periods) of 64.9% (36.5%), the stability of book-to-market

portfolios is much lower, at 36.1% in one-year samples and only 15.9% in 5-year samples,

and is not dramatically higher over five years than the persistence in the ten cluster

portfolios.14

13In fact, the results with cluster portfolios are quite similar to the cumulative percentage of returns
explained with principal components; see Appendix A3 for details.

14Recall that we identify cluster numbers through time by maximizing the extent to which the mem-
bership in a cluster remains constant. Consequently, the persistence in cluster membership reported
here is, by construction, the highest we can attain from year-to-year when forming clusters annually.
Empirically, if we use other rules for assigning cluster numbers, we still find significant persistence in the
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Overall, these results suggest that the use of the clustering algorithm to generate a

set of basis assets yields significant cross-sectional dispersion in firm characteristics as

well as returns.

6 Conclusion

In this paper, we focus on an alternative construction of a set of basis assets that char-

acterizes an investor’s opportunity set. The formation of basis assets underlies much

of the empirical literature on asset pricing, including asset pricing model tests, infer-

ences regarding profitable trading opportunities, and the investigation of omitted pricing

model factors. We propose a new method of forming basis assets, which is not subject

to potential data-snooping biases. This method explicitly seeks to minimize (maximize)

inter-(intra-)group correlations. This approach contrasts sharply with the goal of tradi-

tional sorting exercises, which seek to maximize variation in ex post sample mean returns

across portfolios.

The resulting set of basis assets seems to perform well along several dimensions. First,

the method generates significant dispersion in future returns; indeed, despite the fact that

the clustering algorithms uses correlations, rather than ex post mean returns, to form

portfolios the dispersion in out-of-sample returns is similar to that generated using single

firm characteristics such as size or book-to-market, or sorts along multiple characteristics.

Second, the set of portfolios constructed seem to generate a relatively well-conditioned

covariance matrix of returns. This fact implies increased precision in the calculation

of efficient frontiers and related Sharpe ratios. Moreover, while it has been shown in

previous papers that measurement error leads to an upward bias in the Sharpe ratio

associated with the investors opportunity set, we show that this bias increases sharply

as the covariance matrix becomes less well-conditioned. Thus, the conditioning of the

covariance matrix generated by a particular set of basis assets plays an important role

in the reliability with which we can draw inferences regarding the performance of asset

pricing models, the composition of frontier portfolios, and the measurement of expected,

and hence abnormal, returns. These results highlight a little emphasized issue in basis

clusters. For example, when we use Sharpe ratios to identify clusters through time, the persistence in
the ten portfolios declines slightly, to 19.1% in the overlapping sample, and is significantly higher than
one would expect by random chance. Interestingly, when we used Sharpe ratios to identify clusters, the
probability that firms would remain in the same clusters in the non-overlapping sample was higher, at
13.5%. This suggests that the factors associated with a firm’s observed Sharpe ratio are stable over
longer horizons, possibly due to persistence in volatility.
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asset construction: the focus on generating dispersion in ex post mean returns may come

at the cost of a reduction in the precision of inferences.

In specification tests of the CAPM and the three-factor asset pricing model, we find

that there appear to be significant components of cluster portfolio returns which are

not explained by the three-factor model; in cross-sectional regression tests, the cluster

portfolio returns are positively and significantly related to CAPM and CCAPM betas,

and this result is robust to the inclusion of characteristic variables such as size and book-

to-market. In contrast, size- and book-to-market sorted portfolio returns are significantly

related to characteristics, and the returns of factor-mimicking portfolio returns related

to those characteristics, while they are negatively related to other risk measures.

Finally, the cluster portfolios are correlated with firm characteristics such as size,

book-to-market and beta. This result suggests that the clustering algorithm, with its

focus on returns and return correlations, is capable of sorting firms into groups with im-

portant economic differences. Equally importantly, the algorithm is able to sort securities

into groups without requiring the researcher to ex ante identify the firm characteristics

of interest, perhaps generating a data-snooping bias. Rather, the clustering algorithm

uses only returns data; more specifically, it uses only the correlation between the re-

turns of individual securities. And, in contrast to the sorting methods currently in use,

the algorithm does not appear to favor an increased number of basis portfolios, with its

attendant increased risk of data-snooping.

Despite the fact that the clustering algorithm does not identify factors, the increased

precision with which the cluster portfolios allow the investor’s opportunity set to be iden-

tified have several advantages. These advantages include increased precision in measuring

abnormal returns, testing asset pricing models, generating efficient portfolio weights, and

generating the covariance matrix from which, in future work, ‘real’ economic factors can

be estimated.
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Appendix

A1: Implications of Conditioning for Pricing Infer-

ences

The well-known constrained minimization problem faced by a rational, risk-averse single

period investor with quadratic utility making a portfolio choice is:

min
ω

ω′Σω

s.t. ω′ι = 1 (A1)

ω′µ = e

where µ is a vector of expected returns, ι is a conforming vector of ones, ω is the vector

of portfolio weights (and the solution to the problem), e is a scalar portfolio expected

return, and the covariance matrix of returns is denoted by Σ. The solution is given by:

ω = Σ−1(λι + θµ) (A2)

where λ and θ are the Lagrange multipliers for the constraints in the minimization prob-

lem given above.

Now, consider the situation in which mean returns µ are measured with error; denote

the measurement error as ∆µ. Through the first order condition to the minimization

problem above, the measurement error in µ will lead to a related solution error in ω.

Call this solution error ∆ω. This error ∆ω is given by:

∆ω = Σ−1θ∆µ

Note that the change in the solution is related to the (inverse of the) covariance matrix,

as well as the measurement error in µ. It can be shown that the relative size of this

solution error is bounded by a function of the relative size of the measurement error ∆µ

and a property of the covariance matrix:

||∆ω||
||ω|| ≤ κ

||∆µ||
||µ|| (A3)
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where κ is the condition number of the matrix Σ.15 The condition number can be

calculated as:

cond(Σ) = κ(Σ) = ||Σ|| · ||Σ−1|| (A4)

Thus, the relative importance of the solution error is related to the conditioning of

the covariance matrix of returns.

Equation (A3) highlights the role of the conditioning of the covariance matrix in

gauging the influence of measurement error in the data. Intuitively, the condition number

of the covariance matrix of returns is related to the collinearity of the data. For example,

a matrix which is not of full rank has an infinite condition number. At the other extreme,

the minimum condition number is 1; the identity matrix has a condition number of 1.

The higher the condition number of the matrix, the more collinearity in the data and

the less precise the solution obtained using the matrix. If the condition number is high

enough, the solution may be meaningless.16

The clustering algorithm we use seeks to reduce the correlation, or the collinearity,

between the portfolio groups in the data. Consequently, one measure of the method’s

success is to examine the condition number of the covariance matrix Σ, and compare this

result to the condition number of alternative constructions of Σ, formed from different

groups of securities.

A2: Simulation Design

In our primary simulation experiment, we add a measurement error with a zero mean

and standard deviation of σµ to the two sets of basis asset returns µC and µS, where

15There are many norms which one can use to calculate condition numbers; as Heath (2002) notes,
while the numerical value of the condition number depends on the particular norm used, because they
differ from each other only by a fixed constant, they are ”equally useful as quantitative measures of
conditioning.” Throughout the paper, we calculate the condition number using the 2-norm of the matrix.
This condition number can also be calculated as the ratio of the maximum and minimum eigenvalues of
Σ.

16The sensitivity of the solution to measurement error in the covariance matrix, rather than the vector
of mean returns, is also driven by the condition number of the covariance matrix. More generally, if
there is measurement error ∆Σ in the covariance matrix, as well as measurement error ∆µ in the vector
of mean returns, the sensitivity of the solution to these two measurement errors is given by:

||∆ω||
||ω|| ≤ f(κ2(Σ))

[ ||∆µ||
||µ|| +

||∆Σ||
||Σ||

]
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µC is the vector of mean returns of the cluster portfolios, and µS is the vector of mean

returns for the characteristic-sorted portfolios. For both sets of basis assets, σµ is set to

1, 5 and 10 basis points. The magnitude of the simulated perturbations in mean returns

are designed to be similar to, or smaller than, common market frictions. For example,

MacKinlay uses σµ estimates of 7 and 10 basis points, and argues that these magnitudes

are plausible, even conservative, and are consistent with spreads that could arise from

data-snooping. As another benchmark, if we bootstrap the mean returns in our sample,

the average standard deviation across 5000 iterations, at 23 basis points, is larger than

any of our three simulated experiments.

Five thousand runs of the simulations are performed for each value of σµ and for each

set of portfolios; in the body of the paper, we primarily discuss the simulation performed

under the assumption that the simulated measurement errors are cross-sectionally inde-

pendent. In other experiments, we allow the measurement errors to be correlated across

portfolios. Specifically, we begin by assuming that measurement errors are positively cor-

related, and, in fact, assume that measurement errors have the same correlation structure

as the raw portfolio returns. For this experiment, we examine only the case where σµ is

set equal to 5 basis points and the number of portfolios is 25.

Assuming that the measurement error is highly positively correlated across portfolios

is equivalent to assuming that there is a systematic component to the error; if we assume

that the correlation structure in the measurement errors across portfolios is identical

to the correlation structure in the raw returns, in the MacKinlay framework, we are

inserting a direct link between the measurement error in, and consequently the value of,

the observed portfolio return and its variance. Not surprisingly, the re-imposition of this

link reduces the bias in the observed Sharpe ratio in the simulation, and consequently

reduces the conditioning advantage of the cluster portfolios. Specifically, if we set the

correlation level to be the same as we observe in the raw cluster portfolio returns, the

increase in the mean Sharpe ratio (and hence the increase in the bias) of the characteristic-

sorted portfolios decreases to 0.02, from the increase of 0.037 observed when measurement

errors are assumed to be uncorrelated. If we set the correlation level higher, at the level

observed in the raw size- and book-to-market sorted portfolio returns, the increase in the

mean Sharpe ratio for the characteristic-sorted portfolios is essentially zero.

Note that if we impose a correlated error structure that does not require that the

mean and variance of the measurement error are linked, the magnitude of the correlation

in the error terms has a less dramatic effect on the Sharpe ratio of the characteristic-

sorted portfolios. For example, if we set the correlation level to be 0.8, the increase in the
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mean Sharpe ratio of the characteristic-sorted portfolios falls from 0.037 to 0.006. If we

set the correlation level to be 0.4, the increase in the mean Sharpe ratio falls from 0.037

to 0.021. In all cases, the mean increase in the Sharpe ratio of the better-conditioned

cluster portfolios is much smaller, never rising above 0.004.

Lo and MacKinlay (1990) argue that data-snooping biases may result in a sorting of

measurement errors as well; in this case, measurement errors may be negatively correlated

across basis asset portfolios. Not surprisingly, if we set the correlation in the measurement

errors to be negative, the effect of conditioning differences increases. For example, if the

correlation is set to -0.04, the increase in the Sharpe ratio for the characteristic-sorted

portfolios increases from 0.037 to 0.039.17 Our results suggest that, while conditioning

continues to matter, the correlation in, and consequently the source of, measurement error

in returns data is an important determinant of the advantage that better conditioning

provides.

A3: Alternative Data Reduction Techniques

We compare the ability of these clustering algorithms and principal components analysis

to capture important features of the investor’s ex ante opportunity set. Both principal

components and cluster portfolios are linear combinations of individual securities. How-

ever, the principal components extracted from returns data are designed to account for

the maximum variation in returns (in-sample), with each component being orthogonal

to all others. Hence, the first component will be along the dimension of greatest return

variation in the sample, the second (orthogonal) component will capture the next largest

variation, and so on. The principal components can be thought of as weighted combina-

tions of individual securities, where the weights are unconstrained, and all securities can

(and generally do) play a role in each principal component.

In contrast, while the clustering algorithm is designed to minimize the in-sample

correlation between clusters, these clusters will not be orthogonal to one another. In

addition, an individual security will be placed in only one cluster, and the weight given

to an individual security is always positive (and is given by the value-weight of the

security in the portfolio.) Thus, the cluster portfolios are much more constrained than

17Note that reducing the correlation level below -0.04 creates, for some iterations of the simulation, a
covariance matrix that is not positive definite unless we impose further structure on the measurement
errors.
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the principal components in their membership, and their weighting scheme.18

There is another difference between our clustering technique and principal components

analysis. Our clusters are based on correlations, while principal components analysis

uses the covariance matrix. Since principal components analysis is not scale invariant,

the components formed are different, and there is no convenient correspondence between

the two decompositions.

In the end, it is an empirical question as to which data reduction technique does

a better job of capturing investors’ opportunity sets, or which lends itself better to an

understanding of fundamental economic risks. We compare the opportunity set formed

using principal components analysis with that formed using our clustering algorithm.

Specifically, we use the method of Connor and Korajczyk (1988), who extract principal

components from a T × T covariance matrix formed from monthly individual security

returns over five-year subperiods. Following their method, we require that a security have

all 60 months of returns data available to be included in the sample; this requirement

is applied both to the clustering algorithm and the principal component analysis for the

purposes of this comparison. Our in-sample results are similar to theirs. For example,

we find that when we regress the equal-weighted market return on the first factor, we

obtain R2 values above 0.98 for each of the subperiods in our sample. Thus, as Brown

(1989) shows, the first principal component is virtually identical to the equal-weighted

index, regardless of the true underlying structure of returns.19

We are interested in the ability of these methods to capture the investor’s ex ante op-

portunity set. Consequently, we wish to examine the out-of-sample frontier constructed

from the extracted principal components, with the out-of-sample frontier constructed

from cluster portfolios. To construct the out-of-sample frontier generated by principal

components, we construct mimicking portfolio weights for each of the principal compo-

nents. We then apply these weights to the assets in months t through t + 11 to form K

18Note that weight constraints on the cluster portfolios may be an advantage, rather than a burden.
For example, Jagannathan and Ma (2003) argue that constraining portfolio weights to be non-negative
may actually help when forming optimal portfolios, since extreme weights may reflect large estimation
errors. They show that such constraints can be equivalent to a shrinkage estimator applied to the sample
covariance matrix.

19In January of 1992, one stock in our sample (OCG Technologies) has a 2400% return. This one
observation affects the principal components analysis; essentially, it causes the second principal compo-
nent (and in one month the third principal component) to be significantly more important during the
five-year window that includes this month. However, when we regress the equal-weighted market return
on the first two components in this subperiod, we obtain R2 that are quite similar to those obtained
from using the first principal component only in all other subperiods. This effect occurs only in our
in-sample results. Out-of-sample results are not affected by this single large return in one small stock.
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factor-mimicking portfolios. We form frontiers from these portfolios, for increasing K.

We find that the factor-mimicking portfolios of the first ten principal components

generate an out-of-sample dispersion in returns of 43 basis points per month, and an

efficient frontier with a Sharpe ratio of 0.24. The dispersion in returns is 4 basis points

less than the dispersion in returns observed with ten cluster portfolios, and the Sharpe

ratio is larger than the Sharpe ratio generated by the cluster portfolios of 0.196. In addi-

tion, the condition number of the covariance matrix generated by the factor-mimicking

portfolios, at 9, is not significantly different from the condition number observed using

ten cluster portfolios. However, the weights attached to individual securities in these

factor-mimicking portfolios vary substantially across securities, particularly compared to

the value-weights used in the cluster portfolios. For example, on average, more than a

third of securities in all of the mimicking portfolios have negative weights, and the average

standard deviation of the weight given to a particular firm through time is almost three

times the standard deviation of the weights in the cluster portfolios. As Brown, Goetz-

mann, and Grinblatt (1997) point out, these differences makes the principal components’

portfolios difficult to form, or characterize.20 Thus, despite the binding constraints im-

posed on the cluster portfolios, they appear capable of generating an opportunity set that

is comparable to principal components. In addition, these constraints make the portfo-

lios easier to form, and may make the sources of comovement, and hence the underlying

economic factors, easier to identify.

20In the out-of-sample period, the first component continues to be significantly and positively corre-
lated with the equal-weighted market portfolio, although the correlation declines sharply, to 0.41.
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Table 1: Descriptive Statistics: 10 Portfolios

Table 1 presents descriptive statistics for 10 portfolios formed on various dimensions. The column labeled
“Cluster” represents portfolios formed on the basis of clustering of the correlation matrix over the prior
sixty months, “MV” represents portfolios formed on market value, “BM” represents portfolios formed on
book-to-market ratios, and “Beta” represents portfolios formed on the basis of CAPM betas. The cluster,
market value, book-to-market ratio, and beta are measured as of June of each year. Data are formed from
CRSP and Compustat data, and require that each firm have a valid market value, book-to-market ratio,
and CAPM beta at the time of portfolio formation. Panel A presents means and standard deviations for
these four sets of portfolios. Panel B presents the correlation matrix of the cluster portfolios. Panel C
reports additional summary statistics for the returns; displayed are the skewness, kurtosis, and beta and
coskewness as measured with respect to the value-weighted CRSP index. Coskewness is measured as
the slope coefficient from regressing the portfolio return on the return on the market portfolio squared.
Panel D presents the maximum Sharpe ratios of efficient portfolios formed from the assets. Data are
sampled monthly from July, 1959 through December, 2003.

Panel A: Means and Standard Deviations

Means Standard Deviations
Cluster MV BM Beta Cluster MV BM Beta

1 1.184 1.399 0.819 0.944 8.111 6.604 5.061 3.647
2 1.060 1.304 0.995 0.997 5.025 6.144 4.756 3.762
3 1.189 1.243 0.906 0.979 5.394 5.734 4.685 4.012
4 0.980 1.227 0.985 0.971 5.185 5.593 4.654 4.365
5 1.006 1.211 1.101 1.051 6.665 5.266 4.431 4.592
6 0.872 1.083 1.070 1.010 6.177 5.028 4.308 4.997
7 1.323 1.112 1.151 0.946 6.546 4.978 4.292 5.248
8 1.342 1.100 1.170 0.867 5.750 4.828 4.361 5.850
9 1.242 0.977 1.308 0.906 5.871 4.465 4.595 6.700
10 1.262 0.892 1.361 0.960 5.413 4.285 5.090 8.231

Panel B: Correlation Matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 1.00
C2 0.29 1.00
C3 0.39 0.31 1.00
C4 0.47 0.55 0.62 1.00
C5 0.59 0.36 0.45 0.49 1.00
C6 0.48 0.44 0.46 0.53 0.50 1.00
C7 0.47 0.45 0.51 0.59 0.49 0.44 1.00
C8 0.40 0.49 0.52 0.63 0.38 0.48 0.58 1.00
C9 0.65 0.44 0.52 0.62 0.68 0.56 0.57 0.54 1.00
C10 0.51 0.51 0.58 0.66 0.52 0.52 0.60 0.63 0.64 1.00
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Table 2: Summary Statistics: 25 Portfolios

Table 2 presents summary statistics for 25 portfolios formed on two criteria. The portfolios labeled “C1”
through “C25” represent portfolios based on the clustering of the correlation matrix measured over the
past 60 months. Rows labeled “S1B1” through “S5B5” represent portfolios formed on the intersection of
size and book-to-market ratio quintiles. Firms are assigned to cluster and size/book-to-market portfolios
as of the end of June each year. Data are formed using CRSP and Compustat, and require that each
firm have a valid market value, book-to-market ratio, and beta at the time of portfolio formation. Panel
A presents the means and the standard deviations of the portfolios, Panel B presents maximum Sharpe
ratios from the efficient frontier constructed using these portfolios. Data are sampled at the monthly
frequency from July, 1959 through December, 2003.

Panel A: Means and Standard Deviations

Mean Standard Deviation
C1 1.002 S1B1 0.869 C1 5.861 S1B1 8.103
C2 1.253 S1B2 1.235 C2 6.770 S1B2 6.861
C3 1.186 S1B3 1.335 C3 6.939 S1B3 6.044
C4 1.077 S1B4 1.530 C4 5.893 S1B4 5.664
C5 1.229 S1B5 1.560 C5 6.333 S1B5 6.037
C6 1.412 S2B1 0.989 C6 6.922 S2B1 6.955
C7 1.275 S2B2 1.135 C7 7.157 S2B2 5.999
C8 1.193 S2B3 1.273 C8 6.002 S2B3 5.293
C9 0.893 S2B4 1.420 C9 6.304 S2B4 5.122
C10 1.348 S2B5 1.404 C10 6.874 S2B5 5.549
C11 1.176 S3B1 0.997 C11 5.946 S3B1 6.314
C12 1.176 S3B2 1.069 C12 6.478 S3B2 5.281
C13 0.804 S3B3 1.136 C13 6.343 S3B3 4.800
C14 1.257 S3B4 1.212 C14 5.975 S3B4 4.771
C15 1.028 S3B5 1.388 C15 4.907 S3B5 5.265
C16 1.207 S4B1 0.983 C16 7.117 S4B1 5.775
C17 1.176 S4B2 0.962 C17 6.362 S4B2 5.087
C18 1.417 S4B3 1.179 C18 8.125 S4B3 4.773
C19 1.429 S4B4 1.283 C19 6.527 S4B4 4.591
C20 1.228 S4B5 1.362 C20 7.384 S4B5 5.148
C21 1.595 S5B1 0.882 C21 8.555 S5B1 4.764
C22 1.114 S5B2 0.893 C22 6.357 S5B2 4.518
C23 1.444 S5B3 1.034 C23 7.659 S5B3 4.323
C24 0.900 S5B4 1.027 C24 7.026 S5B4 4.250
C25 1.236 S5B5 1.159 C25 6.677 S5B5 4.613

Panel B: Sharpe Ratios

Cluster SZBM
0.241 0.407
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Table 5: Three-Factor Specification Tests: 10 Assets

Table 5 presents specification tests for four sets of 10 portfolios. We conduct specification tests based on the regression
specification

rit − rf = αi + βi

`
rmt − rf

´
+ γirSMB,t + δirHML,t + εit

where rit is the return on portfolio i, rf is the risk-free rate, measured as the return on the T-Bill closest to one month to
maturity, rmt is the return on the value-weighted CRSP index, rSMB,t is the return on a small size portfolio in excess of
the return on a large size portfolio, and rHML,t is the return on a high book-to-market portfolio in excess of the return on
a low book-to-market portfolio. The parameters are estimated via least squares, and the restriction α = 0 is tested using
the Gibbons, Ross, and Shanken (1989) specification test. The table presents the coefficient estimates and accompanying
standard errors, along with regression R2. The test statistics and p-values for the specification tests are presented below
the coefficient estimates. Tests are conducted on four separate sets of assets: cluster, size, book-to-market, and beta-sorted
portfolios. Data are sampled at the monthly frequency from July, 1959 through December, 2003.

α β γ δ R2 α β γ δ R2

C1 0.292 0.967 0.698 -0.229 48.995 M1 0.070 1.042 1.081 0.528 81.747
(0.260) (0.063) (0.084) (0.097) (0.127) (0.031) (0.041) (0.047)

C2 0.013 0.770 0.189 0.446 43.214 M2 0.011 1.096 0.915 0.445 91.343
(0.169) (0.041) (0.055) (0.063) (0.081) (0.020) (0.026) (0.030)

C3 0.255 0.909 -0.036 0.131 51.625 M3 -0.016 1.079 0.771 0.430 92.832
(0.168) (0.041) (0.054) (0.063) (0.069) (0.017) (0.022) (0.026)

C4 -0.136 0.991 0.184 0.378 67.806 M4 0.009 1.080 0.674 0.369 92.834
(0.132) (0.032) (0.043) (0.049) (0.067) (0.016) (0.022) (0.025)

C5 0.160 1.034 0.045 -0.207 54.356 M5 0.018 1.060 0.551 0.370 93.207
(0.202) (0.049) (0.065) (0.076) (0.062) (0.015) (0.020) (0.023)

C6 -0.113 0.994 0.102 0.116 50.650 M6 -0.051 1.060 0.382 0.291 93.942
(0.194) (0.047) (0.063) (0.073) (0.056) (0.013) (0.018) (0.021)

C7 0.124 1.021 0.537 0.424 55.285 M7 -0.007 1.087 0.244 0.272 93.746
(0.196) (0.048) (0.064) (0.073) (0.056) (0.014) (0.018) (0.021)

C8 0.189 0.976 0.313 0.434 56.532 M8 0.011 1.078 0.151 0.243 94.643
(0.170) (0.041) (0.055) (0.064) (0.050) (0.012) (0.016) (0.019)

C9 0.365 0.985 0.262 -0.153 69.274 M9 -0.045 1.015 0.037 0.196 94.713
(0.146) (0.035) (0.047) (0.055) (0.046) (0.011) (0.015) (0.017)

C10 0.124 1.002 0.280 0.387 66.499 M10 0.078 0.954 -0.248 -0.111 97.054
(0.141) (0.034) (0.046) (0.053) (0.033) (0.008) (0.011) (0.012)

GRS: 1.692 (0.079) GRS: 1.538 (0.122)

α β γ δ R2 α β γ δ R2

B1 0.142 0.967 -0.157 -0.445 91.140 BT1 -0.007 0.680 0.030 0.373 58.620
(0.068) (0.016) (0.022) (0.025) (0.105) (0.026) (0.034) (0.039)

B2 0.109 1.015 -0.063 -0.070 91.291 BT2 0.106 0.757 -0.126 0.212 68.142
(0.063) (0.015) (0.020) (0.024) (0.095) (0.023) (0.031) (0.036)

B3 -0.054 1.023 -0.010 0.069 90.585 BT3 0.089 0.844 -0.119 0.125 77.803
(0.065) (0.016) (0.021) (0.024) (0.085) (0.021) (0.027) (0.032)

B4 -0.063 1.027 0.001 0.249 86.576 BT4 -0.004 0.945 -0.038 0.184 83.458
(0.076) (0.019) (0.025) (0.029) (0.080) (0.019) (0.026) (0.030)

B5 0.068 0.974 -0.022 0.277 83.438 BT5 0.078 0.996 -0.034 0.127 86.154
(0.081) (0.020) (0.026) (0.030) (0.077) (0.019) (0.025) (0.029)

B6 0.004 0.968 0.022 0.339 87.329 BT6 0.005 1.079 0.018 0.101 88.562
(0.069) (0.017) (0.022) (0.026) (0.076) (0.018) (0.025) (0.028)

B7 -0.015 0.969 0.104 0.530 87.740 BT7 -0.074 1.135 0.031 0.074 90.391
(0.067) (0.016) (0.022) (0.025) (0.073) (0.018) (0.024) (0.027)

B8 -0.060 0.990 0.148 0.633 89.798 BT8 -0.194 1.203 0.220 0.042 89.537
(0.063) (0.015) (0.020) (0.023) (0.085) (0.021) (0.027) (0.032)

B9 0.022 1.014 0.252 0.703 88.875 BT9 -0.226 1.336 0.314 0.036 87.006
(0.069) (0.017) (0.022) (0.026) (0.108) (0.026) (0.035) (0.041)

B10 0.014 1.089 0.374 0.723 88.141 BT10 -0.204 1.523 0.508 -0.137 84.587
(0.079) (0.019) (0.025) (0.029) (0.145) (0.035) (0.047) (0.054)

GRS: 1.345 (0.203) GRS: 1.270 (0.244)
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Table 9: Cluster Portfolio Characteristics

Table 9 depicts characteristics of the 10 cluster assets examined in the paper. We present the average
log market value, book-to-market ratio, beta, and NYSE market capitalization decile of each of the ten
portfolios formed on clusters. At the bottom of each of the first three columns, we present the standard
deviation in the average size, book-to-market, and beta across portfolios, and the t-statistic for the
difference in the average maximum and minimum. Data are sampled at the monthly frequency from
July, 1959 through December, 2003.

Portfolio lnMV BM Beta MV Dec.
C1 14.533 0.873 1.117 6.2
C2 14.784 0.971 0.806 7.1
C3 15.427 0.773 0.900 7.1
C4 15.443 1.000 1.014 7.3
C5 15.588 0.713 1.092 7.4
C6 15.335 1.024 1.030 7.3
C7 14.680 1.015 1.002 6.3
C8 15.297 0.686 0.995 6.9
C9 15.185 0.785 1.086 6.9
C10 15.252 0.784 1.032 7.2

Std. Dev. 0.358 0.131 0.094
t(Max-Min) 12.645 8.682 18.286
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Table 10: Industry Portfolio Correlations
Table 10 presents correlations of monthly returns on ten industry-sorted portfolios. Industry
definitions and data are taken from Kenneth French’s website. Data cover the period July 1959
through December 2003.

NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other
NoDur 1.00
Durbl 0.66 1.00
Manuf 0.83 0.80 1.00
Enrgy 0.51 0.46 0.61 1.00
HiTec 0.57 0.63 0.74 0.41 1.00
Telcm 0.63 0.59 0.64 0.41 0.61 1.00
Shops 0.84 0.77 0.84 0.46 0.70 0.67 1.00
Hlth 0.78 0.51 0.74 0.45 0.64 0.57 0.69 1.00
Utils 0.63 0.47 0.54 0.57 0.29 0.53 0.50 0.49 1.00
Other 0.83 0.77 0.89 0.60 0.71 0.69 0.85 0.74 0.61 1.00
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Figure 1: Distribution of Efficient Frontiers: 10 Portfolios
Figure 1 displays the 5% and 95% critical value of mean-standard deviation frontiers generated by
perturbing the mean vector of four sets of portfolios. Perturbations are distributed normally with mean
zero and standard deviation σµ = 5e−4. The cutoff points are calculated with regard to Sharpe ratios of
the tangency portfolio for the simulation. Results are obtained from 5000 simulations. The dotted lines
represent the 5% and 95% critical values of the distribution and the solid line represents the frontier
constructed from the data.
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Figure 5: Contribution to Explanatory Power - Industries vs. Clusters
Figure 5 depicts the explanatory power of regressions of industry (cluster) returns on returns on clus-
ters (industries). Regressions are performed stepwise, starting with industry and cluster classifications
presented in Table 9, Panel B, and incrementally adding clusters (industries) that most increase the
regression R2. We utilize 10 cluster portfolios and 10 industry portfolios in the regressions. Data are
sampled at the monthly frequency and cover the period July, 1959 through December, 2003.
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