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Abstract In this paper a new class of Fibonacci like sequence is introduced. Here we consider non-homogeneous
recurrence relation to obtain generalization of Horadam’s Sequence. Some identities concerning this new sequence
are obtained and proved. Some examples are given in support of the results.
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1. Introduction

Fibonacci sequence is generalized in many ways. One
of the most widely used extension is the one given by A.F.
Horadam [2]. He defined the generalized sequence of
numbers as follows. Let {W,} be a sequence defined by

Wy =W, (a,b; p,q) = pW,_3 —aW,_o, (1.1

for n>2 where p, g, a and b are integers with Wy=a
and W, =b.

One can see that {W,} reduces to generalized
Fibonacci sequence {U,} when a=0 and b=1, and
subsequently to the Fibonacci sequence {F,} when
p=1 , q=-1. That is U,=W,(0Lp,q) and
Fy =W,(0,1L,-1) . In a series of papers [1,3,4,5,8]
various properties of the generalized sequence {W,} have

been developed. Using Horadam Sequence and the
concept of Pseudo Fibonacci sequence [A224508] defined
earlier in [6] and studied further in [7], we now define a
new extension of the sequence {W,}.

Definition 1. The generalized Pseudo Fibonacci (GPF)
Sequence {G,,} is defined as the sequence satisfying the

following non-homogeneous recurrence relation

G2 = PGy — G, + At" (1.2)

for n>0, A#0 and t=0, «, £ with Gy=a and
G, =h.
Here a,b, p,q are integers and «, § are distinct roots of

characteristic equation X% — px+q =0 of the corresponding

homogeneous equation.
First few GPF numbers are given below:

GO :a,G]_:b,
Gy =(pb—ga)+A,

Gz = (pzb— pga—qb)+ pA+ At,
Gy = (p3b— pzqa—2qu+q2a)+(p2 —-g)A+ pAt+At2,

Gs = (p*b— p3ga—-3p2gb+2g%a+g°h)
+(p2 —2pg) A+ (p? —q) pAt + pAt? + A3,
Observe that each GPF number G, , n>2 consist of

two parts. The first part is an expression in p, g, a and

b , while the second is a polynomial in t whose
coefficients are A times terms in p and q . This is
shown in the following tables:

Table 1. First partof G,, n>2

n Expression in p,q,a,b

2 pb-ga

3 | p®-pga—qb

4 | pPp-2pgb-p%ga+qg’a

5 p4b—3p2qb+q2b— p3qa+2q2a

6 p5b—4p3qb— p4qa+3q2a+2q2

Table 2. Second partof G, n > 2

n A At At? A
2 1

3 p

1 p’-q P 1

5 p°-2pq p*-q P 1

From the above tables, we have the following relation
between GPF and Horadam numbers W, .

Theorem 2. For m > 2, the term
m-1

Gm =Wm (a, b7 p’ q) + AZ Wk (09]3 pa q)tm_k_l
k=1
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of the sequence {G,} satisfy the non-homogeneous
recurrence relation

Gmi2 = PG4y —AGy + A",

Proof. Consider

m+1

> W (0.1 p,g)t™
k=1

=Wit™ +Wot™ e Wat™ 2 W

= Wyt™ + (W — qW)t™ ™ + (pW, — qWy )t 2
+oot (PWy, —qWi_1)

—Wit™ + pWet™ A Wot™ 2 4 W)
—qWot™ L+ Wit™ 2 W, )

m
=Wit™ + p> W, (0.1 p.o)t™ ¥
k=1
m-1

—qy Wi (0% p,g)t™+L,
k=0

That is,

m+1 kil
> W (0.5 p, gyt =Wy (0,1 p, g)t™
o o - (1.3)
+pY W OLp.at™*-q Y Wy (0L p,a)t™
k=1 k=0
Now

m+1

Grni2 =Wini2(8.0; p.0) + A2 W (0.1 p.a)t™ 2
k=1

Using equations (1.1) and (1.3), we write
G2 = PWna(a,b; p,q) —qWy, (a,b; p,q)

m
+APY W (0,3 p, )t
k=1
m-1
—gA > Wi (0L p,a)t™ K1+ AW, (0. p,a)t™
k=0

m
=pWi1(a,b; p,a)+A > Wit™ K]
k=1
m-1
~qIW (a,b; p,g) + A W, (0,1 p,q)t™ * 1+ At™
k=0

= PGnyq — G + AL™.

Hence the theorem.

2. Some ldentities for G,

In this section, we obtain some fundamental identities
for GPF sequence {G,}.

. Binet type Formula:
Let z=2z(t) = At? - pt+q.
Then the Binet form of G,, is given by

G =qa" +c, 8" +zt", (2.1
where
_(b-ap)-z(t-p)
a-p (2.2)
(aa—-b)-z(a-t)
Cr = ,
a-p

a, B are the distinct roots of the equation X2 — px+q=0
given by

a=—=pF=— (2.3)
writing d =+/p% —4p.
Note that
a+pf=paf=0q,a-p=d (2.4)
We can deduce from (2.2) that
C+Cy=a-z,
0 -C=((2b-ap)-z(2t-p)Hd~, (25
oc, =ed 2,

where
¢ =abp—b? —a%q - z{bp - 2bt — 2aq + atp + A}. (2.6)

) Generating function:
Generating function G*(x) for G, is given by

! 2){ A +(a+bx—apx)}.

(1— px+gx? | (1t

G*(x) =

We have the following result for sum of first n GPF
numbers. Proofs follow from recurrence relation and Binet
formula.

Proposition 3. For p—q = £1

n-1 n-1
i) > G =1(p—q—1){6n+1—b+(p—1)(a—Gn)—AZ tk}.

k=0 k=0

n-1
i) > (-G, =1p-q+[(-)" "G,y
k=0

n-1
+h—(p+Y(a+(-)"™G,) + AL-1) (-DFt% 1.
k=0
Using the recurrence relation (1.2) , we have the
following result. The same can also be obtained by
induction.
Proposition 4.

a/t—ap+b
L k-1 1 n
Y Gyt = t"(Gny1 — MGy |-
k=0 @-pt+at?)|
k=0 J

Proof. Using the recurrence relation (1.2), we have
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Gt =[pGy_1 G o + At It
Gy_1t“? =[pGy_, — 4Gy _g + Atk 3tk 2

Gztl = [pGl - qGO + Ato]tl
On summing both sides of these (n—1) equations, we get,
n n-1 n-2 n-2
k=2 k=1 k=0 k=0
ie.

n n
> Gt -Gt -Gy = p D Gtk — p(Gy +Gt")
k=0 k=0

n n-2
-0 Gt q(G_gt" +Gt" ) + A 2,

k=0 k=0
ie.
n
> G t“ (1~ pt+qt?) =Gy /t+G; - pGy
k=0
n-1 K
~(pGp — (Gt + G ")+ AN 12,
k=0
Hence

n
> Gt =11~ pt+qt?)
k=0

n-1
at—ap+b—t"(Gy,y —qtG,) + A tHL L
k=0

We now obtain the sum of the squares of GPFs and sum
of the product of two consecutive GPFs.

n n
For simplicity, let X =Y GZ, Y=Y GGy,

k=0 k=0
n n
$1= > Gt tand s, = %,
k=0 k=0
Let vy =1— p2 —q2 and v, =1+ p2 —qz.
Further let

P = (- p?)IG§ —Gha1+(GE —GE,2)
+2AGt 2 + Gt L =G yt" T =Gy ot™),
P, = L+ p?)[G§ —Gh11+(Gf - GZ,5)

-2 p(Gn+16n+2 - GOGl)-

We have the following results:
Proposition 5. For p = 0,v; +qv, # 0

B +qVv, +2(t — g%t) AS,

n ~1)A%S, +qP
I)X:ZGkZZ +(q ) 2 +47 ,
k=0

v

n
Y= GGy =VoR —viP,
1) I

+2(t‘1v2 +1tqvy)AS; — (v + v2)A252 2p(vy +qvy).

Proof. Consider
2 22
Gk+2 -P Gk+1
= (Gk+2 = PGk 11)(G42 + PGy 41)
= 2AG,» —2pAGyGyyy +9°GF - A%,
Hence, summing up to n+1 terms on both sides, we get,

n n
z Gk2+2 - p2 Z GI%
k=0 k=0

n n n n
=2AY Gf,p+0° Y GE -2pq Y. GyGyyy — ., A%,
k=0 k=0 k=0 k=0

Adjusting the variables of summation and simplifying,
we get

VX +2pqY = B+ At 1S, — A%S,.
Similarly, starting with
Gk.o —0°Gf
=2pGy.1Gnip — 2A0Gt" — p2G2,; + A%t2"
and simplifying as above, we get
VX —2pY = P, — 20AtS; + A%S,.

Solving these two equations for X and Y , we get the
required results.
Next result deals with sum of even and odd terms of

n
GPF sequence. Again for simplicity, let E =ZG2i and
i=1

n n n
0= Gyig, Oa=AY 4L, E=A>t? so that
i=1 i=1 i=0
2n
EA +OA = AZ tl .
i=0
Proposition 6. The sum of the even (odd) indexed terms of
{G,,} is given by

n
i Gy =—1  [n(G -G
(i) I(Z:l 2k {p2—(1+q2)}[p( 2n+1~C1)

+(1+9)(aGg +Gony2 — PG2n11)
n n
_pAZ t2k_l_(1+q)z t2k]
k=1 k=0
and

D ) 1
(ii) kZ::lek—l = —{ v —(1+q2)}

[quO + pGZn+2 - p262n+1 + (1+ Q)(GZn+l - Gl)

n n
~L+ A 1T Ap> 12K
k=1 k=0
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Provided p 221+ q2.
Proof. From the recurrence relation (1.1), we have,

PGok = Gos1 +AGok1 — AL,

Summing up to n terms, we get

n n n n
PY Gok =D Goks1+0Y. Gox 1 — A, {21
k=1 k=1 k=1 k=1

which on simplifying yields,

PE = (14+ )0 + Gy, — Gy — O, (2.7)
Similarly using the relation
PGaks1 = Goksz + 4Gk — ALK,
and summing up to n terms, we get,
PO = (1+0)E +Gppyp — PGoni1 +0Gy —Ep.  (2.8)

Solving (2.7 ) and (2.8), we get the required results.
We have following identity.
Proposition 7. For m,n >0,

GmGn —AGm1Gn 4 = (b—2t)Gpyyn g
+(2-2)qGy, o +(aq —bt)zt™N2
+2[Gt" + G t™ -G, qt™ T = G,,_1qt" .
Proof. Using Binets formula (2.1),
LHS. = (@™ +¢, 8™ + 2t™) (" + ¢, " + 2t")
—q(ee™ 4 M+ 2t ™ Y (" e, B 4 2t Y,
On simplification, we get,
LHS. =[(b-ap)-z(t— B)lga™ "L
—[(aa —b) — z(a —t)Jc, ML - 22tMHN
+2t"G,, + 2t"G,, — qz{t™ G, | +t" G, —2t™ "2}
Since, a-p=d,qd=(-ap)-z(t-p) and
Cod =(aa —b)-z(a -t),
GmGn —dGm_1Gn-1 = (b= 2t)Gpyin1 +(2-2)AGm -2
+(ag-bt) 2t 24 Z[Gt"+Gt M -G 1t ™ -Gyt 1]

By letting m=n we have the following result.
Corollary 8.

G —Gr 1 = (b—2)Gpp g +(2-2)4Gy_»
+(aq—bt)zt>"2 + 27[t"G, —qt" G, 4]
Note that the above corollary along with Proposition

n
3.(1) can be used to find Z sz obtained in Proposition
k=0
5(i).
Next we prove a version of Catalan’s Identity for GPF
numbers.
Proposition 9.

2 n-r 2
Gn4rGnr =Gy =g "ury

+2t"[t"G,_, +t7 Gy —2G, ]

where u, =W, (1 p; p,q) and e is as defined by (2.6).
Proof. Using (2.3)

L.HS.

= (@™ 1™ + 2t )o@+, A+ 2t
—(ca" +cy " + 2t")?

_ ClZaZn +C§ﬂ2n 4 ZZth +C1Cy (an+rﬁn—r +wn—rﬁmr
7t (Clan—r + Czﬁn—r) T (Clan+r +C2ﬂn+r)
_{C12a2n +Czﬁ2n 4 Z2,[2n

+2(cicpa" B + zc,eta™t" + zct"a ")}

=" @ B +a T B -2+ t" G,

222N L "G, - 22t + 2t"G, + 22220

=i ()" (@ = B7)7 + 2" [(t" Gy +t Gy + Gy ]
=eq"" —(ar_ﬂrz)z +2t"[(t" Gy +t7 Gy +Gy]

(a=p)

=eq""uZ  + 2#t"[(t"G,_, +t "G,y +Gp .

From this result we immediately have a version of
Cassini’s identity for GPF numbers.
Corollary 10.

Gni1Gn g — G2 =eq" L+ 2t"[tG, ; +t 1G4 — 2G, ]

Next we have an expression for G,, in terms of

binomial coefficients.
Proposition 11.

n -

Gon =" Y1) -p/a™ Gy al(pt-)" 12"
i=0

Proof. We have

RHS= (0" X[} Je-p /"Gy al(pt-)" -t
i=0
~ "X} pra e ey )
i=0
~2[(pt-q)" ~t*"]
SR GO ) RN T
i=0 i=0
23 10 ot - ad(pr-a)” )
i=0

=c(pa—a)" +cy(pf-a)" +2z(pt-0q)"
~2[(pt-q)" ~t*"]
Since, o = pa—q and ﬁz =pp—q, we get,
RHS. = o +¢, 82 + 22" = Gy,,.
Hence,

Gan = <—q)”2[?]<—p/q>“-‘ G —2(pt—q)" —t*"]
i=0

which is the required result.
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3. Examples

In this section we present some examples in support of
some results obtained in Section 2.

Examples: Consider Gy,, =Gpq —2G, +(-)" , with
Gp =0,G; =1.

Here, p=1Lqg=2t=-1 A=1.

First few terms of G, are Gy =0, G =1 G,=2,
G3=-1 Gy=-4, Gg=-3 Gg=6, G; =11 Gg=0,
Gg =-23, Gyg =-22.

(1) Verification of Proposition 5(i).

When n=5, we have S;=-1 S,=6, B =-128,

P, =—6, v +qV, =-8.Then

5
LHS.= > GZ=G§ +G{ +..+GZ =3L.
k=0
RHS.=-128-6+6-120-8=-248—-8=31.

Result is verified.
(2) Verification of Proposition 5 (ii).

Here let n=6 . We have, P, =-19, P,=-241
S =-7, S, =7. Then

6
LHS= Z Gy Gy 41 = GGy + GGy +...+ GgGy =64,
k=0

R.HS. =38-964-140+42-16 =64.

Result is verified.
(3) Verification of Proposition 7.
Let m=2 and n=3.Then z=14.

LHS.=G,G3 —2G,G, = 2(-1) - 2(2) = -6.

Result is verified.
(4) Verification of Proposition 9.

Let n=6and r=2. z=1

—,e=-2,uy =1
1 1

LH.S = GgG, —GE = -36.

RHS=-32-14X (4+12) =-32 -4 =-36.

Result is verified.
(5) Verification of Proposition 11.
Let n=5.

LHS. =Gy, =22

RHS= (0" Y[} Je-p /"Gy al(pt-)" -t
i=0
=-32(83/32)-1/4(-244) = -83+61=-22.

Result is verified.

4. Conclusion

The well known Horadam sequence is generalized via
non homogeneous recurrence relation to obtain a
Fibonacci like sequence. All the usual identities and
properties of Fibonacci like sequences are obtained for the
new generalization of Horadam sequence.
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