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Abstract 

We describe a data collection consisting of task-oriented 
human-human conversations in a simulated ASR channel in 
which the WER is systematically varied.  We find that users 
infrequently give a direct indication of having been 
misunderstood; levels of expert “ initiative”  increase with 
WER primarily due to increased grounding activity; and 
asking task-related questions appears to be a more successful 
repair strategy at moderate WER levels.  A PARADISE 
analysis finds task completion most predictive of user 
satisfaction; efficiency is also important at lower WERs. 

1. Introduction 
Our chief research goal is applying machine-learning 
approaches to the dialog management component of spoken 
dialog systems (SDSs).  This pursuit focuses on creating 
statistical models of users, based on data.  In [1], we describe 
a dialog collection framework which is suitable for this 
purpose.  We are also interested in gaining basic insights into 
conversational behavior in the automated speech recognition 
(ASR) channel at different word-error rate (WER) target 
levels, and our collection framework is also well-suited to this 
purposes.  In particular, we hope to: show successful repair 
patterns relevant for SDSs, such as entering into dialog repair 
vs. asking task-related questions; characterize “natural”  
behavior, such as “ initiative” ; and identify appropriate reward 
measures which are likely to predict user satisfaction. 

This paper has two goals. First, we aim to describe the 
experimental procedure used to collect the SACTI-1 corpus.  
SACTI stands for Simulated ASR-Channel: Tourist 
Information.  Second, we seek to show patterns of user and 
wizard behavior in this corpus relevant to SDSs.  The paper is 
organized as follows.  Section 2 summarizes the data 
collection framework and discusses related work.  Section 3 
covers experimental procedure and annotation.  Section 4 
provides experimental results and discussion. 

2. Background and Motivation 
The data collection framework is described in detail in [1] and 
briefly summarized here.  Two subjects, the “wizard”  and 
“user,”  interact using an audio-only interface.   

Both the wizard and user speech is segmented into 
utterances using an energy-based end-pointer.  A turn-taking 
model similar to that commonly found in speech recognition 
systems is used, in which the user can interrupt or “barge-in 
over”  the wizard, but not vice-versa. When the system is not 
listening to a speaker, that speaker hears a tic-toc sound. 

When the wizard speaks, the user can hear the wizard 
directly.  However, both the user and wizard are told the user 
is speaking to a speech recognizer, which places its 
interpretation of the user’s speech on a screen in front of the 

wizard.  In reality, the user is speaking to a typist who 
transcribes the user’s speech.  This transcription is then 
passed to a system which simulates speech recognition errors 
in text.  By varying parameters in this confusion system, we 
can reliably simulate WERs from ~0% to very high levels.   

The ASR simulation uses a phonetic confusion model and 
a language model to simulate recognition errors. The phonetic 
confusion model was trained on the TIMIT corpus using a 
monophone HMM.  The language model was a bigram model, 
trained on a small corpus collected from earlier trial dialogs 
using the system and augmented with hand-crafted classes. 

Work in [2] studies a variety of dialog phenomena in 
goal-directed Human-Computer (HC) and Human-Human 
(HH) conversation in the air-travel/transportation domain.  
They found that computer experts were more verbose than 
human experts, using on average 17-33 words/turn compared 
to humans’  10.1 words/turn.  Conversely, users were much 
less verbose in HC conversation, using 2.8-4.8 words/turn in 
HC conversation and 7.2 words/turn in HH conversation.  
They also found that dialog initiative – i.e., dialog control – 
while difficult to reliably identify, was approximately evenly 
distributed in HH conversation but remained with the 
computer in approximately 90% of turns in HC conversation.   

Other research [3] undertakes a study similar to the one 
presented here, differing in that it used a real speech 
recognizer.  Also, the experiments in [3] used tasks in which 
the wizard primarily gave instructions to users. The tasks in 
this work were varied in nature.   

3. Experimental procedure 
We wanted to explore a variety of dialog genres, including 
information-seeking tasks, “Map tasks,”  and negotiations.  
After exploring a few domains, we found that the tourist 
information domain met our requirements. 

The wizard was given a host of information about a 
fictitious town, and the user was given a task to complete.  
Example tasks included finding a hotel that meets a number of 
criteria, or planning a day of activities.   The user was given a 
simple (accurate) map of the town, and the wizard was given a 
more detailed map.  Some tasks had ambiguous solutions.  A 
total of 24 tasks were created. 

Each wizard interacted with 3 users, and each user 
undertook 4 tasks.  Each wizard and user was greeted 
separately and their task explained using the same script.  
Subjects were a mixture of native and non-native speakers.  
Dialogs were allowed to run until the user ended the dialog, 
up to 10 minutes (but in some cases longer).   At the end of 
each task, both the user and wizard were asked a similar set of 
6 Likert-scored questions about their experiences covering 
task completion, speech recognition accuracy, ease of use, 
helpfulness of wizard, perceived ease of use for the other 
subject, and overall satisfaction. 

Later, the orthographic transcription was completed by 
transcribing the wizard’s utterances using a subset of the LDC 
conventions [4] with the LDC AG tool [5]. 



The simulation’s state machine enforces a turn-taking 
regime in which just one participant can speak at one time.  
However, end-pointing errors led to states in which the end-
pointer gave a subject the channel but they did not speak. 

Thus, we segmented turns into the longest sequence of 
states in which only one participant was speaking.   

Similar to [3], we were interested to assess how the 
wizard interpreted the previous user turn.  Each wizard turn 
was classified into one “understanding category”  (Table 1). 

In addition, each turn was labeled with one or more 
temporally-ordered set of tags showing grounding behavior.  
These tags were inspired by the “Grounding Acts”  of the 
finite state grounding model of [7], but modified in several 
respects.  First, we annotated only acts which could be 
associated with text in the transcription -- for example, we 
annotated ExplAck only when it appeared as “Ok”  or “ I see”  
or similar, but not when implicit.  Second, we added several 
acts for grounding behaviors which appeared frequently in the 
corpus, such as stating an interpretation of the other speaker’s 
meaning/intention.  Finally, we added two “content”  acts – 
Request and Inform.  See Table 2.  Annotation was performed 
with ANVIL [6]. 

Label Wizard’s understanding of previous user turn 
Full All intentions understood correctly. 
Partial Some intentions understood; none misunderstood. 
Non Wizard made no guess at user intention. 
Flagged
-Mis 

The wizard formed an incorrect hypothesis of the 
user’s meaning, and signaled a dialog problem  

Un-
Flagged
-Mis 

The wizard formed an incorrect hypothesis of the 
user’s meaning, accepted it as correct and 
continued with the dialog. 

Table 1: Wizard understanding status categories  

Tag Meaning 
Request Question/request requiring response 
Inform Statement/provision of task information 
Greet-
Farewell 

“Hello” , “How can I help,”  “ that’s all” , 
“Thanks” , “Goodbye”, etc. 

ExplAck Explicit statement of acknowledgement, 
showing speaker understanding of OS 

Unsolicited-
Affirm 

Explicit statement of acknowledgement, 
showing OS understands speaker 

HoldFloor Explicit request for OS to wait 
ReqRepeat Request for OS to repeat their last turn 
ReqAck Request for OS to show understanding  
RspAffirm Affirmative response to ReqAck 
RspNegate Negative response to ReqAck 
StateInterp A statement of intention of OS 
DisAck Show of lack of understanding of OS 
RejOther Display of lack of understanding of 

speaker’s intention or desire by OS 
Table 2: Tag set.  OS refers to “ Other speaker.”  

4. Results and Discussion 
We collected a total of 144 dialogs at four different WER 

levels (3). As WER increases, grounding behaviors become 
increasingly prevalent – Figure 1 shows the distribution of 
tags in wizard turns across WERs. 

Perceptions of recognition quality broadly reflected actual 
performance, but users consistently gave higher quality scores 
than wizards for the same WER.  (See Figure 2).  The wizards  
have direct sight of recognition results, whereas users have  

WER 
target 

# 
Wiz 

# 
User 

# 
Task 

Com-
pleted 
in time 
limit 

Per-
turn 

WER 

Per-
dialog 
WER 

None 2 6 24 83 % 0 % 0 % 
Low 4 12 48 83 % 32 % 28 % 
Med 4 12 48 77 % 46 % 41 % 
Hi 2 6 24 42 % 63 % 60 % 

Table 3: Summary of experiments 

only indirect evidence. 
Figure 3 shows results from the wizard understanding 

status tagging. Misunderstandings increase as WER increases.  
At the Low and Med levels, wizards are falsely admitting 
(UnFlaggedMis) utterances at a rate of 5-15%, and rejecting 
15-25% of utterances.  At the Hi WER level, UnFlaggedMis 
jumps to 30%, with correct (Full & Partial) interpretations 
dropping to 35%.  Even at the extreme Hi WER condition, 
wizards are managing to assist users to successfully complete 
dialogs.  We believe this demonstrates the wizard’s ability to 
both parse the ASR output well and assimilate contextual 
knowledge about what user questions are likely to follow 
which other questions. 
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Figure 1: Distribution of wizard actions 
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Figure 2: Perception of Recognition Accuracy 

4.1. Successful repair patterns 

We were interested to see which wizard behaviors were most 
successful after a dialog problem, akin to [3].   

We first separated Wizard turns in which the Wizard was 
aware of a dialog problem – i.e., FlaggedMis or  
NonUnderstanding.  We next classified the action the wizard 
chose in these turns into one of 5 strategies, according to 
Table 4.  Finally, as a metric of the outcome of action 
selection, we determined the wizard understanding status of 
the next wizard turn.   

Results are shown in Figure 5.  At the Med ASR target, 



the difference in “Full”  alone is significant (X2=4.73, df=1, 
p<0.030): asking domain-related questions produces more 
complete, correct understandings.  At the Hi ASR target, the  
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Figure 3: Wizard understanding status 

0

5

10

15

20

25

30

35

Hi Med Low None

WER Target

A
v 

w
or

ds
/tu

rn

Wizard User

 
Figure 4: Average turn length (words) 

0%

20%

40%

60%

80%

100%

REPAIR ASKQ REPAIR ASKQ

Hi Med
Strategy & WER Target

%
 o

f W
iz

ar
d 

T
ur

ns

UnFlaggedMis
FlaggedMis
Non
Partial
Full

S

S

S

 Figure 5: Wizard understanding status one turn after 
known dialog trouble: effect of ‘REPAIR’  vs ‘ASKQ’.  ‘S’  

indicates significant differences discussed in the text. 

Label Meaning wiz 
init
? 

Tags 

REPAIR Attempt to repair Yes ReqAck, ReqRepeat, 
StateInterp, DisAck, 
RejOther 

ASKQ Ask task-question Yes Request 
GIVEINFO Provide task info  No Inform 
RSPND Non-initiative 

taking grounding 
actions 

No ExplAck, Rsp-
Affirm, Rsp-Negate, 
Unsolicited-Affirm 

OTHER Not included in 
analysis 

n/a All others 

Table 4: Wizard “ Strategies”  

difference in UnFlaggedMis is significant (X2=4.02, df=1, 
p<0.045) and the difference in FlaggedMis+Non (taken as 
one category) is also significant (X2=8.39, df=1, p<0.004).  
Asking domain-related questions resulted in more 
misunderstandings and fewer indicated dialog problems.   

Figure 6 omits the NONE and LOW ASR confusion 
settings as there were insufficient misunderstandings to 
produce meaningful comparisons.  The GIVEINFO strategy is 
not shown because it was very rarely used following dialog 
problems.  This finding is in contrast to [3], which found that 
a strategy most akin to GIVEINFO was used frequently (and 
was most successful).  We believe this is a consequence of the 
differences in the task structure. The tasks in our corpus are a 
mix of information-seeking and other types, whereas the tasks 
in [3] are mainly information-giving.  

4.2. Characterizing Natural Behavior 

We first examined initiative.  While intuitively appealing, 
initiative is a difficult concept to annotate reliably: in [2], the 
authors found unexpectedly low Kappa scores for initiative 
tagging.  Here we do not attempt to define initiative precisely, 
nor perform an initiative-specific tagging.  Rather, we focus 
on the wizard, and note that the categories in Table 1: Wizard 
understanding status categories  show evidence of wizard 
initiative.  We regard REPAIR and REQUEST turns as 
showing initiative, GIVEINFO and RESPOND turns as 
showing absence of wizard initiative.  Results (Figure 6) show 
a clear trend for the wizard to take more initiative as target 
WER increases, primarily due to increased grounding activity.  
However, overall level of wizard control is well below the HC 
findings in [2], and closer to HH levels. 

Another behavior we were interested in is turn length.  
Figure 4 shows turn length (in words) for wizard and user 
turns across WER levels.  Wizard turn length shortens as 
WER increases; we believe this is due to increased turns 
using just grounding acts and fewer providing information.  
Overall, the ratio of wizard and user words/turn appears 
closer to HH levels of conversation, based on figures in [2]. 

A final behavior we were interested in is a user’s reaction 
after an UnFlaggedMis.  We separated user turns following an 
UnFlaggedMis and determined how many included grounding 
acts signaling trouble – i.e., RejectOther, or DisAck – and 
how many included requests for information.  Results are 
shown in Table 5.  Surprisingly, users give an explicit signal 
of dialog trouble in only as many as 20% of turns following 
an UnFlaggedMis. 

4.3. Identifying appropriate reward measures 

To identify possible appropriate reward measures, we adopted 
the PARADISE approach [8].  PARADISE attempts to 
explain an overall user satisfaction metric using a linear 
combination of a task completion metric and dialog cost 
metrics, such as dialog quality and efficiency measures.  

We considered several possible task completion metrics. 
At the end of each dialog, users were asked to what extent  

User turns including tag WER 
target DisAck RejectOther Request 
None N/A N/A N/A 
Low 0.0 % 3.8 % 92.3 % 
Med 2.5 % 19.0 % 75.9 % 
Hi 0.0 % 12.3 % 87.0 % 

Table 5: User behavior following an UnFlaggedMis 
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Figure 6: Level of wizard “ Initiative”  

they believe they accomplished the task.  This formed the 
User metric.  Later, the tasks were graded on a scale of 1-3 for 
task precision (accuracy of information) and task recall 
(coverage).  An F-measure of these forms the Obj metric. 

Experiments of this type suffer from the limitation that 
users do not receive any evidence whether the information 
they receive is correct or not.  Thus all user feedback may be 
predicated on a false impression of task completion, which 
would probably be ultimately discovered in the real world.  
Further, they may construe the task slightly differently than 
the experimenter intended.  Thus it is not clear to us what 
measure of task completion is appropriate.  We posited a task 
completion metric to address this issue called Hyb.  We 
observe that user’s perception of task completion could be 
interpreted as an indication of how much the user 
accomplished relative to the task the user thought they were 
supposed to accomplish, forming a measure of recall.  Hyb is 
calculated by first normalizing User and objective task 
precision, then combining them in the style of an F-measure. 

We considered the following measures of dialog cost: 
PerDialogWER, %UnFlaggedMis, %FlaggedMis, %Non, 
Turns, %REPAIR, %ASKQ.  For overall user satisfaction, we 
considered two metrics.  The single (S) metric uses users’  
responses to a single question eliciting overall satisfaction.  
The Combi (C) metric added together scores from all Likert 
questions (including perception of task completion).   

Table 6 shows results; all R2 values are significant.  In 
general, the single and combi metric produced very similar 
results; where they select the same terms as predictors, we 
show only the single metric. Also, for all regressions (except 
the “ALL” dataset) which use the User task completion 

Data
set 

Metrics 
(task & 
user sat) 

R2 Significant predictors 

ALL User-S  52 % 1.03 Task 
ALL User-C 60 % 5.29 Task – 1.54 %UnFlagMis 
ALL Obj-S 24 % -0.49 Turns + 0.38 Task 
ALL Obj-C 27 % -2.43 Turns – 1.45 

%UnFlagMis + 1.35 Task 
ALL Hyb-S 41 % 0.74 Task – 0.36 Turns 
Hi Obj-S 40 % 0.98 Task 
Hi Hyb-S 48 % 1.07 Task 
Med Obj-S 16 % -0.62 %Non 
Med Obj-C 37 % -3.35 %Non – 2.94 Turns 
Med Hyb-S 38 % 0.97 Task 
Low Obj-S 28 % -0.59 Turns 
Low Hyb-S 40 % -0.49 Turns + 0.40 Task 

Table 6: Select results of PARADISE regressions (see text) 

metric, User was the only significant contribution, and these 
experiments are not shown.  Through regressions examining 
the User and Obj metrics (not shown), we found that user 
perception of task completion is a better predictor of overall 
satisfaction than actual task completion, as also noted in [9]. 

When run on all data, mixtures of Task, Turns, 
%UnFlaggedMis best predict user satisfaction.  We believe 
%UnFlaggedMis is serving as a better measurement of 
understanding accuracy than WER alone, since it effectively 
combines recognition accuracy with a measure of confidence.  
These findings are generally consistent with [9].  Broadly 
speaking, task completion is most important at the High WER 
level, task completion and dialog quality at the Med WER 
level, and efficiency at the Low WER level.   

Few of the regressions on the None WER target were 
significant, in part due in part to low levels of variation in the 
data for the independent parameters under study. 

5. Conclusions and Future Work 
We have explained the domain, tasks and collection 

procedures for the SACTI-I corpus.  At moderate WER levels, 
asking task-related questions appears to be more successful 
than direct dialog repair.  Levels of expert “ initiative”  
increase with WER, primarily as a result of grounding 
behavior.  Users infrequently give a direct indication of 
having been misunderstood, with no clear correlation to 
WER.  Finally, task completion appears to be most predictive 
of user satisfaction; however, efficiency shows some 
influence at lower WERs.  Future work will apply these 
insights to statistical systems. 
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