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General Instructions
Throughout this book, an item with a label 2.1.3 means the 3-rd item of the 1-st section of

Chapter 2. While defining a new term or a new notation we shall use bold face letters. The

symbol := is used at places we are defining a term using equality symbol. A symbol !! at the

end of a statement reminds the reader to verify the statement by writing a proof, if necessary.

We assume that the reader is familiar with the very basic of counting. A reader who is not,

may avoid the counting items in the initial parts till we start to discuss counting.

We also assume that the reader is familiar with some very basic definitions involving sets.

This book is written with the primary purpose of making the reader understand the discussion.

We do not intend to write elaborate proofs for the reader to read, as there is no end to elaboration.

We request the reader to take each statement in the book with the best possible natural meaning.

Here are a few collected quotes, mainly intended to inspire the authors.

Albert Einstein

• The value of a college education is not the learning of many facts but the training of

the mind to think.

• Imagination is more important than knowledge. For knowledge is limited, whereas

imagination embraces the entire world, stimulating progress, giving birth to evolution.

It is, strictly speaking, a real factor in scientific research.

• Everything should be made as simple as possible, but no simpler.

• Do not worry about your difficulties in Mathematics. I can assure you mine are still

greater.
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Chapter 1

Basic Set Theory

1.1 Common notations

The following are some notations we shall follow throughout this document.

N : the set of natural numbers

N0 : the set N ∪ {0}, called the set of whole numbers

Z : the set of integers

Q : the set of rational numbers

R : the set of real numbers

[n] : the set {1, 2, . . . , n}
Ac : the complement of a set A in some set that will be clear from the context

P(A) : the power set of A

A×B : the cartesian product of A and B

∅ : the empty set

p|a : the integer p divides the integer a

1.2 preliminaries

We expect the readers to have familiarity with the following definitions.

Definition 1.2.1. Let A and B be two sets.

1. [Subset of a set] If C is a set such that each element of C is also an element of A, then

C is said to be a subset of the set A, denoted C ⊆ A.

2. [Equality of sets] The sets A and B are said to be equal if A ⊆ B and B ⊆ A, denoted

A = B.

3. [Cartesian product of sets] The cartesian product of A and B, denoted A×B, is the

set of all ordered pairs (a, b), where a ∈ A and b ∈ B. Specifically, A × B = {(a, b) | a ∈
A, b ∈ B}.

4. [Set complement] Let C ⊆ A. The complement of C in A, denoted Cc, is a set that

contains every element of A that is not an element of C. Specifically, Cc = {x ∈ A | x 6∈ C}.
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6 CHAPTER 1. BASIC SET THEORY

5. [Set union] The union of A and B, denoted A∪B, is the set that exactly contains all the

elements of A and all the elements of B. Specifically, A ∪B = {x | x ∈ A or x ∈ B}.

6. [Set intersection] The intersection of A and B, denoted A ∩ B, is the set that only

contains the common elements of A and B. Specifically, A ∩B = {x | x ∈ A and x ∈ B}.
The set A and B are said to be disjoint if A ∩B = ∅.

7. [Set difference] The set difference of A and B, denoted A \B, is a set that contains all

those elements of A which are not in B. Specifically, A \B = {x ∈ A | x 6∈ B}.

8. [Symmetric difference] The symmetric difference of A and B, denoted A∆B, equals

(A \B) ∪ (B \A).

Example 1.2.2. Let A = {{b, c}, {{b}, {c}}, b} and B = {a, b, c}. Then
1. A ∩B = {b},

2. A ∪B = {a, b, c, {b, c}, {{b}, {c}} },

3. A \B = {{b, c}, {{b}, {c}}},

4. B \ A = {a, c}, and

5. A∆B = {{b, c}, {{b}, {c}}, a, c}.

The following are a few well known facts. The readers are supposed to verify them for clarity.

Fact 1.2.3. 1. For any set A, we have A ⊆ A and ∅ ⊆ A.

2. If A ⊆ B then it is not necessary that B ⊆ A.

3. For any set A and B, the sets A \B, A ∩B and B \A are pairwise disjoint. Thus, A ∪B
is their disjoint union. That is,

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A). (1.1)

4. For any set A and B, the sets A\B and A∩B are disjoint. Thus, A is their disjoint union.

That is,

A = (A \B) ∪ (A ∩B) (1.2)

5. If B ⊆ A, then A = (A \B) ∪B (follows from (1.2)).

6. A∆B = (A ∪B) \ (A ∩B) (follows from (1.1) and Item 3).

Definition 1.2.4. [Power set] Let A be a set and B ⊆ A. Then, the set that contains all

subsets of B is called the power set of B, denoted P(A).

Example 1.2.5. 1. Let A = ∅. Then, P(∅) = {∅, A} = {∅}.

2. Let A = {∅}. Then, P(A) = {∅, A} = {∅, {∅}}.

3. Let A = {a, b, c}. Then, P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
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4. Let A = {{b, c}, {{b}, {c}}}. Then, P(A) = {∅, {{b, c}}, {{{b}, {c}}}, {{b, c}, {{b}, {c}}} }.

Definition 1.2.6. [Relation, domain set and codomain set] Let A and B be two sets. A

relation f from A to B, denoted f : A → B, is a subset of A × B. The set A is called the

domain set and the set B is called the codomain set. Thus, for any sets A and B the sets ∅
and A×B are always relations from A to B.

Example 1.2.7. Let A = [3], B = {a, b, c} and f = {(1, a), (1, b), (2, c)}. Then, f : A→ B is a

relation. We can draw a picture for f .1

1

3

2

a

b

c

f

Definition 1.2.8. 1. [Domain, range and inverse relation] Let f : A → B be a relation.

Then, by the domain of f2 we mean the set dom f := {a | (a, y) ∈ f} and by the range of

f we mean the set rng f := {b | (x, b) ∈ f}. The inverse of f is f−1 := {(y, x) | (x, y) ∈ f}.
Notice that f−1 is a relation from B to A. For example, the relation f in Example 1.2.7

has dom f = {1, 2}, rng f = {a, b, c} and f−1 = {(a, 1), (b, 1), (c, 2)}.

2. [Pre-image and image] Let f : A→ B be a relation and (x, y) ∈ f . We call x a pre-image

of y and y an image of x. Also, for any set X, we define f(X) := {y | (x, y) ∈ f, x ∈ X}.
Thus, f(X) = ∅ if X ∩A = ∅. We write f(x) to mean f({x}). We write f(x) = y to mean

that f(x) = {y}. For example, consider the relation f in Example 1.2.7. Then,

(a) f(1) = {a, b}, f(2) = c and f(3) = ∅.
(b) f−1(c) = 2, f−1(b) = 1, f−1(1) = {∅}, f−1(4) = {∅}.
(c) for X = {1, 4, c}, one has f(X) = {a, b} and f−1(X) = {2}.

Definition 1.2.9. [Single valued relation and function] A relation f : A → B is single

valued if f(x) is a singleton, for each a ∈ dom f . A function f from A to B is a single valued

relation such that dom f = A. Henceforth, for any function f , we assume that dom f 6= ∅.
For example, the relation f in Example 1.2.7 is not single valued. However, if we delete (1, a)

from f , then it is single valued. Moreover, to make f a function from A to B, we need to

add either (3, a), or (3, b), or (3, c). In particular, the relations g1 = {(1, b), (2, c), (3, b)} and

g2 = {(1, b), (2, c), (3, a)} are indeed functions.

The following is an immediate consequence of the definition.

1We use pictures to help our understanding and they are not parts of proof.
2The domain set is the set from which we define our relations but dom f is the domain of the particular relation

f . They are different.
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Proposition 1.2.10. Let f : A→ B be a relation and S be any set. Then,

1. f(S) 6= ∅ ⇔ dom(f)∩S 6= ∅.

2. f−1(S) 6= ∅ ⇔ rng(f)∩S 6= ∅.

Proof. We will prove only one way implication. The other way is left for the reader.

Part 1: Since f(S) 6= ∅, one can find a ∈ S ∩ A and b ∈ B such that (a, b) ∈ f . This, in turn,

implies that a ∈ dom(f). As a ∈ S, a ∈ dom(f) ∩ S.

Part 2: Since rng(f)∩S 6= ∅, one can find b ∈ rng(f)∩S and a ∈ A such that (a, b) ∈ f . This,

in turn, implies that a ∈ f−1(b) ⊆ f−1(S) as b ∈ S.

Definition 1.2.11. [One-one/Injection] A function f : A→ B is called one-one (also called

an injection), if |f−1(b)| ≤ 1, for each b ∈ B. Equivalently, f : A→ B is one-one if f(x) 6= f(y)

is true, for each pair x 6= y in A. Equivalently, f is one-one if x = y is true, for each pair x, y ∈ A

whenever f(x) = f(y).

Convention:

Let p(x) be a polynomial in x with integer coefficients. Then, by writing ‘f : Z → Z is

a function defined by f(x) = p(x)’, we mean the function f = {(a, p(a)) | a ∈ Z}. For

example, the function f(x) = x2 stands for the set {(a, a2) | a ∈ Z}.

Example 1.2.12. 1. In Definition 1.2.9, the function g2 is one-one whereas g1 is not one-one.

2. The function f : Z→ Z defined by f(x) = x2 is not one-one.

3. The function f : N→ N0 defined by f(x) = x2 is one-one.

4. The function f : [3] → {a, b, c, d} defined by f(1) = c, f(2) = b and f(3) = a, is one-one.

Verify that there are 24 one-one functions f : [3]→ {a, b, c, d}.

5. Let ∅ 6= A ( B. Then, f(x) = x is a one-one map from A to B.

6. There is no one-one function from the set [3] to its proper subset [2].

7. There are one-one functions f from the set N to its proper subset {2, 3, . . .}. One of them

is given by f(1) = 3, f(2) = 2 and f(n) = n+ 1, for n ≥ 3.

Definition 1.2.13. [Restriction function] Let f : X → Y be a function and A ⊆ X, A 6= ∅.
Then, by fA we mean the restriction of f to A and denote it by fA. That is, fA = {(x, y) |
(x, y) ∈ f, x ∈ A}.

Example 1.2.14. Define f : R→ R as f(x) = 1 if x is irrational and f(x) = 0 if x is rational.

Then, fQ : Q→ R is the constant 0 function. That is, fQ(x) = 0, for all x ∈= dom f = Q.

Proposition 1.2.15. Let f : A→ B be a one-one function and C be a nonempty subset of A.

Then, fC is also one-one.

Proof. Let if possible, fC(x) = fC(y), for some x, y ∈ C. Then, by definition of fC , we have

f(x) = f(y). As f is one-one, we get x = y. Thus, fC is one-one.
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Definition 1.2.16. [Onto/Surjection] A function f : A → B is called onto (also called a

surjection), if f−1(b) 6= ∅, for each b ∈ B. Equivalently, f : A → B is onto if ‘each z ∈ B has

some pre-image in A’.

Example 1.2.17. 1. In Definition 1.2.9, the function g2 is onto whereas g1 is not onto.

2. There are 6 onto functions from [3] to [2]. For example, f(1) = 1, f(2) = 2 and f(3) = 2

is one such function.

3. Let ∅ 6= A ( B. Choose a ∈ A. Then, g(y) =

{

y if y ∈ A,

a if y ∈ B \A.
is an onto map from

B to A.

4. There is no onto function from the set [2] to its proper superset [3].

5. There are onto functions f from the set {2, 3, . . .} to its proper superset N. One of them

is f(x) = x− 1.

Definition 1.2.18. [Bijection and equivalent set] Let A and B be two sets. A function

f : A → B is said to be a bijection if f is one-one as well as onto. The sets A and B are said

to be equivalent if there exists a bijection f : A→ B.

Example 1.2.19. 1. In Definition 1.2.9, the function g2 is a bijection.

2. The function f : [3] → {a, b, c} defined by f(1) = c, f(2) = b and f(3) = a, is a bijection.

Thus, the set {a, b, c} is equivalent to [3].

3. Let ∅ 6= A ⊆ A. Then, f(x) = x is a bijection. Thus, the set A is equivalent to itself.

4. If f : A→ B is a bijection then f−1 : B → A is a bijection. Thus, if A is equivalent to B

then B is equivalent to A.

5. The set N is equivalent to {2, 3, . . .}. Indeed the function f : N → {2, 3, . . .} defined by

f(1) = 3, f(2) = 2 and f(n) = n+ 1, for n ≥ 3 is a bijection.

The following is known as the ‘principle of mathematical induction’ in weak form.

Axiom 1.2.20. [Principle of mathematical induction (PMI): Weak form] Let S ⊆ N be a

set which satisfies

1. 1 ∈ S and

2. k + 1 ∈ S whenever k ∈ S.

Then, S = N.1

Fact 1.2.21. 1. Let A,B and C be sets and let f : A → B and g : B → C be bijections.

Then, h : A→ C defined by h(x) = g(f(x)) is a bijection.

1PMI is actually a part of Peano’ axioms that defines N as: a) 1 ∈ N. b) For each n ∈ N, the successor

s(n) ∈ N. c) 1 is not a successor of any natural number. d) If s(m) = s(n) happens for natural numbers m and

n, then m = n. e) Let S ⊆ N such that 1 ∈ S and s(k) ∈ S, for each k ∈ S. Then, S = N.
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Proof. h is one-one: Let if possible h(x) = h(y), for some x, y ∈ A. Then, by definition,

g(f(x)) = g(f(y)), for some f(x), f(y) ∈ B. As g is one-one, we get f(x) = f(y). Now,

using f is one-one, we get x = y and hence h is one-one.

h is onto: Let c ∈ C. Then, the condition that g is onto implies that there exists b ∈ B

such that g(b) = c. Also, for b ∈ B, the condition that f is onto implies that there exists

a ∈ A such that f(a) = b. Thus, we see that h(a) = g(f(a)) = g(b) = c and hence the

required result follows.

2. Let A and B be two disjoint sets and let f : A → [n] and g : B → [m] be two bijections.

Then, the function h : A ∪ B → [m + n] defined by h(x) =

{

f(x) if x ∈ A

g(x) + n if x ∈ B
is a

bijection.

3. Fix n ≥ 2 and let f : A→ [n] be a bijection such that for a fixed element a ∈ A, one has

f(a) = k. Then, g : A \ {a} → [n − 1] defined by g(x) =

{

f(x) if f(x) ≤ k − 1

f(x)− 1 if f(x) ≥ k + 1
is

a bijection.

4. For any positive integers n and k, there is no bijection from [n] to [n+ k].

Proof. Let us fix k and prove the result by induction on n. The result is clearly true for

n = 1 as k + 1 ≥ 2. So, let the result be true for n. We need to prove it for n + 1. On

the contrary, assume that there exists a bijection f : [n + 1] → [n + 1 + k]. Then, by

Fact 1.2.21.3, we get a bijection g : [n] → [n + k], where a = n + 1. Thus, we arrive at a

contradiction to the induction assumption.

Definition 1.2.22. [Number of elements in a set] A set A is said to be finite if either A is

empty or A is equivalent to [n], for some natural number n. A set which is not finite is called

infinite. We say ‘A has n elements’ or ‘the number of elements in A is n’ to mean that ‘A

is equivalent to [n]’. We write |A| = n to mean that A has n elements. Conventionally, the

number of elements in an empty set is zero. If f : [n] → A is a bijection, then A can be listed

as {a1 = f(1), . . . , an = f(n)}.
Fact 1.2.23. 1. Let A and B be two disjoint sets with |A| = m and |B| = n. Then, |A∪B| =

m+ n.

Proof. Use Fact 1.2.21.2.

2. Any subset of [n] is finite.

Proof. We use PMI to prove this. It is true for n = 1. Let the result be true for [n − 1].

Now, let S ⊆ [n]. If n 6∈ S, then S ⊆ [n − 1] and hence using PMI the result follows. If

n ∈ S, let T = S \ {n}. Then, by PMI, T is finite and hence by Fact 1.2.23.1, S is finite

as S is disjoint union of T and {n}.

3. Any subset of a finite set is finite.

Proof. Let |S| = n, for some n ∈ N. Then, there is a bijection f : S → [n]. Let T ⊆ S.

If T is empty then there is nothing to prove. Else, consider the map fT : T → f(T ).
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This map is a bijection. By Fact 1.2.23.2, f(T ) ⊆ [n] is finite and hence T is finite (use

Fact 1.2.21.1).

4. Let A and B be two finite sets, then |A ∪B| = |A|+ |B| − |A ∩B|.

Proof. Using (1.1), A ∪ B = (A \ B) ∪ (A ∩ B) ∪ (B \ A). As the sets A \ B, A ∩ B and

B \ A are finite and pairwise disjoint, the result follows from Fact 1.2.23.1.

5. Let A be a nonempty finite set. Then, for any set B, |A| = |A \B|+ |A ∩B|.

Proof. As A is finite, A \B and A ∩B are also finite. Now, use Fact 1.2.23.1.

6. Let A be a nonempty finite set and B ⊆ A, then |B| ≤ |A|. In particular, if B ( A then

|B| < |A|.

Proof. Since B = A ∩B, the result follows from Fact 1.2.23.5.

7. Let n and k be two fixed positive integers. Then, there is no one-one function from [n+ k]

to [n].

Proof. Suppose there exists a one-one function f : [n + k] → [n], for some n and k. Put

B = f([n+k]) ⊆ [n]. Then, notice that f : [n+k]→ B is a bijection and hence the sets B

and [n+ k] are equivalent. Thus, by definition and Fact 1.2.23.6, n+ k = |B| ≤ n < n+1.

Or equivalently, k < 1 contradicting the assumption that k ≥ 1.

8. The set N is infinite.

Proof. Assume that the set N is finite and |N| = n, for some natural number n. Let

f : N → [n] be a bijection. Then, f[n+1] is the restriction of f on [n + 1]. Thus, by

Proposition 1.2.15, f[n+1] is also one-one, contradicting Fact 1.2.23.7.

9. Let A be a finite nonempty set and x be a fixed symbol. Now, consider the set B =

{(x, a) | a ∈ A}. Then, |A| = |B|.

Proof. Define the function f : A → B by f(a) = (x, a), for all a ∈ A. Then, f is a

bijection.

10. Let A be an infinite set and B ⊇ A. Then, B is infinite.

Proof. If B is finite then by Fact 1.2.23.3, A is finite. A contradiction to A being an

infinite set.

11. Let A be an infinite set and B be a finite set. Then, A \ B is also infinite. In particular,

if a ∈ A, then A \ {a} is also infinite.

Proof. If A \ B is finite, then by Fact 1.2.23.1, the set (A \ B) ∪ B is also finite. But

A ⊆ (A\B)∪B and hence by Fact 1.2.23.3, A is finite as well. A contradiction to A being

an infinite set.

12. A set A is infinite if and only if there is a one-one function f : N→ A.

Proof. Let A be infinite. So, A 6= ∅. Let a1 ∈ A. Put f(1) = a1 and A1 = A \ {a1}. By

Fact 1.2.23.11, A1 is infinite. Assume that we have defined f(1), . . . , f(k) and obtained

Ak = Ak−1 \ {ak}. As Ak−1 was infinite, by Fact 1.2.23.11, Ak is infinite. Hence, Ak 6= ∅.
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Let ak+1 ∈ Ak. Define f(k+1) = ak+1 and Ak+1 = Ak \{ak+1}. By applying induction, f

gets defined on N. Notice that by construction ak+1 /∈ {a1, . . . , ak}. Hence, f is one-one.

Conversely, let f : N→ A be one-one. Then, f : N→ f(N) is a bijection. If f(N) is finite

then N is finite as well, contradicting Fact 1.2.23.8. Hence, f(N) is infinite. As f(N) ⊆ A,

using Fact 1.2.23.10, A is infinite as well.

13. A set is infinite if and only if it is equivalent to a proper subset of itself.

Proof. Let S be an infinite set. Then, by Fact 1.2.23.12, there is a one-one function

f : N → S. Now define a map g : S → S \ {f(1)} by g(x) =

{

x, if x 6∈ f(N)

f(k + 1), if x = f(k).

Then, g is indeed a bijection. Thus, S is equivalent to its proper subset S \ {f(1)}.
Conversely, let S be a set and T a proper subset of S such that there is a bijection

f : S → T . Suppose that S is finite and let |S| = n. Then, by Fact 1.2.23.6, T is also

finite and |T | = m < n. On the other hand, by the assumption that S is finite and there

is a bijection from S to T , we have m = n, a contradiction.

Exercise 1.2.24. [Optional]

1. Do there exist unique sets X and Y such that X \ Y = {1, 3, 5, 7} and Y \X = {2, 4, 8}?

2. In a class of 60 students, all the students play either football or cricket. If 20 students play

both football and cricket, determine the number of players for each game if the number of

students who play football is

(a) 14 more than the number of students who play cricket.

(b) exactly 5 times the number of students who play only cricket.

(c) a multiple of 2 and 3 and leaves a remainder 3 when divided by 5.

(d) is a factor of 90 and the number of students who play cricket is a factor of 70.

1.3 More on principle of mathematical induction

The following is known as the ‘principle of mathematical induction’ in strong form.

Theorem 1.3.1. [Principle of mathematical induction (PMI): Strong form] Let S ⊆ N be a

set which satisfies

1. 1 ∈ S and

2. k + 1 ∈ S whenever [k] ⊆ S holds.

Then, S = N.

Proof. Define T = {k ∈ S | [k] ⊆ S}. Then, 1 ∈ T as 1 ∈ S and [1] ⊆ S. Now, suppose

k ∈ T . Then, by definition [k] ⊆ S. Therefore, the hypothesis implies that k + 1 ∈ S and hence

[k + 1] = [k] ∪ {k + 1} ⊆ S. Thus, k + 1 ∈ T . Hence, by using the weak form of PMI on T , we

conclude that T = N, which in turn implies that S = N.
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Theorem 1.3.2. [Another form of PMI] Let S ⊆ Z be a set which satisfies

1. k0 ∈ S and

2. k + 1 ∈ S whenever {k0, k0 + 1, . . . , k} ⊆ S.

Then, {k0, k0 + 1, . . .} ⊆ S.

Proof. Consider T = {x − (k0 − 1) | x ∈ S, x ≥ k0}. Then, 1 ∈ T as k0 ∈ S and 1 =

k0− (k0−1). Now, let [k] ⊆ T . Then, {k0, k0+1, . . . , k0+k−1} ⊆ S. Hence, by the hypothesis,

(k0 + k− 1) + 1 = k0 + k ∈ S. Therefore, by definition of T , we have k+1 ∈ T and hence using

the strong form of PMI, T = N. Thus, the required result follows.

The next result is commonly known as the Well-Ordering Principle which states that “every

nonempty subset of natural numbers contains its least element”.

Theorem 1.3.3. [Application of PMI in strong form: A nonempty subset of N contains its

minimum] Let ∅ 6= A ⊆ N. Then, the least element of A is a member of A.

Proof. For each fixed positive integer k, let P (k) mean the statement ‘each nonempty subset A

of N that contains k, also contains its minimum’.

Notice that P (1) is true. Now, assume that P (1), . . . , P (k) are true. We need to show that

P (k + 1) is true as well. Hence, consider a set A such that k + 1 ∈ A. If {1, . . . , k} ∩ A = ∅,
then k + 1 = minA, we are done. If r ∈ {1, . . . , k} ∩ A, then r ≤ k and hence by induction

hypothesis, P (r) is true. So, P (k + 1) is true. Hence, by the strong form of PMI the required

result follows.

By using Theorem 1.3.2, we can also prove the following generalization of Theorem 1.3.3. The

proof is similar to the proof of Theorem 1.3.3 and is left to the reader.

Theorem 1.3.4. [Well-ordering principle] Fix k ∈ Z. Let A be a nonempty subset of {k, k +

1, . . .}. Then, A contains its minimum element.

Theorem 1.3.5. [Archimedean property for positive integers] Let x, y ∈ N. Then, there

exists n ∈ N such that nx ≥ y.

Proof. On the contrary assume that such an n ∈ N does not exist. That is, nx < y for every

n ∈ N. That is, y − nx ∈ N, for all n ∈ N. Now, consider the set S = {y − nx | n ∈ N0}.
Then, y ∈ S and hence S is a nonempty subset of N0. Therefore, by the well-ordering principle

(Theorem 1.3.4), S contains its least element, say y − mx. Then, by assumption, the integer

y− (m+1)x ≥ 0, y− (m+1)x ∈ S and y− (m+1)x < y−mx. A contradicts to the minimality

of y −mx. Thus, our assumption is invalid and hence the required result follows.

The next result gives the equivalence of the weak form of PMI with the strong form of PMI.

Theorem 1.3.6. [Equivalence of PMI in weak form and PMI in strong form] Fix a natural

number k0 and let P (n) be a statement about a natural number n. Suppose that P means the

statement ‘P (n) is true, for each n ∈ N, n ≥ k0’. Then, ‘P can be proved using the weak form

of PMI’ if and only if ‘P can be proved using the strong form of PMI’.
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Proof. Let us assume that the statement P has been proved using the weak form of PMI. Hence,

P (k0) is true. Further, whenever P (n) is true, we are able to establish that P (n + 1) is true.

Therefore, we can establish that P (n + 1) is true if P (k0), . . . , P (n) are true. Hence, P can be

proved using the strong form of PMI.

So, now let us assume that the statement P has been proved using the strong form of PMI.

Now, define Q(n) to mean ‘P (ℓ) holds for ℓ = k0, k0 + 1, . . . , n’. Notice that Q(k0) is true.

Suppose that Q(n) is true (this means that P (ℓ) is true for ℓ = k0, k0+1, . . . , n). By hypothesis,

we know that P has been proved using the strong form of PMI. That is, P (n+1) is true whenever

P (ℓ) is true for ℓ = k0, k0 + 1, . . . , n. This, in turn, means that Q(n+ 1) is true. Hence, by the

weak form of PMI, Q(n) is true for all n ≥ k0. Thus, we are able to prove P using the weak

form of PMI.

Theorem 1.3.7. [Optional: Application of PMI in weak form: AM-GM inequality] Fix a

positive integer n and let a1, a2, . . . , an be non-negative real numbers. Then

Arithmetic Mean (AM) :=
a1 + · · · + an

n
≥ n
√
a1 · · · an =: (GM) Geometric Mean.

Proof. The inequality clearly holds for n = 1 and 2. Assume that it holds for every choice of n

non-negative real numbers. Now, let a1, . . . , an, an+1 be a set of n+1 non-negative real numbers

with a1 = max{a1, . . . , an+1} and an+1 = min{a1, . . . , an+1}. Define A = a1+a2+···+an+1

n+1 . Then,

note that a1 ≥ A ≥ an+1. Hence, (a1 − A)(A − an+1) ≥ 0, i.e., A(a1 + an+1 − A) ≥ a1an+1.

Now, apply induction hypothesis on the n non-negative real numbers a2, . . . , an, a1 + an+1 − A

to get

n
√

a2 · · · · · an · (a1 + an+1 −A) ≤ a2 + · · ·+ an + (a1 + an+1 −A)

n
= A.

So, we have An+1 ≥ (a2 · a3 · · · · · an · (a1 + an+1 −A)) ·A ≥ (a2 · a3 · · · · · an) a1an+1. Therefore,

by PMI, the inequality holds, for each n ∈ N.

In the next example, we illustrate the use of PMI to establish some given identities (properties,

statements) involving natural numbers.

Example 1.3.8. Prove that 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Ans: The result is clearly true for n = 1. So, let us assume that 1 + 2 + · · · + n = n(n+1)
2 .

Then, using the induction hypothesis, we have

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n + 1) =

n+ 1

2
(n+ 2) .

Thus, the result holds for n+ 1 and hence by the weak form of PMI, the result follows.

Exercise 1.3.9. [Optional] Prove using PMI.

1. 12 + 22 + · · · + n2 =
n(n+ 1)(2n + 1)

6
.

2. 1 + 3 + · · · + (2n− 1) = n2, for all n ∈ N.

3. n(n+ 1) is even, for all n ∈ N.

4. 3 divides n3 − n, for all n ∈ N.
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5. 5 divides n5 − n, for all n ∈ N.

Practice 1.3.10. [Wrong use of PMI: Can you find the error?] The following is an incorrect

proof of ‘if a set of n balls contains a green ball then all the balls in the set are green’. Find the

error.

Proof. The statement holds trivially for n = 1. Assume that the statement is true for n ≤ k.

Take a collection Bk+1 of k + 1 balls that contains at least one green ball. From Bk+1, pick a

collection Bk of k balls that contains at least one green ball. Then, by the induction hypothesis,

each ball in Bk is green. Now, remove one ball from Bk and put the ball which was left out in

the beginning. Call it B′
k. Again by induction hypothesis, each ball in B′

k is green. Thus, each

ball in Bk+1 is green. Hence, by PMI, our proof is complete.

Exercise 1.3.11. [Optional]

1. Let x ∈ R with x 6= 1. Then, prove that 1 + x+ x2 + · · ·+ xn =
n∑

k=0

xk =
xn+1 − 1

x− 1
.

2. Let a, a+d, a+2d, . . . , a+(n−1)d be the first n terms of an arithmetic progression. Then,

S =

n−1∑

i=0

(a+ id) = a+ (a+ d) + · · · + (a+ (n− 1)d) =
n

2
(2a+ (n − 1)d) .

3. Let a, ar, ar2, . . . , arn−1 be the first n terms of a geometric progression, with r 6= 1. Then,

S = a+ ar + · · · + arn−1 =
n−1∑

i=0
ari = a

rn − 1

r − 1
.

4. Prove that

(a) 6 divides n3 − n, for all n ∈ N.

(b) 7 divides n7 − n, for all n ∈ N.

(c) 3 divides 22n − 1, for all n ∈ N.

(d) 9 divides 22n − 3n− 1, for all n ∈ N.

(e) 10 divides n9 − n, for all n ∈ N.

(f) 12 divides 22n+2 − 3n4 + 3n2 − 4, for all n ∈ N.

(g) 13 + 23 + · · · + n3 =

(
n(n+ 1)

2

)2

.

5. Determine a formula for 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ (n− 1) · n and prove it.

6. Determine a formula for 1 · 2 · 3+ 2 · 3 · 4+3 · 4 · 5+ · · ·+ (n− 1) ·n · (n+1) and prove it.

7. Determine a formula for 1 · 3 · 5 + 2 · 4 · 6 + · · ·+ n · (n+ 2) · (n + 4) and prove it.

8. [Informative] For all n ≥ 32, there exist nonnegative integers x and y such that n =

5x+ 9y. [Hint: First prove it for the starting 5 numbers, 32, 33, 34, 35, 36.]

9. [Informative] Prove that, for all n ≥ 40, there exist nonnegative integers x and y such

that n = 5x+ 11y.

10. For every positive integer n ≥ 3 prove that 2n > n2 > 2n+ 1.



16 CHAPTER 1. BASIC SET THEORY

11. Let r ∈ R with r > −1. Then, prove that

(1 + r)n ≥ 1 + rn for all n ∈ N. (1.3)

12. [Informative] Prove that for µ > 0,

p
∏

l=1

(1 + lµ) ≥ 1 +
p(p+ 1)

2
µ+

1

2

(
p2(p+ 1)2

4
− p(p+ 1)(2p + 1)

6

)

µ2.

13. [Informative] By an L-shaped piece, we mean a piece of the type shown in the picture.

Consider a 2n × 2n square with one unit square cut. See picture.

L-shaped piece

A B

C

α β

γ

4× 4 and 8× 8 squares with a unit square cut

Show that a 2n × 2n square with one unit square cut, can be covered with L-shaped pieces.

14. [Informative] Verify that (k+1)5−k5 = 5k4+10k3+10k2+5k+1. Now, put k = 1, 2, . . . , n

and add to get (n + 1)5 − 1 = 5
n∑

k=1

k4 + 10
n∑

k=1

k3 + 10
n∑

k=1

k2 + 5
n∑

k=1

k +
n∑

k=1

1. Now, use

the formula’s for
n∑

k=1

k3,
n∑

k=1

k2,
n∑

k=1

k and
n∑

k=1

1 to get a expression for
n∑

k=1

k4.

15. [Informative: A general result than AM-GM]

(a) Let a1, . . . , a9 be nonnegative real numbers such that the sum a1 + · · · + a9 = 5.

Assume that a1 6= a2. Consider a1+a2
2 , a1+a2

2 , a3, . . . , a9. Argue that a1 · · · a9 ≤
(
a1+a2

2

)2
a3 · · · a9.

(b) Let a1, . . . , an be any nonnegative real numbers such that the sum a1 + · · ·+ an = r0.

Argue that the highest value of a1 · · · an is obtained when a1 = · · · = an = r0/n.

(c) Let a1, . . . , an be fixed nonnegative real numbers such that the sum a1+ · · ·+an = r0.

Conclude from the previous item that (r0/n)
n ≥ a1 · · · an, the AM-GM inequality.

1.4 Integers

In this section, we study some properties of integers. We start with the ‘division algorithm’.

Lemma 1.4.1. [Division algorithm] Let a and b be two integers with b > 0. Then, there exist

unique integers q, r such that a = qb+ r, where 0 ≤ r < b. The integer q is called the quotient

and r, the remainder.

Proof. Existence: Take S = {a+ bx | x ∈ Z} ∩N0. Then, a+ |a|b ∈ S. Hence, S is a nonempty

subset of N0. Therefore, by the Well-Ordering Principle, S contains its minimum, say s0. So,

s0 = a+ bx0, for some x0 ∈ Z. Notice that s0 ≥ 0. We claim that s0 < b.
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If s0 ≥ b then s0− b ≥ 0 and hence s0− b = a+ b(x0 − 1) ∈ S, a contradiction to s0 being the

minimum element of S. Now, put q = −x0 and r = s0. Thus, we have obtained q and r such

that a = qb+ r, with 0 ≤ r < b.

Uniqueness: Assume that there exist integers q1, q2, r1 and r2 satisfying a = q1b+r1, 0 ≤ r1 < b

and a = q2b+r2, 0 ≤ r2 < b. Without loss of generality, we assume r1 ≤ r2. Then, 0 ≤ r2−r1 < b.

Notice that r2− r1 = (q1− q2)b. So, 0 ≤ (q1− q2)b < b. But the only integer multiple of b which

lies in [0, b) is 0. Hence, q1 − q2 = 0. Thus, r1 = r2 as well. This completes the proof.

Definition 1.4.2. [Divisibility]

1. [Divisor] Let a, b ∈ Z with b 6= 0. If a = bc, for some c ∈ Z then b is said to divide (be a

divisor of) a and is denoted b | a.

Discussion: If a is a nonzero integer then the set of positive divisors of a is always nonempty

(as 1 | a) and finite (as a positive divisor of a is less than or equal to |a|).

2. [Greatest common divisor] Let a and b be two nonzero integers. Then, the set S of

their common positive divisors is nonempty and finite. Thus, S contains its greatest

element. This element is called the greatest common divisor of a and b and is denoted

gcd(a, b). On similar lines one can define the greatest common divisor of non-zero integers

a1, a2, . . . , an as the largest positive integer that divides each of a1, a2, . . . , an, denoted

gcd(a1, . . . , an).

3. [Relatively prime/Co-prime integers] An integer a is said to be relatively prime to an

integer b if gcd(a, b) = 1. Or, two integers a and b are said to be co-prime if gcd(a, b) = 1.

The next remark follows directly from the definition and the division algorithm.

Remark 1.4.3. Let a, b ∈ Z \ {0} and d = gcd(a, b). Then, for any positive common divisor c

of a and b, one has c | d.

The next result is often stated as ‘the gcd(a, b) is an integer linear combination of a and b’.

Theorem 1.4.4. [Bézout’s identity] Let a and b be two nonzero integers. Then, there exist

integers x0, y0 such that d = ax0 + by0, where d = gcd(a, b).

Proof. Consider the set S = {ax + by | x, y ∈ Z} ∩ N. Then, either a ∈ S or −a ∈ S. Thus, S

is a nonempty subset of N. Hence, by the Well-ordering principle, S contains its least element,

say d. As d ∈ S, we have d = ax0 + by0, for some x0, y0 ∈ Z. We claim that d = gcd(a, b).

Note that d is positive. Let c be any positive common divisor of a and b. Then, c | ax0+by0 = d

as x0, y0 ∈ Z. We now show that d | a and d | b.
By division algorithm, there exist integers q and r such that a = dq+ r, with 0 ≤ r < d. Thus,

we need to show that r = 0.

On the contrary, assume that 0 < r < d. Then

r = a− dq = a− q(ax0 + by0) = a(1− qx0) + b(−qy0) ∈ {ax+ by | x, y ∈ Z}.
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Hence, r is a positive integer in S which is strictly less than d. This contradicts the fact that d

is the least element of S. Thus, r = 0 and hence d|a. Similarly, d|b.
The division algorithm gives us an idea to algorithmically compute the greatest common divisor

of two integers, commonly known as the Euclid’s algorithm.

Discussion 1.4.5. 1. Note that d, the number obtained by the application of the Well-

ordering principle in the proof of Theorem 1.4.4 has the property that d divides ax+ by,

for all x, y ∈ Z. So, for every choice of integers x, y, gcd(a, b) divides ax+ by.

2. Let a, b ∈ Z \ {0}. By division algorithm, a = |b|q + r, for some integers q, r ∈ Z with

0 ≤ r < |b|. Then,
gcd(a, b) = gcd(a, |b|) = gcd(|b|, r).

To show the second equality, note that r = a − |b|q and hence gcd(a, |b|) | r. Thus,

gcd(a, |b|) | gcd(|b|, r). Similarly, gcd(|b|, r) | gcd(a, |b|) as a = |b|q + r.

3. We can now apply the above idea repeatedly to find the greatest common divisor of two

given nonzero integers. This is called the Euclid’s algorithm. For example, to find

gcd(155,−275), we proceed as follows

−275 = (−2) · 155 + 35 (so, gcd(−275, 155) = gcd(155, 35))

155 = 4 · 35 + 15 (so, gcd(155, 35) = gcd(35, 15))

35 = 2 · 15 + 5 (so, gcd(35, 15) = gcd(15, 5))

15 = 3 · 5 (so, gcd(15, 5) = 5).

To write 5 = gcd(155,−275) in the form 155x0 + (−275)y0, notice that

5 = 35−2·15 = 35−2(155−4·35) = 9·35−2·155 = 9(−275+2·155)−2·155 = 9·(−275)+16·155.

Also, note that 275 = 5·55 and 155 = 5·31 and thus, 5 = (9+31x)·(−275)+(16+55x)·155,
for all x ∈ Z. Therefore, we see that there are infinite number of choices for the pair

(x, y) ∈ Z2, for which d = ax+ by.

4. [Euclid’s algorithm] In general, given two nonzero integers a and b, the algorithm proceeds

as follows:

a = bq0 + r0 with 0 ≤ r0 < b, b = r0q1 + r1 with 0 ≤ r1 < r0,

r0 = r1q2 + r2 with 0 ≤ r2 < r1, r1 = r2q3 + r3 with 0 ≤ r3 < r2,
... =

...

rℓ−1 = rℓqℓ+1 + rℓ+1 with 0 ≤ rℓ+1 < rℓ, rℓ = rℓ+1qℓ+2.

The process will take at most b− 1 steps as 0 ≤ r0 < b. Also, note that gcd(a, b) = rℓ+1

and rℓ+1 can be recursively obtained, using backtracking. That is,

rℓ+1 = rℓ−1 − rℓqℓ+1 = rℓ−1 − qℓ+1 (rℓ−2 − rℓ−1qℓ) = rℓ−1 (1 + qℓ+1qℓ)− qℓ+1rℓ−2 = · · · .
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Exercise 1.4.6. 1. Let a, b, c ∈ N. Then, prove the following:

(a) If gcd(a, b) = d, then gcd(ad ,
b
d) = 1.

(b) gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1.

2. Prove that the system 15x+12y = b has a solution for x, y ∈ Z if and only if 3 divides b.

3. [Diophantine Equation] Let a, b, c ∈ Z \ {0}. Then, the linear system ax+ by = c, in the

unknowns x, y ∈ Z has a solution if and only if gcd(a, b) divides c. Furthermore, determine

all pairs (x, y) ∈ Z× Z such that ax+ by is indeed c.

4. Let a1, a2, . . . , an ∈ N. Then, prove that gcd(a1, a2, . . . , an) = gcd(gcd(a1, a2), a3, . . . , an).

5. Euclid’s algorithm can sometimes be applied to check whether two numbers which are func-

tions of an unknown integer n, are relatively prime or not? For example, we can use the

algorithm to prove that gcd(2n + 3, 5n + 7) = 1 for every n ∈ Z.

6. [Informative] Suppose a milkman has only 3 cans of sizes 7, 9 and 16 liters. If the milkman

has 16 litres of milk then using the 3 cans, specified as above, what is the minimum number

of operations required to deliver 1 liter of milk to a customer? Explain.

To proceed further, we need the following definitions.

Definition 1.4.7. [Prime/Composite numbers]

1. [unity] The positive integer 1 is called the unity (or the unit element) of Z.

2. [prime] A positive integer p is said to be a prime, if p is not a unit and p has exactly

two positive divisors, namely, 1 and p.

3. [composite] A positive integer r is called composite if r is neither a unit nor a prime.

We are now ready to prove an important result that helps us in proving the fundamental

theorem of arithmetic.

Lemma 1.4.8. [Euclid’s lemma] Let p be a prime and let a, b ∈ Z. If p | ab then either p | a
or p | b.

Proof. If p | a, we are done. So, assume that p ∤ a. As p is a prime, gcd(p, a) = 1. Thus, we can

find integers x, y such that 1 = ax+ py. As p | ab, we have

p | abx+ pby = b(ax+ py) = b · 1 = b.

Thus, if p|ab then either p|a or p|b.
As a repeated application of Lemma 1.4.8, we have the following result and hence the proof is

omitted.

Corollary 1.4.9. Let n be an integer such that n | ab and gcd(n, a) = 1. Then, n | b.
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Now, we are ready to prove the fundamental theorem of arithmetic that states that ‘every

positive integer greater than 1 is either a prime or is a product of primes. This product is

unique, except for the order in which the prime factors appear’.

Theorem 1.4.10. [Fundamental theorem of arithmetic] Let n ∈ N with n ≥ 2. Then,

there exist prime numbers p1 > p2 > · · · > pk and positive integers s1, s2, . . . , sk such that

n = ps11 ps22 · · · pskk , for some k ≥ 1. Moreover, if n also equals qt11 qt22 · · · qtℓℓ , for distinct primes

q1 > q2 > · · · > qℓ and positive integers t1, t2, . . . , tℓ then k = ℓ and for each i, 1 ≤ i ≤ k, pi = qi

and si = ti.

Proof. We prove the result using the strong form of the principle of mathematical induction.

The result is clearly true for n = 2. So, let the result be true for all m, 2 ≤ m ≤ n− 1. If n is a

prime, then we have nothing to prove. Else, n has a prime divisor p. Then, apply induction on
n
p to get the required result.

Theorem 1.4.11. [Euclid: Infinitude of primes] The number of primes is infinite.

Proof. On the contrary assume that the number of primes is finite, say p1 = 2, p2 = 3, . . . , pk.

Now, consider the positive integer N = p1p2 · · · pk + 1. Then, we see that none of the primes

p1, p2, . . . , pk divides N which contradicts Theorem 1.4.10. Thus, the result follows.

Proposition 1.4.12. [Primality testing] Let n ∈ N with n ≥ 2. Suppose that for every prime

p ≤ √n, p does not divide n, then n is prime.

Proof. Suppose n = xy, for 2 ≤ x, y < n. Then, either x ≤ √n or y ≤ √n. Without loss of

generality, assume x ≤ √n. If x is a prime, we are done. Else, take a prime divisor of x to get

a contradiction.

Exercise 1.4.13. [Informative] Prove that there are infinitely many primes of the form 4n−1.

Definition 1.4.14. [Least common multiple] Let a, b ∈ Z. Then, the least common mul-

tiple of a and b, denoted lcm(a, b), is the smallest positive integer that is a multiple of both a

and b.

Theorem 1.4.15. Let a, b ∈ N. Then, gcd(a, b) · lcm(a, b) = ab. Thus, lcm(a, b) = ab if and

only if gcd(a, b) = 1.

Proof. Let d = gcd(a, b). Then, d = as + bt, for some s, t ∈ Z, a = a1d, b = b2d, for some

a1, b1 ∈ N. We need to show that lcm(a, b) = a1b1d = ab1 = a1b, which is clearly a multiple of

both a and b. Let c ∈ N be any common multiple of a and b. To show, a1b1d divides c. Note

that
c

a1b1d
=

cd

(a1d) · (b1d)
=

c(as + bt)

ab
=

c

b
s+

c

a
t ∈ Z

as c
a ,

c
b ∈ Z and s, t ∈ Z. Thus, a1b1d = lcm(a, b) divides c and hence lcm(a, b) is indeed the

smallest. Thus, the required result follows.

Exercise 1.4.16. 1. If gcd(b, c) = 1, then gcd(a, bc) = gcd(a, b) · gcd(a, c).



1.4. INTEGERS 21

2. If gcd(a, b) = d, then gcd(an, bn) = dn for all n ∈ N.

Definition 1.4.17. [Modular Arithmetic] Fix a positive integer n. Then, ‘an integer a is said

to be congruent to an integer b modulo n’, denoted a ≡ b (mod n), if n divides a− b.

Example 1.4.18. 1. The numbers ±10 and 22 are equivalent modulo 4 as 4 | 12 = 22 − 10

and 4 | 32 = 22− (−10).

2. Let n ∈ N be a perfect square. That is, there exists an integer m such that n = m2. Then,

n ≡ 0, 1 (mod 4) as any integer m ≡ 0,±1, 2 (mod 4) and hence m2 ≡ 0, 1 (mod 4).

3. Let S = {15, 115, 215, . . .}. Then, S doesn’t contain any perfect square as for each s ∈ S,

s ≡ 3 (mod 4).

4. It can be easily verified that any two even (odd) integers are equivalent modulo 2 as

2 | 2(l −m) = 2l − 2m (2 | 2(l −m) = ((2l + 1)− (2m+ 1))).

5. Let n be a fixed positive integer and let S = {0, 1, 2, . . . , n− 1}.
(a) Then, by division algorithm, for any a ∈ Z there exists a unique b ∈ S such that b ≡ a

(mod n). The number a (mod n) (in short, b) is called the residue of a modulo n.

(b) Thus, the set of integers, Z =
n−1⋃

a=0
{a+kn : k ∈ Z}. That is, every integer is congruent

to an element of S. The set S is taken as the standard representative for the set

of residue classes modulo n.

Theorem 1.4.19. Let n be a positive integer. Then, the following results hold.

1. Let a ≡ b (mod n) and b ≡ c (mod n), for some a, b, c ∈ Z. Then, a ≡ c (mod n).

2. Let a ≡ b (mod n), for some a, b ∈ Z. Then, a+ c ≡ b+ c (mod n), a− c ≡ b− c (mod n)

and ac ≡ bc (mod n), for all c ∈ Z.

3. Let a ≡ b (mod n) and c ≡ d (mod n), for some a, b, c, d ∈ Z. Then, a±c ≡ b±d (mod n)

and ac ≡ bd (mod n). In particular, am ≡ bm (mod n), for all m ∈ N.

4. Let ac ≡ bc (mod n), for some non-zero a, b, c ∈ Z. Then, a ≡ b (mod n), whenever

gcd(c, n) = 1. In general, a ≡ b (mod
n

gcd(c, n)
).

Proof. We will only prove two parts. The readers should supply the proof of other parts.

Part 3: Note that ac− bd ≡ ac− bc+ bc− bd ≡ c(a− b)+ b(c− d). Thus, n | ac− bd, whenever

n | a− b and n | c− d.

In particular, taking c = a and d = b and repeatedly applying the above result, one has

am ≡ bm (mod n), for all m ∈ N.

Part 4: Let gcd(c, n) = d. Then, there exist non-zero c1, n1 ∈ Z and c = c1d, n = n1d. Thus,

n | ac − bc means that n1d | c1d(a − b). This, in turn implies that n1 | c1(a − b). Hence, by

Corollary 1.4.9, we get
n

gcd(c, n)
= n1 | a− b.

As an application, we have the following result, popularly known as the Fermat’s little theorem.

Theorem 1.4.20. [Fermat’s Little Theorem] Let p be a prime and n ∈ N. Then, np ≡
n (mod p).
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Proof. Note that if p|n, then obviously, np ≡ n (mod p). So, let us assume that gcd(p, n) = 1.

Then, we need to show that np−1 ≡ 1 (mod p).

To do this, we consider the set S = {n (mod p), 2n (mod p), . . . , (p − 1)n (mod p)}. Since,

gcd(p, n) = 1, by second and fourth parts of Theorem 1.4.19, an ≡ bn (mod p) if and only if

a ≡ b (mod p). Thus, S ≡ {1, 2, . . . , p − 1}. Hence,

np−1(p− 1)! = n · 2n · · · · · (p − 1)n ≡ 1 · 2 · · · · · (p− 1).

Thus, the condition gcd((p − 1)!, p) = 1 implies that np−1 ≡ 1 (mod p).

Before coming to the next result, we look at the following examples.

Example 1.4.21. 1. As gcd(251, 13) = 1, we see that 25112 ≡ 1 (mod 13). Hence, 25112

leaves the remainder 1, when divided by 13.

2. As 255 ≡ 2 (mod 23), gcd(255, 23) = 1. Hence,

25527 ≡ (25522) · (2555) (mod 23) ≡ 25 (mod 23) ≡ 32 (mod 2)3 ≡ 9 (mod 2)3.

3. Note that 3 · 9+13 · (−2) ≡ 1 (mod 13). So, the system 9x ≡ 4 (mod 13) has the solution

x ≡ x · 1 ≡ x · (3 · 9 + 13 · (−2)) ≡ 3 · 9x ≡ 3 · 4 ≡ 12 (mod 13).

4. Verify that 9 · (−5) + 23 · (2) = 1. Hence, the system 9x ≡ 1 (mod 23) has the solution

x ≡ x · 1 ≡ x (9 · (−5) + 23 · (2)) ≡ (−5) · (9x) ≡ −5 ≡ 18 (mod 23).

5. The system 3x ≡ 15 (mod 30) has solutions x = 5, 15, 25, whereas the system 7x = 15 has

only the solution x = 15. Also, verify that the system 3x ≡ 5 (mod 30) has no solution.

Theorem 1.4.22. [Linear Congruence] Let n be a positive integer and let a and b be non-zero

integers. Then, the system ax ≡ b (mod n) has at least one solution if and only if gcd(a, n) | b.
Moreover, if d = gcd(a, n) then ax ≡ b (mod n) has exactly d solutions in {0, 1, 2, . . . , n− 1}.

Proof. Let x0 be a solution of ax ≡ b (mod n). Then, by definition, ax0 − b = nq, for some

q ∈ Z. Thus, b = ax0 − nq. But, gcd(a, n) | a, n and hence gcd(a, n) | ax0 − nq = b.

Suppose d = gcd(a, n) | b. Then, b = b1d, for some b1 ∈ Z. Also, by Euclidean algorithm,

there exists x0, y0 ∈ Z such that ax0 + ny0 = d. Hence,

a(x0b1) ≡ b1(ax0) ≡ b1(ax0 + ny0) ≡ b1d ≡ b (mod n).

This completes the proof of the first part.

To proceed further, assume that x1, x2 are two solutions. Then, ax1 ≡ ax2 (mod n) and

hence, by Theorem 1.4.19.4, x1 ≡ x2 (mod
n

d
). Thus, we can find x2 ∈ {0, 1, . . . ,

n

d
} such that

x = x2+k
n

d
is a solution of ax ≡ b (mod n), for 0 ≤ k ≤ d−1. Verify that these x’s are distinct

and lie between 0 and n− 1. Hence, the required result follows.

Exercise 1.4.23. 1. Prove Theorem 1.4.19.
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2. Prove that the numbers 19, 119, 219, . . . cannot be perfect squares.

3. Prove that the numbers 10, 110, 210, . . . cannot be perfect squares.

4. Prove that the system 3x ≡ 4 (mod 28) is equivalent to the system x ≡ 20 (mod 28).

5. Determine the solutions of the system 3x ≡ 5 (mod 65).

6. Determine the solutions of the system 15x ≡ 295 (mod 100).

7. Prove that the pair of systems 3x ≡ 4 (mod 28) and 4x ≡ 2 (mod 27) is equivalent to

the pair x ≡ 20 (mod 28) and x ≡ 14 (mod 27). Hence, prove that the above system is

equivalent to solving either 20 + 28k ≡ 14 (mod 27) or 14 + 27k ≡ 20 (mod 28) for the

unknown quantity k. Thus, verify that k = 21 is the solution for the first case and k = 22

for the other. Hence, x = 20 + 28 · 21 = 608 = 14 + 22 · 27 is a solution of the above pair.

8. Let p be a prime. Then, prove that p |
(
p
k

)
=

p!

k!(p − k)!
, for 1 ≤ k ≤ p− 1.

9. [Informative] Let p be a prime. Then, the set

(a) Zp = {0, 1, 2, . . . , p− 1} has the following properties:

i. for every a, b ∈ Zp, a+ b (mod p) ∈ Zp.

ii. for every a, b ∈ Zp, a+ b = b+ a (mod p).

iii. for every a, b, c ∈ Zp, a+ (b+ c) ≡ (a+ b) + c (mod p).

iv. for every a ∈ Zp, a+ 0 ≡ a (mod p).

v. for every a ∈ Zp, a+ (p− a) ≡ 0 (mod p).

(b) Z∗
p = {1, 2, . . . , p− 1} has the following properties:

i. for every a, b ∈ Zp, a · b (mod p) ∈ Z∗
p.

ii. for every a, b ∈ Z∗
p, a · b = b · a (mod p).

iii. for every a, b, c ∈ Z∗
p, a · (b · c) ≡ (a · b) · c (mod p).

iv. for every a ∈ Z∗
p, a · 1 ≡ a (mod p).

v. for every a ∈ Z∗
p, a · b ≡ 1 (mod p). To see this, note that gcd(a, p) = 1. Hence,

by Euclid’s algorithm, there exists x, y ∈ Z such that ax+ py = 1. Define b ≡ x

(mod p). Then,

a · b ≡ a · x ≡ a · x+ p · y ≡ 1 (mod p).

In algebra, any set, say F, in which ‘addition’ and ‘multiplication’ can be defined

in such a way that the above properties are satisfied then F is called a field. So,

Zp = {0, 1, 2, . . . , p− 1} is an example of a field. In general, the well known examples

of fields are:

i. Q, the set of rational numbers.

ii. R, the set of real numbers.

iii. C, the set of complex numbers.

(c) From now on let p be an odd prime.

i. Then, the equation x2 ≡ 1 (mod p) has exactly two solutions, namely x = 1 and

x = p − 1 in Z∗
p. This is true as p is a prime dividing x2 − 1 = (x − 1)(x + 1)
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implies that either p|x − 1 or p|x + 1. Also, 0 is the only number in Z∗
p that is

divisible by p.

ii. Then, for a ∈ {2, 3, . . . , p − 2}, we can find a number b ∈ {2, 3, . . . , p − 2} ⊆ Z∗
p

with a · b ≡ 1 (mod p) and b 6= a.

iii. Thus, for 1 ≤ i ≤ p−1
2 , we have pairs {ai, bi} that are pairwise disjoint and satisfy

ai · bi ≡ 1 (mod p). Moreover,

p−1
2⋃

i=1
{ai, bi} = {2, 3, . . . , p − 2}.

iv. Hence, 2 · 3 · · · · · (p− 2) ≡ 1 (mod p).

v. We thus have the following famous theorem called the Wilson’s Theorem: Let

p be a prime. Then, (p − 1)! ≡ −1 (mod p).

Proof. Note that from the previous step, we have

(p− 1)! ≡ 1 · (p− 1) · 2 · 3 · · · · · (p − 2) ≡ −1 · 1 ≡ −1 (mod p).

vi. [Primality Testing] Let n be a positive integer. Then, (n− 1)! ≡ −1 (mod n) if

and only if n is a prime.

Theorem 1.4.24. [Chinese remainder theorem] Fix a positive integer m and let n1, n, . . . , nm

be pairwise co-prime positive integers. Then, the linear system

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ am (mod nm)

has a unique solution modulo N = n1n2 · · ·nm.

Proof. For 1 ≤ k ≤ m, define Mk =
M

nk
. Then, gcd(Mk, nk) = 1 and hence there exist integers

xk, yk such that Mkxk + nkyk = 1 for 1 ≤ k ≤ m. Then,

Mkxk ≡ 1 (mod nk) and Mkxk ≡ 0 (mod nℓ) for ℓ 6= k.

Define x0 =
m∑

k=1

Mkxkak. Then, it can be easily verified that x0 satisfies the required congruence

relations.

Example 1.4.25. 1. Let us come back to Exercise 1.4.23.7. In this case, note that a1 =

20, a2 = 14, n1 = 28 and n2 = 27. So, M = 28 · 27 = 756,M1 = 27 and M2 = 28. As,

27 · (−1) + 28 · 1 = 1, we see that x1 = −1 and x2 = 1. Thus,

x0 = 27 · −1 · 20 + 28 · 1 · 14 ≡ −540 + 392 ≡ −148 ≡ 608 (mod 756).

Alternate: Note that 27 · (−1) + 28 · 1 = 1. So, 20 ≡ 27 · (−1) · 20 (mod 28) and

14 ≡ 28 · 1 · 14 (mod 27). Thus,

27 · (−1) · 20 + 28 · 1 · 14 ≡ 27 · (−1) · 20 (mod 28) ≡ 20 (mod 28)

≡ 28 · 1 · 14 (mod 27) ≡ 14 (mod 27).

But, −148 ≡ 608 (mod 756) and hence x0 = 608 is the required answer.
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2. Let x be a number which when divided by 8, 15 and 17 gives remainders 5, 6 and 8,

respectively. Then, what will be the remainder when x is divided by 2040?

Ans: Note that the question reduces to finding x ∈ N such that

x ≡ 5 (mod 8), x ≡ 6 (mod 15), x ≡ 8 (mod 17).

Also, M = 2040,M1 = 255,M2 = 136 and M3 = 120 with

8 · 32 + (−1) · 255 = 1, 1 · 136 + (−9)15 = 1 and 1 · 120 + (−7) · 17 = 1.

Hence, the required remainder is

501 = 255 · (−1) · 5 + 136 · 1 · 6 + 120 · 1 · 8 ≡M1x1a1 +M2x2a2 +M3x3a3 (mod 2040)

≡ 5 · (−255) (mod 8) ≡ 5 (mod 8)

≡ 6 · 136 (mod 15) ≡ 6 (mod 15)

≡ 8 · 120 (mod 17) ≡ 8 (mod 17).

Exercise 1.4.26. 1. Find the smallest positive integer which when divided by 4 leaves a

remained 1 and when divided by 9 leaves a remainder 2.

2. Find the smallest positive integer which when divided by 8 leaves a remained 4 and when

divided by 15 leaves a remainder 10.

3. Does there exist a positive integer n such that

n ≡ 4 (mod 14), n ≡ 6 (mod 18)?

Give reasons for your answer. What if we replace 6 or 4 with an odd number?

4. [Informative] Let n be a positive integer. Then, the set

(a) Zn = {0, 1, 2, . . . , n− 1} has the following properties:

i. for every a, b ∈ Zn, a+ b (mod n) ∈ Zn.

ii. for every a, b ∈ Zn, a+ b = b+ a (mod n).

iii. for every a, b, c ∈ Zn, a+ (b+ c) ≡ (a+ b) + c (mod n).

iv. for every a ∈ Zn, a+ 0 ≡ a (mod n).

v. for every a ∈ Zn, a+ (p − a) ≡ 0 (mod n).

vi. for every a, b ∈ Zn, a · b (mod n) ∈ Zn.

vii. for every a, b ∈ Zn, a · b = b · a (mod n).

viii. for every a, b, c ∈ Zn, a · (b · c) ≡ (a · b) · c (mod n).

ix. for every a ∈ Zn, a · 1 ≡ a (mod n).

In algebra, any set, say R, in which ‘addition’ and ‘multiplication’ can be defined in

such a way that the above properties are satisfied then R is called a commutative

ring with unity. So, Zn = {0, 1, 2, . . . , n− 1} is an example of a commutative ring

with unity. In general, the well known examples of commutative ring with unity are:

i. Z, the set of integers.
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ii. Q, the set of rational numbers.

iii. R, the set of real numbers.

iv. C, the set of complex numbers.

(b) Now, let m and n be two co-prime positive integers. Then, by the above, the sets

Zm,Zn, and Zmn are commutative rings with unity. In the following, we show that

there is a one-to-one correspondence (ring isomorphism) between Zm × Zn and Zmn.

To do so, define

f : Zmn → Zm × Zn by f(x) = (x (mod m), x (mod n)) for all x ∈ Zmn.

Then, defining ‘addition’ and ‘multiplication’ in Zm × Zn componentwise and using

Theorem 1.4.19, we have the following:

i. f(x+ y) = f(x) + f(y), for all x, y ∈ Zmn.

ii. f(x · y) = f(x) · f(y), for all x, y ∈ Zmn.

iii. for every (a, b) ∈ Zm × Zn, by CRT, there exists a unique x ∈ Zmn such that

x ≡ a (mod m) and x ≡ b (mod n).

iv. also, | Zm × Zn |=| Zmn |= mn..

Hence, we have obtained the required one-one correspondence, commonly known as

the ring isomorphism. That is, the two rings Zm × Zn and Zmn are isomorphic.

5. [Arithmetic Function] A function f : N→ C is called an arithmetic function.

[Multiplicative Function] An arithmetic function f is called a multiplicative function if

f(mn) = f(m)f(n) for all m,n ∈ N with gcd(m,n) = 1.

We now give a list of arithmetic functions which are quite popular in number theory. The

reader should determine the functions that are multiplicative.

(a) Consider the function Id(n) = n, for all n ∈ N.

(b) Consider the function U(n) = 1, for all n ∈ N.

(c) Fix a positive integer m and for all n ∈ N, consider the function δm(n) =

{

1 if n = m

0 otherwise.

(d) Recall that a number n ∈ N is called squarefree, if for any prime p, p divides n but

p2 doesn’t divide n. Consider the function µ : N→ C, defined by

µ(n) =







0 if n is not squarefree,

1 if n is squarefree and has even number of prime factors,

−1 if n is squarefree and has odd number of prime factors,

This function is commonly known as the Möbius function. For example, µ(1) =

1, µ(2) = −1, σ(3) = −1, µ(4) = 0, . . . , µ(10) = 1, . . ..

(e) Consider the function ϕ : N→ C, defined by ϕ(n) = |{k : 1 ≤ k ≤ n, gcd(k, n) = 1}|,
for all n ∈ N. This function is popularly known as the totient /phi /Euler phi function

and it counts the number of positive integers less than or equal to n that are co-prime

to n. For example, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, . . . , ϕ(10) = 4, . . ..
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i. Let m,n ∈ N with gcd(m,n) = 1. Then, use Exercise 1.4.6.1b to prove that

ϕ(mn) = ϕ(m) ·ϕ(n). So, the function ϕ is a multiplicative function. Hence, we

need to only determine ϕ(pn) for every prime p and n ∈ N.

ii. Show that if p is a prime and n ∈ N then ϕ(pn) = pn−1(p− 1) = pn
(

1− 1
p

)

.

iii. [Euler’s Theorem] Let n ∈ N and let a ∈ Z such that gcd(a, n) = 1. Then,

aϕ(n) ≡ 1 (mod n).A generalization of Fermat’s little theorem.

(f) Consider the function π : N → C, defined by π(n) = |{k : 1 ≤ k ≤ n, k is a prime}|,
for all n ∈ N. This function counts the number of primes less than or equal to n. For

example, π(1) = 0, π(2) = 1, π(3) = 2, π(4) = 2, . . . , π(10) = 4, . . ..

(g) Consider the function d : N→ C, defined by d(n) =
∑

r|n
1, for all n ∈ N. This function

counts the number of positive divisors of n. For example, d(1) = 1, d(2) = 2, d(3) =

2, d(4) = 3, . . . , d(10) = 4, . . ..

(h) Consider the function σ : N→ C, defined by σ(n) =
∑

d|n
d, for all n ∈ N. This function

gives the sum of the positive divisors of n. For example, σ(1) = 1, σ(2) = 3, σ(3) =

4, σ(4) = 7, . . . , σ(10) = 18, . . ..

(i) Fix a positive integer k and consider the function σk : N → C, defined by σk(n) =
∑

d|n
dk, for all n ∈ N. This function gives the sum of the k-th powers of the positive

divisors of n. For example, σk(1) = 1, σk(2) = 1 + 2k, σ(3) = 1 + 3k, . . . , σ(10) =

1 + 2k + 5k + 10k, . . .. Also, note that σ0(n) = d(n) and σ1(n) = σ(n), for all n ∈ N.

(j) Let f be an arithmetic function. Then, we define a function D from the set of

arithmetic functions to itself, called the divisor sum function, by (Df)(n) =
∑

d|n
f(d).
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Chapter 2

Advanced topics in set theory

2.1 Families of Sets

Definition 2.1.1. Let A be a set. For each x ∈ A, take a new set Ax. Then, the collection

{Ax}x∈A:=
{
Ax | x ∈ A

}
is a family of sets indexed by elements of A (index set). Unless

otherwise mentioned, we assume that the index set for a class of sets is nonempty.

Definition 2.1.2. Let {Bα}α∈S be a nonempty class of sets. We define their

1. union as ∪
α∈S

Bα= {x | x ∈ Bα, for some α}, and

2. intersection as ∩
α∈S

Bα= {x | x ∈ Bα, for all α}.

3. Convention: Union of an empty class is ∅. The intersection of an empty class of subsets

of X is X1.

Example 2.1.3. 1. Take A = [3], A1 = {1, 2}, A2 = {2, 3} and A3 = {4, 5}. Then, {Aα |
α ∈ A} = {A1, A2, A3} =

{

{1, 2}, {2, 3}, {4, 5}
}

. Thus, ∪
α∈A

Aα = [5] and ∩
α∈A

Aα = ∅.

2. Take A = N and An = {n, n + 1, . . .}. Then, the family {Aα | α ∈ A} = {A1, A2, . . .} ={

{1, 2, . . .}, {2, 3, . . .}, . . .
}

. Thus, ∪
α∈A

Aα = N and ∩
α∈A

Aα = ∅.

3. Prove that the intersection
⋂

n∈N
[− 1

n ,
2
n ] = {0}.

We now give a set of important rules whose proofs are left for the reader.

Theorem 2.1.4. [Algebra of union and intersection] Let {Aα}α∈L be a nonempty class of

subsets of X and B be any set. Then, the following statements are true.

1. B ∩
(

∪
α∈L

Aα

)

= ∪
α∈L

(B ∩Aα).

2. B ∪
(

∩
α∈L

Aα

)

= ∩
α∈L

(B ∪Aα).

3.
(
∪

α∈L
Aα

)c
= ∩

α∈L
Ac

α.

1The way we see this convention is as follows: First we agree that the intersection of an empty class of subsets

is a subset of X. Now, let x ∈ X such that x 6∈ ∩
α∈S

Bα. This implies that there exists an α ∈ S such that x 6∈ Bα.

Since S is empty, such an α does not exist.

29
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4.
(
∩

α∈L
Aα

)c
= ∪

α∈L
Ac

α.

Proof. We give the proofs for Part 1 and 4. For Part 1, we see that

x ∈ B ∩
(

∪
α∈L

Aα

)

⇔ x ∈ B and x ∈ ∪
α∈L

Aα ⇔ x ∈ B and x ∈ Aα, for some α ∈ L

⇔ x ∈ B ∩Aα, for some α ∈ L⇔ x ∈ ∪
α∈L

(B ∩Aα).

For Part 4, we have

x ∈
(
∩

α∈L
Aα

)c ⇔ x 6∈ ∩
α∈L

Aα ⇔ x 6∈ Aα, for some α ∈ L⇔ x ∈ Ac
α, for some α ∈ L

⇔ x ∈ ∪
α∈L

Ac
α.

Proceed in similar lines to complete the proofs of the other parts.

Exercise 2.1.5. 1. Consider
{
Ax}x∈R, where Ax = [x, x+ 1]. What is ∪

x∈R
Ax and ∩

x∈R
Ax?

2. For x ∈ [0, 1] write Zx := {zx | z ∈ Z} and Ax = R \ Zx. What is ∪
x∈R

Ax and ∩
x∈R

Ax?

3. Write the closed interval [1, 2] = ∩
n∈N

In, where In are open intervals.

4. Write R as a union of infinite number of pairwise disjoint infinite sets.

5. Write the set [4] as the intersection of infinite number of infinite sets.

6. Suppose that A∆B = B. Is A = ∅?

7. Prove Theorem 2.1.4.

2.2 More on Relations

Proposition 2.2.1. [Properties of union and intersection under a relation] Let f : X → Y

be a relation and {Aα}α∈L ⊆ P(X). Then, the following statements hold.

1. f
(
∪

α∈L
Aα

)
= ∪

α∈L
f(Aα).

2. f
(
∩

α∈L
Aα

)
⊆ ∩

α∈L
f(Aα). Give an example where the inclusion is strict.

Proof. Part 1:

y ∈ f
(
∪

α∈L
Aα

)
⇔ (x, y) ∈ f, for some x ∈ ∪

α∈L
Aα ⇔ (x, y) ∈ f with x ∈ Aα, for some α ∈ L

⇔ y ∈ f(Aα), for some α ∈ L⇔ y ∈ ∪
α∈L

f(Aα).

For Part 2, we assume that ∩
α∈L

Aα 6= ∅. Then,

y ∈ f
(
∩

α∈L
Aα

)
⇔ (x, y) ∈ f, for some x ∈ ∩

α∈L
Aα ⇔ (x, y) ∈ f with x ∈ Aα, for all α ∈ L

⇒ y ∈ f(Aα), for all α ∈ L⇔ y ∈ ∩
α∈L

f(Aα).

Thus, the required result follows.
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Remark 2.2.2. It is important to note the following in the proof of the above theorem:

‘y ∈ f(Aα), for all α ∈ L’ implies that ‘for each α ∈ L, we can find some xα ∈ Aα such that

(xα, y) ∈ f ’. That is, the xα’s need not be the same. This gives you an idea to construct a

counterexample.

Define f : {1, 2, 3, 4} → {a, b} by f = {(1, a), (2, a), (2, b), (3, b), (4, b)}. Take A1 = {1, 3} and

A2 = {1, 2, 4} and verify that the inclusion in Part 2 of Theorem 2.2.1 is strict. Also, find the

xi’s for b.

Definition 2.2.3. [Composition of relations] We define the composition g ◦ f of relations f

and g as

g ◦ f =
{

(x, z) | (x, y) ∈ f and (y, z) ∈ g for some y ∈ rng(f) ⊆ dom(g)
}

.

It is a relation. The composition f ◦ g is defined similarly. In case, both f and g are functions

then (f ◦ g)(x) = f (g(x)).

Example 2.2.4. Take f = {(β, a), (3, b), (3, c)} and g = {(b, β), (c, β)}. Then, g ◦ f = {(3, β)}
and f ◦ g = {(b, a), (c, a)}.

Definition 2.2.5. [Identity relation] A relation from X to X is called a relation on X. The

relation I := {(x, x) | x ∈ X} is called the identity relation on X. It is also a function if

X 6= ∅.

Definition 2.2.6. [Equivalence relation] Let f be a relation on X. We call f reflexive if

I ⊆ f . We call f symmetric if f = f−1. We call f transitive if f ◦ f ⊆ f . An equivalence

relation on X is a relation which is reflexive, symmetric and transitive.

Example 2.2.7. On X = [5],

1. I is an equivalence relation,

2. f := I ∪ {(1, 2), (2, 1)} is also an equivalence relation, and

3. g := I ∪ {(1, 2), (2, 1), (1, 3)(3, 1)} is reflexive, symmetric but not transitive ((3, 2) /∈ g).

4. Let f = {(a, b) ∈ Z× Z : 10
∣
∣a− b}. Then, f is an equivalence relation.

5. Fix a positive integer n and let f = {(a, b) ∈ Z × Z : n
∣
∣a − b}. Then, f is an equivalence

relation.

Example 2.2.8. [Some more examples of relations]

1. Let X 6= ∅. Then, ∅ is a symmetric and transitive relation on X, but not reflexive.

2. Let A = {a, b, c, d}. Then, some of the relations R on A are:

(a) R = A×A.

(b) R = {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (b, c)}.

(c) R = {(a, a), (b, b), (c, c)}.
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(d) R = {(a, a), (a, b), (b, a), (b, b), (c, d)}.

(e) R = {(a, a), (a, b), (b, a), (a, c), (c, a), (c, c), (b, b)}.

(f) R = {(a, b), (b, c), (a, c), (d, d)}.

3. Some of the relations on Z are as follows:

(a) R = {(a, b) ∈ Z2 | 7 divides a− b}.

(b) R = {(a, b) ∈ Z2 | a ≤ b}.

(c) R = {(a, b) ∈ Z2 | a > b}.

(d) R = {(a, b) ∈ Z∗ × Z∗ | a|b}, where Z∗ = Z \ {0}.

4. Consider the set R2. Also, let us write x = (x1, x2) and y = (y1, y2). Then, some of the

relations on R2 are as follows:

(a) R = {(x,y) ∈ R2 × R2 | |x|2 = x21 + x22 = y21 + y22 = |y|2}.

(b) R = {(x,y) ∈ R2 × R2 | x = αy for some α ∈ R∗}.

(c) R = {(x,y) ∈ R2 × R2 | 4x21 + 9x22 = 4y21 + 9y22}.

(d) R = {(x,y) ∈ R2 × R2 | x− y = α(1, 1) for some α ∈ R∗}.

(e) Fix c ∈ R. Now, define R = {(x,y) ∈ R2 ×R2 | y2 − x2 = c(y1 − x1)}.

(f) R = {(x,y) ∈ R2 × R2 | |x| = α|y|}, for some positive real number α.

(g) R = {(x,y) ∈ R2 × R2 | x1x2 = y1y2}.

(h) Let S = {x ∈ R2 | x21 + x22 = 1}. Define a relation on S by

i. R = {(x,y) ∈ S × S | x1 = y1, x2 = −y2}.
ii. R = {(x,y) ∈ S × S | x = −y}.

5. Let A be the set of triangles in the plane. Then, R = {(a, b) ∈ A2 | a ≈ b}, where ≈ stands

for similarity of triangles.

6. In R, define a relation R = {(a, b) ∈ R2 | a− b is an integer}.

7. Let A be any nonempty set and consider the set P(A). Then, one can define a relation R

on P(A) by R = {(S, T ) ∈ P(A) × P(A) | S ⊆ T}.
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Picture for a relation on X

We can draw pictures for relations on X. We first put a point for each element x of X and

label it x. For each (x, y) in the relation, we put a directed line from x to y. If we have an

(x, x) we draw a loop at x. The following are some pictures for the relations in Example

2.2.7.

1 2

3 4

5

I

1 2

3 4

5

f

1 2

3 4

5

g

Definition 2.2.9. [Equivalence class] Let f be an equivalence relation on X and a ∈ X. The

set {x ∈ X | (x, a) ∈ f} is called the equivalence class of a and is denoted Ea.

Example 2.2.10. Consider the relations in Example 2.2.7.

1. For the relation I, we have 5 equivalence classes, namely, {1}, {2}, {3}, {4} and {5}.

2. For the relation f , we have 4 equivalence classes, namely, {1, 2}, {3}, {4} and {5}.

3. For g ∪ {(3, 2), (2, 3)}, we have 3 equivalence classes, namely, {1, 2, 3}, {4} and {5}.

4. Notice that in all the three cases, the different equivalence classes are disjoint sets and in

the picture they appear disconnected even after joining 2 and 3 by directed edges in g.

Proposition 2.2.11. [Equivalence relation divides a set into disjoint classes] Let f be an

equivalence relation on X. Then, the following statements are true.

1. (a, b) ∈ f if and only if Ea = Eb.

2. (a, b) /∈ f if and only if Ea ∩Eb = ∅.

3. Furthermore, X = ∪
a∈X
Ea.

Thus, an equivalence relation f on X divides X into disjoint equivalence classes.

Example 2.2.12. Let f be an equivalence relation on [5] whose equivalence classes are {1, 2},
{3, 5} and {4}. Then, f must be I ∪ {(1, 2), (2, 1), (3, 5), (5, 3)}.

Proposition 2.2.13. [Constructing equivalence relation from equivalence classes] Let f be

an equivalence relation on X 6= ∅ whose disjoint equivalence classes are {Ea | a ∈ A}. Then,

f = I ∪
a∈A
{(x, y) | x, y ∈ Ea}.
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Exercise 2.2.14. 1. Let X and Y be two nonempty sets and f : X → Y be a relation. Let

Ix and Iy be the identity relations on X and Y , respectively. Then,

(a) is it necessary that f−1 ◦ f ⊆ Ix?

(b) is it necessary that f−1 ◦ f ⊇ Ix?

(c) is it necessary that f ◦ f−1 ⊆ Iy?

(d) is it necessary that f ◦ f−1 ⊇ Iy?

2. Suppose now that f is a function. Then,

(a) is it necessary that f ◦ f−1 ⊆ Iy?

(b) is it necessary that f−1 ◦ f ⊇ Ix?

3. Write down the equivalence classes for the equivalence relations that appear in Exam-

ples 2.2.7 and 2.2.8.

4. Take A 6= ∅. Is A × A an equivalence relation on A? If yes, what are the equivalence

classes?

5. On a nonempty set A, what is the smallest equivalence relation (in the sense that every

other equivalence relation will contain this equivalence relation; recall that a relation is a

set)?

Exercise 2.2.15. [Optional]

1. Let X = [5] and f be a relation on X. By checking whether f is reflexive or not, whether

f is symmetric or not and whether f is transitive or not, we see that there are 8 types of

relations on X. Give one example for each type.

2. Let A = B = [3]. Then, what is the number of

(a) relations from A to B?

(b) relations f from [3] to {a, b, c} such that dom f = {1, 3}?
(c) relations f from [3] to [3] such that f = f−1?

(d) single valued relations from [3] to [3]? How many of them are functions?

(e) equivalence relations on [5].

3. [Important] Let f : X → Y be a single valued relation, A ⊆ X, B ⊆ Y and {Bβ}β∈I be a

nonempty family of subsets of Y . Then, show that

(a) f−1
(
∩
β∈I

Bβ

)
= ∩

β∈I
f−1(Bβ).

(b) f−1
(
∪
β∈I

Bβ

)
= ∪

β∈I
f−1(Bβ).

(c) f−1(Bc) = dom f \ f−1(B).

(d) f
(
f−1(B)∩A

)
= B ∩ f(A). Note that this equality fails if f is not single valued.

4. Let f, g be two non-equivalence relations on R. Then, is it possible to have f ◦ g as an

equivalence relation? Give reasons for your answer.
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5. Let f, g be two equivalence relations on R. Then, prove/disprove the following statements.

(a) f ◦ g is necessarily an equivalence relation.

(b) f ∩ g is necessarily an equivalence relation.

(c) f ∪ g is necessarily an equivalence relation.

(d) f ∪ gc is necessarily an equivalence relation.

6. Show that each set can be written as a union of finite sets.

7. Give an example of an equivalence relation on N for which there are 7 equivalence classes,

out of which exactly 5 are infinite.

8. Show that union of finitely many finite sets is a finite set.

2.3 More on functions

Recall that a function f : A→ B is a single valued relation with dom f = A. The readers need

to carefully read the following important remark before proceeding further.

Remark 2.3.1. 1. If A = ∅, then by convention, one assumes that there is a function, called

the empty function, from A to B.

2. If B = ∅, then it can be easily observed that there is no function from A to B.

3. Some books use the word ‘map’ in place of ‘function’. So, both the words are used inter-

changeably throughout the notes.

4. Throughout these notes, whenever the phrase ‘let f : A→ B be a function’ is used, it will

be assumed that both A and B are nonempty sets.

Example 2.3.2. 1. Let A = {a, b, c}, B = {1, 2, 3} and C = {3, 4}. Then, verify that the

examples given below are indeed functions.

(a) f : A→ B, defined by f(a) = 3, f(b) = 3 and f(c) = 3.

(b) f : A→ B, defined by f(a) = 3, f(b) = 2 and f(c) = 2.

(c) f : A→ B, defined by f(a) = 3, f(b) = 1 and f(c) = 2.

(d) f : A→ C, defined by f(a) = 3, f(b) = 3 and f(c) = 3.

(e) f : C → A, defined by f(3) = a, f(4) = c.

2. Note that the following relations f : Z→ Z are indeed functions.

(a) f = {(x, 1) | x is even} ∪ {(x, 5) | x is odd}.

(b) f = {(x,−1) | x ∈ Z}.

(c) f = {(x, x (mod 10)) | x ∈ Z}.
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(d) f = {(x, 1) | x < 0} ∪ {(0, 0)} ∪ {(x,−1) | x > 0}.

Exercise 2.3.3. Do the following relations represent functions? Give reasons for your answer.

1. Let f : Z→ Z be defined by

(a) f = {(x, 1) | 2 divides x} ∪ {(x, 5) | 3 divides x}.

(b) f = {(x, 1) | x ∈ S} ∪ {(x,−1) | x ∈ Sc}, where S is the set of perfect squares in Z.

(c) f = {(x, x3) | x ∈ Z}.

2. Let f : R+ → R be defined by f = {(x,±√x) | x ∈ R+}.

3. Let f : R→ R be defined by f = {(x,√x) | x ∈ R}.

4. Let f : R→ C be defined by f = {(x,√x) | x ∈ R}.

5. Let f : R∗ → R be defined by f = {(x, loge |x|) | x ∈ R∗}.

6. Let f : R→ R be defined by f = {(x, tan x) | x ∈ R}.

Exercise 2.3.4. 1. Define f : N → Z by f = {
(
x, −x

2

)
| x is even} ∪ {

(
x, x+1

2

)
| x is odd}.

Is f one-one? Is it onto?

2. Define f : N → Z and g : Z → Z by f = {(x, 2x) | x ∈ N} and g = {
(
x, x2

)
| x is even} ∪

{(x, 0) | x is odd}. Are f, g, and g ◦ f one-one? Are they onto?

3. Let A be the class of subsets of [9] of size 5 and B be the class of 5 digit numbers with

strictly increasing digits. For a ∈ A, define f(a) the number obtained by arranging the

elements of a in increasing order. Is f one-one and onto?

Proposition 2.3.5. [Algebra of composition of functions] Let f : A → B, g : B → C and

h : C → D be functions.

1. Then, (h ◦ g) ◦ f : A→ D and h ◦ (g ◦ f) : A→ D are functions. Moreover, (h ◦ g) ◦ f =

h ◦ (g ◦ f) (associativity holds).

2. If f and g are injections then g ◦ f : A→ C is an injection.

3. If f and g are surjections then g ◦ f : A→ C is a surjection.

4. Let A and B be sets with at least two elements each and let f : A → B be a bijection.

Then, the number of bijections from A to B is at least 2.

5. [Extension] Let f : A→ B and g : C → D be bijections. Suppose that dom f ∩ dom g = ∅
and rng f ∩ rng g = ∅. Then, (f ∪ g) : (A ∪ C)→ (B ∪D) is a bijection, where

f ∪ g = {(x, f(x)) | x ∈ A} ∪ {(x, g(x)) | x ∈ C}.

Definition 2.3.6. Fix a set A and let IdA : A → A be defined by IdA(a) = a, for all a ∈ A.

Then, the function eA is called the identity function or map on A.
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The subscript A in Definition 2.3.6 will be removed, whenever there is no chance of confusion

about the domain of the function.

Theorem 2.3.7. [Properties of identity function] Let A and B be nonempty sets, f : A→ B

and g : B → A be any two functions. Then, for the Id map defined above, one has

1. Id is a one-one and onto map.

2. the map f ◦ Id = f .

3. the map Id ◦ g = g.

Proof. Part 1: Let Id = IdA. Then, by definition, Id(a) = a, for all a ∈ A and hence it is clear

that Id is one-one and onto.

Part 2: By definition, (f ◦ Id)(a) = f(Id(a)) = f(a), for all a ∈ A. Hence, f ◦ Id = f .

Part 3: The readers are advised to supply the proof.

Theorem 2.3.8. [bijection principle] Let f : A → B and g : B → A be functions. Prove that

if

1. g ◦ f(i) = i, for each i ∈ A, then f is one-one.

2. f ◦ g(j) = j, for each j ∈ B, then f is onto.

Proof. Let g ◦ f(i) = i, for each i ∈ A. Then, the assumption f(i) = f(j) implies that

i = g ◦ f(i) = g ◦ f(j) = j. Thus, f is one-one and the proof of the first part is over.

For the second part, let f ◦ g(j) = j, for each j ∈ B. To see that f is onto, let b ∈ B and put

a = g(b) ∈ A. Then, by the given assumption, f(a) = f(g(b)) = b.

Exercise 2.3.9. 1. Let f, g : N → N be defined by f = {(x, 2x) | x ∈ N} and g = {
(
x, x2

)
|

x is even} ∪ {(x, 0) | x is odd}. Then, verify that g ◦ f is the identity map on N, whereas

f ◦ g maps even numbers to itself and maps odd numbers to 0.

2. Let f : A→ B be a function. Then, f−1 is a function if and only if f is a bijection.

Cantor’s Experiment for the student: Why does it happen?

Take a plain paper.

1. On the left draw an oval (of vertical length) and write the elements of [4] inside it, one

below the other. On the right draw a similar but large oval and write the elements of

P([4]) inside it, one below the other.

2. Now draw a directed line from 1 (on the left) to any element on the right. Repeat

this for 2, 3 and 4. We have drawn a function. Call it f .

3. Notice that f(1), f(2), f(3) and f(4) are sets. Find out the set A = {i : i /∈ f(i)}.
Locate this set on the right.

4. It is guaranteed that you do not have a directed line touching A. Why?
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Lemma 2.3.10. [Cantor] Let S be a set and f : S → P(S) be a function. Then, there exists

A ∈ P(S) which does not have a pre-image. That is, there is no surjection from S to P(S).

Proof. On the contrary assume that f : S → P(S) is a surjection. Then, for A = {x : x /∈ f(x)}
there exists a ∈ S such that f(a) = A. So, A = f(a) = {x : x /∈ f(x)}. We now show that a

neither belongs to A nor to Ac.

If a ∈ A, then by definition of A, a /∈ f(a) = A. Similarly, if a /∈ A means that a ∈ f(a) = A.

Thus, a /∈ A ∪Ac = S, a contradiction.

Exercise 2.3.11. 1. Define f : N2 → N by f(m,n) = 2m−1(2n − 1). Is f a bijection?

2. Are the following relations single valued functions, one-one, onto, and/or bijections?

(a) f : R→ R defined by f = {(x, sin x) | x ∈ R}.
(b) f = {(x, y) | x2 + y2 = 1, x, y ∈ R} from dom(f) to rng(f)

(c) f = {(x, y) | x2 + y2 = 1, x ≥ 0, y ≥ 0} from dom(f) to rng(f)

(d) f : R→ R defined by f = {(x, tan x) | −π
2 < x < π

2 }.

3. Let f : X → Y be one-one and {Aα}α∈L be a nonempty family of subsets of X. Is

f
(
∩

α∈L
Aα

)
= ∩

α∈L
f(Aα)?

4. Let f : X → Y be a bijection and A ⊆ X. Is f(Ac) = (f(A))c?

5. Let f : X → Y and g : Y → X be two functions such that

(a) (f ◦ g)(y) = y holds, for each y ∈ Y .

(b) (g ◦ f)(x) = x holds, for each x ∈ X.

Show that f is a bijection and g = f−1. Can we conclude the same without assuming the

second condition?

2.4 Supplying bijections

Experiment 1:

Make a horizontal list of the elements of N using ‘· · · ’ only once. Now, horizontally list

the elements of Z just below the list of N using ‘· · · ’ once. Draw vertical lines to supply a

bijection from N to Z. Can you supply another by changing the second list a little bit?

Experiment 1:

Suppose that you have an open interval (a, b). Its center is c = a+b
2 and the distance of the

center from one end is l
2 = b−a

2 . View this as a line segment on the real line. Stretch (a, b)

uniformly without disturbing the center and make its length equal to L.

Where is c now (in R)? Where is c − l
2? Where is c + l

2? Where is c − α × l
2 , for a fixed

α ∈ (−1, 1)?
Now, use the above idea to find a bijection from (a, b) to (s, t)? [Hint: Fix the center first.]
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Exercise 2.4.1. 1. Supply two bijections from (1,∞) to (5,∞), one by ‘scaling’ and the

other by ‘translating’.

2. Take reciprocal to supply a bijection from (0, 1) to (1,∞). You can also use the exponential

function to get this.

3. Supply a bijection from (−1, 1) to (−∞,∞).

4. Supply a bijection from (0, 1) × (0, 1) to R× R.

Train-Seat argument to find a bijection

Let f : P = (0, 1) → T = (3, 5) be a bijection. Imagine elements of P as PERSONS and

elements of T as seats in a TRAIN. So, f assign a seat to each person and the train is full.

1. Now suppose a new person 0 is arriving. He wants a seat. To manage it, let us un-seat

two persons 1
2 ,

1
3 . So, two seats f(12), f(

1
3 ) are vacant. But we have 3 persons to take

those seats. Giving each person a seat is not possible.

2. Suppose that we un-seat 1
2 ,

1
3 , · · · , 1

30? Can we manage it?

3. Suppose that we un-seat 1
2 ,

1
3 , · · · ? Can we manage it now?

4. What do we do if we had two new persons arriving? Fifty new persons arriving? A

set {a1, a2, · · · } of new persons arriving?

The next result is left as an exercise for the students.

Theorem 2.4.2. Let A be a set containing the set {a1, a2, . . . , } and let f : A→ B be a bijection.

Then, prove that, for any collection

1. {c1, . . . , ck} of elements that are outside A, the function

h(x) =







f(x) if x ∈ A \ {a1, a2, . . .}
f(ai+k) if x = ai, i ∈ N

f(ai) if x = ci, i = 1, 2, . . . , k.

is a bijection from A ∪ {c1, . . . , ck} to B.

2. {c1, c2, . . .} of elements that are outside A, the function

h(x) =







f(x) if x ∈ A \ {a1, a2, . . .}
f(a2n−1) if x = an, n ∈ N

f(a2n) if x = cn, n ∈ N

is a bijection from A ∪ {c1, c2, . . .} to B.

Proof. Exercise.

Exercise 2.4.3. In the following, give bijections from A to B, where

1. A = [0, 1) and B = (0, 1).

2. A = (0, 1) ∪ {1, 2, 3, 4} and B = (0, 1).
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3. (0, 1) ∪ N to (0, 1).

4. A = [0, 1] and B = [0, 1] \ {11 , 13 , 15 , · · · }.

5. A = R and B = R \ N.

6. A = (0, 1) and B = R \ N.

7. A = [0, 1] and B = R \ N.

8. A = (0, 1) and B = (1, 2) ∪ (3, 4).

9. A = R \ Z and B = R \ N.

Creating bijections from injections

Let X = Y = N. Take injections f : X → Y and g : Y → X defined as f(x) = x + 2 and

g(x) = x + 1. In the picture, we have X on the left and Y on the right. If (x, y) ∈ f , we

draw a solid line joining x and y. If (y, x) ∈ g, we draw a dotted line joining y and x.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b

b b

b b

b b

b

1

2

3

4

5

6

7

1

2

3

4

5

6

7

... ...

We want to create a bijection h from X to Y by erasing some of these lines.

1. Thus, h(1) must be 3. So, the dotted line (3, 4) cannot be used for h.

2. So, h(4) must be 6. So, the dotted line (6, 7) cannot be used for h.

3. So, h(7) must be 9. Continue two more steps to realize what is happening.

So, the bijection h : X → Y is given by h(x) =

{

f(x), if x = 3n− 2, n ∈ N

g−1(x), otherwise.

Exercise 2.4.4. Take X = Y = N. Supply bijections using the given injections f : X → Y and

g : Y → X.

1. f(x) = x+ 1 and g(x) = x+ 2.

2. f(x) = x+ 1 and g(x) = x+ 3.

3. f(x) = x+ 1 and g(x) = 2x.

Theorem 2.4.5. [Schröder-Bernstein: Creating a bijection] Let A and B be two non-empty

sets and let f : A→ B and g : B → A be injections. Then, there exists a bijection from A to B.



2.4. SUPPLYING BIJECTIONS 41

Proof. If g is onto, we have nothing to prove. So, assume that g is not onto. Put O = A \ g(B),

φ = g ◦ f and E = O ∪ φ(O) ∪ φ2(O) ∪ · · · . Use φ0(O) to denote O. Notice that

g
(

f(E)
)

= φ(E) = φ
( ∞∪
n=0

φn(O)
)

=
∞∪
n=1

φn(O) = E \O,

as g does not map to O. Hence, g maps f(E) to E \ O bijectively. Recall that O is the set of

points in A that are not mapped by g, O ⊆ E and g has already mapped f(E) onto E \ O.

Hence, g must map f(E)c to Ec bijectively. So, the function h(x) =

{

g−1(x) if x ∈ Ec,

f(x) if x ∈ E,
is a

bijection from A to B.

Alternate. If g is onto, we have nothing to prove. So, assume that g is not onto. Put

O = A \ g(B), φ = g ◦ f and E = O ∪ φ(O) ∪ φ2(O) ∪ · · · . Use φ0(O) to denote O. Notice that

φ(E) = g
(

f(E)
)

= φ(E) = φ
( ∞∪
n=0

φn(O)
)

=
∞∪
n=1

φn(O) = E \O,

as g does not map to O. Observe that φ : E → E \O is a bijection. Define h : A→ A \O as

h(x) =

{

x, if x ∈ A \ E,

φ(x), if x ∈ E.

Then, note that h is a bijection and hence h−1 ◦ g is a bijection from B to A.

Alternate. Let F = {T ⊆ A | g (f(T )c) ⊆ T c}.

T f(T )

g(f(T )c) f(T )c

f

g

Note that ∅ ∈ F . Put U = ∪
T∈F

T . Then, U ∈ F , as

g
(
f(U)c

)
= g
([

f
(
∪

T∈F
T
)]c
)

= g
([
∪

T∈F
f(T )

]c
)

= g
(

∩
T∈F

f (T )c
)

= ∩
T∈F

g (f (T )c) ⊆ ∩
T∈F

T c = U c.

Thus, U is the maximal element of F . We claim that U c ⊆ g (f(U)c). To see this, take

x ∈ U c \ g (f(U)c) and put V = U ∪{x}. Then, f(U) ⊆ f(V ) and so f(V )c ⊆ f(U)c. Thus

g
(
f(V )c

)
⊆ g
(
f(U)c

)
⊆ U c ∩{x}c = V c,

a contradiction to the maximality of U in F . So, g
(
f(U)c

)
= U c. Now, define h : A→ B as

h(x) =

{

f(x) if x ∈ U,

g−1(x) else.

It is easy to see that h is a bijection.
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Exercise 2.4.6. 1. Give a one-one function from N to Q. Define f from Q to N as

f(x) =







2r3s if x = r
s , gcd(r, s) = 1, r > 0, s > 0,

5r3s if x = −r
s , gcd(r, s) = 1, r > 0, s > 0,

1 if x = 0

Argue that f is one-one. Apply Schröder-Bernstein theorem to prove that Q is equivalent

to N.

2. Give a one-one map from (0, 1) → (0, 1) × (0, 1). For each x ∈ (0, 1), let .x1x2 · · · be the

nonterminating decimal representations1 of x. For x = .x1x2x3 · · · , y = .y1y2y3 · · · , define
f(x, y) = .x1y1x2y2x3y3 · · · . Argue that f is an injection from (0, 1) × (0, 1) to (0, 1).

Hence, show that (0, 1) is equivalent to (0, 1)× (0, 1). Hence, show that R×R is equivalent

to R.

3. Fix k ∈ N. Supply a one-one map from N to Nk. Use k distinct primes to supply a one-one

map from Nk to N. Conclude that Nk is equivalent to N.

4. Supply a bijection from (0, 1) to (1, 2) ∪ (3, 4) ∪ (5, 6) ∪ (7, 8) ∪ · · · .

5. Show using Schröder-Bernstein that (0, 1) is equivalent to (0, 1].

1Recall that every real number has a unique nonterminating decimal representation.



Chapter 3

Countability, cardinal numbers* and

partial order

3.1 Countable-uncountable

Definition 3.1.1. A set which is either finite or equivalent to N is called a countable set. A

set which is not countable is an uncountable set.

Definition 3.1.2. Let A be a countably infinite set. Then, by definition, there is a bijection

f : N → A. So, we can list all the elements of A as f(1), f(2), . . .. This list is called an

enumeration of the elements of A.

Example 3.1.3. 1. We know that Z is a countably infinite set.

2. The set N \ [99] is a countably infinite set.

3. The set P(N) is uncountable by Cantor’s lemma.

4. Let S be the set of all 0-1-sequences x = x1, x2, . . .. Define f : S → P(N) as f(x) = {n |
xn = 1}. Then f is a bijection. Hence, S is uncountable by Cantor’s lemma.

5. Let T = {x ∈ (0, 1) | x has a decimal expansion containing the digits 0 and 1 only}. Then
T is uncountable.

Proof. One proof follows by the previous idea.

Alternate. [Cantor’s diagonalization] If S is countable (clearly infinite), let x1, x2, · · ·
be an enumeration. Let xn = .xn1xn2 · · · , where xni ∈ {0, 1}. Put ynn = 1 if xnn = 0

and ynn = 0, otherwise. Consider the number y = .y11y22 · · · ∈ S. Notice that for each n,

y 6= xn. That is, y ∈ S but it is not in the enumeration list. This is a contradiction.

Theorem 3.1.4. A set A is infinite if and only if it has a countably infinite subset.

Proof. Follows from Fact 1.2.23.12.

Lemma 3.1.5. Let A = {a1, a2, . . .} be countably infinite and B ⊆ A. Then B is countable.

43
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Proof. If B is finite then by definition, it is countable. So, assume that B is infinite. Hence, by

Theorem 3.1.4, B has a countable infinite subset, say C = {c1, c2, . . .}. Thus, f : A → C ⊆ B,

defined by f(ai) = ci, i = 1, 2, . . . is a one-one map. On the other hand, IdB : B → A is a

one-one map. Hence, by Schröder-Bernstein theorem, B and A are equivalent.

As a corollary, we have the following result.

Corollary 3.1.6. Let A be uncountable and A ⊆ B. Then B is uncountable.

Proof. If B is countable, then by Lemma 3.1.5, A must be countable, a contradiction.

Theorem 3.1.7. If S is infinite, then P(S) is uncountable.

Proof. As S is infinite, there is a one-one map, say f : N → S. Now, define a map g : P(N) →
P(S) as g(A) = f(A). Then, g is clearly one-one and hence g

(
P(N)

)
is uncountable (by Cantor’s

lemma). Hence, P(S), being a superset is uncountable, by Corollary 3.1.6.

Theorem 3.1.8. Countable union of countable sets (union of a countable class of countable

sets) is countable.

Proof. Let {Ai}i∈N be a countable class of countable sets and put X = ∪
i
Ai. If X is finite

then we are done. So, let X be infinite. Hence, by Fact 1.2.23.12, there is a one-one map

f : N → X. Define g : X → N as g(x) = 2i3k, if i is the smallest positive integer for which

x ∈ Ai and x appears at the k-th position in the enumeration of Ai. Then g is one-one. Now,

by Schröder-Bernstein theorem A is equivalent to N.

Theorem 3.1.9. The set P(N) is equivalent to [0, 1). Furthermore, P(N) is equivalent to R.

Proof. We already know a one-one map f : P(N) → [0, 1) (see Examples 3.1.3.4 and 3.1.3.5).

Let r ∈ (0, 1). Consider the nonterminating binary representation of r. Denote by Fr the set of

positions of 1 in this representation. Now, define g : [0, 1) → P(N) by g(r) = Fr, if r 6= 0 and

g(0) = ∅. Then g is one-one. Now, by Schröder-Bernstein theorem P(N) is equivalent to [0, 1).

The next statement follows as [0, 1) is equivalent to (0, 1) (see Exercise 2.4.6.5) and (0, 1) is

equivalent to R.

Definition 3.1.10. [Cardinal numbers]

1. Cardinal numbers are symbols which are associated with sets such that equivalent sets

get the same symbol. By A we denote the cardinal number associated with A.

2. If there is an injection f : A→ B, then we write A ≤ B. By A ≥ B, we mean that B ≤ A.

3. If there is a bijection f : A→ B, then we write A = B.

4. We write [n] as n and ∅ as 0. Thus, for a finite set A, we have A = |A|.

5. We use ℵ0 to denote N. If x = A is a cardinal number by 2x we mean P(A).
Fact 3.1.11. 1. If x, y, z are cardinal numbers such that x ≤ y and y ≤ z, then x ≤ z. In

other words it says, if there is a one-one map from A to B and a one-one map from B to

C, then there is a one-one map from A to C.
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2. Let x be any cardinal number. Then x � 2x. This is Cantor’s lemma.

3. The cardinal numbers we know till now are 0, 1, 2, 3, . . . ,ℵ0 = N, 2ℵ0 = R, 22
ℵ0 , . . ..

4. The cardinal numbers ℵ0 = N, 2ℵ0 = R, 22
ℵ0 , . . . are called the infinite cardinal num-

bers.

5. The ‘generalized continuum hypothesis’ says that there is no cardinal number between an

infinite cardinal number x and 2x.

Example 3.1.12. 1. Let A be the set of all infinite sequences formed using 0, 1 and B be

the set of all infinite sequences formed using 0, 1, 2. Which one has larger cardinality and

why?

Ans: For (x) = x1, x2, · · · ∈ A, let us define f(x) = .x1x2 · · · (binary). Then f : A→ [0, 1]

is a surjection and hence A ≥ [0, 1]. For (y) = y1, y2, · · · ∈ B, let us define g(y) = .y1y2 · · ·
(decimal). Then g : B → [0, 1] is one-one. So, B ≤ [0, 1] and hence B ≤ A. Also,

IdA : A→ B is an injection. Thus, A ≤ B.

2. Write R as a union of pairwise disjoint sets of size 5.

Ans: Note that R = (−∞, 2] ∪ (2, 3] ∪ (3, 6] ∪ (6, 7) ∪ [7,∞) and these five sets have the

same cardinality. Let f, g, h and t be bijections from (−∞, 2] to (2, 3], (3, 6], (6, 7), [7,∞),

respectively. Then R = ∪
r∈(−∞,2)

{r, f(r), g(r), h(r), t(r)}.

3. Let S be a countable set of points on the unit circle in R2. Consider the line segments

Ls with one end at the origin and the other end at a point s ∈ S. Fix these lines. We

are allowed to rotate the circle anticlockwise (the lines do not move). Let T be another

countable set of points on the unit circle. Can we rotate the circle by an angle θ so that

no line Ls touches any of the points of T ?

Ans: Let θij be the angle of rotation required so that point pi touches line lj . The set of

all θij is countable and the set [0, 2π) is uncountable.

4. A complex number is algebraic if it is a root of a polynomial equation with integer

coefficients. All other numbers are transcendental. Show that the set of algebraic

numbers is countable.

Ans: For each point a = (a0, a1, a2, . . . , ak) ∈ Zk × (Z \ {0}), let Sk be the roots of the

polynomial equation a0+a1x+ · · ·+akx
k = 0. Take Ak =

⋃

a∈Zk×(Z\{0})
Sk and A =

∞⋃

k=1

Ak.

Then A is the set of all algebraic numbers. The set A is countable as each Ak is countable

and the union is over a countable set.

5. Give a bijection from R to R \Q.

Ans: Recall that Q can be enumerated. First get a bijection from R \ Q to itself. Now,

use train-seat argument to adjust Q.
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3.2 Partial orders

Definition 3.2.1. Let f be a relation on X. We call f antisymmetric if (x, y) ∈ f and x 6= y

implies (y, x) /∈ f . That is, both (x, y) and (y, x) cannot be in f , whenever x and y are distinct.

A relation on X is called a partial order if it is reflexive, transitive and antisymmetric. Let f

be a partial order on X and a, b ∈ X. We say a and b are comparable if either (a, b) ∈ f or

(b, a) ∈ f .

Example 3.2.2. 1. Let X = [5].

(a) The identity relation I is reflexive, transitive and antisymmetric. So, it is a partial

order.

(b) The relation I ∪ {(1, 2)} is also a partial order.

(c) The relation I ∪ {(1, 2), (2, 1)} is reflexive, transitive. But it is not antisymmetric, as

(1, 2) and (2, 1) are both in f .

(d) The relation I ∪ {(1, 2), (3, 4)} is also a partial order.

2. Let X = N. Then f := {(a, b) | a divides b} is a partial order.

3. Let X be a nonempty class of sets. Then f := {(A,B) | A ⊆ B} is a partial order on X.

4. On R the set f := {(a, b) | a − b ≤ 0} is a partial order. It is called the usual partial

order on R. List 5 elements of f . Usual partial order on a subset of R is defined similarly.

Exercise 3.2.3. Give a partial order on [5] with the

1. maximum number of elements in it.

2. minimum number of elements in it.

Definition 3.2.4. 1. [Partially ordered sets] The tuple (X, f) is called a partially or-

dered set (in short, poset) if f is a partial order on X. It is common to use ≤ instead

of f . We say x ≤ y to mean that x and y are related. We say x < y to mean that x ≤ y

and x 6= y.

2. [Linear order] A partial order f on X is called a linear/complete/total order if either

(x, y) ∈ f or (y, x) ∈ f , for each pair x, y ∈ X.

3. [Linear ordered set] The tuple (X, f) is said to be a linearly ordered set if f is a linear

order on X. You may imagine the elements of a linearly ordered set as points on a line.

4. [Chain] A linearly ordered subset of a poset is called a chain. The maximum size of a

chain is called the height of a poset.

5. [Anti-chain] Let (X, f) be a poset and A ⊆ X. Suppose that no two elements in A are

comparable. Then A is called an anti-chain. The maximum size of an anti-chain is called

the width of the poset.

Example 3.2.5. 1. The poset in Example 3.2.2.1a has height 1 (resp. chain is {1}) and

width 5 (respectively, anti-chain is {1, 2, 3, 4, 5}).
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2. The poset in Example 3.2.2.1b has height 2 (resp. chain is {1, 2}) and width 4 (resp.

anti-chain is {2, 3, 4, 5} or {1, 3, 4, 5}).

3. The poset in Example 3.2.2.1d has height 2 (resp. chain is {1, 2} or {3, 4}) and width 3

(resp. anti-chain is {1, 3, 5}). Find other anti-chains?

4. The set N with the usual order is a linearly ordered set.

5. If (X, f) is a nonempty linearly ordered set, then the height of X is X and the width of

X is 1.

6. The set N with a ≤ b if a divides b, is not linearly ordered. However, the set {1, 2, 4, 8, 16}
is a chain. This is just a completely ordered subset of the poset. There are larger chains,

for example, {2k | k = 0, 1, 2, . . .}. It has height N and width N .

7. The poset (P([5]),⊆) is not linearly ordered. However, {∅, [2], [5]} is a chain in it. So, is

{∅, {2}, [2], [3], [4], [5]}. Its height is 6. What is its width?

Definition 3.2.6. Let (Σ,≤) be a nonempty finite linearly ordered set (like the English al-

phabets with a ≤ b ≤ c ≤ · · · ≤ z) and Σ∗ be the set of all words of elements of Σ. For

a ≡ a1a2 · · · an, b ≡ b1b2 · · · bm ∈ Σ∗ define a ≤ b if

(a) a1 < b1 or

(b) ai = bi for i = 1, . . . , k and ak+1 < bk+1 or

(c) ai = bi for i = 1, . . . , n.

Then (Σ∗,≤) is a linearly ordered set. This ordering is called the lexicographic or dictionary

ordering. Sometimes Σ is called the ‘alphabet set’ and Σ∗ is called the ‘dictionary’.

Exercise 3.2.7. Let D1 be the dictionary of words made from a, b, c and D2 be the dictionary

of words made from a, b, d. Are these two sets equivalent?

Discussion 3.2.8. 1. [Directed graph representation of a finite poset] Often we represent

a nonempty finite poset (X,≤) by a picture. The process is described below.

(a) Put a dot for each element of X and label it.

(b) If a ≤ b, then join the dot for a and the dot for b by an arrow (a directed line).

(c) Put a loop at the dot of a, for each a ∈ X.

2. A directed graph representation of A = {1, 2, 3, 9, 18} with the ‘divides’ relation (a ≤ b if

a | b) is given below.
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1

2 3

9

18

Definition 3.2.9. [Hasse diagram] The Hasse diagram of a nonempty finite poset (X,≤) is
a picture drawn in the following way.

1. Each element of X is represented by a point and is labeled with the element.

2. If a ≤ b then the point representing a must appear at a lower height than the point

representing b and further the two points are joined by a line.

3. If a ≤ b and b ≤ c then the line between a and c is removed.

Later, we shall show that for every nonempty finite poset (X,≤) a Hasse diagram can be

drawn.

Example 3.2.10. Hasse diagram for A = {1, 2, 3, 9, 18} with the ‘divides’ relation.

1

2 3

9

18

Exercise 3.2.11. Draw the Hasse diagram for [3]× [4] under lexicographic order.

Proposition 3.2.12. Let F be a nonempty family of single valued relations such that either

f ⊆ g or g ⊆ f , that is, F is linearly ordered. Let h = ∪
f∈F

f . Then the following are true.

1. h is single valued.

2. dom(h) = ∪
f∈F

dom(f).

3. rng(h) = ∪
f∈F

rng(f).

4. If every element of F is one-one (from its domain to its range) then h is also one-one.

Proof. We shall only prove the first two items.
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1. Let x ∈ dom(h) and (x, y), (x, z) ∈ h. Then there are f, g ∈ F , such that (x, y) ∈ f and

(x, z) ∈ g. As F is a chain, either f ⊆ g or g ⊆ f , say f ⊆ g. Then, g is not single valued,

a contradiction.

2. Note that x ∈ dom(h) means (x, y) ∈ h for some y. This means (x, y) ∈ f for some f .

That is, x ∈ dom(f), for a function f . This means x ∈ ∪
f∈F

dom(f).

Definition 3.2.13. 1. [Bounds] Let (X, f) be a poset and A ⊆ X. We say x ∈ X is an

upper bound if for each z ∈ A, (z, x) ∈ f . In words, it means ‘each element of A is ≤ x’.

The term lower bound is defined analogously.

2. [Maximal] An element x ∈ A ismaximal, if ‘whenever there exists a z ∈ A with (x, z) ∈ f

then x = z. In other words, it means ‘no element in A is strictly larger than x’. The term

minimal is defined analogously.

3. [Maximum] An element x ∈ A is called the maximum of A, if x is an upper bound of A.

In other words, it means ‘an upper bound of A which is contained in A’. Such an element,

when it exists, is unique. The term minimum is defined analogously.

4. [Least upper bound] An element x ∈ X is called the least upper bound (lub) of A if

x is an upper bound of A and for each upper bound y of A, we have (x, y) ∈ f . In other

words ‘x is the minimum/least of the set of all upper bounds of A. The term greatest

lower bound (glb) is defined analogously.

Example 3.2.14. Consider the two posets described by the following picture.

a

b c

(X)

a

b c

d

(Y)

Figure 3.1: Posets X and Y

1. Consider the poset in Figure 3.1 and let X = A = {a, b, c}. Then

(a) the maximal elements of A are b and c,

(b) the only minimal element of A is a,

(c) a is the lower bound of A in X,

(d) A has no upper bound in X,

(e) A has no maximum element,

(f) a is the minimum element of A,

(g) no element of X is the lub of A and

(h) a is the glb of A in X.
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2. Consider the posets in Figures 3.1. Then, the definitions are illustrated in the following

table. Note that X = {a, b, c} and Y = {a, b, c, d}.
A={b, c} ⊆ X A={a, c} ⊆ X A={b, c} ⊆ Y

Maximal element(s) of A b, c c b, c

Minimal element(s) of A b, c a b, c

Lower bound(s) of A in X/Y a a a

Upper bound(s) of A in X/Y doesn’t exist c d

Maximum element of A doesn’t exist c doesn’t exist

Minimum element of A doesn’t exist a doesn’t exist

lub of A in X/Y doesn’t exist c d

glb of A in X/Y a a a

Exercise 3.2.15. Determine the maximal elements, minimal elements, lower bounds, upper

bounds, maximum, minimum, lub and glb of A in the following posets (X, f).

1. Take X = Z with usual order and A = Z.

2. Take X = N, f = {(i, i) : i ∈ N} and A = {4, 5, 6, 7}.

Discussion 3.2.16. [Bounds of empty set] Let (X, f) be a nonempty poset. Then each x ∈ X

is an upper bound for ∅ as well as a lower bound for ∅. So, an lub for ∅ may or may not exist.

For example, if X = [3] and f is the usual order, then lub ∅ = 1. Whereas, if X = Z and f is

the usual order, then an lub for ∅ does not exist. Similar statements hold for glb.

Definition 3.2.17. A linear order f on X is said to be a well order if each nonempty subset

A of X has a minimal element (in A). We call (X, f) a well ordered set to mean that f is a well

order on X. Note that ‘a minimal element’, if it exists, is ‘a minimum’ in this case.

Example 3.2.18.

1. The set Z with usual ordering is not well ordered, as {−1,−2, . . . , } is a nonempty subset

with no minimal element.

2. The ordering 0 ≤ 1 ≤ −1 ≤ 2 ≤ −2 ≤ 3 ≤ −3 ≤ · · · describes a well order on Z.

3. The set N with the usual ordering is well ordered.

4. The set R with the usual ordering is not well ordered as the set (0, 1) doesn’t have its

minimal element in (0, 1).

Exercise 3.2.19. Consider the dictionary order on N2. Show that this is a well order.

Definition 3.2.20. Let (W,≤) be well ordered and a ∈ W . The initial segment of a is

defined as I(a) := {x | x ∈W,x < a}.

Example 3.2.21. Take N with the usual order. Then I(5) = [4] and I(1) = ∅.

Theorem 3.2.22. [Principle of transfinite induction] Let (W,≤) be a nonempty well ordered

set. Let A ⊆W which satisfies ‘whenever I(w) ⊆ A then w ∈ A’. Then A = W .
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Proof. If A 6= W , then Ac 6= ∅. As W is well ordered, let s be the minimal element of Ac. So,

any element x < s is in A. That is, I(s) ⊆ A. By the hypothesis s ∈ A, a contradiction.

Fact 3.2.23. The principle of transfinite induction is the principle of mathematical induction

when W = N.

Proof. To see this, let p(n) be a statement which needs to be proved by mathematical induction.

Put A = {n ∈ N | p(n) is true}. Assume that we have been able to show that ‘I(n) ⊆ A⇒ n ∈
A’. It means, we have shown that 1 ∈ A, as ∅ = I(1) ⊆ A. Also we have shown that for n ≥ 2,

if {p(1), . . . , p(n − 1)} are true then p(n) is true as well, as I(n) = [n− 1].

Definition 3.2.24. [Product of sets] Recall that the product A1 × A2 = {(x1, x2) | xi ∈ Ai}
may be written as

{(
f(1), f(2)

)∣
∣f : [2]→ A1 ∪A2 is a function with f(1) ∈ A1, f(2) ∈ A2

}
.

Moreover, if A1 and A2 are finite sets then |A1 × A2| = |A1| · |A2|. In general, we define the

product of the sets in {Aα}α∈L, L 6= ∅, as
∏

α∈L
Aα =

{
f | f : L→ ∪

α∈L
Aα is a function with f(α) ∈ Aα, for each α ∈ L

}
.

Example 3.2.25. 1. Take L = N and An = {0, 1}. Then
∏

α∈L
Aα is the class of functions

f : L→ {0, 1}. That is, it is the class of all 0-1-sequences.

2. By definition, product of a class of sets among which one of them is ∅ is empty.

What about product of a class of sets in which no one is empty? Is it nonempty? This could

not be proved using the standard set theory. In fact, it is now proved that this question cannot

be answered using the standard set theory. So, a new axiom, called the axiom of choice, was

introduced.

Axiom 3.2.26. [Axiom of Choice] The product of a nonempty class of nonempty sets is

nonempty.

Proposition 3.2.27. [injection-surjection] Let A and B be nonempty sets. Then, there is a

surjection g : A→ B if and only if there is an injection f : B → A.

Proof. Let g : A→ B be onto. We shall find an injection from B to A. To start with, notice that

for each b ∈ B, the set g−1(b) 6= ∅. Then, by axiom of choice
∏

b∈B
g−1(b) 6= ∅. Let f ∈ ∏

b∈B
g−1(b).

Then, by Definition 3.2.24, f : B → A is a function. As g is a function, g−1(b)’s are disjoint and

hence f is one-one.

Conversely, let f : B → A be one-one. Fix an element b ∈ B. Define g : A→ B as

g(x) =

{

f−1(x), if x ∈ f(B),

b, if x ∈ A \ f(B).

Observe that g is onto.
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Definition 3.2.28. A class F of sets is called a family of finite character if it satisfies:

‘A ∈ F if and only if each finite subset of A is also in F ’.

Example 3.2.29. 1. { } is a family of finite character.

2. Power sets are families of finite character.

3. {∅, {1}, {2}} is a family of finite character.

4. If A ∩B = ∅, then P(A) ∪ P(B) is a family of finite character.

5. The set {∅} ∪ {{a} | a 6= 0, a ∈ R} is a family of finite character. This is the class of

linearly independent sets in R.

6. Let V be a non trivial vector space and F be the class of linearly independent subsets of

V. Then F is a family of finite character.

Exercise 3.2.30. 1. Let L = A1 = A2 = A3 = [3]. Is the set
∏

α∈L
Aα equal to the class of

functions f : [3]→ [3]? Give reasons for your answer.

2. Give sets An, n ∈ N such that
∏

n∈N
An has 6 elements. Give another.1

Some equivalent axioms of axiom of choice

[Axiom of choice] Cartesian product of a nonempty collection of nonempty sets is

nonempty.

[Zorn’s lemma] A partially ordered set in which every chain has an upper bound, has

a maximal element.

[Zermelo’s well ordering principle] Every set can be well ordered.

[Hausdorff’s maximality principle] Every nonempty partially ordered set contains a

maximal chain.

[Tukey’s lemma] Every nonempty family of finite character has a maximal element.

Exercise 3.2.31. 1. Does there exist a poset with exactly 5 maximal chains of size (number

of elements in it) 2, 3, 4, 5, 6, respectively and 2 maximal elements? If yes, draw the Hasse

diagram. If no, argue it.

2. Let (X, f) be a nonempty poset and ∅ 6= Y ⊆ X. Define fY = {(a, b) ∈ f | a, b ∈ Y }. Show

that fY is a partial order on Y . This is the induced partial order on Y .

3. Apply induction to show that a nonempty finite poset has a maximal element and a minimal

element.

Discussion 3.2.32. [Drawing the Hasse diagram of a finite poset (X, f)] Let x1, . . . , xk be the

minimal elements of X. Draw k points on the same horizontal line and label them x1, . . . , xk.

Now consider Y = X \ {x1, . . . , xk} and fY . By induction, the picture of (Y, fY ) can be drawn.

Put it above those k dots. Let y1, . . . , ym be the minimal elements of Y . Now, draw the lines

(xi, yj) if (xi, yj) ∈ f . This is the Hasse diagram of (X, f).

1When we ask for more than one example, we encourage the reader to get examples of different types, if

possible.
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Discussion 3.2.33. [Existence of Hamel basis] Let V be a vector space with at least two

elements. Recall that the collection F of linearly independent subsets of V is a family of finite

character. Recall that a basis or a Hamel basis is a maximal linearly independent subset of V.

As V has at least 2 elements, it has a nonzero element, say a. Then {a} ∈ F . Hence, F 6= ∅.
Thus, by Tukey’s lemma, the set F has a maximal element. This maximal set is the required

basis. Hence, we have proved that every vector space with at least 2 elements has a Hamel basis.

Exercise 3.2.34. 1. Let n ∈ N. Define Pn = {k ∈ N | k divides n}. Define a relation ≤n

on Pn as ≤n= {(a, b) | a divides b}. Show that (Pn,≤n) is a poset, for each n ∈ N. Give

a necessary and sufficient condition on n so that (Pn,≤n) is a completely ordered set.

2. Take X =
{

(1, 1), (1, 2), (1, 3), . . .
}

∪
{

(2, 1)(3, 1), (4, 1), . . .
}

. The ordering defined is

f = ∪
m,n ∈ N
m ≤ n

{(
(1,m), (1, n)

)}⋃

∪
m,n ∈ N
m ≤ n

{(
(m, 1), (n, 1)

)}

.

Does X have any maximal or minimal elements? Is X linearly ordered? Is it true that

every nonempty set has a minimal element? Is it true that every nonempty set has a

minimum? What type of nonempty sets always have a minimum?

3. Prove or disprove:

(a) There are at least 5 functions f : R→ R which are partial orders.

(b) Let S be the set of sequences (xn), with xn ∈ {0, 1, . . . , 9}, for each n ∈ N, such that

‘if xk < xk+1, then xk+1 = xk+2 = · · · }‘. Then S is countable.

(c) Take N with usual order. Then the dictionary order on N2 is a well order.

(d) Let S be the set of all non-increasing sequences made with natural numbers. Then S

is countable.

(e) Let S be the set of all nondecreasing sequences made with natural numbers. Then S

is countable.

(f) Take N with usual order and N2 with the dictionary order. Then any nonempty subset

of N2 which is bounded above has a lub.

(g) Every nonempty countable linearly ordered set is well ordered with respect to the same

ordering.

(h) Every nonempty countable chain which is bounded below, in a partially ordered set,

is well ordered with respect to the same ordering.

(i) The set Q can be well ordered.

(j) For a fixed n ∈ N, let An and Bn be non-empty sets and let Rn be a one-one relation

from An to Bn. Then, ∩
n
Rn is a one-one relation.

(k) Let S be the set of words with length at most 8 using letters from {3, A, a, b, C, c}. We

want to define a lexicographic order on S to make it a dictionary. There are more

than 500 ways to do that.

(l) An infinite poset in which each nonempty finite set has a minimum, must be linearly

ordered.
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(m) A nonempty finite poset in which each nonempty finite set has a minimum, must be

well ordered.

(n) An infinite poset in which each nonempty finite set has a minimum, must be well

ordered.

4. Let S = {(x, y) : x2 + y2 = 1, x ≥ 0}. It is a relation from R → R. Draw a picture of the

inverse of this relation.

5. Construct the Hasse diagram for the ⊆ relation on P({a, b, c}).

6. Draw the Hasse diagram for the partial order describing the ‘divides’ relations on the set

{2, 3, 4, 5, 6, 7, 8}.
7. Draw the Hasse diagram of {1, 2, 3, 6, 9, 18} with ‘divides’ relation.

(a) What is its height? What is its width.

(b) Let A = {2, 3, 6}. What are the maximal elements, minimal elements, maximum,

minimum, lower bounds, upper bounds, glb and lub of A.

8. Show that the following three definitions are equivalent.

(a) A set A is finite if either A = ∅ or A = [n], for some n ∈ N.

(b) [Tarski] A set A is finite if and only if every nonempty family of subsets of A has a

minimal element.

(c) [Dedekind] A set is infinite if it is equivalent to a proper subset of itself. A set is

finite if it is not infinite.

9. Let (X, f) be a nonempty poset. Show that there exists a linear order g on X such that

f ⊆ g.

10. Let G be a non-Abelian group and H be an Abelian subgroup of G. Show that there is a

maximal Abelian subgroup J of G such that H ⊆ J .

11. Let F be a family of finite character and B be a chain in F . Show that ∪
A∈B

A ∈ F .

12. Let A 6= ∅ and F be a field. Let FA := {f : f is a function from A to F}. Let Γ := {f ∈
FA : {a ∈ A : f(a) 6= 0} is finite}. Show that Γ is a vector space over F with respect to

point-wise addition of functions and point-wise scalar multiplication. Also show that every

vector space V is isomorphic to Γ for some suitable choice of A.

13. Let X be a vector space and A be a nonempty linearly independent subset of X. Let S ⊆ X

satisfy span(S) = X. Show that ∃ a Hamel basis B such that A ⊆ B ⊆ S.

14. Let (L,≤) be a nonempty linearly ordered set. Prove that ∃ W ⊆ L such that ≤ well orders

W and such that for each x ∈ L, there is a y ∈ W satisfying x ≤ y. For example, for

L = R, we can take W = N.

15. Show that R is not a finite dimensional vector space over Q. Hint: Assume that R as

a vector space over Q has dimension k. Argue that R is isomorphic to Qk and so it is

countable, a contradiction.
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16. Let A be a nonempty set. Then there is an element a which is not in A.

17. Let A be a nonempty set. Then there exists B such that A ∩B = ∅ and A = B.

18. Let A and B be two nonempty sets. Show that there is a set C such that C ∩A = ∅ and

C = B.

19. Let A and B be nonempty sets. Put a = A and b = B. Then show that either a ≤ b or

b ≤ a.

20. Let a = A and b = B, where A∩B = ∅. Then we define a+b as A ∪B and ab as A×B.

(a) Let a be an infinite cardinal number. Show that a+ a = a and aa = a.

(b) Let a, b, c be cardinal numbers. Show that a ≤ b⇒ {a+ c ≤ b+ c, ac ≤ bc}.

21. Suppose that u ≤ v are two infinite cardinal numbers. Then show that u + v = v and

uv = v.
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Chapter 4

Logic

4.1 Propositional logic

We study logic to differentiate between valid and invalid arguments. An argument is a set of

statements which has two parts: premise and conclusion. There can be many statements in the

premise. Conclusion is just one statement. An argument has the structure

premise: Statement1, . . ., Statementk ; therefore conclusion: Statementc.

Consider the following examples.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Monday.

Statementc: Therefore, Mr. X gets Rs. 5 (statementc).

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Mr. X gets Rs. 5.

Statementc: Therefore, today is Monday.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Tuesday.

Statementc: Therefore, Mr. X gets Rs. 5.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Tuesday.

Statementc: Therefore, Mr. X does not get Rs. 5.

We understand that the first one is a valid argument, whereas the next three are not. In order

to differentiate between valid and invalid argument, we need to analyze an argument. And in

order to do that, we first have to understand ‘what is a statement’. A simple statement is an

expression which is either false or true but not both. We create complex statements from the

old ones by using ‘and’, ‘or’ and ‘not’.

For example, ‘today is Monday’ is a statement. ‘Today is Tuesday’ is also a statement. ‘Today

is Monday and today is Tuesday’ is also a statement. ‘Today is not Monday’ is also a statement.

57
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One way to analyze an argument is by writing it using symbols. The following definition

captures the notion of a ‘statement’.

Definition 4.1.1. 1. [Atomic formulae and truth values] Consider a nonempty finite set

of symbols F . We shall call an element of F as an atomic formula (also called atomic

variable). (These are our simple statements). The truth value of each element in F is

exactly one of T (for TRUE) and F (for FALSE). Normally, we use symbols p, q, p1, p2, . . .

for atomic formulae.

2. [Operations to create new formulae] We use three symbols ‘∨’ (called disjunction/or),

‘∧’ (called conjunction/and), and ‘¬’ (called negation) to create new formulae. The

way they are used and the way we attribute the truth value to such a new formula is

described below.

If p and q are formulae, then p ∧ q, p ∨ q, and ¬p are formulae. The truth value of p ∧ q is

defined to be T when the truth values of both p and q are T . Its truth value is defined to be F

in all other cases. The truth value of p ∨ q is defined to be T when the truth values of at least

one of p and q are T . Its truth value is defined to be F when the truth values of both p and q

are F . The truth value of ¬p is defined to be T if the truth value of p is F . The truth value of

¬p is defined to be F if the truth value of p is T .

Understanding ∨, ∧ and ¬
The following tables describe how we attribute the truth values to p ∨ q, p ∧ q and ¬p.

p q p ∧ q

T T T

T F F

F T F

F F F

p q p ∨ q

T T T

T F T

F T T

F F F

p ¬p
T F

F T

How do we read these tables? Look at row 3 of the leftmost table (exclude the header). It

tells that the formula p ∧ q takes the truth value F if p takes truth value F and q takes T .

Remark 4.1.2. We use brackets while creating new formulae to make the meaning unambiguous.

For example, the expression p ∨ q ∧ r is ambiguous, where as p ∨ (q ∧ r) is unambiguous.

Definition 4.1.3. 1. Sometimes we write ‘f(p1, . . . , pk) is a formula’ to mean that ‘f is a

formula involving the atomic formulae p1, . . . , pk’.

2. Let f(p1, . . . , pk) be a formula. Then, the truth value of f is determined based on the truth

values of the atomic formulae p1, . . . , pk. Since, there are 2 assignments for each pi, 1 ≤ i ≤
k, there are 2k ways of assigning truth values to these atomic formulae. An assignment of

truth values to these atomic formulae is nothing but a function A : {p1, . . . , pk} → {T, F}.

3. By saying ‘TFT is an assignment to the atomic variables p, q, r’, we mean that the truth

value of p is T , that of q is F and that of r is T . Keeping this in mind, all possible
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assignments to p, q, r are listed below. (Notice that, it is in the dictionary order, that is,

‘FFF appears before FFT in the list as if they are words in a dictionary’. The reader will

notice that in the table given above, we have followed the reverse dictionary order while

writing a truth table, which is natural to us. This should not create any confusion.)

p q r

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T

4. A truth table for a formula f(p1, . . . , pk) is a table which systematically lists the truth

values of f under every possible assignment of truth values to the involved atomic formulae.

The following is a truth table for the formulae p ∨ (q ∧ r).

p q r q ∧ r p ∨ (q ∧ r)

F F F F F

F F T F F

F T F F F

F T T T T

T F F F T

T F T F T

T T F F T

T T T T T

5. In the previous table, if we fill the fourth column arbitrarily using T ’s and F ’s, will it be

a truth table of some formula involving p, q and r? We shall talk about it later.

We have already noted that we use ∨,∧ and ¬ to create new formulae from old ones. Some of

them will indeed be very important.

Definition 4.1.4. [Conditional formulae]

1. [p implies q] If p and q are formulae, then the formula (¬p)∨ q is denoted by p→ q (read

as p implies q). Its truth table is

p q (¬p) ∨ q

T T T

T F F

F T T

F F T
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Observe

a) p → q takes the truth value F if and only if p takes the truth value T and q takes

the truth value F .

b) If under some assignment ‘p→ q takes the truth value T ’ and that ‘in this assignment

p is T ’, then it follows that in this assignment q must be T . This is why p→ q is called

‘if p then q’.

c) Other phrases used for ‘if p then q’ are ‘p is sufficient for q’ or ‘p only if q’ or ‘q is a

necessary condition for p’.

d) We sometimes use p← q to mean q → p.

2. [p if and only if q] The formula (p↔ q) (called ‘p if and only if q’) means (p→ q)∧(q → p).

Note that (p↔ q) takes the truth value ‘T whenever p and q take the same truth values’

and takes the truth value ‘F whenever p and q take different truth values’. Its truth table

is
p q p↔ q

T T T

T F F

F T F

F F T

3. [Converse/Contrapositive] The formula q → p is called the converse of p → q and the

formula ¬q → ¬p is called the contrapositive of p→ q.

Discussion 4.1.5. [Understanding a conditional formula] When we assign different ‘English

statements’ to the involved atomic formulae, we get an English statement corresponding to those

formulae. For example, for the formula p→ q, consider the following statements:

p: you attend the class.

q: you understand the subject.

Then, p → q is the statement ‘if you attend the class, then you understand the subject’. The

formula p→ q is true under the following three cases.

1. p is true and q is true: this means ‘you attend the class and understand the subject’.

2. p is false and q is false: this means ‘you do not attend the class and do not understand

the subject’.

3. p is false and q is true: this means ‘you do not attend the class but understand the subject’.

The formula p→ q is false if ‘p is true and q is false’, which means ‘you attend the class and do

not understand the subject’.

Definition 4.1.6. [Connectives] The symbols ∨,∧,¬,→ and ↔ are called connectives. The

set of well formed formulae (wff) are defined inductively. Each atomic variable is a wff. If f

and g are two wff, then f ∨ g, f ∧ g, ¬f , f → g, and f ↔ g are wff. Brackets are used to avoid

ambiguity.
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Example 4.1.7. 1. p ∧ ∨q, ∨q, p ∨ q∧ are not wff, as they do not make sense.

2. p ∨ q ∧ r is not a wff as it is not clear what it means. We use brackets to get p∨ (q ∧ r) or
(p ∨ q) ∧ r which are wff.

3. (p→ q)→ r, (p ∨ ¬q)→ ¬r, ¬(p→ q) are wff.

Did you notice?

The connectives ∨,∧,→, and↔ always connect two old formulae to create a new one. This

is why they are called ‘binary connectives’. The connective ¬ is used on a single old formula

to give a new one. So, it is called a ‘unary connective’.

Definition 4.1.8. Let A be the set of assignments to the variables p1, . . . , pk. A function

f : A → {T, F} is called a truth function. Since |A| = 2k, there are 22
k
such truth functions.

Example 4.1.9. The table on the left describes a truth function f and that on the right

describes the truth table for a particular formula.

p q f

T T F

T F T

F T T

F F F

p q (p ∧ q) ∨ (p ∧ (¬q))
T T T

T F T

F T F

F F F

Exercise 4.1.10. 1. Draw a truth table for the formula p ∧
(
¬p→ (p ∨ ¬q)

)
.

2. Can both the formulae p→ q and q → p be false for some assignment on p and q?

Definition 4.1.11. 1. [Contradiction and tautology] A contradiction (F ) is a formula

which takes truth value F under each assignment. For example, p∧¬p. A tautology (T )

is a formula which takes truth value T under each assignment. For example, p ∨ ¬p.

2. [Equivalence of formulae] Two formulae f and g are said to be equivalent, denoted

f ≡ g, if they have the same truth table involving all the atomic variables of both f and g.

That is, if both f and g carry the same truth values under each assignment to the involved

atomic variables.

Example 4.1.12. 1. Is p→ q ≡ ¬q → ¬p? Yes, because they have the same truth tables.

p q f = p→ q g = ¬q → ¬p
T T T T

T F F F

F T T T

F F T T
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2. Is p ≡ p ∧ (q ∨ (¬q))? Yes, because they have the same truth tables.

p q f = p g = p ∧ (q ∨ (¬q))
T T T T

T F T T

F T F F

F F F F

Remark 4.1.13. 1. There is another way to establish equivalence of two formulae f and g.

We show that f has a truth value T (or F ) if and only if g has the same truth value. For

example, to show that p→ q ≡ ¬q → ¬p, proceed in the following way.

Step 1: Suppose that p→ q has a truth value F for an assignment a. Then a(p) = T and

a(q) = F . But then, under that assignment, we have ¬q is T and ¬p is F . That is, under

a, we have ¬q → ¬p is F .

Step 2: Suppose that p → q has a truth value T for an assignment a. Then a ∈
{TT, FT, FF}. Under TT , we have ¬p is F and ¬q is F , so that ¬q → ¬p is T . Under

FT , we have ¬p is T and ¬q is F , so that ¬q → ¬p is T . Under FF , we have ¬p is T and

¬q is T , so that ¬q → ¬p is T .

Thus, both are equivalent.

2. Let f(p1, . . . , pk) be a formula and q1, . . . , qr be some new atomic variables. Then f ≡
f ∧ (q1 ∨ (¬q1)) ∧ · · · ∧ (qr ∨ (¬qr)). This can be argued using induction. Thus f can be

viewed as a formula involving atomic variables p1, . . . , pk, q1, . . . , qr.

3. We have seen that

(a) p→ q ≡ ¬p ∨ q, and

(b) p↔ q ≡ (p→ q) ∧ (q → p).

Thus, the connectives ∨,∧ and ¬ are enough for writing a formula in place of the 5

connectives ∨,∧,¬,→ and ↔.

4. Recall that a formula on variables p, q and r is a truth function. So there are exactly

22
3
= 28 nonequivalent formulae on variables p, q and r.

Exercise 4.1.14. Is p ∨ ¬p ≡ q ∨ ¬q?

Definition 4.1.15. [Substitution instance] Suppose B is a formula which involves some vari-

ables including p. Then, substituting a formula A for each appearance of the variable p in

B, gives us a new formula. This new formula is called a substitution instance of B. We

may substitute more than one variables, simultaneously. Note that A may involve old and new

variables.

Example 4.1.16. Let B: (p→ q)→ p. We substitute p→ ¬q for p, and p for q, in B to obtain

the following substitution instance of B.

(
(p→ ¬q)→ p

)
→ (p→ ¬q)
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The following result is one of the most fundamental results of the subject.

Theorem 4.1.17. Any substitution instance of a tautology is a tautology.

Proof. Let P (p1, . . . , pk) be a tautology. Suppose that we replace each occurrence of p1 by a

formula f to obtain the formula R. Consider all the atomic variables involved in P and f .

View P and R as formulae involving all these atomic variables. Let a be an assignment to these

atomic variables.

If f takes the value T on a, then the value of R on a is nothing but the value of P (T, p2, . . . , pk)

on a, which is T as P is a tautology.

If f takes the value F on a, then the value of R on a is nothing but the value of P (F, p2, . . . , pk)

on a, which is T as P is a tautology. Thus, R takes the value T under each assignment.

Exercise 4.1.18. Show that any substitution instance of a contradiction is a contradiction.

Definition 4.1.19. [Functionally complete] A subset S of connectives is called function-

ally complete/adequate, if each formula has an equivalent formula written only using the

connectives in S.

Example 4.1.20. We already know that S = {∨,∧,¬} is adequate.
Exercise 4.1.21. 1. Determine which are adequate. (i) {¬,∨} (ii) {→,¬}.

2. Fill in the blanks to prove that ‘f ≡ g’ if and only if ‘f ↔ g is a tautology’.

Proof. Assume that f ≡ g. Let b be an assignment. Then, the value of f and g are

under b. Thus, the value of f ↔ g is under b. As b is an assignment,

we see that f ↔ g is a .

Therefore, if f is T under b, then g is T under b. That is, f → g and g → f are both T

under b. Thus, f ↔ g is T under the assignment b.

Conversely, suppose that f ↔ g is a . Assume that f 6≡ g. Then, there is

under which and take different .

So, suppose that f takes T and g takes F under b. Then is F under b and hence

f ↔ g takes F under b, a contradiction. A similar contradiction is obtained if f takes F

and g takes T under b.

The proof of the next result is left as an exercise for the readers.

Proposition 4.1.22. [Rules] If p, q, r are formulae, then

1. p ∨ q ≡ q ∨ p, p ∧ q ≡ q ∧ p (commutative)

2. p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r, p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r (associative)

3. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (distributive)

4. ¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q (De Morgan’s law)

5. p ∨ p ≡ p, p ∧ p ≡ p (idempotence)
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6. F ∨ p ≡ p, F ∧ p ≡ F

7. T ∨ p ≡ T, T ∧ p ≡ p

8. ¬(¬p) ≡ p

9. p ∨ (p ∧ q) ≡ p, p ∧ (p ∨ q) ≡ p (absorption law)

Proof. First six may be proved suing direct arguments and the rest by using the first six.

Exercise 4.1.23. Does the absorption law imply p ∨ (p ∧ (¬q)) ≡ p and p ∧ (p ∨ (¬q)) ≡ p?

Discussion 4.1.24. The above rules can be used to simplify a formula or to show equivalence

of formulae. For example,

p→ (q → r) ≡ ¬p ∨ (¬q ∨ r) as p→ p ≡ (¬p) ∨ q

≡ ¬p ∨ ¬q ∨ r Associativity

≡ ¬(p ∧ q) ∨ r De Morgan’s law

≡ (p ∧ q)→ r as p→ p ≡ (¬p) ∨ q

Did you notice?

There are 3 ways to prove f ≡ g.

1. Using truth table.

2. Arguing that f is false under an assignment (of the variables involved in both) if and

only if g is false under the same assignment.

3. Using some of the above rules and by reducing f to g or g to f .
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Experiment

Consider the variables p, q, r.

Give a formula which takes value T only on the assignment TTT .

Give a formula which takes value T only on the assignment TTF . (p ∧ q ∧ (¬r))
Give a formula which takes value T only on the assignment FTF .

Give a formula which takes value T only on the assignments TTF and FTF .

Give a formula which takes value T only on the assignments TFT , TTF and TFF .

Give a formula f which takes value T only on the assignments FTF and FFF or whose

truth table is the following

p q r f

T T T F

T T F F

T F T F

T F F F

F T T F

F T F T

F F T F

F F F T

Lemma 4.1.25. Let f be a truth function involving the variables p1, . . . , pk. Then, there is a

formula g involving p1, . . . , pk, whose truth table is described by f .

Proof. If T /∈ rng f , then write q = p1∧¬p1∧p2∧· · ·∧pk. Otherwise, collect all those assignments

b such that f(b) = T . Call this set A1. For each b ∈ A1, define a formulae q = r1 ∧ r2 ∧ · · · ∧ rk,
where for 1 ≤ j ≤ k,

rj =

{

pj if b(pj) = T

¬pj otherwise.

Then, the formulae q takes the value T only on the assignment b. Thus, taking the disjunctions

of all such q’s related to each b ∈ A1, we get the required result.

Exercise 4.1.26. Illustrate 4.1.25 with the truth function f

p q f

T T T

T F T

F T F

F F F

Definition 4.1.27. [Normal forms] An atomic formula or it’s negation is called a literal. We

say that a formula f is in disjunctive normal form (in short, DNF) if it is expressed as a

disjunction of conjunctions of literals. We say that a formula f is in conjunctive normal form

(in short, CNF) if it is expressed as a conjunction of disjunctions of literals.
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Example 4.1.28. p, p∨ q, p∨¬q, (p∧¬q)∨¬r, (p∧¬q)∨ (q ∧¬r)∨ (r ∧ s) are in DNF. Write

5 formulae in CNF involving p, q, r.

Theorem 4.1.29. Any formula is equivalent to a formulae in DNF. Similarly, Any formula is

equivalent to a formulae in CNF.

Proof. The proof of the first assertion follows from Lemma 4.1.25. For the second assertion, we

can write one proof in a similar way.

An alternate proof: take f , consider ¬f , get a DNF P for ¬f , and consider ¬P .

Exercise 4.1.30. Write all the truth functions on two variables and write formulae for them.

Definition 4.1.31. [Principal connectives] Let h be a formula. A principal connective in

h is defined in the following way.

1. If h is expressed in a format ¬f , then ¬ is the principal connective of h.

2. If h is expressed in a format f ∨ g, then ∨ is the principal connective of h.

3. If h is expressed in a format f ∧ g, then ∧ is the principal connective of h.

Exercise 4.1.32. Use induction on the number of connectives to show that any formula is

equivalent to a formulae in DNF and a formula in CNF.

Definition 4.1.33. [Dual] The dual P ∗ of a formula P involving the connectives ∨,∧,¬ is

obtained by interchanging ∨ with ∧ and the special variable T with the special variable F.

Example 4.1.34. Note that the dual of ¬(p ∨ q) ∧ r is ¬(p ∧ q) ∨ r.

Lemma 4.1.35. Let A(p1, . . . , pk) be a formula in the atomic variables pi involving connectives

∨,∧ and ¬. If A(¬p1, . . . ,¬pk) is obtained by replacing pi with ¬pi in A, then A(¬p1, . . . ,¬pk) ≡
¬A∗(p1, . . . , pk).

Proof. Use induction on the number of connectives. If A = B ∨C, then

A∗ = B∗ ∧ C∗ ≡ ¬B(¬p1, . . . ,¬pk) ∧ ¬C(¬p1, . . . ,¬pk)
≡ ¬(B ∨ C)(¬p1, . . . ,¬pk) = ¬A(¬p1, . . . ,¬pk).

The remaining parts are similar and hence left for the reader.

Theorem 4.1.36. Let f, g be formulae using connectives ∨,∧ and ¬. If f ≡ g, then f∗ ≡ g∗.

Proof. By Lemma 4.1.35, we note that

f∗(¬b) = ¬f(b) = ¬g(b) = g∗(¬b) for any assignment b.

Thus, f∗ ≡ g∗.
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Discussion 4.1.37. [Tree representation] A formula can be represented by a tree. For example,

(r ∨ q)→ (¬q ∧ p) has the following representation.

b

b

b

b

b

b

b

b

b

b

p

q

r q

∨ ∧

¬

→

Definition 4.1.38. [Polish notation] A formula may be expressed using Polish notation. It

is defined inductively as follows.

‘Let P (f) denote the Polish notation of f . Then P (f ∨g) is ∨P (f)P (g), P (f ∧g) is ∧P (f)P (g),

and P (¬f) is ¬P (f).’

This notation does not use brackets. Here the connectives are written in front of the expressions

they connect. Advantage: it takes less space for storage. Disadvantage: it’s complicated look.

Example 4.1.39. In Polish notation (r ∨ q)→ (¬q ∧ p) becomes → ∨rq ∧ ¬qp.

Exercise 4.1.40. Write a formula involving 8 connectives and the variables p, q, r. Draw it’s

tree. Write it’s Polish notation.

Definition 4.1.41. 1. [Satisfiable] A formula is satisfiable if it is not a contradiction.

2. [Order of operations] To reduce the use of brackets, we fix the order of operations: ¬,
∧, ∨, →, ↔.

Discussion 4.1.42. There is another way of making a truth table for a formula. Consider

(p ∨ q) ∨ ¬r. Draw a table like the following and give the truth values to the atomic formulae.

Evaluate the connectives for the subformulae one by one. In this example, the sequence of

column operations is: 5, 2, 4.

(p ∨ q) ∨ ¬ r

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

(p ∨ q) ∨ ¬ r

T T T T F T

T T T T T F

T T F T F T

T T F T T F

F T T T F T

F T T T T F

F F F F F T

F F F T T F

Definition 4.1.43. [Inference] We say g is a logical conclusion of {f1, · · · , fn} if (f1 ∧
f2 ∧ · · · ∧ fn) → g is a tautology. We denote this by {f1, . . . , fn} ⇒ g. At times, we write

f1, . . . , fn ⇒ g to mean {f1, . . . , fn} ⇒ g. Here, g is called the conclusion and {f1, . . . , fn} is
called the hypothesis/premise.
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Example 4.1.44. 1. Consider the following three statements.

A : if x = 4, then discrete math is bad;

B : discrete math is bad;

C : x = 4.

Does C logically follow from A,B?

Ans: No. Denote ‘x = 4’ by p and ‘discrete mathematics is bad’ by q. Then, the

above question is the same as asking whether {p → q, q} ⇒ p is true. That is, whether

P (p, q) := ((p→ q) ∧ q)→ p is a tautology.

To find that, suppose that there is an assignment for which P takes the value F . So, for

that assignment, p must be F and (p→ q) ∧ q must be true.

As (p → q) ∧ q is true, q must be T . So, the assignment must be FT . Notice that p → q

has a value T with this assignment. Thus, P (p, q) takes F under FT . Hence, it is not a

tautology. So, C does not logically follow from A,B.

2. Consider the following three statements.

A : ‘if discrete math is bad, then x = 4’;

B : ‘discrete math is bad’;

C : ‘x = 4’.

Does C logically follow from A,B?

Ans: Yes. Denote ‘x = 4’ by p and ‘discrete mathematics is bad’ by q. Then, the

above question is the same as asking whether {q → p, q} ⇒ p is true. That is, whether

P (p, q) := ((q → p) ∧ q)→ p is a tautology.

To find that, suppose that there is an assignment for which P takes the value F . So, for

that assignment, p must be F and (q → p) ∧ q must be true.

As (q → p) ∧ q is true, q must be T and q → p must be T . So, the assignment must be

FT . But we see that q → p has a value F with this assignment. This is a contradiction.

Thus, there is no assignment for which P (p, q) takes F . Hence, it is a tautology. So C

logically follows from A,B.

Definition 4.1.45. We write f ⇔ g to mean ‘f ⇒ g and g ⇒ f ’.

Did you notice?

Let f, g, h be some formulae. Then f, g ⇒ h means that ‘whenever f and g are T , h is also

T ’. That is, ‘if f and g are T under an assignment, then h is T under that assignment’.

Thus ‘f ⇔ g’ is the same as ‘f ≡ g’.

Example 4.1.46. 1. Show that {α→ β, β → γ, γ → δ} ⇒ α→ δ.
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Ans: Suppose α → δ is F . Then α is T and δ is F . Assume that all the propositions in

the hypothesis are true. As δ is F and γ → δ is T , γ must be F . Continuing, we get α is

F , a contradiction.

2. Determine validity of the argument.

The meeting can take place if all members are informed in advance and there is quorum

(a minimum number of members are present). There is a quorum if at least 15 members

are present. Members would have been informed in advance if there was no postal strike.

Therefore, if the meeting was canceled, then either there were fewer than 15 members

present or there was a postal strike.

A : Let us denote the different statements with symbols, say

m: the meeting takes place;

a: all members are informed;

f : at least fifteen members are present;

q: the meeting had quorum;

p: there was a postal strike.

So, we reformulate the problem: whether
{
(q∧a)→ m, f → q,¬p→ a

}
⇒ ¬m→ (¬f∨p)?

From first two statements, we get (f ∧ a) → m. Considering the third statement, we get

(f ∧ ¬p)→ m. The conclusion is the contrapositive of this statement.

Alternate. Suppose that conclusion is F . This means that ¬m → (¬f ∨ p) takes the

value F and
{
(q ∧ a)→ m, f → q,¬p→ a

}
takes the value T .

The first one implies that ¬f ∨ p takes the value F and ¬m takes the value T . Hence, we

see that the variables m, f and p take values F, T and F , respectively.

The second one implies that all the three expressions (q ∧ a) → m, f → q, and ¬p → a

take the value T . Since the second statement takes the value T and f has the value T ,

we see that q has to take the value T . Similarly, using the third statement, we see that a

has to take the value T . So, we see that the first statement (q ∧ a) → m takes the value

T with the assignment of both q and a being T . So, we must have m to have the value T ,

contradicting the value F taken by m in the previous paragraph.

Exercise 4.1.47. 1. List all the nonequivalent formulae involving variables p and q which

take truth value T on exactly half of the assignments.

2. We assume F ≤ T . Let f and g be two truth functions on the variables p1, . . . , p9. Suppose

that for each assignment a, we have f(a) ≤ g(a). Does this imply ‘f → g is a tautology’?

3. Let f and g be two formulae involving the variables p1, . . . , pk. Prove that ‘f ≡ g’ (the

same truth table) if and only if ‘f ↔ g is a tautology’.

4. Without using →, write an equivalent simplified statement of (p→ q)→
(
p→ (q → r)

)
.

5. Determine which of the following are logically equivalent.

(a)
(
p→ (r ∨ s)

)
∧
(
(q ∧ r)→ s

)
.
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(b)
(
(p ∨ r) ∨ (s→ p)

)
∧
(
p→ (s→ r)

)
.

(c) q → s.

(d)
(
s→ (q ∨ r)

)
∧
(
(q ∧ s)→ r

)
.

(e)
(
(p ∨ s) ∨ (q → p)

)
∧
(
p→ (q → s)

)
.

6. Let p be a formula written only using connectives ∧,∨ and → and involving the atomic

variables p1, · · · , pk, for some k. Show that the truth value of p is T under the assignment

f(pi) = T , for all i.

7. Is {→,∨,∧} adequate?
8. Verify the following assertions.

(a) P ∧Q⇒ P

(b) P ⇒ P ∨Q

(c) ¬P ⇒ P → Q

(d) ¬(P → Q)⇒ P

(e) ¬P,P ∨Q⇒ Q

(f) P,P → Q⇒ Q

(g) ¬Q,P → Q⇒ ¬P
(h) P → Q,Q→ R⇒ P → R

(i) P ∨Q,P → R,Q→ R⇒ R

(j) P ↔ Q⇔ (P ∧Q) ∨ (¬P ∧ ¬Q)

(k) {p ∧ q, p ∨ q} ⇒ q → r

(l) {p→ q,¬p} ⇒ ¬q
(m) {p0 → p1, p1 → p2, . . . , p9 → p10} ⇒ p0 ∨ p5.

(n)
{
(¬p ∨ q)→ r, s ∨ ¬q,¬t, p→ t, (¬p ∧ r)→ ¬s

}
⇒ ¬q.

(o)
{
p→ q, r ∨ s,¬s→ ¬t,¬q ∨ s,¬s, (¬p ∧ r)→ u,w ∨ t

}
⇒ u ∧ w.

9. If H is a set of formulae, then H ⇒ α→ β if and only if H ∪ {α} ⇒ β.

10. Prove the equivalence of the following in three different ways (truth table, simplification,

each is a logical consequence of the other): p→ (q ∨ r) ≡ (p ∧ ¬q)→ r.

11. Determine which of the following conclusions are correct.

(a) If the lecture proceeds, then either black board is used or the slides are shown or the

tablet pc is used. If the black board is used, then students at the back bench are not

comfortable in reading the black board. If the slides are shown, then students are

not comfortable with the speed. If the tablet pc is used, then it causes lots of small

irritating disturbances to the instructor. The lecture proceeds and the students are

comfortable. So, it is deduced that the instructor faces disturbances.

(b) There are three persons Mr X, Mr Y and Mr Z making statements. If Mr X is wrong,

then Mr Y is right. If Mr Y is wrong, then Mr Z is right. If Mr Z is wrong, then Mr

X is right. Therefore, some two of them are always right.
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12. Consider the set S of all nonequivalent formulae written using two atomic variables p and

q. For f, g ∈ S, define f ≤ g if f ⇒ g. Prove that this is a partial order on S. Draw it’s

Hasse diagram.

13. Consider the set S of all nonequivalent formulae written using three atomic variables p, q, r.
For f, g ∈ S define f ≤ g if f ⇒ g. Let f1 and g1 be two formulae having the truth tables

p q r f1
T T T T

T T F F

T F T T

T F F T

F T T F

F T F T

F F T F

F F F F

p q r g1
T T T T

T T F F

T F T T

T F F F

F T T T

F T F F

F F T T

F F F F

How many nonequivalent formulae h are there such that {f1, g1} ⇒ h?

14. How many assignments of truth values to p, q, r and w are there for which
(
(p → q) →

r
)
→ w is true? Guess a formula in terms of the number of variables.

15. Check the validity of the argument. If discrete math is bad, then computer programming

is bad. If linear algebra is good, then discrete math is good. If complex analysis is good,

then discrete math is bad. If computer programming is good, then linear algebra is bad.

Complex analysis is bad and hence, at least one more subject is bad.

4.2 Predicate logic

Definition 4.2.1. A k-place predicate or propositional function p(x1, . . . , xk) is a state-

ment involving the variables x1, . . . , xk. A truth value can be assigned to a predicate p(x1, · · · , xk)
for each assignment of x1, . . . , xk from their respective universe of discourses (in short, UD)

(the set of values that xi’s can take is the i-th UD).

Example 4.2.2. Let p(x) mean ‘x > 0’. Then p(x) is a 1-place predicate on some UD. Let

p(x, y) mean ‘x2 + y2 = 1’. Then p(x, y) is a 2-place predicate on some UD.

Definition 4.2.3. [Quantifiers] We call the symbols ∀ and ∃, the quantifiers. Formulae

involving them are called quantified formulae. The statement ∀x p(x) is true if for each x (in

the UD) the property p(x) is T . The statement ∃x p(x) is T if p(x) is T for some x in the UD.

Example 4.2.4. Let UD be the set of all human beings. Consider the 2-place predicate F (x, y):

‘x runs faster than y’. Then

1. ∀x∀y F (x, y) means ‘each human being runs faster than every human being’.

2. ∀x∃y F (x, y) means ‘for each human being there is a human being who runs slower’.

3. ∃x∃y F (x, y) means ‘there is a human being who runs faster than some human being’.

4. ∃x∀y F (x, y) means ‘there is a human being who runs faster than every human being ’.
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Definition 4.2.5. 1. [Scope of quantifier] In the quantified formulae ∀x p(x) or ∃x p(x)
the formula p(x) is called the scope of the quantifier (extent to which that quantification

applies).

2. An x-bound part in a formula is a part of the form ∃x p(x) or ∀x q(x). Any occurrence

of x in an x-bound part of the formula is a bound occurrence of x. Any other occurrence

of x is a free occurrence of x.

Example 4.2.6. In ∃x p(x, y) the occurrence of y is free and both the occurrences of x are

bound. In ∀y ∃x p(x, y) all the occurrences of x and y are bound.

Definition 4.2.7. 1. A quantified formulae is well formed if it is created using the following

rules.

(a) Any atomic formula (of the form P , P (x, y), P (x, b, y)) is a wff.

(b) If A and B are wffs, then A ∨B, A ∧B, A→ B, A↔ B, and ¬A are wffs.

(c) If A is a wff and x is any variable, then ∀xA and ∃xA are wffs.

2. Let f be a formula. An interpretation (for f) means the process of specifying the UD,

specifications of the predicates, and assigning values to the free variables from the UD. By

an interpretation of f , we mean the formula f under a given interpretation.

Example 4.2.8. Consider the wff ∀x p(x, y).

1. Take N as UD. Let p(x, y) specify ‘x > y’. Let us assign 1 to the free variable y. Then, we

get the interpretation ‘each natural number is greater than 1’ which has the truth value

F .

2. Take N as UD. Let p(x, y) mean ‘x + y is an integer’, and take y = 2. Then, we get an

interpretation ‘when we add 2 to each natural number we get an integer’ which has a truth

value T .

Discussion 4.2.9. [Translation] We expect to see that ‘our developments on logic’ help us

in drawing appropriate conclusions. In order to do that, we must know how to translate an

‘English statement’ into a ‘formal logical statement’ that involves no English words. We may

have to introduce appropriate variables and required predicates. We may have to specify the

UD, but normally we use the most general UD.

Example 4.2.10. 1. Translate: ‘each person in this class room is either a BTech student or

an MSc student’.

A: Does the statement guarantee that there is a person in the room?

No. All it says is, if there is a person, then it has certain properties. Let P (x) mean ‘x is

a person in this class room’; B(x) mean ‘x is a BTech student’; and M(x) mean ‘x is an

MSc student’. Then, the formal expression is ∀x
(

P (x)→
(
B(x) ∨M(x)

))

.

2. Translate: ‘there is a student in this class room who speaks Hindi or English’.
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A: Does the statement guarantee that there is a student in the room?

Yes. Let S(x) mean ‘x is a student in this class room’; H(x) mean ‘x speaks Hindi’; and

E(x) mean ‘x speaks English’. Then, the formal expression is ∃x
(

S(x)∧ (H(x)∨E(x))
)

.

Note that ∃x
(

S(x)→ (H(x) ∨ E(x))
)

is not the correct expression. Why?

Remember

∃x (S(x)→ T (x)) never asserts S(x) BUT ∃x(S(x) ∧ T (x)) asserts both S(x) and T (x).

Practice 4.2.11. Translate into formal logic.

1. Every natural number is either the square of a natural number or it’s square root is irra-

tional.

2. For every real number x there is a real number y such that x+ y = 0.

3. A subset S ⊆ Rn is called compact, if ‘—-write the formal statement here—-’.

4. A function f : R → R is called continuous at a point a, if ‘—-write the formal statement

here—-’.

5. A function f : R→ R is called continuous, if ‘—-write the formal statement here—-’.

6. A function f : R → R is called uniformly continuous, if ‘—-write the formal statement

here—-’.

7. A subset S ⊆ Rn is called connected, if ‘—-write the formal statement here—-’.

8. A set S is called a group, if ‘—-write the formal statement here—-’.

9. A subset S ⊆ Rn is called a subspace, if ‘—-write the formal statement here—-’.

10. A function f : S → T is called a bijection, if ‘—-write the formal statement here—-’.

11. A function f : Rn → Rk is called a linear transformation, if ‘—-write the formal statement

here—-’.

12. A function f : (S, ◦) → (T,+) is called a group isomorphism, if ‘—-write the formal

statement here—-’.

13. A function f : V → W is called a vector space isomorphism, if ‘—-write the formal

statement here—-’.

Definition 4.2.12. A quantified formula is called valid if every interpretation of it has truth

value T . Two quantified formulae A and B are called equivalent (A ≡ B) if A↔ B is valid.

Example 4.2.13. 1. ∀xP (x) ∨ ∃x¬P (x) is valid.

2. Is ∃x∃y p(x, y) ≡ ∃y ∃x p(x, y)?

A: Yes. Denote ∃x∃y p(x, y) by L and ∃y ∃x p(x, y) by R. Suppose that L→ R is F . This

means, we have an interpretation in which L is T and R is F . As R is F , we see that

p(x, y) is F , for each x, y in the UD. In that case, L is F , a contradiction. So, L → R is

T . Similarly, R→ L is T .
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3. ∀x∀y p(x, y) ≡ ∀y ∀x p(x, y). !!

4. ∃x∀y p(x, y) 6≡ ∀y ∃x p(x, y). To see this take p(x, y): x > y.

Did you notice?

Two quantified formulae A and B are equivalent if and only if their interpretations under

‘the same UD, the same specification of predicates, and the same values to the free variables’

have the same truth value.

5. Is ∀x
(

r(x)→ ∃y
(
r(y) ∧ p(x, y)

))

≡ ∀x∃y
(

r(x)→
(
r(y) ∧ p(x, y)

))

?

A: We want to know if

∀x
(

r(x)→ ∃y
(
r(y) ∧ p(x, y)

))

↔ ∀x∃y
(

r(x)→
(
r(y) ∧ p(x, y)

))

is valid. Let us see whether

∀x
(

r(x)→ ∃y
(
r(y) ∧ p(x, y)

))

→ ∀x∃y
(

r(x)→
(
r(y) ∧ p(x, y)

))

is valid. Suppose that this is invalid. So there is an interpretation such that Right hand

side is F and Left hand side is T. As Right hand side is F, we see that ∃x, say x0, for

which ∃y
(

r(x)→
(
r(y) ∧ p(x, y)

))

is F. That is, ∀y the formula r(x0)→
(
r(y) ∧ p(x0, y)

)

is F. That is, r(x0) is T and for each y we see that r(y)∧ p(x0, y) is F. That is, r(x0) is T
and ∃y(r(y)∧ p(x0, y)) is F. That is, the formula r(x0)→ ∃y(r(y)∧ p(x0, y)) is F. That is,
∀x
(

r(x)→ ∃y
(
r(y) ∧ p(x, y)

))

is F, a contradiction. The other part is an exercise.

Alternate. Take A := r(x)→ ∃y
(
r(y) ∧ p(x, y)

)
and B := ∃y

(

r(x)→
(
r(y) ∧ p(x, y)

))

.

Consider an x0 in the UD. If r(x0) is F, Then A and B both have value T. If r(x0) is T.

Then notice that r(x0)→ ∃y
(
r(y)∧ p(x0, y)

)
and ∃y

(

r(x0)→
(
r(y)∧ p(x0, y)

))

have the

same truth value.

Thus A ≡ B. Hence ∀xA ≡ ∀xB.

6. Any student who appears in the exam and gets a score below 30, gets an F grade. Mr x0

is a student who has not written the exam. Therefore, x0 should get an F grade. Do you

agree?

A: Let S(x) mean ‘x is a student’, E(x) mean ‘x writes the exam’, B(x) mean ‘x gets a

score below 30’, and F (x) mean ‘x gets F grade’.

We want to see whether
{

∀x[S(x) ∧ E(x) ∧B(x)→ F (x)], S(x0) ∧ ¬E(x0)
}

⇒ F (x0)?

Take the following interpretation: S(x) is ‘x is a positive real number’, E(x) is ‘x is a

rational number’, B(x) is ‘x is an integer’, F (x) is ‘x is a natural number’, and x0 =
√
2.

In this interpretation, statements in the premise mean ‘every positive integer is a natural

number’ and ‘
√
2 is a positive real number which is not rational’. They both are true.

Whereas the conclusion means ‘
√
2 is a natural number’ which is false. So, the argument

is incorrect.
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7. Translate the following into formal statements.

‘All scientists are human beings. Therefore, all children of scientists are children of human

beings.’

A: Let Sx : ‘x is a scientist’; Hx : ‘x is a human being’ and Cxy : x is a child of y.

Let the hypothesis be ∀x(Sx→ Hx). Then, the possible translations of the conclusion are

the following.

(a) ∀x(∃y(Sy ∧Cxy)→ ∃z(Hz ∧Cxz)). It means ‘for each x, if x has a scientist father,

then x has a human father’.

(b) ∀x[∀y(Sy∧Cxy)→ ∀z(Hz∧Cxz)]. This is wrong, as the statement means ‘for all x,

if x is a common child of all scientists, then x is a common child of all human beings’.

(c) ∀x(Sx→ ∀y(Cyx→ ∃z(Hz ∧Cyz))). This means ‘for each x, if x is a scientist, then

each child of x has a human father’.

(d) ∀x∀y(Sx∧Cyx)→ ∀x∀y(Hx∧Cxy). What? This means ‘if each x is a scientist and

each y is a child of x (including x it self!), then each x is a human being and each y

is a child of x’.

Exercise 4.2.14. 1. Write a formal definition of lim
x→a

f(x) 6= l.

2. Is ∃x [p(x) ∧ q(x)]→ ∃x p(x) ∧ ∃x q(x) valid? Is it’s converse valid?

3. [common ones] If r does not involve x, then establish the following assertions.

(a) ¬∀x p(x) ≡ ∃x¬p(x); ¬∃x p(x) ≡ ∀x¬p(x)
(b) ∃x

(
p(x) ∨ q(x)

)
≡ ∃x p(x) ∨ ∃x q(x); ∃x

(
p(x) ∧ q(x)

)
⇒ ∃x p(x) ∧ ∃x q(x).

(c) ∀x
(
p(x) ∧ q(x)

)
≡ ∀x p(x) ∧ ∀x q(x); ∀x

(
p(x) ∨ q(x)

)
⇐ ∀x p(x) ∨ ∀x q(x).

(d) ∀x
(
r ∨ q(x)

)
≡ r ∨ ∀x q(x); ∀x

(
r → q(x)

)
≡ r → ∀x q(x)

(e) ∃x
(
r ∧ q(x)

)
≡ r ∧ ∃x q(x); ∃x

(
r → q(x)

)
≡ r → ∃x q(x).

(f) ∀x p(x)→ r ≡ ∃x
(
p(x)→ r

)
; ∃x p(x)→ r ≡ ∀x

(
p(x)→ r

)
.

4. Translate and check for validity of the following arguments.

(a) Recall that the decimal representation of a rational number either terminates or begins

to repeat the same finite sequence of digits, whereas that of an irrational number

neither terminates nor repeats. The square root of a natural number either has a

decimal representation which is terminating or has a decimal representation which

is non-terminating and non-repeating. The square root of all natural numbers which

are squares have terminating decimal representation. Therefore, the square root of a

natural number which is not a square is an irrational number.

(b) For any two algebraic numbers a and b, a 6= 0, 1 and b irrational, we have that ab

is transcendental. The number i (imaginary unit) is irrational and algebraic. The

number i is not equal to 0 or 1. Therefore, the number ii is transcendental.

5. (a) Give an interpretation to show that ∀x
(

r(x)→ ∃y
(
r(y) ∧ p(x, y)

))

is not valid.
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(b) Give an interpretation to show the incorrectness of ∀x
(
p(x)→ q(x)

)
⇒ ∃x

(
¬p(x)→

¬q(x)
)
.

6. Write a formal statement taking UD:= all students in all IIT’s in India, for the following.

‘For each student in IITG there is a student in IITG with more CPI.’

7. Let UD= R, p(x): x is an integer, and q(x): x is a rational number. Translate the

following statements into English.

(a) ∀x
(
p(x)→ q(x)

)

(b) ∃x
(
¬p(x) ∧ q(x)

)

(c) ∀x
(
p(x) ∧ (x > 2)

)
→ ∀x

(
q(x) ∧ (x < 2)

)

(d) ∃ǫ > 0
(

∀δ > 0(0 < |x− a| < δ → |f(x)− l| < ǫ)
)

8. Take the most general UD. Check whether the following conclusion is valid or not.

Each student writes the exam using blue ink or black ink. A student who writes the exam

using black ink and does not write his/her roll number gets an F grade. A student who

writes the exam using blue ink and does not have his/her ID card gets an F grade. A

student who has his/her ID card has written the exam with black ink. Therefore, a student

who passes the exam must have written his roll number.

Ans: Let S(x) : x is a student, B(x) : x writes the exam using blue ink, Bl(x) : x writes

the exam using black ink, R(x) : x writes his/her roll number, I(x) : x has his/her ID

card, F (x) : x gets an F grade. We have to determine, whether the following conclusion

is valid. (Continue.)



Chapter 5

Lattices and Boolean Algebra

5.1 Lattices

Discussion 5.1.1. In a poset, is it necessary that two elements x, y should have a common

upper bound?

Ans: No. Take [6] with ‘divides’ partial order. The elements 5 and 3 have no common upper

bound.

In a poset, if a pair {x, y} has at least one upper bound, is it necessary that {x, y} should have

a lub?

Ans: No. Consider the third poset described by it’s Hasse diagram in Figure 5.1. Then, the

pair {a, b} has c, d as upper bounds, but there is no lub of {a, b}.
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a distributive lattice
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a non-distributive lattice

b

b

b

b

b

b

b

ba

c

b

d

a c

b

not a lattice

Figure 5.1: Hasse diagrams

Definition 5.1.2. [Lattice]

1. A poset (L,≤) is called a lattice if each pair x, y ∈ L has a lub denoted ‘x ∨ y’ and a glb

denoted ‘x ∧ y’.

2. A lattice is called a distributive lattice if it satisfies the following two properties.

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

}

distributive laws

Example 5.1.3. 1. Let L = {0, 1} ⊆ Z and define a ∨ b = max{a, b} and a ∧ b = min{a, b}.
Then, L is a chain as well as a distributive lattice.

77
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2. The set N with usual order and ∨ := max and ∧ := min is a distributive lattice. We

consider two cases to verify that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). The second distributive

identity is left as an exercise for the reader.

(a) Case 1: a ≥ min{b, c}. Then, either a ≥ b or a ≥ c, say a ≥ b. Hence,

a ∨ (b ∧ c) = max{a,min{b, c}}
= a = min{max{a, b} = a,max{a, c} ≥ a} = (a ∨ b) ∧ (a ∨ c).

(b) Case 2: a < min{b, c}. Then, a < b and a < c. Hence,

a ∨ (b ∧ c) = max{a,min{b, c}}
= min{b, c} = min{max{a, b} = b,max{a, c} = c} = (a ∨ b) ∧ (a ∨ c).

3. Prove that the first figure in Figure 5.1 is a distributive lattice.

4. Prove that the second figure in Figure 5.1 is a lattice but not a distributive lattice.

5. Let S = {a, b, c}. On P(S), we define A ∨ B = A∪B and A ∧ B = A ∩ B. Then, it can

be easily verified that P(S) is a lattice.

6. Fix a positive integer n and let D(n) denote the poset obtained using the ‘divides’ partial

order with ∨ := lcm and ∧ := gcd. Then, prove that D(n) is a distributive lattice. For

example, for n = 12, 30 and 36, the corresponding lattices are shown below.
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Exercise 5.1.4. 1. Fix a prime p and a positive integer n. Draw the Hasse diagram of

D(pn). Does this correspond to a chain? Give reasons for your answer.

2. Let n be a positive integer. Then, prove that D(n) is a chain if and only if n = pm, for

some prime p and a positive integer m.

3. Let (X, f) be a nonempty chain with ∨ := lub and ∧ := glb. Is it a distributive lattice?

Proposition 5.1.5. [properties of a lattice] Let (L,≤) be a lattice. Then, the following

statements are true.

(a) The operations ∨ and ∧ are idempotent, i.e., ‘lub{a, a} = a and glb{a, a} = a’.

(b) ∨ commutative (so is ∧).

(c) ∨ is associative (so is ∧).
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(d) a ∧ (a ∨ b) = a = a ∨ (a ∧ b) [absorption] , i.e., ‘ glb{a, lub{a, b}} = a = lub{a, glb{a, b}}′.

(e) a ≤ b⇔ a ∨ b = b⇔ a ∧ b = a.

(f) b ≤ c⇒ {a ∨ b ≤ a ∨ c, a ∧ b ≤ a ∧ c} [isotonicity] .

(f1) {a ≤ b, c ≤ d} ⇒ {a ∨ c ≤ b ∨ d, a ∧ c ≤ b ∧ d}.

(g) a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c) [distributive inequalities] .

(h) a ≤ c⇔ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c [modular inequality] .

Proof. We prove only a few parts. The rest are left for the reader.

(c) Let d = a ∨ (b ∨ c). Then, d is the lub of {a, b ∨ c}. Thus, d is an upper bound of both

{a, b} and {a, c}. So, d ≥ a ∨ b and d ≥ a ∨ c. Therefore, d ≥ a ∨ b and d ≥ c and hence

d an upper bound of {a ∨ b, c}. So, d is greater or equals to the lub of {a ∨ b, c}, i.e.,
d ≥ (a ∨ b) ∨ c. Thus, the first part of the result follows.

(e) Let a ≤ b. As b is an upper bound of {a, b}, we have a∨ b = lub{a, b} ≤ b. Also, a∨ b is an
upper bound of {a, b} and hence a ∨ b ≥ b. So, we get a∨ b = b. Conversely, let a ∨ b = b.

As a ∨ b is an upper bound of {a, b}, we have a ≤ a ∨ b = b. Thus, the first part of the

result follows.

(f) Let b ≤ c. Note that a ∨ c ≥ a and a ∨ c ≥ c ≥ b. So, a ∨ c is an upper bound for {a, b}.
Thus, a ∨ c ≥ lub{a, b} = a ∨ b and hence the prove of the first part is over.

(f1) Using isotonicity, we have a ∨ c ≤ b∨ c ≤ b∨ d. Similarly, using isotonicity again, we have

a ∧ c ≤ b ∧ c ≤ b ∧ d.

(g) Note that a ≤ a ∨ b and a ≤ a ∨ c. Thus, a = a ∧ a ≤ (a ∨ b) ∧ (a ∨ c). As b ≤ a ∨ b and

c ≤ a ∨ c, we get b ∧ c ≤ (a ∨ b) ∧ (a ∨ c). Now using (f1), we obtain the required result,

i.e., a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c).

(h) Let a ≤ c. Then, a ∨ c = c and hence by the ‘distributive inequality’, we have a ∨ (b ∧
c) ≤ (a ∨ b) ∧ (a ∨ c) = (a ∨ b) ∧ c. Conversely, let a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c. Then,

a ≤ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c ≤ c and the required result follows.

Practice 5.1.6. Show that in a lattice one distributive equality implies the other.

Definition 5.1.7. If (Li,≤i), i = 1, 2 are lattices with ∨ := lub and ∧ := glb. Then, (L1×L2,≤)
is a poset with a = (a1, a2) ≤ (b1, b2) = b if a1 ≤1 b1 and a2 ≤2 b2, that is, if b dominates a

entrywise. In this case, we see that a ∨ b = (a1 ∨1 b1, a2 ∨2 b2) and a ∧ b = (a1 ∧1 b1, a2 ∧2 b2).
Thus (L1 × L2,≤) is a lattice, called the direct product of (Li,≤i), for i = 1, 2.

Example 5.1.8. 1. Consider L = {0, 1} with usual order. The set of all binary strings Ln

of length n is a poset with the order (a1, . . . , an) ≤ (b1, . . . , bn) if ai ≤ bi, ∀i. This is the

n-fold direct product of L. It is called the lattice of n-tuples of 0 and 1.

2. Consider the lattices [3] and [4] with usual orders. Hasse diagram of the direct product

[3]× [4] is given below.



80 CHAPTER 5. LATTICES AND BOOLEAN ALGEBRA

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(1, 1)

(3, 1)

(3, 4)

(1, 4)

b

b

b

b

b

b

Practice 5.1.9. Consider N with the usual order. The lattice order defined on N2 as a direct

product is different from the lexicographic order on N2. Draw pictures for all (a, b) ≤ (5, 6) in

both the orders to see the argument.

Proposition 5.1.10. The direct product of two distributive lattices is a distributive lattice.

Proof. The direct product of two lattices is a lattice by definition. Note that

[(a1, b1) ∨ (a2, b2)] ∧ (a3, b3) = (a1 ∨ a2, b1 ∨ b2) ∧ (a3, b3)

=
(

(a1 ∨ a2) ∧ a3, (b1 ∨ b2) ∧ b3

)

=
(

(a1 ∧ a3) ∨ (a2 ∧ a3), (b1 ∧ b3) ∨ (b2 ∧ b3)
)

=
(

(a1 ∧ a3), (b1 ∧ b3)
)

∨
(

(a2 ∧ a3), (b2 ∧ b3)
)

=
(

(a1, b1) ∧ (a3, b3)
)

∨
(

(a2, b2) ∧ (a3, b3)
)

Definition 5.1.11. Let (Li,≤i), i = 1, 2 be two lattices. A function f : L1 → L2 satisfying

f(a ∨1 b) = f(a) ∨2 f(b) and f(a ∧1 b) = f(a) ∧2 f(b) is called a lattice homomorphism.

Furthermore, if f is a bijection, then it is called a lattice isomorphism.

Example 5.1.12. 1. Let D be the set of all words in our English dictionary with ‘dictionary

ordering’. Then, prove that D is a lattice. Now, consider the set S of all words in D

which are of length at most six or first-part-words of length six. Note that S is a lattice

again. Define f : D → S as f(d) = d if d has length at most six, otherwise f(d) is the

first-part-word of length 6 of d. Then, f is a homomorphism. It is not an isomorphism as

f(stupid) = f(stupidity).

2. Consider the lattice N with usual order. Let S = {0, 1, 2} with usual order. Let f : N→ S

be a homomorphism. If f(m) = 0 and f(n) = 1, then m ≤ n, or else, we have

0 = f(m) = f(m ∨ n) 6= f(m) ∨ f(n) = 0 ∨ 1 = 1.

Thus, the map f must have one of the following forms. Draw pictures to understand this.

(a) f−1(0) = N.

(b) f−1(0) = [k] and f−1(1) = {k + 1, . . .}.
(c) f−1(0) = [k], f−1(1) = [r] \ [k] and f−1(2) = N \ [r + k].
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Definition 5.1.13. A lattice (L,≤) is complete if ∨A (lub of A) and ∧A (glb of A) exist in

L, for each nonempty subset A of L.

Example 5.1.14. 1. Verify that every finite lattice is complete.

2. Every complete lattice has a least element 0 and a greatest element 1. Any lattice with

these two elements is called a bounded lattice.

3. The set [0, 5] with usual order is a bounded and complete lattice. So, is the set [0, 1)∪[2, 3].

4. The set (0, 5] is a lattice which is neither bounded nor complete.

5. The set [0, 1) ∪ (2, 3] is a bounded lattice, though not complete.

6. The set R with usual order is a lattice. It is not complete in the lattice ‘sense’. It is

‘conditionally complete’, that is, for every bounded nonempty subset glb and lub exist.

Can you think of a reason which implies the importance of the condition ‘non-emptiness’?
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7. Fix n ∈ N and let p1, p2, . . . , pn be n distinct primes. Prove that the lattice D(N), for

N = p1p2 · · · pn is isomorphic to the lattice Ln (the lattice of n-tuples of 0 and 1) and to

the lattice P(S), where S = {1, 2, . . . , n}. The Hasse diagram for n = 3 is shown above.

Definition 5.1.15. [Complement] Let (L,≤) be a bounded lattice. Then, a complement of

b ∈ L is an element (if it exists) c ∈ L such that b ∨ c = 1 and b ∧ c = 0. The lattice is called

complemented if every element has at least one complement. We shall use ¬b to denote b, a

complement of b.

Example 5.1.16. 1. The interval [0, 1] with usual ordering is a distributive lattice but not

complemented.

2. Verify the captions of the two figures given below. Also, compute ¬0,¬a,¬b,¬c, and ¬1.

b

b

b

b

b

b

b

a

0

b c

1

Complemented but NOT distributive

b

b

b

b

b

b

0

1

f

Distributive but NOT complemented
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Discussion 5.1.17. [The comparison table] Let (L,≤) be a lattice and let a, b, c ∈ L. Then,

the following table lists the properties that hold (make sense) in the specified type of lattices.

Properties Lattice type

∨, ∧ are idempotent any lattice

∨, ∧ are commutative any lattice

∨, ∧ are associative any lattice

[absorption] a ∧ (a ∨ b) = a = a ∨ (a ∧ b) any lattice

a ≤ b⇔ a ∧ b = a⇔ a ∨ b = b any lattice

[isotonicity] b ≤ c⇒ {a ∨ b ≤ a ∨ c, a ∧ b ≤ a ∧ c} any lattice

[distributive inequalities]
a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c)

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c)
any lattice

[modular inequality] a ≤ c⇔ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c any lattice

0 is unique; 1 is unique bounded lattice !!

if a is a complement of b, then b is also a complement of a bounded lattice !!

¬0 is unique and it is 1; ¬1 is unique and it is 0 bounded lattice !!

an element a has a unique complement distributive complemented lattice !!

[cancellation]

{

a ∨ c = b ∨ c, a ∨ ¬c = b ∨ ¬c
}

⇒ a = b
{

a ∧ c = b ∧ c, a ∧ ¬c = b ∧ ¬c
}

⇒ a = b
distributive complemented lattice

[DeMorgan]
¬(a ∨ b) = ¬a ∧ ¬b
¬(a ∧ b) = ¬a ∨ ¬b

distributive complemented lattice

a ∨ ¬b = 1⇔ a ∨ b = a

a ∧ ¬b = 0⇔ a ∧ b = a
distributive complemented lattice

Proof. We will only prove the properties that appear in the last three rows. The other properties

are left as an exercise for the reader. To prove the cancellation property, note that

b = b ∨ 0 = b ∨ (c ∧ ¬c) = (b ∨ c) ∧ (b ∨ ¬c) = (a ∨ c) ∧ (a ∨ ¬c) = a ∨ (c∧ 6= c) = a ∨ 0 = a

and

b = b ∧ 1 = b ∧ (c ∨ ¬c) = (b ∧ c) ∨ (b ∧ ¬c) = (a ∧ c) ∨ (a ∧ ¬c) = a ∧ (c ∨ ¬c) = a ∧ 1 = a.

To prove the DeMorgan’s property, note that

(a ∨ b) ∨ (¬a ∧ ¬b) = (a ∨ b ∨ ¬a) ∧ (a ∨ b ∨ ¬b) = 1 ∧ 1 = 1,

and

(a ∨ b) ∧ (¬a ∧ ¬b) = (a ∧ ¬a ∧ ¬b) ∨ (b ∧ ¬a ∧ ¬b) = 0 ∨ 0 = 0.

Hence, by Definition 5.1.15, we get ¬(a∨ b) = ¬a∧¬b. Similarly, note that (a∧ b)∨ (¬a∨¬b) =
(a∨¬a∨¬b)∧(b∨¬a∨¬b) = 1∧1 = 1 and (a∧b)∧(¬a∨¬b) = (a∧b∧¬a)∨(a∧b∧¬b) = 0∧0 = 0.
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Thus, by Definition 5.1.15, we again get ¬(a∧ b) = (¬a∨¬b). To prove the next assertion, note

that if a ∨ ¬b = 1, then

a = a ∨ (b ∧ ¬b) = (a ∨ b) ∧ (a ∨ ¬b) = (a ∨ b) ∧ 1 = a ∨ b.

Conversely, if a = a ∨ b, then a ∨ ¬b = (a ∨ b) ∨ ¬b = 1. On similar lines, one completes the

proof of the second part and is left as an exercise for the reader.

Exercise 5.1.18. 1. Prove that every linearly ordered set is distributive.

2. Draw the Hasse diagrams of [3]× [4] with dictionary order and the lattice order ((m,n) ≤
(p, q) if m ≤ p and n ≤ q).

3. Give a partial order on N to make it a bounded lattice. You may draw Hasse diagram

representing it.

4. Does there exist a partial order on N for which each nonempty subset has finitely many (at

least one) upper bounds and finitely many (at least one) lower bounds?

5. Consider the lattice N2 with lexicographic order. Is it isomorphic to the direct product of

(N,≤) with itself, where ≤ is the usual order?

6. Show that {0, 1, 2, . . .} is a complete lattice under divisibility relation (allow (0, 0) in the

relation). Characterize those sets A for which ∨A = 0.

7. Draw as many Hasse diagrams of non-isomorphic lattices of size 6 as you can.

8. Is the lattice [2]× [2]× [2]× [2] isomorphic to [4]× [4]?

9. Prove/Disprove: If L is a lattice which is not complete, then L ≥ N .

10. Draw the Hasse diagram of a finite complemented lattice which is not distributive.

11. How many lattice homomorphisms are there from [2] to [9]?

5.2 Boolean Algebras

Definition 5.2.1. [Boolean algebra] A Boolean algebra is a set S which is closed under the

binary operations ∨ (called the join) and ∧ (called the meet) and for each x, y, z ∈ S, satisfies

the following properties.

1. x ∨ y = y ∨ x, x ∧ y = y ∧ x [commutative] .

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) [distributive] .

3. ∃ 0,1 ∈ S such that x ∨ 0 = x, x ∧ 1 = x [identity elements] .

4. For each x ∈ S, ∃ y ∈ S such that x ∨ y = 1 and x ∧ y = 0 [inverse] .

Proposition 5.2.2. Let S be a Boolean algebra. Then, the following statements are true.

1. Elements 0 and 1 are unique.

2. For each s ∈ S, ¬s is unique. Therefore, for each x ∈ S, ¬x is called the inverse of x.

3. If y is the inverse of x, then x is the inverse of y. That is, x = ¬(¬x).
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Proof.

1. Let 01 and 02 be two such elements. Then, 01 ∨ x = x and x = x ∨ 02, for all x ∈ S.

Hence, 01 = 01 ∨ 02 = 02. Thus, the required result follows. A similar argument implies

that 1 is unique.

2. Suppose there exists t, r ∈ S such that s ∨ t = 1, s ∧ t = 0, s ∨ r = 1 and s ∧ r = 0. Then,

t = t∧1 = t∧(s∨r) = (t∧s)∨(t∧r) = 0∨(t∧r) = (s∧r)∨(t∧r) = (s∨ t)∧r = 1∧r = r.

3. It directly follows from the definition of ‘inverse’.

Example 5.2.3. 1. Let S 6= ∅. Then, P (S) is a Boolean algebra with ∨ = ∪, ∧ = ∩,
¬A = Ac, 0 = ∅ and 1 = S. So, we have Boolean algebras of finite size as well as of

uncountable size.

2. Take S = {n ∈ N : n|30} with a ∨ b = lcm(a, b), a ∧ b = gcd(a, b), ¬a = 30
a , 0 = 1 and

1 = 30. It is a Boolean algebra.

3. Let B = {T, F} with 0 = F , 1 = T and with usual ∨,∧,¬. It is a Boolean algebra.

4. Let B be the set of all truth functions involving the variables p1, . . . , pn, with usual ∨,∧,¬.
Take 0 = F and 1 = T. This is the free Boolean algebra on the generators p1, . . . , pn.

5. The class of finite length formulae involving variables p1, p2, . . . is a countable infinite

Boolean algebra with usual operations.

Observation.

The rules of Boolean algebra treat (∨,0) and (∧,1) equally. Notice that the second part

of the rules in Definition 5.2.1 can be obtained by replacing ∨ with ∧ and 0 with 1. Thus,

any statement that one can derive from these rules has a dual version which is derivable

from the rules. This is called the principle of duality.

Theorem 5.2.4. [Rules] Let (S,∨,∧,¬) be a Boolean algebra. Then, the following rules, as

well as their dual, hold true.

1. ¬0 = 1.

2. For each s ∈ S, s ∨ s = s [idempotence] .

3. For each s ∈ S, s ∨ 1 = 1.

4. For each s, t ∈ S, s ∨ (s ∧ t) = s [absorption] .

5. If s ∨ t = r ∨ t and s ∨ ¬t = r ∨ ¬t, then s = r [cancellation] .

6. (s ∨ t) ∨ r = s ∨ (t ∨ r) [associative] .

Proof. We give the proof of the first part of each item and that of its dual is left for the reader.

1. 1 = 0 ∨ (¬0) = ¬0.

2. s = s ∨ 0 = s ∨ (s ∧ ¬s) = (s ∨ s) ∧ (s ∨ ¬s) = (s ∨ s) ∧ 1 = (s ∨ s).
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3. 1 = s ∨ ¬s = s ∨ (¬s ∧ 1) = (s ∨ ¬s) ∧ (s ∨ 1) = 1 ∧ (s ∨ 1) = s ∨ 1.

4. s ∨ (s ∧ t) = (s ∧ 1) ∨ (s ∧ t) = s ∧ (1 ∨ t) = s ∧ 1 = s.

5. s = s ∨ 0 = s ∨ (t ∧ ¬t) = (s ∨ t) ∧ (s ∨ ¬t) = (r ∨ t) ∧ (r ∨ ¬t) = r ∨ (t ∧ ¬t) = r ∨ 0 = r.

6. We will prove it using absorption and cancellation. Using absorption, (s ∨ t) ∧ s = s and

s ∨ (r ∧ s) = s. Thus,
(
(s ∨ t) ∨ r

)
∧ s =

(
(s ∨ t) ∧ s

)
∨ (r ∧ s) = s ∨ (r ∧ s) = s. Using

absorption, we also have
(
s ∨ (t ∨ r)

)
∧ s = s and hence

(
s ∨ (t ∨ r)

)
∧ s =

(
(s ∨ t) ∨ r

)
∧ s.

Now, we see that [s ∨ (t ∨ r)] ∧ ¬s = 0 ∨ [(t ∨ r) ∧ ¬s] = (t ∧ ¬s) ∨ (r ∧ ¬s) and on similar

lines, [(s ∨ t) ∨ r] ∧ ¬s = (t ∧ ¬s) ∨ (r ∧ ¬s). Thus, we again have

(
s ∨ (t ∨ r)

)
∧ ¬s =

(
(s ∨ t) ∨ r

)
∧ ¬s.

Hence, applying the cancellation property, the required result follows.

Example 5.2.5. Let (L,≤) be a distributive complemented lattice. Then, by Definition 5.1.2,

L has two binary operations ∨ and ∧ and by Definition 5.1.15, the operation ¬x. It can be

easily verified that (L,∨,∧,¬) is a indeed a Boolean algebra.

Now, let (B,∨,∧,¬) be a Boolean algebra. Then, for any two elements a, b ∈ B, we define

a ≤ b if a ∧ b = a. The next result shows that ≤ is a partial order in B. This partial order is

generally called the induced partial order. Thus, we see that the Boolean algebra B, with

the induced partial order, is a distributive complemented lattice.

Theorem 5.2.6. Let (B,∨,∧,¬) be a Boolean algebra. Define, a ≤ b if a ∧ b = a. Then, ≤ is

a partial order on B. Furthermore, a ∨ b = lub{a, b} and a ∧ b = glb{a, b}.

Proof. We first verify that (B,≤) is indeed a partial order.

Reflexive: By idempotence, s ≤ s and hence ≤ is reflexive.

Antisymmetry: Let s ≤ t and t ≤ s. Then, we have s = s ∧ t = t.

Transitive: Let s ≤ t and t ≤ r. Then, using associativity, s∧r = (s∧t)∧r = s∧(t∧r) = s∧t = s

and thus, s ≤ r.

Now, we show that a ∨ b = lub{a, b}. Since B is a Boolean algebra, using absorption, we get

(a ∨ b) ∧ a = a and hence a ≤ a ∨ b. Similarly, b ≤ a ∨ b. So, a ∨ b is an upper bound for {a, b}.
Now, let x be any upper bound for {a, b}. Then, by distributive property, (a ∨ b) ∧ x =

(a ∧ x) ∨ (b ∧ x) = a ∨ b. So, a ∨ b ≤ x. Thus, a ∨ b is the lub of {a, b}. The rest of the proof is

similar and hence is left for the reader.

Thus, we observe that there is one-to-one correspondence between the set of Boolean Algebras

and the set of distributive complemented lattice.

Definition 5.2.7. [Atom] Let B be a Boolean algebra. If there exists a b ∈ B, b 6= 0 such that

b is a minimal element in B, then b is called an atom.

Example 5.2.8. 1. In the powerset Boolean algebra, singleton sets are the only atoms.
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2. Atoms of the ‘divides 30’ Boolean algebra are 2, 3 and 5.

3. The {F, T} Boolean algebra has only one atom, namely T .

Exercise 5.2.9. 1. Determine the atoms of the free Boolean algebra with generators p1, . . . , pn?

2. Is it necessary that every Boolean algebra has at least one atom?

Definition 5.2.10. [Boolean homomorphism] Let B1 and B2 be two Boolean algebras. A

function f : B1 → B2 is a Boolean homomorphism if it preserves 0, 1, ∨, ∧, and ¬. That is,

f(01) = 02, f(11) = 12, f(a ∨ b) = f(a) ∨ f(b), f(a ∧ b) = f(a) ∧ f(b), and f(¬a) = ¬f(a).

A Boolean isomorphism is a Boolean homomorphism which is a bijection.

Exercise 5.2.11. Let B1 and B2 be two Boolean algebras and let f : B1 → B2 be a function

that satisfies the four conditions f(01) = 02, f(11) = 12, f(a∨ b) = f(a)∨ f(b) and f(a∧ b) =
f(a) ∧ f(b). Then, prove that f also satisfies the fifth condition, namely f(¬a) = ¬f(a).

Example 5.2.12. The function f : P (J4) → P (J3) defined as f(S) = S \ {4} is a Boolean

homomorphism. We check just two properties and the rest is left as an exercise.

f(A ∨B) = f(A ∪B) = (A ∪B) \ {4} = (A \ {4}) ∪ (B \ {4}) = f(A) ∨ f(B).

f(11) = f(J4) = J4 \ {4} = J3 = 12.

Proposition 5.2.13. Let B be a Boolean algebra and p, q be two distinct atoms. Then, p∧q = 0.

Proof. Suppose that p ∧ q 6= 0. As p ∧ q ≤ p and p is an atom, we must have p ∧ q = p, i.e.,

q ≤ p. As p 6= q and q is an atom, it follows that p cannot be an atom.

Proposition 5.2.14. Let B be a Boolean algebra with three distinct atoms p, q and r. Then,

p ∨ q 6= p ∨ q ∨ r.

Proof. Let if possible p ∨ q = p ∨ q ∨ r. Then, we have

r = r ∨ 0 = r ∨ [(p ∨ q) ∧ ¬(p ∨ q)] = [r ∨ p ∨ q] ∧ [r ∨ ¬(p ∨ q)] = [p ∨ q] ∧ [r ∨ ¬(p ∨ q)]

= [(p ∨ q) ∧ r] ∨ [(p ∨ q) ∧ ¬(p ∨ q)] = (p ∨ q) ∧ r = (p ∧ r) ∨ (q ∧ r) = 0 ∨ 0 = 0,

a contradiction to r being an atom, i.e., r is nonzero.

Example 5.2.15. Let B be a Boolean algebra having distinct atoms A = {p, q, r}. Then, B

has at least 23 elements.

To show this, we define f : P(A) → B by f(∅) = 0 and for S ⊆ A, f(S) =
∨

x∈S
x and claim

that f is a one-one function.

Suppose f(S) = f(T ). Then, f(S) = f(S) ∨ f(T ) = f(S ∪ T ). In view of Proposition 5.2.14,

we have S = S∪T , i.e., T ⊆ S. Similarly, as f(T ) = f(T ∪S), we have S ⊆ T and hence S = T .

Thus, f is a one-one function. Therefore, f(S) is distinct, for each subset of A and thus B has

at least 23 elements.
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Theorem 5.2.16. Let B be a Boolean algebra having distinct atoms A = {p, q, r, s}. Let b ∈ B,

b 6= 0. Suppose that S = {atoms x : x ≤ b} = {p, q, r}. Then, b = p ∨ q ∨ r.

Proof. It is clear that p ∨ q ∨ r ≤ b. Suppose that p ∨ q ∨ r < b. Then,

b = b∧ [(p∨ q∨ r)∨¬(p∨q∨r)] = [b∧ (p∨ q∨ r)]∨ [b∧¬(p∨q∨r)] = (p∨ q∨ r)∨ [b∧¬(p∨q∨ r)].

Therefore, the above equality implies that [b ∧ ¬(p ∨ q ∨ r)] 6= 0. So, there is an atom, say x,

such that x ≤ b ∧ ¬(p ∨ q ∨ r). Thus, we have x ≤ b and x ≤ ¬(p ∨ q ∨ r).

Notice that if x ≤ (p ∨ q ∨ r), then x ≤ 0, which is not possible. So, x 6= p, q, r is an atom in

S, a contradiction.

Theorem 5.2.17. [Representation] Let B be a finite Boolean algebra. Then, there exists a

set X such that B is isomorphic to P(X).

Proof. Put X = {atoms of B}. Note that X 6= ∅. Define f : B → P(X) by f(b) = {atoms ≤ b}.
We show that f is the required Boolean isomorphism.

Injection: Let b1 6= b2. Then, either b1 � b2 or b2 � b1. Without loss of generality, let b1 � b2.

[Now imagine the power set Boolean algebra. Saying b1 � b2 is the same as b1 * b2. In that case,

we have an element in b1 which is not in b2. That is, b1 ∩ bc2 6= ∅. That is, there is a singleton

subset of b1 ∩ bc2. This is exactly what we are aiming for, i.e., to prove that b1 ∧ ¬b2 6= 0.] Note

that b1 = b1∧ (b2∨¬b2) = (b1∧b2)∨ (b1∧¬b2). Also, the assumption b1 � b2 implies b1∧b2 6= b1

and hence b1 ∧ ¬b2 6= 0. So, there exists an atom x ≤ (b1 ∧ ¬b2) and hence x = x ∧ b1 ∧ ¬b2.
Therefore,

x ∧ b1 = (x ∧ b1 ∧ ¬b2) ∧ b1 = x ∧ b1 ∧ ¬b2 = x.

Thus, x ≤ b1. Similarly, x ≤ ¬b2. As x 6= 0, we cannot have x ≤ b2 (the condition x ≤ ¬b2 and

x ≤ b2 implies x ≤ b2 ∧ ¬b2 = 0). Thus, f(b1) 6= f(b2).

Surjection: Let A = {x1, . . . , xk} ⊆ X and put b = x1 ∨ · · · ∨ xk (if k = 0, then b = 0). Clearly,

A ⊆ f(b). Need to show: A = f(b). So, let y ∈ f(b), i.e., y is an atom in B and

y = y ∧ b = y ∧ (x1 ∨ · · · ∨ xk) = (y ∧ x1) ∨ · · · ∨ (y ∧ xk).

Since y 6= 0, by Proposition 5.2.13, it follows that y ∧ xi0 6= 0, for some i0 ∈ {1, 2, . . . , k}. As

xi0 and y are atoms, we have y = y ∧ xi = xi and hence y ∈ A. Thus, f is a surjection.

Preserving 0,1: Clearly f(0) = ∅ and f(1) = X.

Preserving ∨,∧: By definition,

x ∈ f(b1 ∧ b2) ⇔ x ≤ b1 ∧ b2 ⇔ x ≤ b1 and x ≤ b2

⇔ x ∈ f(b1) and x ∈ f(b2)⇔ x ∈ f(b1)∩ f(b2).

Now, let x ∈ f(b1∨b2). Then, by definition, x = x∧(b1∨b2) = (x∧b1)∨(x∧b2). So, there exists
i such that x∧ bi 6= 0 (say, x∧ b1). As, x is an atom, x ≤ b1 and hence x ∈ f(b1) ⊆ f(b1)∪f(b2).
Conversely, let x ∈ f(b1) ∪ f(b2). Without loss of generality, let x ∈ f(b1). Thus, x ≤ b1 and

hence x ≤ b1 ∨ b2 which in turn implies that x ∈ f(b1 ∨ b2).

As a direct corollary, we have the following result.
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Corollary 5.2.18. Let B be a finite Boolean algebra having exactly k atoms. Then, B is

isomorphic to P({1, 2, . . . , k}) and hence has exactly 2k elements.

Exercise 5.2.19. 1. Determine the number of elements in a finite Boolean algebra.

2. Supply a Boolean homomorphism f from P (J4) to P (J3) such that the image of P (J4) has

4 elements.

3. Prove/Disprove: The number of Boolean homomorphisms from P (J4) to P (J3) is less than

the number of lattice homomorphisms from P (J4) to P (J3).

4. Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is a

Boolean homomorphism.

5. Consider the class of all functions f : R→ {π, e}. Can we define some operations on this

class to make it a Boolean algebra?

6. Show that a finite Boolean algebra must have at least one atom. Is ‘finite’ necessary?

7. A positive integer is called squarefree if it is not divisible by the square of a prime. Let

Bn = {k ∈ N : k|n}. For a, b ∈ Bn take the operations a ∨ b = lcm(a, b), a ∧ b = gcd(a, b)

and ¬a = n/a. Show that Bn is a Boolean algebra if and only if n > 1 is squarefree.

8. Show that the set of subsets of N which are either finite or have a finite complement is a

countable infinite Boolean algebra. Find the atoms. Is it isomorphic to the Boolean algebra

of all finite length formulae involving variables p1, p2, · · · ?

9. Let B be a Boolean algebra and xi ∈ B, i = 1, 2, . . .. We know that, for each n ∈ N, the

expression ‘
n∨

i=1
xi’ is meaningful in each Boolean algebra due to associativity. Is ‘

∞∨

i=1
xi’

necessarily a meaningful expression?

10. Prove/Disprove: Let f : B1 → B2 be a Boolean homomorphism and a ∈ B1 be an atom.

Then, f(a) is an atom of B2.

11. Fill in the blank: The number of Boolean homomorphisms from P (J4) to P (J3) is .

12. Fill in the blank: The number of Boolean homomorphisms from P (J4) onto P (J3) is .

13. How many atoms does “divides 30030 Boolean algebra” has? How many elements does it

have?

14. If B1 and B2 are Boolean algebras of size k (k > 100), then they must be isomorphic and

there must be more than k isomorphisms between them.

15. Give examples of two countably infinite non-isomorphic Boolean algebras.

16. Give examples of two uncountably infinite non-isomorphic Boolean algebras.



Chapter 6

Counting

Discussion 6.0.1. In the previous chapters, we had learnt that two sets, say A and B, have

the same cardinality if there exists a one-one and onto function f : A→ B. We also learnt the

following two rules of counting which play a basic role in the development of this subject.

1. [Multiplication rule] If a task has n compulsory parts, say A1, A2, . . . , An and the ith

part can be completed in mi = |Ai| ways, i = 1, . . . , n, then the task can be completed in

m1m2 · · ·mn ways. In mathematical terms,

|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · · · |An|.

2. [Addition rule] If a task consists of n alternative parts, say A1, A2, . . . , An, and the ith

part can be done in |Ai| = mi ways, i = 1, . . . , n, then the task can be completed in

m1 +m2 + · · ·+mn ways. In mathematical terms,

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|, whenever Ai ∩Aj 6= ∅, 1 ≤ i < j ≤ n.

Definition 6.0.2. We use the notation n! = 1 · 2 · · · · · n. By convention, we take 0! = 1.

6.1 Permutations and combinations

Example 6.1.1. How many three digit natural numbers can be formed using digits 0, 1, · · · , 9?
Identify the number of parts in the task and the type of the parts (compulsory or alternative).

Which rule applies here?

Ans: The task has three compulsory parts. Part 1: choose a digit for the leftmost place.

Part 2: choose a digit for the middle place. Part 3: choose a digit for the rightmost place.

Multiplication rule applies. Ans: 900.

Example 6.1.2. How many three digit natural numbers with distinct digits can be formed

using digits 1, · · · , 9 such that each digit is odd or each digit is even? Identify the number of

parts in the task and the type of the parts (compulsory or alternative). Which rule applies here?

89
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Ans: The task has two alternative parts. Part 1: form a three digit number with distinct

numbers from {1, 3, 5, 7, 9} using the odd digits. Part 2: form a three digit number with distinct

numbers from {2, 4, 6, 8} using the even digits. Observe that Part 1 is a task having three

compulsory subparts. In view of 6.1.1, we see that Part 1 can be done in 60 ways. Part 2 is a

task having three compulsory subparts. In view of 6.1.1, we see that Part 2 can be done in 24

ways. Since our task has alternative parts, addition rule applies. Ans: 84.

Definition 6.1.3. [r-sequence] An r-sequence of elements of X is a sequence of length r with

elements from X. This may be viewed as a word of length r with alphabets from X or as a

function f : [r]→ X. We write ‘an r-sequence of S’ to mean ‘an r-sequence of elements of S’.

Theorem 6.1.4. [Number of r-sequences] The number of r-sequences of [n] is nr.

Proof. Here the task has r compulsory parts. Choose the first element of the sequence, the

second element and so on.

Exercise 6.1.5. 1. In how many ways can r distinguishable/distinct balls be put into n

distinguishable/distinct boxes?

2. How many distinct ways are there to make a 5 letter word using the ENGLISH alphabet

(a) with no restriction?

(b) with ONLY consonants?

(c) with ONLY vowels?

(d) with a consonant as the first letter and a vowel as the second letter?

(e) if the vowels appear only at odd positions?

3. Determine the total number of possible outcomes if

(a) two coins are tossed?

(b) a coin and a die are tossed?

(c) two dice are tossed?

(d) three dice are tossed?

(e) k dice are tossed, where k ∈ N?

(f) five coins are tossed?

4. How many 5-letter words using only A’s, B’s, C’s, and D’s are there that do not contain

the word “CAD”?

Definition 6.1.6. [r-permutation, n-set] By an n-set, we mean a set containing n elements.

An r-permutation of an n-set S is an arrangement of r distinct elements of S in a row. An

r-permutation may be viewed as a one-one mapping f : [r]→ S. An n-permutation of an n-set

is simply called a permutation.
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Example 6.1.7. How many one-one maps f : [4]→ A = {A,B, . . . , Z} are there?

Ans: The task has 4 compulsory parts: select f(1), select f(2), select f(3) and select f(4).

Note that f(2) cannot be f(1), f(3) cannot be f(1) or f(2) and so on. Now apply the multipli-

cation rule. Ans: 26 · 25 · 24 · 23 = 26!
22! .

Theorem 6.1.8. [Number of r-permutations] The number of r-permutation of an n-set S is

P (n, r) = n!
(n−r)! .

Proof. Let us view an r-permutation as a one-one map from f : [r] → S. Here the task

has r compulsory tasks: select f(1), select f(2), . . ., select f(r) with the condition, for 2 ≤
k ≤ r, f(k) 6∈ {f(1), f(2), . . . , f(k − 1)}. Multiplication rule applies. Hence, the number of

r-permutations equals n(n− 1) · · · (n− r + 1) = n!
(n−r)! .

Definition 6.1.9. By P (n, r), we denote the number of r-permutations of [n]. By convention,

P (n, 0) = 1. Some books use the notation n(r) and call it the falling factorial of n. Thus, if

r > n then P (n, r) = n(r) = 0 and if n = r then P (n, r) = n(r) = n!.

Exercise 6.1.10. 1. How many distinct ways are there to make 5 letter words using the

ENGLISH alphabet if the letters must be different?

2. How many distinct ways are there to arrange the 5 letters of the word ROYAL?

3. Determine the number of ways to place 4 couples in a row if each couple seats together.

4. How many distinct ways can 8 persons, including Ram and Shyam, sit in a row, with Ram

and Shyam sitting next to each other?

Proposition 6.1.11. [principle of disjoint pre-images of equal size] Let A,B be finite sets

and f : A→ B be a function such that for each pair b1, b2 ∈ B we have |f−1(b1)| = k = |f−1(b2)|
(recall that f−1(b1) ∩ f−1(b2) = ∅). Then, |A| = k|B|.

Discussion 6.1.12. Consider the word AABAB. Give subscripts to the three As and the two

Bs and complete the following list. Notice that each of them will give us AABAB if we erase

the subscripts.

A1A2B1A3B2 A1A2B1B2A3 A1A2A3B1B2 A1A2A3B2B1 A1A2B2B1A3

A1A2B2A3B1 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · B2A3B1A1A2 B2A3B1A2A1

Example 6.1.13. How many words of size 5 are there which use three A’s and two B’s?

Ans: Put A = {arrangements of A1, A2, A3, B1, B2} and B = {words of size 5 which use three

A’s and two B’s}. For each arrangement a ∈ A, define f(a) to be the word in B obtained by

erasing the subscripts. Then, the function f : A→ B satisfies:

‘for each b, c ∈ B, b 6= c, we have |f−1(b)| = |f−1(c)| = 3!2! and f−1(b) ∩ f−1(c) = ∅’.

Thus, by Proposition 6.1.11, |B| = |A|
3!2! =

5!
3!2! .
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Remark 6.1.14. Let us fix n, k ∈ N with 0 ≤ k ≤ n and ask the question ‘how many words of

size n are there which uses k many A’s and (n− k) many B’s’?

Ans: Put A = {arrangements of A1A2 . . . AkB1B2 . . . Bn−k} and B = {words of size n which

uses k many A’s and (n− k) many B’s} and proceed as above to get

|B| = |A|
k!(n− k)!

=
n!

k!(n − k)!

as the required answer. Observe that the above argument implies n!
k!(n−k)! ∈ Z. We denote this

number by P (n; k). Note that P (n; k) = P (n;n − k), Also, as per convention, P (n; k) = 0,

whenever k < 0 or n < k.

The above idea is further generalized below.

Definition 6.1.15. A multiset is a collection of objects where an object can appear more than

once. So, a set is a multiset. Note that {a, a, b, c, d} and {a, b, a, c, d} are the same 5-multisets.

Theorem 6.1.16. [Arrangements] Let us fix n, k ∈ N with 1 ≤ k ≤ n and let S be a multiset

containing ni ∈ N objects of i-th type, for i = 1, . . . , k with n =
k∑

i=1
ni. Then, there are

(n1 + · · · + nk)!

n1!n2! · · · nk!
=

n!

n1!n2! · · ·nk!
arrangements of the objects in S.

Proof. Assume that S consists of ni copies of Ai, i = 1, . . . , k. Put

A = {A11, . . . , A1n1 , A21, . . . , A2n2 } and
B = {words of size made using elements of }. For each arrangement a ∈ A,

define f(a) to be the word in B obtained by erasing the right subscripts of the objects of a.

Then, the function f : A→ B satisfies:

‘for each b, c ∈ B, b 6= c, we have |f−1(b)| = |f−1(c)| = and f−1(b) ∩ f−1(c) = ∅’.

Thus, by Proposition 6.1.11, |B| = |A|
n1!···nk!

= (n1+···+nk)!
n1!···nk!

= n!
n1!n2!···nk!

.

Theorem 6.1.17. [Allocation I: distinct locations; identical objects (ni of type i); at most

one per place] Fix a positive integer k and for 1 ≤ i ≤ k, let Gi’s be boxes containing ni ∈ N

identical objects. If the objects in distinct boxes are non-identical and n ≥
k∑

i=1
ni then, the number

of allocations of the objects in n distinct locations l1, . . . , ln, each location receiving at most one

object, is n!
n1!···nk!(n−

∑
ni)!

.

Proof. Consider a new group Gk+1 with nk+1 = n −
k∑

1
ni objects of a new type. Notice that

an allocation of objects from G1, . . . , Gk to n distinct places, where each location receives at

most one object, gives a unique arrangement of elements of G1, . . . , Gk+1.
1 Thus, the number

1Take an allocation of objects from G1, . . . , Gk to n distinct places, where each location receives at most one

object. There are nk+1 locations which are empty. Supply an object from Gk+1 to each of these locations.

We have created an arrangement of elements of G1, . . . , Gk+1. Conversely, take an arrangement of elements of

G1, . . . , Gk+1. View this as an allocation of elements of G1, . . . , Gk+1 to n distinct places. Empty the places which

have received elements from Gk+1. We have created an allocation of elements of G1, . . . , Gk to n distinct places,

where each location receives at most one object.
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of allocations of objects from G1, . . . , Gk to n distinct places, where each location receives at

most one object, is the same as the number of arrangements of elements of G1, . . . , Gk+1. By

Theorem 6.1.16, this number is n!
n1!···nk!(n−

∑
ni)!

.

Definition 6.1.18. Let n, n1, n2, . . . , nk ∈ N. Then, the number
n!

n1! · · · nk!(n −
∑

ni)!
is de-

noted by P (n;n1, . . . , nk). Thus, P (6; 1, 1, 1) = P (6, 3). As a convention, P (n;n1, . . . , nk) = 0

whenever either ni < 0; for some i, 1 ≤ i ≤ k, or
k∑

i=1
ni > n. Many texts use C(n;n1, · · · , nk) to

mean P (n;n1, · · · , nk). We shall interchangeably use them.

Definition 6.1.19. [r-combination] An r-combination of an n-set S is an r-subset of S.

The number of r-subsets of an n-set is denoted by C(n, r). Thus, for any natural number n,

C(n, 0) = C(n, n) = 1.

Theorem 6.1.20. [Combination] C(n, r) = P (n; r) = n!
r!(n−r)! .

Proof. By Theorem 6.1.17, the number of allocations of r identical objects in n distinct places

(p1, . . . , pn) with each place receiving at most 1 is P (n; r). Note that each such allocation A

uniquely corresponds to a r-subset of [n], namely to {i | pi receives an object by A}. Thus,

C(n, r) = P (n; r) = n!
r!(n−r)! .

Example 6.1.21. In how many ways can you allocate 3 identical passes to 10 students so that

each student receives at most one? Ans: C(10, 3)

Theorem 6.1.22. [Pascal] C(n, r) + C(n, r + 1) = C(n+ 1, r + 1).

Proof. By Theorem 6.1.20, C(n, r) = n!
r!(n−r)! . Now verify the above identity to get the result.

Experiment

Complete the following list by filling the left list with all 3-subsets of [5] and the right list

with 3-subsets of [4] as well as with 2-subsets of [4] as shown below.

C(5, 3)







{1, 2, 3}

{2, 3, 4}
{1, 2, 5}

{3, 4, 5}

{1, 2, 3}

{2, 3, 4}







C(4, 3)

{1, 2}

{3, 4}







C(4, 2)

Theorem 6.1.23. [Alternate proof of Pascal’s Theorem 6.1.22] Here we supply a combi-

natorial proof, i.e., ‘by associating the numbers with objects’. Let S = [n + 1] and A be an

(r+1)-subset of S. Then, there are C(n+1, r+1) such sets with either n+1 ∈ A or n+1 6∈ A.

Note that n + 1 ∈ A if and only if A \ {n + 1} is an r-subset of [n]. So, the number of

(r + 1)-subsets of [n+ 1] which contain the element n+ 1 is, by definition, C(n, r).
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Also, n+1 /∈ A if and only if A is an (r+1)-subset of [n]. So, a set A which does not contain

n + 1 can be formed in C(n, r + 1) ways. Hence, an (r + 1)-subset of S can be formed, by

definition, in C(n, r) + C(n, r + 1) ways. Thus, the required result follows.

Experiment

Here we consider subsets of [4]. Complete the following list by using 0’s, 1’s, x’s and y’s,

where x and y are commuting (xy = yx) symbols.

∅ 0000 yyyy = y4

{1} 1000 xyyy = xy3

{2} 0100 yxyy = xy3

{3} 0010 yyxy = xy3

{4} 0001 yyyx = xy3

{1, 2} 1100 xxyy = x2y2

{1, 2, 3, 4} 1111 xxxx = x4

Remark 6.1.24. [Another alternate proof of Pascal’s Theorem 6.1.22] Here we supply

another combinatorial proof. An (r + 1) subset of [n + 1] may be viewed as a string (word)

of size n+ 1 made of (n− r) many 0’s and (r+ 1) many 1’s. The number of such strings which

end with a 1 is C(n, r). The number of such strings which end with a 0 is C(n, r + 1). So, the

required conclusion follows.

Practice 6.1.25. Give a combinatorial proof of C(n, r) = C(n, n− r), whenever n, r ∈ N with

0 ≤ r ≤ n.

Theorem 6.1.26. [Allocation II: distinct locations; distinct objects; ni at place i] The

number of ways of allocating objects o1, . . . , on into pockets p1, . . . , pk so that pocket pi contains

ni objects, is P (n;n1, . . . , nk).

Proof. Task has k compulsory parts: select n1 for pocket p1 and so on. So, the answer is

C(n, n1)C(n− n1, n2) · · ·C(n− n1 − · · · − nk−1, nk) = P (n;n1, . . . , nk).

Alternate. Take an allocation of o1, . . . , on into pockets p1, . . . , pk so that the pocket pi gets

ni objects. This is an allocation of n1 copies of p1, · · · , nk copies of pk into locations o1, . . . , on

where each location gets exactly one. Hence, the answer is P (n;n1, . . . , nk).

Exercise 6.1.27. 1. In a class there are 17 girls and 20 boys. A committee of 5 students is

to be formed to represent the class.

(a) Determine the number of ways of forming the committee consisting of 5 students.
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(b) Suppose the committee also needs to choose two different people from among them-

selves, who will act as “spokesperson” and “treasurer”. In this case, determine the

number of ways of forming a committee consisting of 5 students. Note that two com-

mittees are different if

i. either the members are different, or

ii. even if the members are the same, they have different students as spokesperson

and/or treasurer.

(c) Due to certain restrictions, it was felt that the committee should have at least 3 girls.

In this case, determine the number of ways of forming the committee consisting of 5

students (no one is to be designated as spokesperson and/or treasurer).

2. Combinatorially prove the following identities:

(a) kC(n, k) = nC(n− 1, k − 1).

(b) Newton’s Identity: C(n, r)C(r, k) = C(n, k)C(n− k, r − k).

(c) C(n, r) = C(r, r)C(n− r, 0) + C(r, r − 1)C(n − r, 1) + · · ·+ C(r, 0)C(n − r, r).

(d) C(n, 0)2 +C(n, 1)2 + · · ·+ C(n, n)2 = C(2n, n).

3. Determine the number of ways of selecting a committee of m people from a group consisting

of n1 women and n2 men, with n1 + n2 ≥ m.

4. Determine the number of ways of arranging the letters of the word

(a) ABRACADABARAARCADA.

(b) KAGARTHALAMNAGARTHALAM .

5. How many anagrams of MISSISSIPPI are there so that no two S are adjacent?

6. How many rectangles are there in an n× n square? How many squares are there?

7. Show that a product of n consecutive natural numbers is always divisible by n!.

8. Show that (m!)n divides (mn)!.

9. If n points are placed on the circumference of a circle and all the lines connecting them are

joined, what is the largest number of points of intersection of these lines inside the circle

that can be obtained?

10. Prove that C(pn, pn− n) is a multiple of p in two ways. Hint: Newton’s identity.

11. How many ways are there to form the word MATHEMATICIAN starting from any side

and moving only in horizontal or vertical directions?
M

M A M

M A T A M

M A T H T A M

M A T H E H T A M

M A T H E M E H T A M

M A T H E M A M E H T A M

M A T H E M A T A M E H T A M

M A T H E M A T I T A M E H T A M

M A T H E M A T I C I T A M E H T A M

M A T H E M A T I C I C I T A M E H T A M

M A T H E M A T I C I A I C I T A M E H T A M

M A T H E M A T I C I A N A I C I T A M E H T A M
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12. (a) In how many ways can one arrange n different books in m different boxes kept in a

row, if books inside the boxes are also kept in a row?

(b) What if no box can be empty?

13. Prove by induction that 2n|(n + 1) · · · (2n).

6.1.1 Multinomial theorem

Definition 6.1.28. Let x, y and z be commuting symbols. Then, by an algebraic expansion1

of (x+ y+ z)n we mean an expansion where each term is of the form αxiyjzk so that two terms

differ in the degree of at least one of x, y, or z. By a word expansion2 of (x + y + z)n we

mean an expansion where each term is a word of length n using symbols x, y, z. Expansions for

(x1 + · · ·+ xr)
n, whenever xi’s are commuting symbols, may be defined in a similar way.

Example 6.1.29. 1. x3 + 3xy2 + y3 + 3yx2 is an algebraic expansion of (x + y)3, where as

xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy is a word expansion of (x+ y)3.

2. Take the word expansion of (X+Y +Z)9. A term with exactly two X’s and exactly three

Y ’s is nothing but an arrangement of two X’s, three Y ’s and four Z’s. So, the coefficient

of X2Y 3Z4 in the algebraic expansion of (X + Y + Z)9 is P (9; 2, 3, 4).

3. Consider (x+y+z)n = (x+ y + z) · (x+ y + z) · · · · · (x+ y + z)
︸ ︷︷ ︸

n times

. Then, in this expression,

we need to choose, say

(a) i places from the n possible places for x (i ≥ 0),

(b) j places from the remaining n− i places for y (j ≥ 0), and

(c) the n− i− j left out places for z (with n− i− j ≥ 0).

Thus, we get

(x+ y + z)n =
∑

i,j≥0,i+j≤n

C(n, i)C(n− i, j)xiyjzn−i−j =
∑

i,j≥0,i+j≤n

P (n; i, j)xiyjzn−i−j .

Theorem 6.1.30. [Multinomial Theorem] Fix a positive integer n and let x1, x2, . . . , xn be a

collection of commuting symbols. Then, for n = n1 + · · · + nk, the coefficient of xn1
1 xn2

2 · · · xnk
k

in the algebraic expansion of (x1 + · · · + xk)
n is P (n;n1, · · · , nk). So

(x1 + · · · + xk)
n =

∑

n1, . . . , nk ≥ 0
n1 + · · ·+ nk = n

P (n;n1, · · · , nk) x
n1
1 · · · xnk

k .

Proof. The proof is left as an exercise for the reader.

As a special case, we have the famous binomial theorem.

Corollary 6.1.31. [Binomial Theorem] (x+ y)n =
n∑

k=0

C(n, k)xn−kyk. !!

1Nonstandard notion
2Nonstandard notion
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Example 6.1.32. Form words of size 5 using letters from ‘MATHEMATICIAN’ (including

multiplicity, that is, you may use M at most twice). How many are there?

Ans:
∑

k1+···+k8=5

k1≤2,k2≤3,k3≤2,k4≤1,k5≤1,k6≤2,k7≤1,k8≤1

C(5; k1, · · · , k8).

Exercise 6.1.33. 1. Show that |P([n])| = 2n in the following ways.

(a) By using Binomial Theorem.

(b) By using ‘select a subset is a task with n compulsory parts’.

(c) By associating a subset with a 0-1 string of length n and evaluating their values in

base-2.

(d) Arguing in the line of ‘a subset of [n + 1] either contains n + 1 or not’ and using

induction.

2. Let S be a set of size n. Then, prove in two different ways that the number of subsets

of S of odd size is the same as the number of subsets of S of even size, or equivalently
∑

k≥0

C(n, 2k) =
∑

k≥0

C(n, 2k + 1) = 2n−1.

3. Prove the following identities on Binomial coefficients.

(a)
n∑

k=ℓ

C(k, ℓ)C(n, k) = C(n, ℓ)2n−ℓ.

(b) C(m+ n, ℓ) =
ℓ∑

k=0

C(m,k) C(n, ℓ− k).

(c) C(n, ℓ) =
t∑

k=0

C(t, k) C(n− t, ℓ−k) =
n∑

k=0

C(t, k) C(n− t, ℓ−k), for any t, 0 ≤ t ≤ n.

(d) C(n+ r + 1, r) =
r∑

ℓ=0

C(n+ ℓ, ℓ).

(e) C(n+ 1, r + 1) =
n∑

ℓ=r

C(ℓ, r).

4. Evaluate
n∑

k=0

(2k + 1) C(n, 2k + 1) and
n∑

k=0

(5k + 3) C(n, 2k + 1), whenever n ≥ 3.

5. [Generalized Pascal] Assume that k1 + · · · + km = n. Show that

C(n; k1, . . . , km) = C(n− 1; k1 − 1, . . . , km) + · · ·+ C(n− 1; k1, . . . , km − 1).

6. What is
∑

k1+...+km=n

C(n; k1, . . . , km)?

7. Put l = ⌊m2 ⌋. What is
∑

k1+...+km=n

(−1)k2+k4+···+k2lC(n; k1, . . . , km)?

6.2 Circular permutations

Definition 6.2.1. [Circular permutation/arrangement] A circular permutation is an ar-

rangement of n distinct objects on a circle. Two circular arrangements are the same if each

element has the same ‘clockwise adjacent’ element. When |S| = n, we write ‘a circular arrange-

ment of S’ to mean ‘a circular arrangement of elements of S’. By [x1, x2, . . . , xn, x1] we shall

denote a circular arrangement keeping the anticlockwise direction in picture.
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Example 6.2.2. Exactly two pictures in Figure 6.1 represent the same circular permutation.

A1

A2

A3A4

A5

[A1, A2, A3, A4, A5, A1]

A3

A4

A5A1

A2

A5

A4

A3A2

A1

Figure 6.1: Circular permutations

Example 6.2.3. Determine the number of circular permutations of X = {A1, A2, A3, A4, A5}?
Ans: 4!. Proof. Let B = {circular permutations of X} and A = {permutations of X}.

Now, define f : A → B as f(a) = b if a is obtained by breaking the cycle b at some gap and

then following in the anticlockwise direction. For example, if we break the leftmost circular

permutation in Figure 6.1 at the gap between A and B, we get [A2, A3, A4, A5, A1]. Notice that

|f−1(b)| = 5, for each b ∈ B. Further if b, c ∈ B, then f−1(b) ∩ f−1(c) = ∅ (why?1). Thus, by

the principle of disjoint pre-images of equal size, the number of circular permutations is 5!/5.

Theorem 6.2.4. [circular permutations] The number of circular permutations of [n] is (n−1)!.

Proof. A proof may be obtained on the line of the previous example. Here we give an alternate

proof. Put A = {circular permutations of [5]}. Put B = {permutations of [4]}. Define f :

A → B as f([5, x1, x2, x3, x4, 5]) = [x1, x2, x3, x4]. Define g : B → A as g([x1, x2, x3, x4]) =

[5, x1, x2, x3, x4, 5]. Then, g ◦ f(a) = a, for each a ∈ A and f ◦ g(b) = b, for each b ∈ B. Hence,

by the bijection principle (see Theorem 2.3.8) f is a bijection.

Example 6.2.5. Find the number of circular arrangements of {A,B,B,C,C,D,D,E,E}.
Ans: There is only one A. Cutting A out from a circular arrangement we get a unique

arrangement of {B,B,C,C,D,D,E,E}. So, the required answer is 8!
2!4 .

Definition 6.2.6. [Rotation, Orbit size]

1. Given an arrangement [X1, . . . ,Xn], by a rotationR1([X1, . . . ,Xn]), in shortR1(X1, . . . ,Xn),

we mean [X2, . . . ,Xn,X1] and by R2(X1, . . . ,Xn) we mean [X3, . . . ,Xn,X1,X2]. On sim-

ilar lines, we define Ri, i ∈ N and put R0(X1, . . . ,Xn) = [X1, . . . ,Xn]. Thus, for each

k ∈ N,

R0(X1, . . . ,Xn) = Rkn(X1, . . . ,Xn) = [X1, . . . ,Xn].

2. The orbit size of an arrangement [X1, . . . ,Xn] is the smallest positive integer i which

satisfies Ri(X1, . . . ,Xn) = [X1, . . . ,Xn]. In that case, we call

{

R0(X1, . . . ,Xn), R1(X1, . . . ,Xn), . . . , Ri−1(X1, . . . ,Xn)
}

the orbit of [X1, . . . ,Xn].

1Think of creating the circular permutation from a given permutation.
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Example 6.2.7. 1. We haveR1(ABCABCABC) = [BCABCABCA], R2(ABCABCABC) =

[CABCABCAB] andR3(ABCABCABC) = [ABCABCABC]. Thus, orbit size of ABCABCABC

is 3.

2. An arrangement of S = {A,A,B,B,C,C} with orbit size 6 is [AABCBC]. An arrange-

ment of S with orbit size 3 is [ACBACB].

3. There is no arrangement of {A,A,B,B,C,C} with orbit size 2. In fact, if [X1X2 · · ·X6]

is an arrangement with orbit size 2 then, [X1X2X3X4X5X6] = [X3X4X5X6X1X2]. Thus,

X1 = X3 = X5 which is not possible.

4. There is no arrangement of {A,A,B,B,C,C} with orbit size 1 or 2 or 4 or 5.

5. There are 3! arrangements of {A,A,B,B,C,C} with orbit size 3.

6. Take an arrangement of {A,A,B,B,C,C} with orbit size 3. Make a circular arrangement

by joining the ends. How many distinct arrangements can we generate by breaking the

circular arrangement at gaps?

Ans: 3. They are the elements of the same orbit.

7. Take an arrangement of {A,A,B,B,C,C} with orbit size 6. Make a circular arrangement

by joining the ends. How many distinct arrangements can we generate by breaking the

circular arrangement at gaps?

Ans: 6. They are the elements of the same orbit.

8. Take an arrangement of n elements with orbit size k. Make a circular arrangement by

joining the ends. How many distinct arrangements can we generate by breaking the circular

arrangement at gaps?

Ans: k. They are the elements of the same orbit.

9. If we take the set of all arrangements of a finite multiset and group them into orbits (notice

that each orbit gives us exactly one circular arrangement), then the number of orbits is

the number of circular arrangements.

Example 6.2.8. Find the number of circular arrangements of S = {A,A,B,B,C,C,D,D,E,E}.
Ans: There are two types of arrangements of S: one of orbit size 10 and the other of orbit

size 5. The number of arrangements of S with orbit size 5 is 5!. So, they can generate 4! distinct

circular arrangements. The number of arrangements of S with orbit size 10 is 10!
2!2!2!2!2! − 5!.

Hence, they can generate 10!
2!2!2!2!2!10 − 5!

10 distinct circular arrangements. Thus, the total number

of circular arrangements is 4! + 10!
2!2!2!2!2!10 − 5!

10 .

Example 6.2.9. Suppose, we are given an arrangement [X1, . . . ,X10] of five A’s and five B’s.

Can it have an orbit size 3?

Ans: No. To see this assume that it’s orbit size is 3. Then,

[X1, . . . ,X10] = R3(X1, . . . ,X10) = R6(X1, . . . ,X10) = R9(X1, . . . ,X10) = R2(X1, . . . ,X10).
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Since 3 was the least positive integer with R3(X1, . . . ,X10) = [X1, . . . ,X10], we arrive at a

contradiction. Hence, the orbit size cannot be 3.

Proposition 6.2.10. The orbit size of an arrangement of an n-multiset is a divisor of n.

Proof. Suppose, the orbit size of [X1, . . . ,Xn] is k and n = kp+ r, for some r, 0 < r < k. Then,

Rk(X1, . . . ,Xn) = R2k(X1, . . . ,Xn) = · · · = Rkp(X1, . . . ,Xn) = Rk−r(X1, . . . ,Xn).

Thus, Rk−r(X1, . . . ,Xn) = [X1, . . . ,Xn], contradicting the minimality of k. Hence, a contradic-

tion and therefore r = 0. Or equivalently, k divides n.

Proposition 6.2.11. Let S1 = {Pi1 , Pi2 , . . . , Pik} and S2 = {Pj1 , Pj2 , . . . , Pjl} be any two orbits

of certain arrangements of an n-multiset. Then, either S1 ∩ S2 = ∅ or S1 = S2.

Proof. If S1 ∩ S2 = ∅, then there is nothing to prove. So, let there exists an arrangement

Pt ∈ S1 ∩ S2. Then, by definition, there exist rotations R1 and R2 such that R1(Pi1) = Pt and

R2(Pj1) = Pt. Thus, R−1
2 (Pt) = Pj1 and hence R−1

2 (R1(Pi1)) = R−1
2 (Pt) = Pj1 . Therefore, we

see that the arrangement Pj1 ∈ S1 and hence S2 ⊆ S1. A similar argument implies that S1 ⊆ S2

and hence S1 = S2.

Definition 6.2.12. [Binary operation] Let [X1, . . . ,Xn] and [Y1, . . . , Yn] be two arrangements

of an n-multiset. Then, in the remainder of this section,

1. we shall consider expressions like [X1, . . . ,Xn] + [Y1, . . . , Yn].

2. by [Ri +Rj ](X1, . . . ,Xn), we mean the expression Ri(X1, . . . ,Xn) +Rj(X1, . . . ,Xn).

3. byRi([X1, . . . ,Xn]+[Y1, . . . , Yn]) we denote the expressionRi(X1, . . . ,Xn)+Ri(Y1, . . . , Yn).

Example 6.2.13. Think of all arrangements P1, . . . , Pn, n = 6!
3!3! , of three A’s and three B’s.

How many copies of [ABCABC] are there in [R0 + · · ·+R5](P1 + · · ·+ Pn)?

Ans: Of course 6. To see this, note that R0 takes [ABCABC] to itself; R1 will take

[CABCAB] to [ABCABC]; R2 will take [BCABCA] to [ABCABC]; and so on.

Example 6.2.14. Let P = [X1, . . . ,X12] be an arrangement of a 12-multiset with orbit size 3.

Since, the orbit size of P is 3, the set S = {P,R1(P ), R2(P )} forms the orbit of P . Thus, the

rotations R0, R3, R6 and R9 fix each element of S, i.e., Ri(Rj(P )) = Rj(P ) for all i ∈ {0, 3, 6, 9}
and j ∈ {0, 1, 2}. In other words, [R0 + · · ·+R11](P ) accounts for 4 counts of the same circular

arrangement, where 4 is nothing but the number of rotations fixing P . Thus, we see that

[R0 +R1+ · · · +R11](P +R1(P ) +R2(P ))

= [R0 +R1 + · · ·R11](P ) + [R0 +R1 + · · ·R11](R1(P ))

+[R0 +R1 + · · ·R11](R2(P ))

= 4(P +R1(P ) +R2(P )) + 4(P +R1(P ) +R2(P )) + 4(P +R1(P ) +R2(P ))

= 12(P +R1(P ) +R2(P ))
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The proof of the next result is similar to the idea in the above example and hence is omitted.

Proposition 6.2.15. Let P1, . . . , Pn be all the arrangements of an m-multiset. Then,

[R0 + · · ·+Rm−1](P1 + · · ·+ Pn) = m(P1 + · · ·+ Pn).

Let P be an arrangement of an m-multiset with orbit size k. Then, by Proposition 6.2.10

k divides m. Now, from the understanding obtained from the above example, we note that

[R0 + · · · + Rm−1](P ) accounts for
m

k
counts of the same circular arrangement, where

m

k
is

nothing but ‘the number of rotations fixing P ’. Also, by Proposition 6.2.11, we know that two

orbits are either disjoint or the same and hence the next two results are immediate. Therefore,

the readers are supposed to provide a proof of the following results.

Discussion 6.2.16. Let P1, . . . , Pn be all the arrangements of an m-multiset. Then,

∑

Pi

the number of rotations fixing Pi =
∑

Pi

[R0 + · · ·+Rm−1](Pi)

= m(P1 + · · ·+ Pn)

= m(the number of circular arrangements).

Discussion 6.2.17. Let P1, . . . , Pn be all the arrangements of anm-multiset and {R0, R1, . . . , Rm−1}
the set of all rotations. Then,

∑

Pi

the number of rotations fixing Pi =
∑

Pi

|{Rj | Rj(Pi) = Pi}| = |{(Pi, Rj) | Rj(Pi) = Pi}|

=
∑

Rj

|{Pi | Rj(Pi) = Pi}|

=
∑

Rj

the number of Pi’s fixed by Rj.

Hence, using Discussion 6.2.16, the number of circular arrangements is

1

m

∑

Rj a rotation

the number of Pi’s fixed by Rj .

Example 6.2.18. 1. How many circular arrangements of {A,A,A,B,B,B,C,C,C} are there?

Ans: R0 fixes 9!
3!3!3! arrangements, None of R1, R2, R4, R5, R7 andR8 fixes any arrange-

ment, R3 and R6 fixes 3! arrangements, namely the 3! arrangements of X,Y,Z, where

X = AAA,Y = BBB and Z = CCC.

Thus, the number of circular arrangements is 1
9

[
9!

3!3!3! + 3! + 3!
]

= 5·6·7·8+12
9 = 564

3 = 188.

2. Determine the number of circular arrangements of size 5 using the alphabets A,B and C.

Ans: In this case, R0 fixes all the 35 arrangements. The rotations R1, R2, R3 and R4

fixes the arrangements AAAAA,BBBBB and CCCCC. Hence, the required number is
1
5

(
35 + 4 · 3

)
= 51.

Verify that the answer will be 8 if we have just two alphabets A and B.
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Exercise 6.2.19. 1. If there are n girls and n boys then what is the number of ways of

making them sit around a circular table in such a way that no two girls are adjacent and

no two boys are adjacent?

2. Persons P1, . . . , P100 are seating on a circle facing the center and talking. If Pi talks lie,

then the

(a) person to his right talks truth. So, the minimum number of persons talking truth is

.

(b) second person to his right talks truth’? So, the minimum number of persons talking

truth is .

(c) next two persons to his right talk truth’? So, the minimum number of persons talking

truth is .

3. Let us assume that any two garlands are same if one can be obtained from the other by

rotation. Then, determine the number of distinct garlands that can be formed using 6

flowers, if the flowers

(a) are of 2 colors, say ‘red’ and ‘blue’.

(b) are of 3 different colors.

(c) are of k different colors, for some k ∈ N.

(d) of ‘red’ color are 2 and that of ‘blue’ color is 4.

6.3 Solutions in nonnegative integers

Definition 6.3.1. [Solution in nonnegative integers] Recall that N0 := N ∪ {0}. A point

p = (p1, . . . , pk) ∈ Nk
0 with p1+ · · ·+pk = n is called a solution of the equation x1+ · · ·+xk = n

in nonnegative integers or a solution of x1 + · · · + xk = n in N0. Two solutions (p1, . . . , pk)

and (q1, . . . , qk) are said to be the same if pi = qi, for each i = 1, . . . , k. Thus, (5, 0, 0, 5) and

(0, 0, 5, 5) are two different solutions of x+ y + z + t = 10 in N0.

Example 6.3.2. Determine the number of

1. words which uses 3 A’s and 6 B’s.

2. arrangements of 3 A’s and 6 B’s.

3. distinct strings that can be formed using 3 A’s and 6 B’s.

4. solutions of the equation x1 + x2 + x3 + x4 = 6, where each xi ∈ N0 and 0 ≤ xi ≤ 6.

5. ways of placing 6 indistinguishable balls into 4 distinguishable boxes.

6. 3 subsets of an 9-set.

Solution: Observe that all the problems correspond to forming strings using +’s (or |’s
or bars) and 1’s (or balls or dots) in place of A’a and B’s, respectively?
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ABBBABABB

ABBBBBAAB

BBABBBABA

+111 + 1 + 11 = 0 + 3 + 1 + 2

+11111 + +1 = 0 + 5 + 0 + 1

11 + 111 + 1+ = 2 + 3 + 1 + 0

| • • • | • | • •
| • • • • • | | •
• • | • • • | • |

Figure 6.2: Understanding the three problems

Note that the A’s are indistinguishable among themselves and the same holds for B’s.

Thus, we need to find 3 places, from the 9 = 3 + 6 places, for the A’s. Hence, the answer

is C(9, 3). The answer will remain the same as we just need to replace A’s with +’s (or

|’s) and B’s with 1’s (or balls) in any string of 3 A’s and 6 B’s. See Figure 6.2 or note that

four numbers can be added using 3 +’s or four adjacent boxes can be created by putting

3 vertical lines or |’s.

In general, we have the following result.

Theorem 6.3.3. [solutions in N0] The number of solutions of x1 + · · · + xr = n in N0 is

C(n+ r − 1, n).

Proof. Each solution (x1, . . . , xr) may be viewed as an arrangement of n dots and r − 1 bars.

‘Put x1 many dots; put a bar; put x2 many dots; put another bar; continue; and end by

putting xr many dots.’

For example, (0, 2, 1, 0, 0) is associated to | • •| • || and vice-versa. Thus, there are C(n+ r −
1, r − 1) arrangements of n dots and r − 1 bars.

Theorem 6.3.4. (a) The number of solutions of x1 + · · · + xr ≤ n in nonnegative integers is

C(n+ r, n).

(b) The number of terms in the algebraic expansion of (x1 + · · ·+ xr)
n is C(n+ r − 1, n).

Proof. (a) Any solution of x1+· · ·+xr ≤ n uniquely corresponds to a solution of x1+· · ·+xr+y =

n in nonnegative integers..

(b) Note that each term in the algebraic expansion of (x1+· · ·+xr)
n has the form xi11 x

i2
2 · · · xirr ,

with i1+i2+· · ·+ir = n. Thus, each term uniquely corresponds to a solution of i1+i2+· · ·+ir = n

in nonnegative integers.

Theorem 6.3.5. [r-multiset] The number of r-multisets of elements of [n] is C(n+r−1, n−1).

Proof. Let A be an r-multiset. Let di be the number of copies of i in A. Then, any solution of

d1 + · · ·+ dn = r in nonnegative integers gives A uniquely. Hence, the conclusion.

Alternate. Put A = {arrangements of n − 1 dots and r bars}. Put B = {r-multisets of [n]}.
For a ∈ A, define f(a) to be the multiset

f(a) = {d(i) + 1 | where d(i) is the number of dots to the left of the i-th bar}.

For example, ||••|•|| gives us {1, 1, 3, 4, 4}. It is easy to define g : B → A so that f(g(b)) = b, for

each b ∈ B and g(f(a)) = a, for each a ∈ A. Thus, by the bijection principle (see Theorem 2.3.8),

|A| = |B|. Also, we know that |A| = C(n+ r − 1, n − 1) and hence the required result follows.
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Example 6.3.6. 1. There are 5 kinds of ice-creams available in our market complex. In how

many ways can you buy 15 of them for a party?

Ans: Suppose you buy xi ice-creams of the i-th type. Then, the problem is the same as

finding the number of solutions of x1 + · · · + x5 = 15 in nonnegative integers.

2. How many solutions in N0 are there to x+ y + z = 60 such that x ≥ 3, y ≥ 4, z ≥ 5?

Ans: (x, y, z) is such a solution if and only if (x−3, y−4, z−5) is a solution to x+y+z = 48

in N0. So, answer is C(50, 2).

3. How many solutions in N0 are there to x + y + z = 60 such that 20 ≥ x ≥ 3, 30 ≥ y ≥
4, 40 ≥ z ≥ 5?

Ans: We are looking for solution in N0 of x + y + z = 48 such that x ≤ 17, y ≤ 26 and

z ≤ 35. Let A = {(x, y, z) ∈ N3
0 | x+y+z = 48}, Ax = {(x, y, z) ∈ N3

0 | x+y+z = 48, x ≥
18}, Ay = {(x, y, z) ∈ N3

0 | x+ y + z = 48, y ≥ 27} and Az = {(x, y, z) ∈ N3
0 | x+ y + z =

48, z ≥ 36}. We know that |A| = C(50, 2). Our answer is then C(50, 2) − |Ax ∪Ay ∪ Az|.
Very soon we will learn to find the value of |Ax ∪Ay ∪Az|.

Exercise 6.3.7. 1. Determine the number of solutions of x+ y + z = 7 with x, y, z ∈ N?

2. Find the number of allocations of n identical objects to r distinct locations so that location

i gets at least pi ≥ 0 elements, i = 1, 2, · · · , r.
3. In how many ways can we pick integers x1 < x2 < x3 < x4 < x5, from [20] so that

xi − xi−1 ≥ 3, i = 2, 3, 4, 5? Solve in three different ways.

4. Find the number of solutions in nonnegative integers of a+ b+ c+ d+ e < 11.

5. In a room, there are 2 distinct book racks with 5 shelves each. Each shelf is capable of

holding up to 10 books. In how many ways can we place 10 distinct books in two racks?

6. How many 4-letter words (with repetition) are there with the letters in alphabetical order?

7. Determine the number of non-decreasing sequences of length r using the numbers 1, 2, . . . , n.

8. In how many ways can m indistinguishable balls be put into n distinguishable boxes with

the restriction that no box is empty.

9. How many 26-letter permutations of the ENGLISH alphabets have no 2 vowels together?

10. How many 26-letter permutations of the ENGLISH alphabets have at least two consonants

between any two vowels?

11. How many ways are there to select 10 integers from the set {1, 2, . . . , 100} such that the

positive difference between any two of the 10 integers is at least 3.

12. How many 10-element subsets of the ENGLISH alphabets do not have a pair of consecutive

letters?

13. How many 10-element subsets of the ENGLISH alphabets have a pair of consecutive let-

ters?
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14. How many ways are there to distribute 50 balls to 5 persons if Ram and Shyam together

get no more than 30 and Mohan gets at least 10?

15. How many arrangements of the letters of KAGARTHALAMNAGARTHALAM have no 2

vowels adjacent?

16. How many arrangements of the letters of RECURRENCERELATION have no 2 vowels

adjacent?

17. How many ways are there to arrange the letters in ABRACADABARAARCADA such

that the first

(a) A precedes the first B?

(b) B precedes the first A and the first D precedes the first C?

(c) B precedes the first A and the first A precedes the first C?

18. How many ways are there to arrange the letters in KAGARTHALAMNAGARTHATAM

such that the first

(a) A precedes the first T?

(b) M precedes the first G and the first H precedes the first A?

(c) M precedes the first G and the first T precedes the first G?

19. In how many ways can we pick 20 letters from 10 A’s, 15 B’s and 15 C’s?

20. Determine the number of ways to sit 10 men and 7 women so that no 2 women sit next to

each other?

21. How many ways can 8 persons, including Ram and Shyam, sit in a row with Ram and

Shyam not sitting next to each other?

22. Evaluate
n∑

i1=1

i1∑

i2=1

i2∑

i3=1
· · ·

ik−1∑

ik=1
1.

6.4 Set partitions

Definition 6.4.1. [Set partition] A partition of a set S is a collection of pairwise disjoint

nonempty subsets whose union is S.

Example 6.4.2. (a)
{
{1, 2}, {3}, {4, 5, 6}

}
,
{
{1, 3}, {2}, {4, 5, 6}

}
and

{
{1, 2, 3, 4}, {5}, {6}

}
are

both partitions of [6] into 3 subsets.

(b) There are 2n−1 − 1 partitions of [n], n ≥ 2 into two subsets. To see this, observe that for

each nontrivial subset A ∈ P([n]), the set {A,Ac} is a partition of [n] into two subsets.

Since, the total number of nontrivial subsets of P([n]) equals 2n − 2, the required result

follows.

(c) Number of allocations of 7 students into 7 different project groups so that each group has

one student, is 7! = C(7; 1, 1, 1, 1, 1, 1, 1) but the number of partitions of a set of 7 students

into 7 subsets is 1.



106 CHAPTER 6. COUNTING

(d) In how many ways can I write
{

{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

on a piece of

paper, with the condition that sets have to be written in a row in increasing size?

Ans: Let us write a few first.
{

{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

correct
{

{2, 1}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

correct
{

{5, 6}, {3, 4}, {1, 2}, {10, 11, 12}, {9, 7, 8}
}

correct
{

{2, 3}, {1, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

incorrect, not the same partition
{

{2, 1}, {3, 4}, {7, 8, 9}, {5, 6}, {10, 11, 12}
}

incorrect, not satisfying the condition

There are 3!(2!)3 × 2!(3!)2 ways. Notice that from each written partition, if I remove the

brackets I get an arrangement of elements of [12].

(e) How many arrangements do I generate from a partition with pi subsets of size ni, n1 <

· · · < nk?

Ans: p1!(n1!)
p1 · · · pk!(nk!)

pk =

k∏

i=1

[pi!(ni)
pi ].

Theorem 6.4.3. [Set partition] The number of partitions of [n] with pi subsets of size ni,

n1 < · · · < nk is
n!

(n1!)p1p1! · · · (nk!)pkpk!
.

Proof. Note that each such partition generates
k∏

i=1
[pi!(ni)

pi ] arrangement of elements of [n].

Conversely, for each arrangement of elements of [n] we can easily construct a partition of the

above type which can generate this arrangement. Thus, the proof is complete.

Definition 6.4.4. Stirling numbers of the second kind, denoted S(n, r), is the number of

partitions of [n] into r-subsets (r-parts). By convention, S(n, r) = 1, if n = r and 0, whenever

either ‘n > 0 and r = 0’ or ‘n < r’.

Theorem 6.4.5. [recurrence for S(n, r)] S(n+ 1, r) = S(n, r − 1) + rS(n, r).

Proof. Write an r-partition of [n+ 1] and erase n+ 1 from it. That is, if {n+ 1} is an element

of an r-partition, then the number of such partitions become S(n, r − 1); else n + 1 appears in

one of the element of an r-partition of [n], which gives the number rS(n, r).

Example 6.4.6. Determine the number of ways of putting n distinguishable/distinct balls into

r indistinguishable boxes with the restriction that no box is empty.

Ans: Let A be the set of n distinct balls and let the balls in i-th box be Bi, 1 ≤ i ≤ r.

1. Since each box is non-empty, each Bi is non-empty.

2. Also, each ball is in some box and hence
r⋃

i=1
Bi = A.
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3. As the boxes are indistinguishable, we arrange the boxes in non-increasing order, i.e.,

|B1| ≥ · · · ≥ |Br|.

Thus, B1, B2, . . . , Br is a partition of A into r-parts. Hence, the required number of ways is

given by S(n, r), the Stirling number of the second kind.

To proceed further, consider the following example.

Example 6.4.7. Let A = {a, b, c, d, e} and S = {1, 2, 3}. Define an onto function f : A→ S by

f(a) = f(b) = f(c) = 1, f(d) = 2 and f(e) = 3. Then, f gives a partition B1 = {a, b, c}, B2 =

{d} and B3 = {e} of A into 3-parts. Also, let A1 = {a, d}, A2 = {b, e} and A3 = {c} be a

partition of A into 3-parts. Then, this partition gives 3! onto functions from A into S, each of

them being a one-to-one function from {A1, A2, A3} to S, namely,

f1(a) = f1(d) = 1, f1(b) = f1(e) = 2, f1(c) = 3, ⇔ f1(A1) = 1, f1(A2) = 2, f1(A3) = 3

f2(a) = f2(d) = 1, f2(b) = f2(e) = 3, f2(c) = 2, ⇔ f2(A1) = 1, f2(A2) = 3, f2(A3) = 2

f3(a) = f3(d) = 2, f3(b) = f3(e) = 1, f3(c) = 3, ⇔ f3(A1) = 2, f3(A2) = 1, f3(A3) = 3

f4(a) = f4(d) = 2, f4(b) = f4(e) = 3, f4(c) = 1, ⇔ f4(A1) = 2, f4(A2) = 3, f4(A3) = 1

f5(a) = f5(d) = 3, f5(b) = f5(e) = 1, f5(c) = 2, ⇔ f5(A1) = 3, f5(A2) = 1, f5(A3) = 2

f6(a) = f6(d) = 3, f6(b) = f6(e) = 2, f6(c) = 1, ⇔ f6(A1) = 3, f6(A2) = 2, f6(A3) = 1.

Lemma 6.4.8. The total number of onto functions f : [r]→ [n] is n!S(r, n).

Proof. ‘f is onto’ means ‘for all y ∈ [n] there exists x ∈ [r], such that f(x) = y’. Therefore, the

number of onto functions is 0, whenever r < n. So, we assume that r ≥ n. Then,

1. for each i ∈ [n], f−1(i) = {x ∈ [r] | f(x) = i} is a non-empty set (f is onto).

2. f−1(i) ∩ f−1(j) = ∅, whenever 1 ≤ i 6= j ≤ n (f is a function).

3.
n⋃

i=1
f−1(i) = [r] (domain of f is [r]).

Therefore, f−1(i)’s give a partition of [r] into n-parts. Also, note that each such function f ,

gives a one-to-one function from {f−1(1), . . . , f−1(r)} to [n].

Conversely, for each partition A1, A2, . . . , An of [r] into n-parts, we get n! one-to-one function

from {A1, A2, . . . , An} to [n]. Hence,

∣
∣{f : [r]→ [n] | f is onto}

∣
∣ =

∣
∣{g : {A1, A2, . . . , An} → [n] | g is one-to-one}

∣
∣

×
∣
∣Partition of [r] into n-parts

∣
∣

= n! S(r, n).

Thus, the required result follows.

Lemma 6.4.9. Let r, n ∈ N and ℓ = min{r, n}. Then,

nr =

ℓ∑

k=1

C(n, k)k!S(r, k). (6.1)
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Proof. Let A = {f | f : [r]→ [n]}. We compute |A| by two different methods.

Method 1: By Theorem 6.1.4, |A| = nr.

Method 2: Let f0 : [r] → [n] be any function. Then, f0 is an onto function from [r] to

Im (f0) = f0([r]). Moreover, , for some k, 1 ≤ k ≤ ℓ = min{r, n}. Thus, A =
ℓ⋃

k=1

Ak, where

Ak = {f : [r] → [n] | |f([r])| = k} and Ak ∩ Aj = ∅, whenever 1 ≤ j 6= k ≤ ℓ. Now, using

Theorem 6.1.20, a subset of [n] of size k can be selected in C(n, k) ways. Thus, for 1 ≤ k ≤ ℓ,

|Ak| =
∣
∣{K : K ⊆ [n], |K| = k}

∣
∣×
∣
∣{f : [r]→ K | f is onto}

∣
∣ = C(n, k)k!S(r, k).

Therefore,

|A| =
∣
∣
∣
∣
∣

ℓ⋃

k=1

Ai

∣
∣
∣
∣
∣
=

ℓ∑

k=1

|Ak| =
ℓ∑

k=1

C(n, k)k!S(r, k).

Hence, using the two counting methods, the required result follows.

Remark 6.4.10. 1. The following two problems are equivalent.

(a) Count the number of onto functions f : [r]→ [n].

(b) Count the number ways to put r distinguishable/distinct balls into n distinguish-

able/distinct boxes so that no box is empty.

2. The numbers S(r, k) can be recursively calculated using Equation (6.1). For example, we

show that S(m, 1) = 1, for all m ≥ 1.

Ans: Take n ≥ 1 and r = 1 in Equation (6.1) to get n = n1 =
∑1

k=1C(n, k)k!S(1, k) =

C(n, 1)1!S(1, 1) = nS(1, 1). Thus, S(1, 1) = 1.

Take n = 1 and r ≥ 2 in Equation (6.1) to get 1 = 1r =
∑1

k=1C(1, k)k!S(r, k) = S(r, 1).

3. As exercise, verify that S(5, 2) = 15, S(5, 3) = 25, ;S(5, 4) = 10, S(5, 5) = 1.

Exercise 6.4.11. 1. Determine the number of ways of

(a) selecting r distinguishable objects from n distinguishable objects, when n ≥ r.

(b) distributing 20 distinct toys among 4 children if each children gets 5 toys?

(c) placing r distinguishable balls into n indistinguishable boxes if no box is empty?

(d) placing r distinguishable balls into n indistinguishable boxes?

2. For n ∈ N, let b(n) denote the number of partitions of [n]. Then, b(n) =
n∑

r=0
S(n, r) is

called the nth Bell number. By definition, b(0) = 1 = b(1). Determine b(n), for 2 ≤ n ≤ 5.

3. Fix n ∈ N. Then, a composition of n is an expression of n as a sum of positive integers.

For example, if n = 4, then the distinct compositions are

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1.

Let Sk(n) denote the number of compositions of n into k parts. Then, S1(4) = 1, S2(4) =

3, S3(4) = 3 and S4(4) = 1. Determine Sk(n), for 1 ≤ k ≤ n and
∑

k≥1

Sk(n).
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4. Let S = {f | f : [r]→ [n]}. Compute |S| in two ways to prove (n+ 1)r =
r∑

k=0

C(r, k)nk.

5. Suppose 13 people get on the lift at level ◦. If all the people get down at some level, say

1, 2, 3, 4 and 5 then, calculate the number of ways of getting down if at least one person

gets down at each level.

Definition 6.4.12. [Partition of a number] Let n, k ∈ N. A partition of n into k parts is

a tuple (x1, · · · , xk) ∈ Nk written in non-increasing order such that x1 + · · · + xk = n. It may

be viewed as a k-multiset S ⊆ N with sum n. By πn(k), we denote the number of partitions

of n into exactly k parts and by πn, the number of partitions of n. Conventionally π0 = 1 and

πn(k) = 0, whenever k > n.

Remark 6.4.13. π7(4) = 3 as the partitions of 7 into 4-parts are 4 + 1 + 1 + 1, 3 + 2 + 1 + 1

and 2 + 2 + 2 + 1. Verify that π7(2) = 3 and π7(3) = 4.

Example 6.4.14. Determine the number of ways of placing r indistinguishable balls into n

indistinguishable boxes

1. with the restriction that no box is empty.

Ans: As the balls are indistinguishable, we need to count the number of balls in each box.

As the boxes are indistinguishable, arrange them so that the number of balls inside boxes

are in non-increasing order. Also, each box is non-empty and hence the answer is πr(n).

2. with no restriction.

Ans: Let us place one ball in each box. Now ‘placing r indistinguishable ball into n

indistinguishable boxes with no restriction’ is same as ‘placing r + n indistinguishable

balls into n indistinguishable boxes so that no box is empty.’ Therefore, the required

answer is πm+n(n).

Exercise 6.4.15. 1. Calculate π(n), for n = 1, 2, 3, . . . , 8.

2. Prove that π2r(r) = π(r), for any r ∈ N.

3. For a fixed n ∈ N determine a recurrence relation for the numbers πn(r)’s for 1 ≤ r ≤ n.

Definition 6.4.16. [Stirling number of first kind] The Stirling number of the first kind,

denoted s(n, k), is the coefficient of xk in xn, where xn is called the falling factorial and equals

x(x−1)(x−2) · · · (x−n+1). The rising factorial xn is defined as x(x+1)(x+2) · · · (x+n−1).

Exercise 6.4.17. Prove by induction that

1. s(n,m)(−1)n−m is the coefficient of xm in xn and |s(n,m)| = s(n,m)(−1)n−m.

2. Let a(n, k) denote the number of permutations of [n] which have k disjoint cycles. For

example, a(4, 2) = 11 as it corresponds to the permutations (12)(34), (13)(24), (14)(23),

(1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4) and (132)(4). By con-

vention, a(0, 0) = 1 and a(n, 0) = 0 = a(0, n), whenever n ≥ 1. Determine prove that the

numbers a(n, k)’s satisfy

a(n, k) = (n− 1)a(n − 1, k) + a(n− 1, k − 1).
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3. Prove that a(n,m) = |s(n,m)| for all n,m ∈ N0.

6.5 Lattice paths and Catalan numbers

Consider a lattice of integer lines in R2 and let S = {(m,n) | m,n = 0, 1, . . .} be the said of

points on the lattice. For a pair of points, say A = (m1, n1) and B = (m2, n2) with m1 ≤ m2

and n1 ≤ n2, we define a lattice path from A to B to be a subset {e1, . . . , ek} of S such that

if ei = (x, y) then ei+1 is either (x+ 1, y) or (x, y + 1), for 1 ≤ i ≤ k − 1. That is, at each step

we move either one unit right, denoted R, or one unit up, denoted U (see Figure 6.3).

(0, 0)

(2, 3)

(8, 7)

R = RIGHT

U = UP

Figure 6.3: A lattice with a lattice path from (2, 3) to (8, 7)

Example 6.5.1. 1. Determine the number of lattice paths from (0, 0) to (m,n).

Ans: As at each step, the unit increase is either R or U , we need to take n many R steps

and m many U steps to reach (m,n) from (0, 0). So, any arrangement of n many R’s and

m many U ’s will give such a path uniquely. Hence, the answer is C(m+ n,m).

2. Use the method of lattice paths to prove
m∑

ℓ=0

C(n+ ℓ, ℓ) = C(n+m+ 1,m).

Ans: Observe that C(n+m+1,m) is the number of lattice paths from (0, 0) to (m,n+1)

and the left hand side is the number of lattice paths from (0, 0) to (ℓ, n), where 0 ≤ ℓ ≤ m.

Fix ℓ, 0 ≤ ℓ ≤ m and let P be a lattice path from (0, 0) to (ℓ, n). Then, the path P ∪Q,

where Q = URR · · ·R with R appearing m − ℓ times, gives a lattice path from (0, 0) to

(m,n + 1), namely

(0, 0)
P−→ (ℓ, n)

U−→ (ℓ, n + 1)
Q−→ (m,n + 1).

These lattice paths for 0 ≤ ℓ ≤ m are all distinct and hence the result follows.

Exercise 6.5.2. 1. Give a bijection between ‘the solution set of x0 + x1 + x2 + · · ·+ xk = n

in non-negative integers’ and ‘the number of lattice paths from (0, 0) to (n, k)’.

2. Use lattice paths to construct a proof of
n∑

k=0

C(n, k) = 2n.
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3. Use lattice paths to construct a proof of
n∑

k=0

C(n, k)2 = C(2n, n). [Hint: C(n, k) is the

number of lattice paths from (0, 0) to (n− k, k) as well as from (n− k, k) to (n, n).]

Discussion 6.5.3. As observed earlier, the number of lattice paths from (0, 0 to (n, n) is

C(2n, n). Suppose, we wish to take paths so that at no step the number of U ’s exceeds the

number of R’s. Then, what is the number of such paths?

Ans: Call an arrangement of n many U ’s and n many R’s a ‘bad path’ if the number of U ’s

exceeds the number of R’s at least once. For example, the path RRUUURRU is a ‘bad path’.

To each such arrangement, we correspond another arrangement of n + 1 many U ’s and n − 1

many R’s in the following way: spot the first place where the number of U ’s exceeds that of

R’s in the ‘bad path’. Then, from the next letter onwards change R to U and U to R. For

example, the bad path RRUUURRU corresponds to the path RRUUUUUR. Notice that this

is a one-one correspondence. Thus, the number of bad paths is C(2n, n− 1). So, the answer to

the question is C(2n, n)− C(2n, n− 1) =
C(2n, n)

n+ 1
.

Definition 6.5.4. [Catalan number] The nth Catalan number, denoted Cn, is the number

of different representations of the product A1 · · ·An+1 of n+ 1 square matrices of the same size

using n pairs of brackets. By convention C0 = 1.

Theorem 6.5.5. [Catalan number] Prove that Cn = C(2n,n)
n+1 for all n ∈ N.

Proof. Claim: After the (n − k)-th ‘(’, there are at least k + 2 many A’s. To see this pick the

substring starting right from the (n − k)-th ‘(’ till we face (k + 1) many ‘)’s. This substring

represents a product of matrices. So, it must contain (k + 2) many Ai’s.

Given one representation of the product, replace each Ai by A. Drop the right brackets to have

a sequence of n many ‘(’s and n+1 many A’s. Thus, the number of A’s used till the n− kth ‘(’

is at most n+ 1− (k + 2) = n− k − 1. So, the number of A’s never exceeds the number of ‘(’.

Conversely, given such an arrangement, we can put back the ‘)’s: find two consecutive letters

from the last ‘(’; put a right bracket after them; treat (AA) as a letter; repeat the process. For

example,

((A((AAAA→ ((A((AA)AA → ((A((AA)A)A → ((A((AA)A))A = ((A((AA)A))A)

By previous example the number of such arrangements is C(2n,n)
n+1 .

The readers who are interested in knowing more about Catalan numbers should look at the

book “enumerative combinatorics” by Stanley [11].

Exercise 6.5.6. 1. Give a recurrence relation for Cn’s (i.e., a formula for Cn involving

C0, . . . , Cn−1). Hence, show that Cn = C(2n, n)/(n+ 1).

2. Give an arithmetic proof of the fact that (n+ 1) divides C(2n, n).

3. A man is standing on the edge of a swimming pool (facing it) holding a bag containing n

blue and n red balls. He randomly picks up one ball at a time and discards it. If the ball

is blue he takes a step back and if the ball is red, he takes a step forward. What is the

probability of his falling into the swimming pool?
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4. Consider a regular polygon with vertices 1, 2, · · · , n. In how many ways can we divide the

polygon into triangles using (n− 3) noncrossing diagonals?

5. How many arrangements of n blue and n red balls are there such that at any position in

the arrangement the number of blue balls (till that position) is at most one more than the

number of red balls (till that position)?

6. We want to write a matrix of size 10 × 2 using numbers 1, . . . , 20 with each number ap-

pearing exactly once. Then, determine the number of such matrices in which the numbers

(a) increase from left to right?

(b) increase from up to down?

(c) increase from left to right and up to down?

6.6 Some Generalizations

1. Let n, k ∈ N with 0 ≤ k ≤ n. Then, in Theorem 6.1.20, we saw that C(n, k) =
n!

k!(n− k)!
.

Hence, we can think of C(n, k) =
n · (n− 1) · · · (n− k + 1)

k!
. With this understanding, we

generalize C(n, k) for any n ∈ R and k ∈ N0 as follows:

C(n, k) =







0, if k < 0

0, if n = 0, n 6= k

1, if n = k
n · (n− 1) · · · (n− k + 1)

k!
, otherwise.

(6.2)

With the notations as above, we give the generalized binomial theorem without proof.

Theorem 6.6.1. [Generalized binomial theorem] Let n be any real number. Then,

(1 + x)n = 1 + C(n, 1)x+ C(n, 2)x2 + · · ·+ C(n, r)xr + · · · .

In particular, (1− x)−1 = 1 + x+ x2 + x3 + · · · and if a, b ∈ R with |a| < |b|, then

(a+ b)n = bn
(

1 +
a

b

)n
= bn

∑

r≥0

C(n, r)
(a

b

)r
=
∑

r≥0

C(n, r)arbn−r.

Let us now understand Theorem 6.6.1 through the following examples.

(a) Let n =
1

2
. In this case, for k ≥ 1, Equation (6.2) gives

C(
1

2
, k) =

1

2
·
(
1

2
− 1

)

· · ·
(
1

2
− k + 1

)

k!
=

1 · (−1) · · · (3− 2k)

2kk!
=

(−1)k−1(2k − 2)!

22k−1(k − 1)!k!
.

Thus,

(1 + x)1/2 =
∑

k≥0

C(
1

2
, k)xk = 1 +

1

2
x+
−1
23

x2 +
1

24
x3 +

∑

k≥4

(−1)k−1(2k − 2)!

22k−1(k − 1)!k!
xk.
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The above expression can also be obtained by using the Taylor series expansion of

f(x) = (1 + x)1/2 around x = 0. Recall that the Taylor series expansion of f(x)

around x = 0 equals f(x) = f(0) + f ′(0)x + f ′′(0)
2! x2 +

∑

k≥3

f(k)(0)
k! xk, where f(0) = 1,

f ′(0) = 1
2 , f

′′(0) = −1
22 and in general f (k)(0) = 1

2 · (12 − 1) · · · (12 − k + 1), for k ≥ 3.

(b) Let n = −r, where r ∈ N. Then, for k ≥ 1, Equation (6.2) gives C(−r, k) =
−r · (−r − 1) · · · (−r − k + 1)

k!
= (−1)kC(r + k − 1, k). Thus,

(1 + x)n =
1

(1 + x)r
= 1− rx+ C(r + 1, 2)x2 +

∑

k≥3

C(r + k − 1, k)(−x)k.

2. Let n,m ∈ N. Recall the identity nm =
m∑

k=0

C(n, k)k!S(m,k) =
n∑

k=0

C(n, k)k!S(m,k) in

Equation (6.1). Note that for each m ∈ N, the above identity equals X = AY , where

X =















0m

1m

2m

3m

...

nm















, A =












C(0, 0) 0 0 · · · 0

C(1, 0) C(1, 1) 0 · · · 0

C(2, 0) C(2, 1) C(2, 2) · · · 0
...

...
...

. . .
...

C(n, 0) C(n, 1) C(n, 2) · · · C(n, n)












and Y =












0!S(m, 0)

1!S(m, 1)

2!S(m, 2)
...

n!S(m,n)












.

As A is lower triangular with det(A) = 1, it has an inverse and each entry of A−1 has a

similar form. So, Y = A−1X, where

A−1 =















C(0, 0) 0 0 0 · · · 0

−C(1, 0) C(1, 1) 0 0 · · · 0

C(2, 0) −C(2, 1) C(2, 2) 0 · · · 0

−C(3, 0) C(3, 1) −C(3, 2) C(3, 3) · · · 0
...

...
...

...
. . .

...

(−1)nC(n, 0) (−1)n−1C(n, 1) (−1)n−2C(n, 2) (−1)n−3C(n, 3) · · · C(n, n)















.

Hence, for n,m ∈ N, we have

S(m,n) =
1

n!

∑

k≥0

(−1)kC(n, k)(n − k)m. (6.3)

3. The above matrix inversion implies that for n ∈ N0, the identity

a(n) =
∑

k≥0

C(n, k)b(k) holds if and only if b(n) =
∑

k≥0

(−1)kC(n, k)a(k) holds.

We end this chapter with another set of exercises.

Exercise 6.6.2. 1. Prove that there exists a bijection between any two of the following sets.

(a) The set of words of length n on an alphabet consisting of m letters.
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(b) The set of maps of an n-set into an m-set.

(c) The set of distributions of n distinct objects into m distinct boxes.

(d) The set of n-tuples on m letters.

2. Prove that there exists a bijection between any two of the following sets.

(a) The set of n letter words with distinct letters out of an alphabet consisting of m letters.

(b) The set of one-one functions from an n-set into an m-set.

(c) The set of distributions of n distinct objects into m distinct boxes, subject to ‘if an

object is put in a box, no other object can be put in the same box’.

(d) The set of n-tuples on m letters, without repetition.

(e) The set of permutations of m symbols taken n at a time.

3. Prove that there exists a bijection between any two of the following sets.

(a) The set of increasing words of length n on m ordered letters.

(b) The set of distributions on n non-distinct objects into m distinct boxes.

(c) The set of combinations of m symbols taken n at a time with repetitions permitted.



Chapter 7

Advanced Counting Principles

7.1 Pigeonhole Principle

Discussion 7.1.1. [Pigeonhole principle (PHP)]

(PHP1) If n+ 1 pigeons stay in n holes then there is a hole with at least two pigeons.

(PHP2) If kn+ 1 pigeons stay in n holes then there is a hole with at least k + 1 pigeons.

(PHP3) If p1 + · · · + pn + 1 pigeons stay in n holes then there is a hole i with at least pi + 1

pigeons.

Example 7.1.2. 1. Consider a tournament of n > 1 players, where each pair plays exactly

once and each player wins at least once. Then, there are two players with the same number

of wins.

Ans: Number of wins vary from 1 to n− 1 and there are n players.

2. A bag contains 5 red, 8 blue, 12 green and 7 yellow marbles. The least number of marbles

to be chosen to ensure that there are

(a) at least 4 marbles of the same color is 13,

(b) at least 7 marbles of the same color is 24,

(c) at least 4 red or at least 7 of any other color is 22.

3. In a group of 6 people, prove that there are three mutual friends or three mutual strangers.

Ans: Let a be a person in the group. Let F be the set of friends of a and S the set of

strangers to a. Clearly |S|+ |F | = 5. By PHP either |F | ≥ 3 or |S| ≥ 3.

Case 1: |F | ≥ 3. If any two in F are friends then those two along with a are three mutual

friends. Else F is a set of mutual strangers of size at least 3.

Case 2: |S| ≥ 3. If any pair in S are strangers then those two along with a are three

mutual strangers. Else S becomes a set of mutual friends of size at least 3.

4. If 7 points are chosen inside or on the unit circle, then there is a pair of points which are

at a distance at most 1.

115
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Ans: To see this divide the circle into 6 equal cone type parts creating an angle of 60o

with the center. By PHP there is a part containing at least two points. The distance

between these two is at most 1.

5. If n + 1 integers are selected from [2n], then there is a pair which has the property that

one of them divides the other.

Ans: Each number has the form 2kO, where O is an odd number. There are n odd

numbers. If we select n + 1 numbers from S, by PHP some two of them (say, x, y) have

the same odd part, that is, x = 2iO and y = 2jO. If i ≤ j, then x|y, otherwise y|x.
6. (a) Let r1, r2, · · · , rmn+1 be a sequence of mn+1 distinct real numbers. Then, prove that

there is a subsequence of m+1 numbers which is increasing or there is a subsequence

of n+ 1 numbers which is decreasing.

Ans: Define li to be the maximum length of an increasing subsequence starting at

ri. If some li ≥ m + 1 then we have nothing to prove. So, let 1 ≤ li ≤ m. Since

(li) is a sequence of mn + 1 integers, by PHP, there is one number which repeats at

least n + 1 times. Let li1 = li2 = · · · = lin+1 = s, where i1 < i2 < · · · < in+1. Notice

that ri1 > ri2 , because if ri1 ≤ ri2 , then ‘ri1 together with the increasing sequence

of length s starting with ri2 ’ gives an increasing sequence of length s + 1. Similarly,

ri2 > ri3 > · · · > rin+1 and hence the required result holds.

Alternate. Let S = {r1, r2, · · · , rmn+1} and define a map f : S → Z × Z by

f(ai) = (s, t), for 1 ≤ i ≤ mn+ 1, where s equals the length of the largest increasing

subsequence starting with ai and t equals the length of the largest decreasing sub-

sequence ending at ai. Now, if either s ≥ m + 1 or t ≥ n + 1, we are done. If not,

then note that 1 ≤ s ≤ m and 1 ≤ t ≤ n. So, the number of tuples (s, t) is at most

mn. Thus, the mn + 1 distinct numbers are being mapped to mn tuples and hence

by PHP there are two numbers ai 6= aj such that f(ai) = f(aj). Now, proceed as in

the previous case to get the required result.

(b) Does the above statement hold for every collection of mn distinct numbers? No.

Consider the sequence:

n, n−1, · · · , 1, 2n, 2n−1, . . . , n+1, 3n, 3n−1, · · · , 2n+1, · · · ,mn,mn−1, · · · ,mn−n+1.

7. Given any 1010 integers, prove that there is a pair that either differ by, or sum to, a

multiple of 2017. Is this true if we replace 1010 by 1009?

Ans: Let the numbers be n1, n2, . . . , n1010 and S = {n1 − nk, n1 + nk : k = 2, . . . , 1010}.
Then, |S| = 2018 and hence, at least two of them will have the same remainder when di-

vided by 2017. Then, consider their difference. For the later part, consider {0, 1, 2, . . . , 1008}.

8. Let a ∈ Qc. Then, there are infinitely many rational numbers p
q such that |a− p

q | < 1
q2
.

Ans: Enough to show that there are infinitely many (p, q) ∈ Z2 with |qa− p| < 1
q . Note

that for every m ∈ N, 0 < ia − ⌊ia⌋ < 1, for i = 1, . . . ,m+ 1. Hence, by PHP there exist
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i, j with i < j such that

|(j − i)a− (⌊ja⌋ − ⌊ia⌋)| < 1

m
≤ 1

j − i
.

Then, the tuple (p1, q1) = (⌊ja⌋ − ⌊ia⌋, j − i) satisfies the required property. To generate

another tuple, find m2 such that
1

m2
< |a− p1

q1
|

and proceed as before to get (p2, q2) such that |q2a−p2| < 1
m2
≤ 1

q2
. Since |a− p2

q2
| < 1

m2
<

|a− p1
q1
|, we have p1

q1
6= p2

q2
. Now use induction to get the required result.

9. Prove that there exist two powers of 3 whose difference is divisible by 2017.

Ans: Let S = {1 = 30, 3, 32, 33, . . . , 32017}. Then, |S| = 2018. As the remainders of any

integer when divided by 2017 is 0, 1, 2, . . . , 2016, by PHP, there is a pair which has the

same remainder. Hence, 2017 divides 3j − 3i for some i, j.

10. Prove that there exists a power of three that ends with 0001.

Ans: Let S = {1 = 30, 3, 32, 33, . . .}. Now, divide each element of S by 104. As |S| > 104,

by PHP, there exist i > j such that the remainders of 3i and 3j, when divided by 104, are

equal. But gcd(104, 3) = 1 and thus, 104 divides 3ℓ − 1. That is, 3ℓ − 1 = s · 104 for some

positive integer s. That is, 3ℓ = s · 104 + 1 and hence the result follows.

Exercise 7.1.3. 1. Consider the poset (X = P([4]),⊆). Write 6 maximal chains P1, . . . P6

(need not be disjoint) such that ∪
i
Pi = X. Let A1, . . . , A7 be 7 distinct subsets of [4]. Use

PHP, to prove that there exist i, j such that Ai, Aj ∈ Pk, for some k. That is, {A1, . . . , A7}
cannot be an anti-chain. Conclude that this holds as the width of the poset is 6.

2. Let {x1, . . . , x9} ⊆ N with
9∑

i=1
xi = 30. Then, there exist i, j, k ∈ [9] with xi+xj +xk ≥ 12.

3. Pick any 6 integers from [10], then there exists a pair with odd sum.

4. Any 14-subset of [46] has four elements a, b, c, d such that a+ b = c+ d.

5. In a row of 12 chairs 9 are filled. Then, some 3 consecutive chairs are filled. Will 8 work?

6. Every n-sequence of integers has a consecutive subsequence with sum divisible by n.

7. Let n > 3 and S ⊆ [n] of size m = ⌊n+2
2 ⌋ + 1. Then, there exist a, b, c ∈ S such that

a+ b = c.

8. Let a, b ∈ N, a < b. Given more than half of the integers in the set [a+ b], there is a pair

which differ by either a or b.

9. Consider a chess board with two of the diagonally opposite corners removed. Is it possible to

cover the board with pieces of rectangular dominos whose size is exactly two board squares?

10. Mark the centers of all squares of an 8× 8 chess board. Is it possible to cut the board with

13 straight lines not passing through any center, so that every piece had at most 1 center?

11. Fifteen squirrels have 100 nuts. Then, some two squirrels have equal number of nuts.
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12. Suppose that f(x) is a polynomial with integer coefficients. If

(a) f(x) = 2 for three distinct integers, then for no integer x, f(x) can be equal to 3.

(b) f(x) = 14 for three distinct integers, then for no integer x, f(x) can be equal to 15.

(c) f(x) = 11 for five distinct integers, then for no integer x, f(x) can be equal to 9.

13. Choose 5 points at random inside an equilateral triangle of side 1 unit, then there exists a

pair which have distance at most 0.5 units.

14. Prove that among any 55 integers 1 ≤ x1 < x2 < x3 < · · · < x55 ≤ 100, there is a pair with

difference 9, a pair with difference 10, a pair with difference 12 and a pair with difference

13. Surprisingly, there need not be a pair with difference 11.

15. Let {x1, x2, . . . , xn} ⊆ Z. Prove that there exist 1 ≤ i < j ≤ n such that

(a) xi + xi+1 + · · ·+ xj−1 + xj is a multiple of 2017, whenever n ≥ 2017.

(b) xj + xi or xj − xi is a multiple of 2017, whenever n ≥ 1009.

16. Let A and B be two discs, each having 2n equal sectors. On disc A, n sectors are colored

red and n are colored blue. The sectors of disc B are colored arbitrarily with red and blue

colors. Show that there is a way of putting the two discs, one above the other, so that at

least n corresponding sectors have the same colors.

17. There are 7 distinct real numbers. Is it possible to select two of them, say x and y such

that 0 < x−y
1+xy < 1√

3
?

18. If n is odd then for any permutation p of [n] the product
n∏

i=1

(
i− p(i)

)
is even.

19. Fix a positive α ∈ Qc. Then, S = {m+ nα : m,n ∈ Z} is dense in R.

20. Take 25 points on a plane satisfying ‘among any three of them there is a pair at a distance

less than 1’. Then, some circle of unit radius contains at least 13 of the given points.

21. Five points are chosen at the nodes of a square lattice (view Z×Z). Why is it certain that

a mid-point of some two of them is a lattice point?

22. Each of the given 9 lines cuts a given square into two quadrilaterals whose areas are in the

ratio 2 : 3. Prove that at least three of these lines pass through the same point.

23. If more than half of the subsets of [n] are selected, then some two of the selected subsets

have the property that one is a subset of the other.

24. Given any ten 4-subsets of [11], some two of them have at least 2 elements in common.

25. A person takes at least one aspirin a day for 30 days. If he takes 45 aspirin altogether, in

some sequence of consecutive days he takes exactly 14 aspirins.

26. If 58 entries of a 14× 14 matrix are 1, then there is a 2× 2 submatrix whose all entries 1.

Exercise 7.1.4. 1. If each point of a circle is colored either red or blue, then show that there

exists an isosceles triangle with vertices of the same color.

2. Each point of the plane is colored red or blue, then prove the following.
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(a) There exist two points of the same color which are at a distance of 1 unit.

(b) There is an equilateral triangle all of whose vertices have the same color.

(c) There is a rectangle all of whose vertices have the same color.

3. Let S ⊆ [100] be a 10-set. Then, some two disjoint subsets of S have equal sum.

4. For n ∈ N, prove that there exists a ℓ ∈ N such that n divides 2ℓ − 1.

5. Does there exist a multiple of 2017 that is formed using only the digits

(a) 2? Justify your answer.

(b) 2 and 3 and the number of 2’s and 3’s are equal? Justify your answer.

6. Each natural number has a multiple of the form 9 · · · 90 · · · 0, with at least one 9.

7.2 Principle of Inclusion and Exclusion

We start this section with the following example.

Example 7.2.1. How many natural numbers n ≤ 1000 are not divisible by any of 2, 3?

Ans: Let A2 = {n ∈ N | n ≤ 1000, 2|n} and A3 = {n ∈ N | n ≤ 1000, 3|n}. Then,

|A2 ∪ A3| = |A2| + |A3| − |A2 ∩ A3| = 500 + 333 − 166 = 667. So, the required answer is

1000 − 667 = 333.

We now generalize the above idea whenever we have 3 or more sets.

Theorem 7.2.2. [Principle of inclusion and exclusion] Let A1, · · · , An be finite subsets of a

set U . Then,
∣
∣

n∪
i=1

Ai

∣
∣ =

n∑

k=1

(−1)k+1

[
∑

1≤i1<···<ik≤n

∣
∣Ai1 ∩ · · · ∩Aik

∣
∣

]

. (7.1)

Or equivalently, the number of elements of U which are in none of A1, A2, . . . , An equals

|U | −
∣
∣

n∪
i=1

Ai

∣
∣ = |U | −

n∑

k=1

(−1)k
[

∑

1≤i1<···<ik≤n

∣
∣Ai1 ∩ · · · ∩Aik

∣
∣

]

.

Proof. Let x /∈ n∪
i=1

Ai. Then, we show that inclusion of x in some Ai contributes (increases

the value) 1 to both sides of Equation (7.1). So, assume that x is included only in the sets

A1, · · · , Ar. Then, the contribution of x to |Ai1 ∩ · · · ∩Aik | is 1 if and only if {i1, . . . , ik} ⊆ [r].

Hence, the contribution of x to
∑

1≤i1<···<ik≤n
|Ai1 ∩ · · · ∩ Aik | is C(r, k). Thus, the contribution

of x to the right hand side of Equation (7.1) is

r − C(r, 2) + C(r, 3) − · · ·+ (−1)r+1C(r, r) = 1.

The element x clearly contributes 1 to the left hand side of Equation (7.1) and hence the required

result follows. The proof of the equivalent condition is left for the readers.
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Example 7.2.3. How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?

Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N | n ≤ 10000, i|n}. Therefore, the required answer is

10000 − |A2 ∪A3 ∪A5 ∪A7| = 2285.

Definition 7.2.4. [Euler totient function] For a fixed n ∈ N, the Euler’s totient function

is defined as ϕ(n) = |{k ∈ N : k ≤ n, gcd(k, n) = 1}|.

Theorem 7.2.5. Let n =
k∏

i=1
pαi
i , be a factorization of n into distinct primes p1, . . . , pk. Then,

ϕ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

Proof. For 1 ≤ i ≤ k, let Ai = {m ∈ N : m ≤ n, pi|m}. Then,

ϕ(n) = n− |∪
i
Ai| = n

[

1−
k∑

i=1

1

pi
+

∑

1≤i<j≤k

1

pipj
− · · ·+ (−1)k 1

p1p2 · · · pk

]

= n
(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)

as |Ai| = n
pi
, |Ai ∩Aj| = n

pipj
and so on. Thus, the required result follows.

Definition 7.2.6. [Derangement]A derangement of objects in a finite set S is a permuta-

tion/arrangement σ on S such that for all x, σ(x) 6= x.

For example, 2, 1, 4, 3 is a derangement of 1, 2, 3, 4. The number of derangements of 1, 2, . . . , n

is denoted by Dn. By convention, D0 = 1. Also, we use a ≈ b to mean that b is an approximate

value of a.

Theorem 7.2.7. For n ∈ N, Dn = n!
n∑

k=0

(−1)k
k!

. Thus,
Dn

n!
≈ 1

e
.

Proof. For each i, 1 ≤ i ≤ n, let Ai be the set of arrangements σ such that σ(i) = i. Then,

verify that |Ai| = (n− 1)!, |Ai ∩Aj | = (n− 2)! and so on. Thus,

| ∪
i
Ai| = n.(n− 1)! − C(n, 2)(n− 2)! + · · · + (−1)n−1C(n, n)0! = n!

n∑

k=1

(−1)k−1

k!
.

So, Dn = n!− ∪
i
Ai = n!

n∑

k=0

(−1)k

k! . Furthermore, lim
n→∞

Dn

n!
=

1

e
.

Example 7.2.8. For n ∈ N, how many squarefree integers do not exceed n?

Ans: Let P = {p1, · · · , ps} be the set of primes not exceeding
√
n and for 1 ≤ i ≤ s, let Ai

be the set of integers between 1 and n that are multiples of p2i . It is easy to see that

|Ai| = ⌊
n

p2i
⌋, |Ai ∩Aj | = ⌊

n

p2i p
2
j

⌋,

and so on. So, the number of squarefree integers not greater than n is

n− | s∪
i=1

Ai| = n−
s∑

i=1

⌊ n
p2i
⌋+

∑

1≤i<j≤s

⌊ n

p2i p
2
j

⌋ −
∑

1≤i<j<k≤s

⌊ n

p2i p
2
jp

2
k

⌋+ · · ·

For n = 100, we have P = {2, 3, 5, 7}. So, the number of squarefree integers not exceeding 100

is

100− ⌊100
4
⌋ − ⌊100

9
⌋ − ⌊100

25
⌋ − ⌊100

49
⌋+ ⌊100

36
⌋+ ⌊100

100
⌋ = 61.
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Exercise 7.2.9. 1. Let m,n ∈ N with gcd(m,n) = 1. Then, ϕ(mn) = ϕ(m)ϕ(n).

2. Let n ∈ N. Then, use inclusion-exclusion to prove S(n, r) =
1

r!

r∑

i=0
(−1)iC(r, i)(r − i)n.

3. In a school there are 12 students who take an art course A, 20 who take a biology course

B, 20 who take a chemistry course C and 8 who take a dance course D. There are 5

students who take both A and B, 7 students who take both A and C, 4 students who take

both A and D, 16 students who take both B and C, 4 students who take both B and D

and 3 students who take who take both C and D. There are 3 who take A,B and C; 2

who take A,B and D; 3 who take A,C and D; and 2 who take B,C and D. Finally there

are 2 in all four courses and further 71 students who have not taken any of these courses.

Find the total number of students.

4. Find the number of nonnegative integer solutions of a + b + c + d = 27, where 1 ≤ a ≤
5, 2 ≤ b ≤ 7, 3 ≤ c ≤ 9, 4 ≤ d ≤ 11.

5. Determine all integers n satisfying ϕ(n) = 13.

6. Determine all integers n satisfying ϕ(n) = 12.

7. For each fixed n ∈ N, use mathematical induction to prove that
∑

d|n
ϕ(d) = n.

8. A function f : N → N is said to be multiplicative if f(nm) = f(n)f(m), whenever

gcd(n,m) = 1.

(a) Let f, g : N → N be functions satisfying f(n) =
∑

d|n
g(d) and f(1) = g(1) = 1. If f is

multiplicative then use induction to show that g is also multiplicative.

(b) Imagine the fractions 1
n ,

2
n , . . . ,

n
n . Cancel the common factors and regroup to show

that n =
∑

d|n
ϕ(d).

(c) Conclude that ϕ is multiplicative.

9. Show that for n ≥ 1, Dn = ⌊n!e + 1
2⌋.

10. Prove combinatorially:
n∑

i=0
C(n, i)Dn−i = n!.

11. Show that
m∑

k=0

(−1)kC(m,k)(m− k)n =

{

n! if m = n

0 if m > n.

12. Determine the number of 10-letter words using ENGLISH alphabets that does not contain

all the vowels.

13. Determine the number of ways to put

(a) 30 indistinguishable balls into 4 distinguishable boxes with at most 10 balls in each

box.

(b) 30 distinguishable balls into 10 distinguishable boxes such that at least 1 box is empty.

(c) r distinguishable balls into n distinguishable boxes such that at least 1 box is empty.

(d) r distinguishable balls into n distinguishable boxes so that no box is empty.
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14. Determine the number of ways to arrange 10 digits 0, 1, . . . , 9, so that the digit i is never

followed immediately by i+ 1.

15. Determine the number of strings of length 15 consisting of the 10 digits, 0, 1, . . . , 9, so that

no string contains all the 10 digits.

16. Determine the number of ways of permuting the 26 letters of the ENGLISH alphabets so

that none of the patterns lazy, run, show and pet occurs.

17. Let x be a positive integer less than or equal to 9999999.

(a) Find the number of x’s for which the sum of the digits in x equals 30.

(b) How many of the solutions obtained in the first part consist of 7 digits?

7.3 Generating functions

This is one of the strongest tools in combinatorics. We start with the definition of formal power

series over Q and develop the theory of generating functions. This is then used to get closed

form expressions for some known recurrence relations and are then further used to get some

binomial identities.

Definition 7.3.1. 1. [Formal power series] An algebraic expression of the form f(x) =
∑

n≥0
anx

n, where an ∈ Q for all n ≥ 0, is called a formal power series in the indeterminate

x over Q. By P(x), we denote the set of all formal power series in x and by cf[xn, f ], the

coefficient of xn in f , e.g., cf

[

xn,
∑

n≥0
anx

n

]

= an.

2. [Equality of two formal power series] Two elements f, g ∈ P(x) are said to be equal if

cf[xn, f ] = cf[xn, g] for all n ≥ 0.

3. [Sum and Product in P(x)] Let f(x) =
∑

n≥0
anx

n, g(x) =
∑

n≥0
bnx

n ∈ P(x). Then, their

(a) sum/addition is defined by cf[xn, f + g] = cf[xn, f ] + cf[xn, g].

(b) product (called the Cauchy product) is defined by cf[xn, f · g] = cn =
n∑

k=0

akbn−k.

Before proceeding further, we consider the following examples.

Example 7.3.2. 1. How many words of size 8 can be formed with 6 copies of A and 6 copies

of B?

Ans:
6∑

k=2

C(8, k), as we just need to choose k places for A, where 2 ≤ k ≤ 6.

Alternate. In any such word, we need m many A’s and n many B’s with m + n = 8,

m ≤ 6 and n ≤ 6. Also, the number of words with m many A’s and n many B’s is
8!

m!n!
.

We identify this number with
8!xmyn

m!n!
and note that this is a term of degree 8 in

8!
[

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!

][

1 + y +
y2

2!
+

y3

3!
+

y4

4!
+

y5

5!
+

y6

6!

]

.
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If we replace y by x, then our answer is

8!cf
[

x8, (1 + x+ x2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! )(1 + x+ x2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! )
]

= 8!cf
[

x8, (x
2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! )(
x2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! )
]

= 8!cf
[

x8, (x
2

2! +
x3

3! + · · · )(x
2

2! +
x3

3! + · · · )
]

= 8!cf
[
x8, (ex − 1− x)2 = e2x + 1 + x2 − 2xex − 2ex + 2x

]
= 8!

(
28

8! − 2
7! − 2

8!

)
= 238.

2. How many anagrams are there of the word MISSISSIPPI?

Ans: Using basic counting, the answer is
11!

4!4!2!
. For another understanding, the readers

should also note that

11!

4!4!2!
= 11!cf

[

x11,
(
1 + x

)(
1 + x+

x2

2!
+

x3

3!
+

x4

4!

)2(
1 + x+

x2

2!

)
]

= 11!cf

[

x11,
(
x+

x2

2!
+ · · ·

)(x4

4!
+

x5

5!
+ · · ·

)2(x2

2!
+

x3

3!
+ · · ·

)
]

as we need to have x,
x4

4!
,
x4

4!
and

x2

2!
for the alphabets M, I, S and P , respectively.

3. Prove that the number of nonnegative integer solutions of u + v + w + t = 10 equals

cf
[
x10, (1 + x+ x2 + · · · )4

]
.

Ans: Note that u can take any value from 0 to 10 which corresponds to 1+ x+ · · ·+ x10.

Hence, using Theorem 6.6.1, the required answer is

cf
[
x10, f = (1 + x+ x2 + · · · )4 = (1− x)−4

]
= C(13, 10) =

4 · 5 · · · · 13
10!

.

Definition 7.3.3. [Generating functions] Let (br)
∞
0 be a sequence of integers. Then, the

1. ordinary generating function (ogf) is the formal power series

b0 + b1x+ b2x
2 + b3x

3 + · · · , and

2. exponential generating function (egf) is the formal power series

b0 + b1x+ b2
x2

2!
+ b3

x3

3!
+ · · · .

If there exists an M ∈ N such that br = 0 for all r ≥ M , then the generating functions have

finitely many terms.

Example 7.3.4. What is the number of nonnegative integer solutions of 2a + 3b + 5c = r,

r ∈ N0?

Ans: Note that a ∈ N0 and hence 2a corresponds to the formal power series 1+x2+x4+ · · · .
Thus, we need to consider the ogf

(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) = 1

(1− x2)(1 − x3)(1− x5)
.

Hence, the required answer is cf

[

xr,
1

(1− x2)(1 − x3)(1− x5)

]

.
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Remark 7.3.5. 1. Let f(x) =
∑

n≥0
an

xn

n!
, g(x) =

∑

n≥0
bn

xn

n!
∈ P(x). Then, in case of egf,

their product equals
∑

n≥0
dn

xn

n!
, where dn =

n∑

k=0

(n
k

)
akbn−k, for n ≥ 0.

2. Note that ee
x−1 ∈ P(x) as ey =

∑

n≥0

yn

n!
implies that ee

x−1 =
∑

n≥0

(ex − 1)n

n!
and

cf
[
xm, ee

x−1
]
= cf



xm,
∑

n≥0

(ex − 1)n

n!



 =

m∑

n=0

cf

[

xm,
(ex − 1)n

n!

]

. (7.2)

That is, for each m ≥ 0, cf
[
xm, ee

x−1
]
is a sum of a finite number of rational numbers.

Whereas, the expression ee
x 6∈ P(x) requires infinitely many computation for cf

[
xm, ee

x]
,

for all m ≥ 0.

With the algebraic operations as defined in Definition 1.3, it can be checked that P(x) forms a

Commutative Ring with identity, where the identity element is given by the formal power series

f(x) = 1. In this ring, the element f(x) =
∑

n≥0
anx

n is said to have a reciprocal if there exists

another element g(x) =
∑

n≥0
bnx

n ∈ P(x) such that f(x) ·g(x) = 1. So, the question arises, under

what conditions on cf[xn, f ], can we find g(x) ∈ P(x) such that f(x)g(x) = 1. The answer to

this question is given in the following proposition.

Proposition 7.3.6. The reciprocal of f ∈ P(x) exists if and only if cf
[
x0, f

]
6= 0.

Proof. Let g(x) =
∑

n≥0
bnx

n ∈ P(x) be the reciprocal of f(x) =
∑

n≥0
anx

n. Then, f(x)g(x) = 1 if

and only if cf
[
x0, f · g

]
= 1 and cf[xn, f · g] = 0, for all n ≥ 1.

But, by definition of the Cauchy product, cf
[
x0, f · g

]
= a0b0. Hence, if a0 = cf

[
x0, f

]
= 0

then cf
[
x0, f · g

]
= 0 and thus, f cannot have a reciprocal. However, if a0 6= 0, then the

coefficients cf[xn, g] = bn’s can be recursively obtained as follows:

b0 =
1

a0
as 1 = c0 = a0b0; b1 =

−1
a0
· (a1b0) as 0 = c1 = a0b1+ a1b0; b2 =

−1
a0
· (a2b0 + a1b1)

as 0 = c2 = a0b2 + a1b1 + a2b0; and in general, if we have computed bk, for k ≤ r, then using

0 = cr+1 = ar+1b0 + arb1 + · · · + a1br + a0br+1, br+1 =
−1
a0
· (ar+1b0 + arb1 + · · · + a1br).

Hence, the required result follows.

Note that, in Proposition 7.3.6, bn ∈ Q as a0 ∈ Q. We now look at the composition of formal

power series. Recall that, if f(x) =
∑

n≥0
anx

n, g(x) =
∑

n≥0
bnx

n ∈ P(x) then the composition

(f ◦ g)(x) = f(g(x)) =
∑

n≥0

an(g(x))
n =

∑

n≥0

an(
∑

m≥0

bmxm)n

may not be defined (just to compute the constant term of the composition, one may have to

look at an infinite sum of rational numbers). For example, let f(x) = ex and g(x) = x+1. Note

that g(0) = 1 6= 0. Here, (f ◦ g)(x) = f(g(x)) = f(x + 1) = ex+1. So, as function f ◦ g is well

defined, but there is no formal procedure to write ex+1 as
∑

k≥0

akx
k ∈ P(x) (i.e., with ak ∈ Q)

and hence ex+1 is not a formal power series over Q. The next result gives the condition under

which the composition (f ◦ g)(x) is well defined.
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Proposition 7.3.7. Let f, g ∈ P(x). Then, the composition (f ◦ g)(x) ∈ P(x) if either f is a

polynomial or cf
[
x0, g(x)

]
= 0. Moreover, if cf

[
x0, f(x)

]
= 0, then there exists g ∈ P(x), with

cf
[
x0, g(x)

]
= 0, such that (f ◦ g)(x) = x. Furthermore, (g ◦ f)(x) ∈ P(x) and (g ◦ f)(x) = x.

Proof. As (f ◦ g)(x) ∈ P(x), let (f ◦ g)(x) = f(g(x)) =
∑

n≥0
cnx

n and suppose that either f is a

polynomial or cf
[
x0, g(x)

]
= 0. Then, to compute ck = cf

[
xk, (f ◦ g)(x)

]
, for k ≥ 0, one just

needs to consider the terms
k∑

n=0
ak(g(x))

n, whenever f(x) =
∑

n≥0
anx

n. Hence, each ck ∈ Q and

thus, (f ◦ g)(x) ∈ P(x). This completes the proof of the first part. We leave the proof of the

other part for the reader.

Proposition 7.3.8. [Basic tricks] Recall the following statements from Binomial theorem and

Theorem 6.6.1.

1. cf
[
xn, (1− x)−r = (1 + x+ x2 + · · · )r

]
= C(n+ r − 1, n).

2. (1− xm)n = 1− C(n, 1)xm + C(n, 2)x2m − · · ·+ (−1)nxnm.

3. (1 + x+ x2 + · · ·+ xm−1)n =

(
1− xm

1− x

)n

= (1− xm)n(1 + x+ x2 + · · · )n.

We now define the formal differentiation in P(x) and give some important results. The proof

is left for the reader.

Definition 7.3.9. [Differentiation] Let f(x) =
∑

n≥0
anx

n ∈ P(x). Then, the formal differenti-

ation of f(x), denoted f ′(x), is defined by

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

∑

n≥1

nanx
n−1.

Proposition 7.3.10. [ogf: tricks] Let g(x), h(x) be the ogf’s for the sequences (ar)
∞
0 , (br)

∞
0 ,

respectively. Then, the following are true.

1. Ag(x) +Bh(x) is the ogf for (Aar +Bbr)
∞
0 .

2. (1− x)g(x) is the ogf for the sequence a0, a1 − a0, a2 − a1, · · · .

3. (1+x+x2+· · · )g(x) = (1−x)−1g(x) is the ogf for (Mr)
∞
0 , where Mr = ar+ar−1+· · ·+a0.

4. g(x)h(x) is the ogf for (cr)
∞
0 , where cr = a0br + a1br−1 + a2br−2 + · · · + arb0.

5. xf ′(x) is the ogf for (rar)
∞
1 .

Proof. For example, to prove (3), note that if g(x) = a0 + a1x+ a2x
2 + · · · , then the coefficient

of x2 in (1 + x+ x2 + · · · )(a0 + a1x+ a2x
2 + · · · ) is a2 + a1 + a0.

Example 7.3.11. 1. Let ar = 1 for all r ≥ 0. Then, the ogf of the sequence (ar)
∞
0 equals

1 + x+ x2 + · · · = (1− x)−1 = f(x). So, for r ≥ 0, the ogf for

(a) ar = r is xf ′(x) and

(b) ar = r2 is x
(
f ′(x) + xf ′′(x)

)
.

(c) ar = 3r + 5r2 is 3xf ′(x) + 5
(
xf ′(x) + x2f ′′(x)

)
= 8x(1− x)−2 + 10x2(1− x)−3.
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2. Determine the number of ways to distribute 50 coins among 30 students so that no student

gets more than 4 coins equals

cf
[
x50, (1 + x+ x2 + x3 + x4)30

]
= cf

[
x50, (1− x5)30(1− x)−30

]

= C(79, 50) − 30C(74, 45) + C(30, 2)C(69, 40) + · · ·

=
10∑

i=0

(−1)iC(30, i)C(79 − 5i, 50 − 5i).

3. For n, r ∈ N, determine the number of solutions to y1+· · ·+yn = r with yi ∈ N0, 1 ≤ i ≤ n.

Ans: Recall that this number equals C(r + n− 1, r) (see Theorem 6.3.3).

Alternate. We can think of the problem as follows: the above system can be interpreted

as coming from the monomial xr, where r = y1 + · · · + yn. That is, the problem reduces

to finding the coefficients of xyk of a formal power series, for yk ≥ 0. Now, recall that

cf
[
yxk , (1 − y)−1

]
= 1. Hence, the question reduces to computing

cf

[

xr,
1

(1− y)(1− y) · · · (1− y)

]

= cf

[

yr,
1

(1− y)n

]

= C(r + n− 1, r).

4. Evaluate
∞∑

k=0

1
2k
k. Put f(x) = (1 − x)−1. Then, the required sum is 1

2f
′(1/2) = 2.

Alternately (rearranging terms of an absolutely convergent series) it is

1
2 +
1
4 + 1

4 +
1
8 + 1

8 +
1
8 +

...

1 + 1
2 + · · · = 2.

5. Determine a closed form expression for
∑

n≥0
nxn ∈ P(x).

Ans: As (1− x)−1 =
∑

n≥0
xn, one has (1− x)−2 =

(
(1− x)−1

)′
=

(

∑

n≥0
xn

)′

=
∑

n≥0
nxn−1.

Thus, the closed form expression is
x

(1− x)2
.

Alternate. Let S =
∑

n≥0
nxn = x + 2x2 + 3x3 + · · · . Then, xS = x2 + 2x3 + 3x4 + · · · .

Hence, (1− x)S =
∑

k≥1

xk = x
∑

k≥0

xk =
x

1− x
. Thus, S =

x

(1− x)2
.

6. Determine the sum of the first N positive integers.

Ans: Using previous example, note that k = cf
[
xk−1,

(
(1− x)−2

)]
. Therefore, by Propo-

sition 7.3.10, one has
N∑

k=1

k = cf
[
xN−1,

(
(1− x)−1 · (1− x)−2

])
and hence

N∑

k=1

k = cf
[
xN−1, (1 − x)−3

]
= C(N + 1, N − 1) =

N(N + 1)

2
.
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7. Determine the sum of the squares of the first N positive integers.

Ans: Recall
∑

n≥0
nxn = x

(1−x)2
. Thus,

∑

n≥0
n2xn = x

(
∑

n≥0
nxn

)′
= x

(

x
(1−x)2

)′
=

x(1 + x)

(1− x)3
.

Hence,

N∑

k=1

k2 = cf

[

xN ,
1

1− x
· x(1 + x)

(1− x)3

]

= cf

[

xN−1,
1

(1− x)4

]

+ cf

[

xN−2,
1

(1− x)4

]

= C(N + 2, N − 1) + C(N + 1, N − 2) =
N(N + 1)(2N + 1)

6
.

Exercise 7.3.12. 1. For n, r ∈ N, determine the number of solutions to x1+2x2+· · ·+nxn =

r with xi ∈ N0, 1 ≤ i ≤ n.

2. Determine
∞∑

k=0

1
2k
C(n+ k − 1, k).

3. Find the number of nonnegative integer solutions of a+ b+ c+ d+ e = 27, satisfying

(a) 3 ≤ a ≤ 8,

(b) 3 ≤ a, b, c, d ≤ 8

(c) c is a multiple of 3 and e is a multiple of 4.

4. Determine the number of ways in which 100 voters can cast their 100 votes for 10 candi-

dates such that no candidate gets more than 20 votes.

5. Determine a closed form expression for
N∑

k=1

k3.

6. Determine a closed form expression for
∑

n≥0

n2 + n+ 6

n!
.

7. Verify the following table of formal power series.

Table of Formal Power Series

ex =
∑

k≥0

xk

k!
(1 + x)n =

∑

r≥0
C(n, k)xk, n ∈ N0

cos(x) =
∑

r≥0

(−1)rx2r
(2r)!

sin(x) =
∑

r≥0

(−1)rx2r+1

(2r + 1)!

cosh(x) =
∑

r≥0

x2r

(2r)!
sinh(x) =

∑

r≥0

x2r+1

(2r + 1)!

Radius of convergence: |x| < 1

log(1− x) = − ∑
k≥1

xk

k
1

1− x
=

∑

k≥0

xk
1

(1− x)n
=

∑

k≥0

C(n+ k − 1, k)xk, n ∈ N

(1 + x)n

xr
=

∑

k≥−r

C(n, r + k)xk
xn

(1 − x)n+1
=

∑

k≥0

C(k, n)xk, n ∈ N0

Radius of convergence: |x| < 1

4
1√

1− 4x
=

∑

k≥0

C(2k, k)xk
1−
√
1− 4x

2x
=

∑

k≥0

1

k + 1
C(2k, k)xk
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• • •• •
• • •
• • •
• •
•
•

(5, 3, 3, 2, 1, 1)

• • •• • •
• • • •
• • •
•
•

(6, 4, 3, 1, 1)

• • •• •
• • • ••
• • • •
• • •
• •

(5, 5, 4, 3, 2)

→ 9 : I-hook

→ 7 : II-hook

→ 3 : III-hook

Figure 7.1: Ferrer’s diagram and it’s conjugate

Definition 7.3.13. [Ferrer’s diagram] For n, k ∈ N, let (n1, n2, · · · , nk) be a partition of n ∈ N

into k parts. Then, the Ferrer’s Diagram of (n1, n2, · · · , nk) is a pictorial representation

(pattern) using dots in the following way: place n1 dots in the first row. The n2 dots in the

second row are placed in such a way to cover the first n2 dots of the first row and so on (see

Figure 7.1).

Example 7.3.14. 1. (1, 1, 1, 1), (2, 2), (2, 1, 1) are a few partitions of 4.

2. Ferrer’s diagram for (5, 3, 3, 2, 1, 1) is

3. Let λ be a partition and µ it’s Ferrer’s diagram. Then, the diagram µ′ obtained by

interchanging the rows and columns of µ is called the conjugate of λ, denoted λ′. Thus,

the conjugate of the partition (5, 3, 3, 2, 1, 1) is (6, 4, 3, 1, 1), another partition of 15.

Definition 7.3.15. [Self conjugate] A partition λ is said to be self conjugate if the Ferrer’s

diagram of λ and λ′ is the same.

Example 7.3.16. Find a one-one correspondence between self conjugate partitions and parti-

tions of n into distinct odd terms.

Ans: Let λ be a self conjugate partition with k diagonal dots. For 1 ≤ i ≤ k, define ni =

number of dots in the i-th ‘hook’ (dotted lines in Figure 7.1). Conversely, given any partition,

say (x1, . . . , xk) with odd terms, we can get a self conjugate partition by putting x1 dots in the

first ‘hook’, x2 dots in the second ‘hook’ and so on. Since each xi is odd, the hook is symmetric

and xi ≤ xi−1 + 2 for 2 ≤ i ≤ k implies that the corresponding diagram of dots is indeed a

Ferrer’s diagram and hence the result follows.

Theorem 7.3.17. [Euler: partition of n] The generating function for πn is

ε(x) = (1+x+x2+ · · · )(1+x2+x4+ · · · ) · · · (1+xn+x2n+ · · · ) = 1

(1− x)(1 − x2) · · · (1− xn)
.

Proof. Note that any partition λ of n has m1 copies of 1, m2 copies of 2 and so on till mn

copies of n, where mi ∈ N0 for 1 ≤ i ≤ n and
n∑

i=1
mi = n. Hence, λ uniquely corresponds to

(x1)m1(x2)m2 · · · (xn)mn in the word-expansion of

(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xn + x2n + · · · ).

Thus, πn = cf[xn, ε(x)].
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Example 7.3.18. Let f(n) be the number of partitions of n in which no part is 1. Then, note

that the ogf for f(n) is (1− x)ε(x). Hence, f(n) = πn − πn−1.

Alternate. Let λ = (n1, . . . , nk) be a partition of n with nk = 1. Then, λ gives a partition

of n − 1, namely (n1, . . . , nk−1). Conversely, if µ = (t1, . . . , tk) is a partition of n − 1, then

(t1, . . . , tk, 1) is a partition of n with last part 1, Hence, the required result follows.

The next result is the same idea as Theorem 7.3.17 and hence the proof is omitted.

Theorem 7.3.19. The number of partitions of n with entries at most r is cf

[

xn,
r∏

i=1

1
1−xi

]

.

Theorem 7.3.20. [ogf of πn(r)] Fix n, r ∈ N. Then, the ogf for πn(r), the number of partitions

of n into r parts, is xr

(1−x)(1−x2)···(1−xr)
.

Proof. Let λ be a partition of n into at most r parts. Then, λ′ corresponds to a partition of

n with entries at most r. Now, add a column of dots of height r on the left of the Ferrer’s

diagram of λ′. Then, the new Ferrer’s diagram corresponds to a partition of n+ r into r parts.

Conversely, given a partition of n+ r into r parts, the inverse map gives a partition of n into at

most r parts. Thus, by Theorem 7.3.19, we get

πn(r) = cf

[

xn−r,
1

(1− x)(1 − x2) · · · (1− xr)

]

.

Hence, the ogf for πn(r) is
xr

(1− x)(1− x2) · · · (1− xr)
.

Exercise 7.3.21. 1. For n, r ∈ N, prove that πn(r) is the number of partitions of n+C(r, 2)

into r unequal parts.

2. Let P,M ⊆ N and f(n) be the number of partitions of n where parts are from P and

multiplicities are from M . Find the generating function for the numbers f(n).

Theorem 7.3.22. Suppose there are k types of objects.

1. If there is an unlimited supply of each object, then the egf of the number of r-permutations

is ekx.

2. If there are mi copies of i-th object, then the egf of the number of r-permutations is
(

1 + x+
x2

2!
+ · · · + xm1

m1!

)

· · ·
(

1 + x+
x2

2!
+ · · ·+ xmk

mk!

)

.

3. Moreover, n!S(r, n) is the coefficient of xr

r! in (ex − 1)n.

Proof. Part 1: Since there are unlimited supply of each object, the egf for each object corresponds

to ex = 1 + x+ · · ·+ xn

n!
+ · · · . Hence, the required result follows.

Part 2: Argument is similar to that of Part 1 and is omitted.

Part 3: Recall that n!S(r, n) is the number of surjections from [r] to S = {s1, · · · , sn}. Each

surjection can be viewed as word of length r of elements of S, with each si appearing at least

once. Thus, we need a selection of ki ∈ N copies of si, with
n∑

i=1
ki = r. Also, by Theorem 6.1.26,

this number equals C(r; k1, · · · , kn). Hence,

n!S(r, n) = r!cf

[

xr,

(

x+
x2

2!
+

x3

3!
+ · · ·

)n]

= cf

[
xr

r!
, (ex − 1)n

]

.
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Example 7.3.23. 1. In how many ways can you get Rs 2007 using denominations 1, 10, 100, 1000

only?

Ans: cf

[

x2007,
1

(1− x)(1− x10)(1− x100)(1 − x1000)

]

.

2. If we use at most 9 of each denomination in (a), then this number is

cf

[

x2007,

(
9∑

i=1

xi

)(
9∑

i=1

x10i

)(
9∑

i=1

x100i

)(
9∑

i=1

x1000i

)]

= cf

[

x2007,
1− x10000

1− x

]

= 1.

3. Every natural number has a unique base-r representation (r ≥ 2). Note that Item (2)

corresponds to the case r = 10.

4. Consider n integers k1 < k2 < · · · < kn with gcd(k1, . . . , kn) = 1. Then, the number of

natural numbers not having a partition using {k1, . . . , kn} is finite. Since gcd(k1, . . . , kn) =
1, there exist αi ∈ Z such that

∑
αiki = 1. Let m = max{|α1|, . . . , |αn|}, k = min{ki} and

N = km(k1+· · ·+kn). Notice that N,N+k,N+2k, . . . can be represented as
∑

βiki where

βi ≥ km. For 1 ≤ r < k, we have N + r = km(k1 + · · ·+ kn)+ r
∑

αiki =
∑

(km− rαi)ki.

Thus, each integer greater than N can be represented using k1, . . . , kn. Determining the

largest such integer (Frobenius number) is the coin problem/ money changing

problem. The general problem is NP-hard. No closed form formula is known for n > 3.

Notice!

Some times we have a way to obtain a recurrence relation from the generating function.

This is important and hence study the next example carefully.

Example 7.3.24. 1. Suppose F =
1

(1− x)(1− x10)(1 − x100)(1− x1000)
= a0 + a1x+ · · ·+

anx
n + · · · . Then, taking log and differentiating, we get

F ′ = F

[
1

1− x
+

10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]

.

So,

nan = cf
[
xn−1, F ′] = cf

[

xn−1, F

[
1

1− x
+

10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]]

=
n∑

k=1

an−kbk,

where

bk = cf

[

xk−1,

[
1

1− x
+

10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]]

=







1 if 10 ∤ k

11 if 10|k, 100 ∤ k

111 if 10|k, 100|k, 1000 ∤ k

1111 else.

2. We know that lim
n→∞

n∑

k=1

1
k =∞. What about lim

n→∞

n∑

k=1

1
pk
, where pk is the k-th prime?
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Ans: For n > 1, let sn =
n∑

k=1

1
k . Then, note that

sn ≤
(

1 +
1

2
+

1

4
+ · · ·

)(

1 +
1

3
+

1

9
+ · · ·

)

· · ·
(

1 +
1

pn
+

1

p2n
+ · · ·

)

=
n∏

k=1

(1 +
1

pk − 1
).

Thus,

log sn ≤ log

(
n∏

k=1

(1 +
1

pk − 1
)

)

≤
n∑

k=1

log(1 +
1

pk − 1
) ≤

n∑

k=1

1

pk − 1
≤ 1 +

n−1∑

k=1

1

pk
.

As sn →∞, we see that lim
n→∞

n∑

i

1
pi

=∞ as lim
n→∞

log sn =∞.

3. Let S be the set of natural numbers with only prime divisors 2, 3, 5, 7. Then,

1 +
∑

n∈S

1

n
= (1 +

1

2
+

1

4
+ · · · )(1 + 1

3
+

1

9
+ · · · ) · · · (1 + 1

7
+

1

49
+ · · · ) = 2

1

3

2

5

4

7

6
.

Exercise 7.3.25. 1. Let σ(n) =
∑

d|n
d, for n ∈ N. Then, prove that nπn =

n∑

k=1

πn−kσ(k).

2. A Durfee square is the largest square in a Ferrer’s diagram. Find the generating function

for the number of self conjugate partitions of n with a fixed size k of Durfee square. Hence,

show that (1 + x)(1 + x3) · · · = 1 +

∞∑

k=1

xk
2

(1− x2)(1− x4) · · · (1− x2k)
.

3. Show that the number of partitions of n into distinct terms ( each term is distinct) is the

same as the number of partitions of n into odd terms (each term is odd).

4. Find the number of r-digit binary numbers that can be formed using an even number of

0’s and an even number of 1’s.

5. Find the egf of the number of words of size r using A,B,C,D,E, if the word has

(a) all the letters and the letter A appears an even many times.

(b) all the letters and the first letter of the word appears an even number of times.

6. A permutation σ of [n] is said to be connected if there does not exist k, 1 ≤ k < n such

that σ takes [k] to itself. Let cn denote the number of connected permutations of [n] (put

c0 = 0), then show that
n∑

k=1

ck(n− k)! = n!.

Hence, derive the relationship between the generating functions of (n!) and (cn).

7. Let f(n, r) be the number of partitions of n where each part repeats less than r times.

Let g(n, r) be the number of partition of n where no part is divisible by r. Show that

f(n, r) = g(n, r).

8. Find the number of 9-sequences that can be formed using 0, 1, 2, 3 in each case.

(a) The sequence has an even number of 0’s.

(b) The sequence has an odd number of 1’s and an even number of 0’s.

(c) No digit appears exactly twice.
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7.4 Recurrence relation

Definition 7.4.1. [Recurrence relation] A recurrence relation is a way of recursively defining

the terms of a sequence as a function of preceding terms together with certain initial conditions.

Example 7.4.2. an = 3 + 2an−1 for n ≥ 1 with the initial condition a0 = 1 is a recurrence

relation. Note that it completely determines the sequence (an) = {1, 5, 13, 29, 61, . . .}.

Definition 7.4.3. [Difference equation] For a sequence (an), the first difference d(an) is

an − an−1. The k-th difference dk(an) = dk−1(an) − dk−1(an−1). A difference equation is

an equation involving an and its differences.

Example 7.4.4. 1. an − d2(an) = 5 is a difference equation. But, note that it doesn’t give

a recurrence relation as we don’t have any initial condition(s).

2. Every recurrence relation can be expressed as a difference equation. The difference equa-

tion corresponding to the recurrence relation an = 3 + 2an−1 is an = 3 + 2(an − d(an)).

Definition 7.4.5. [Solution] A solution of a recurrence relation is a function f(n) satisfying

the recurrence relation.

Example 7.4.6. 1. f(n) = 2n+2 − 3 is a solution of an = 3 + 2an−1 with a0 = 1.

2. The Fibonacci sequence is given by an = an−1 + an−2 for n ≥ 2 with a0 = 1, a1 = 1.

Definition 7.4.7. [LNHRRCC/LHRRCC]A recurrence relation is a linear nonhomogeneous

recurrence relation with constant coefficients (LNHRRCC) of order r if, for a known func-

tion f

an = c1an−1 + · · ·+ cran−r + f(n), where ci ∈ R for 1 ≤ i ≤ r, cr 6= 0. (7.3)

If f = 0, then Equation (7.3) is homogeneous and is called the associated linear homogeneous

recurrence relation with constant coefficients (LHRRCC).

Theorem 7.4.8. For k ∈ N, let fi, 1 ≤ i ≤ k be known functions. Consider the k LNHRRCC

an = c1an−1 + · · · + cran−r + fi(n) for i = 1, . . . , k, (7.4)

with the same set of initial conditions. If gi is a solution of the i-th recurrence then,

an = c1an−1 + · · ·+ cran−r +

k∑

i=1

αifi(n) (7.5)

under the same set of initial conditions has
k∑

i=1
αigi(n) as it’s solution.

Proof. The proof is left as an exercise for the reader.

Definition 7.4.9. [Characteristic equation] Consider a LHRRCC an = c1an−1 + · · ·+ cran−r

with cr 6= 0. If an = xn is a solution, then either x = 0 or x is a root of

xr − c1x
r−1 − · · · − cr = 0. (7.6)
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Equation (7.6) is called the characteristic equation of the given LHRRCC. If x1, . . . , xr are

the roots of Equation (7.6), then an = xni (and hence an =
r∑

i=1
αix

n
i for αi ∈ R) is a solution of

the given LHRRCC.

Theorem 7.4.10. [General solution: distinct roots] If the roots xi, i = 0, . . . , r − 1 of Equa-

tion (7.6) are distinct, then every solution h(n) is a linear combination of xni . Moreover, the

solution is unique if we are given r consecutive initial conditions.

Proof. Let h(n) be any solution. Then, note that there exists α0, . . . , αr−1, such that






h(0)
...

h(r − 1)




 =








1 · · · 1

x0 · · · xr−1

. . .

xr−1
0 · · · xr−1

r−1













α0
...

αr−1




,

as the r× r matrix is an invertible matrix. That is, for every αi ∈ R, h(n) =
r−1∑

i=0
αix

n
i , 0 ≤ n ≤

r− 1. Hence, we have proved the result for the first r values of h(n). So, let us assume that the

result is true for n < k. Then, by definition

h(k) =
r∑

j=1

cjh(k − j) =
r∑

j=1

cj

r−1∑

i=0

αix
k−j
i =

r−1∑

i=0

αi

r∑

j=1

cjx
k−j
i =

r−1∑

i=0

αix
k
i ,

as for n = k, xki is a solution of Equation (7.6). Thus, by PMI, h(n) =
r−1∑

i=0
αix

n
i for all n. The

uniqueness is left as an exercise for the reader.

Example 7.4.11. 1. Solve an − 4an−2 = 0 for n ≥ 2 with a0 = 1 and a1 = 1.

Ans: Note that ±2 are the roots of the characteristic equation, x2 − 4 = 0. As the roots

are distinct, the general solution is an = α(−2)n+β2n for α, β ∈ R. The initial conditions

give α + β = 1 and 2β − 2α = 1. Hence, α = 1
4 , β = 3

4 . Thus, the unique solutions is

an = 2n−2
(
3 + (−1)n

)
.

2. Solve an = 3an−1 + 4an−2 for n ≥ 2 with a0 = 1 and a1 = c, a constant.

Ans: Note that −1 and 4 are the roots of the characteristic equation, x2 − 3x − 4 = 0.

As the roots are distinct, the general solution is an = α(−1)n + β4n for α, β ∈ R. Now,

the initial conditions imply α = 4−c
5 andβ = 1+c

5 . Thus, the unique general solution is

(a) an =
(4− c)(−1)n

5
+

(1 + c)4n

5
, if c 6= 4.

(b) an = 4n, if c = 4.

3. Solve the Fibonacci recurrence an = an−1 + an−2 with initial conditions a0 = a1 = 1.

Ans: In this case, note that the roots of the characteristic equation, x2 − x − 1 = 0, are
1±

√
5

2 . As the roots are distinct, the general solution is an = α
(
1+

√
5

2

)n
+ β

(
1−

√
5

2

)n
for

α, β ∈ R. Now, using the initial conditions, we get α = 5+
√
5

10 , β = 5−
√
5

10 . Hence, the

required solution is

an = α
(1 +

√
5

2

)n
+ β

(1−
√
5

2

)n
=

1√
5





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1


 .
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Theorem 7.4.12. [General solution: multiple roots] Let t is a root of Equation (7.6) of

multiplicity s. Then, u(n) = tn(α1 + nα2 + · · · + ns−1αs) is a solution (basic solution). In

general, if ti is a root of Equation (7.6) with multiplicity si), for i = 1, . . . , k, then every solution

is a sum of the k basic solutions.

Proof. It is given that t is a zero of the polynomial F = xr − c1x
r−1 − · · · − cr of multiplicity s.

Put G0 = xn−rF = xn − c1x
n−1 − · · · − crx

n−r and G1 = xG′
0, G2 = xG′

1, . . ., Gs−1 = xG′
s−2.

Then, each of G0, G1, . . . , Gs−1 has a zero at t. That is, for i = 0, 1, . . . , s− 1, we have

Gi(t) = tnni − c1t
n−1(n− 1)i − . . . − crt

n−r(n − r)i = 0.

Now, take u(n) = tnP (n), where P (n) =
s−1∑

i=0
niαi is a fixed polynomial, with αi ∈ R for

0 ≤ i ≤ s− 1. Then,

s−1∑

i=0

αiGi(t) = tnP (n)− c1t
n−1P (n− 1)− · · · − crt

n−rP (n− r) = 0.

Hence, for 0 ≤ i ≤ s− 1 and αi ∈ R, u(n) is a solution of the LHRRCC. The other part of the

proof is left for the reader.

Example 7.4.13. Suppose that a LHRRCC has roots 2, 2, 3, 3, 3. Then, the general solution is

given by 2n(α1 + nα2) + 3n(β1 + nβ2 + n2β3).

Theorem 7.4.14. [LNHRRCC] Consider the LNHRRCC in Equation (7.3) and let un be a

general solution to the associated LHRRCC. If vn is a particular solution of the LNHRRCC,

then an = un + vn is a general solution of the LNHRRCC.

Proof. The proof is left for the reader.

Notice!

No general algorithm are there to solve a LNHRRCC. If f(n) = an or nk or a linear

combination of these, then a particular solution can be obtained easily.

Obtaining particular solution after knowledge of the characteristic roots.

1. If f(n) = an and a is not a root of Equation (7.3), then vn = can.

2. If f(n) = an and a is a root of Equation (7.3) of multiplicity t, then vn = cntan.

3. If f(n) = nk and 1 is not a root of Equation (7.3), then use vn = c0+ c1n+ · · ·+ ckn
k.

4. If f(n) = nk and 1 is a root of Equation (7.3) of multiplicity t, then vn = nt(c0 +

c1n+ · · ·+ ckn
k).

Example 7.4.15. 1. Let an = 3an−1 + 2n for n ≥ 1 with a0 = 1.

Ans: Observe that 3 is the characteristic root of the associated LHRRCC (an = 3an−1).

Thus, the general solution of LHRRCC is un = 3nα. Note that 1 is not a characteristic
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root and hence a particular solution is a + nb, where a and b are to be computed using

a+ nb = 3(a+ (n − 1)b) + 2n. This gives a = −3
2 and b = −1. Hence, an = 3nα− n− 3

2
.

Using a0 = 1, check that α =
5

2
.

2. Let an = 3an−1 − 2an−2 + 3(5)n for n ≥ 3 with a1 = 1, a2 = 2.

Ans: Observe that 1 and 2 are the characteristic roots of the associated LHRRCC (an =

3an−1− 2an−2). Thus, the general solution of the LHRRCC is un = α1n +β2n. Note that

5 is not a characteristic root and thus, vn = c5n is a particular solution of LNHRRCC if

and only if c5n = 3c5n−1 − 2c5n−2 + 3(5)n. That is, if and only if c = 25/4. Hence, the

general solution of LNHRRCC equals an = α + β2n + (25/4)5n, where compute α and β

using the initial conditions.

3. In the above take f(n) = 3(2n). Then, we see that with c(2)n as a choice for a particular

solution, we will have 4c = 6c−2c+12, an absurd statement. But, with the choice cn(2)n,

we have 4nc = 6(n − 1)c − 2(n − 2)c + 12, implying c = 6. Hence, the general solution of

LNHRRCC is an = α+ β2n + 6n2n, where compute α and β using the initial conditions.

7.5 Generating function from recurrence relation

Sometimes we can find a solution to the recurrence relation using the generating function of an.

Example 7.5.1. 1. Consider an = 2an−1 + 1, a0 = 1.

Ans: Let F (x) = a0 + a1x+ · · · be the generating function for {ai}. Then,

F = 1 +
∞∑

i=1

aix
i = 1 +

∞∑

i=1

(2ai−1 + 1)xi =
∞∑

i=0

xi + 2x
∞∑

i=0

aix
i =

1

1− x
+ 2xF.

Hence, F = 1
(1−x)(1−2x) =

2
1−2x − 1

1−x . Thus, an = cf[xn, F ] = 2n+1 − 1.

2. Find the ogf F for the Fibonacci recurrence relation an = an−1 + an−2, a0 = 0, a1 = 1.

Ans: We have

F =

∞∑

i=0

aix
i = x+

∞∑

i=2

ai−2x
i +

∞∑

i=2

ai−1x
i = x+ x2

∞∑

i=0

aix
i + x

∞∑

i=1

aix
i = x+ (x2 + x)F.

Thus, F =
x

1− x− x2
=

−x
(x− α)(x− β)

, where α =
−1 +

√
5

2
, β =

−1−
√
5

2
. So,

F =
−x

(x− α)(x − β)
=
−1√
5

[
α

x− α
− β

x− β

]

=
1√
5

∞∑

i=0

[
xi

αi
− xi

βi

]

.

Hence, using α · β = −1, an = cf[xn, F ] =
(−1)n√

5
(βn − αn) =

(1 +
√
5)n − (1−

√
5)n

2n
√
5

.

The next result follows using a small calculation and hence the proof is left for the reader.
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Theorem 7.5.2. [Obtaining generating function from recurrence relation] The generating

function of the r-th order LHRRCC an = c1an−1 + · · ·+ cran−r with initial conditions ai = Ai,

i = 0, 1, . . . , r − 1 is

r−1∑

i=0
Aix

i − c1x
r−2∑

i=0
Aix

i − c2x
2
r−3∑

i=0
Aix

i − · · · − cr−1x
r−1A0

1 − c1x − · · · − crxr
.

Example 7.5.3. 1. Find the ogf for the Catalan numbers Cn’s.

Ans: Let g(x) = 1 +
∑

n≥1
Cnx

n, where Cn = C(2n,n)
n+1 with C0 = 1. Then,

g(x) − 1 =
∑

n≥1

Cnx
n =

∑

n≥1

1

n+ 1
· 2n!
n!n!

xn =
∞∑

n=1

2(2n − 1)

n+ 1
Cn−1x

n

=

∞∑

n=1

4n+ 4

n+ 1
Cn−1x

n +

∞∑

n=1

−6
n+ 1

Cn−1x
n = 4xg(x) +

−6
x

x∫

0

tg(t)dt.

So, [g(x) − 1 − 4xg(x)]x = −6
x∫

0

tg(t)dt. Now, we differentiate with respect to x to get

g′x(1− 4x) + g(1 − 2x) = 1. To solve the ode, we first observe that

∫
1− 2x

x(1− 4x)
=

∫ [
1

x
+

2

1− 4x

]

= ln

(
x√

1− 4x

)

.

Thus, the integrating factor of the given ode is x√
1−4x

and hence the ode can be re-written

as

g(x)′
x√

1− 4x
+ g(x)

1− 2x

(1 − 4x)3/2
=

1

(1− 4x)3/2
⇔ d

dx

[
g(x)

x√
1− 4x

]
=

1

(1− 4x)3/2
.

Hence, g(x) x√
1−4x

= 1
2
√
1−4x

+C, where C ∈ R. Or, equivalently

g(x) =
1 + 2C

√
1− 4x

2x
. (7.7)

Note that C0 = lim
x→0

g(x) = 1 and hence, C = −1
2 . Thus,

g(x) =
1−
√
1− 4x

2x
.

Alternate. Recall that Cn is the number of representations of the product of n+1 square

matrices of the same size, using n pairs of brackets. From such a representation, remove

the leftmost and the rightmost brackets to obtain the product of two representations of

the form:

A1(A2 · · ·An+1), (A1A2)(A3 · · ·An+1), · · · , (A1 · · ·Ak)(Ak+1 · · ·An+1), · · · , (A1 · · ·An)An+1.

Hence, we see that

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0. (7.8)
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Thus, if we define g(x) =
∞∑

n=0
Cnx

n, then for n ≥ 1,

cf
[
xn−1, g(x)2

]
= cf



xn−1,

( ∞∑

n=0

Cnx
n

)2


 =
n−1∑

i=0

CiCn−1−i = Cn using Equation (7.8).

That is, cf
[
xn, xg(x)2

]
= Cn. Hence, g(x) = 1 + xg(x)2. Solving for g(x), we get

g(x) =
1

2

(

1

x
±
√

1

x2
− 4

x

)

=
1±
√
1− 4x

2x
.

As the function g is continuous (being a power series in the domain of convergence) and

lim
x→0

g(x) = C0 = 1, it follows that

g(x) =
1−
√
1− 4x

2x
.

2. Fix r ∈ N and let (an) be a sequence with a0 = 1 and
n∑

k=0

akan−k = C(n + r, r), for all

n ≥ 1. Determine an.

Ans: Let g(x) =
∑

n≥0
anx

n. Then, note that C(n+ r, r) = c(n + (r + 1)− 1, n). Hence,

g(x)2 =
∑

n≥0

(
n∑

k=0

akan−k

)

xn =
∑

n≥0

C(n+ r, r)xn =
∑

n≥0

C(n+ r, n)xn =
1

(1− x)r+1
.

Hence, an = cf
[

xn, 1
(1−x)(r+1)/2

]

. For example, for r = 2,

an = (−1)nC(−3/2, n) = 3 · 5 · 7 · · · (2n + 1)

2n n!
=

(2n+ 1)!

22nn!n!
.

3. Determine the sequence {f(n,m) | n,m ∈ N0} which satisfies f(n, 0) = 1 for all n ≥ 0,

f(0,m) = 0 for all m > 0 and

f(n,m) = f(n− 1,m) + f(n− 1,m− 1) for (n,m) 6= (0, 0). (7.9)

Ans: Define Fn(x) =
∑

m≥0
f(n,m)xm. Then, for n ≥ 1, Equation (7.9) gives

Fn(x) =
∑

m≥0

f(n,m)xm =
∑

m≥0

(f(n− 1,m) + f(n− 1,m− 1)) xm

=
∑

m≥0

f(n− 1,m)xm +
∑

m≥0

f(n− 1,m− 1)xm

= Fn−1(x) + xFn−1(x) = (1 + x)Fn−1(x) = · · · = (1 + x)nF0(x).

Now, using the initial conditions, F0(x) = 1 and hence Fn(x) = (1 + x)n. Thus,

f(n,m) = cf[xm, (1 + x)n] =

{

C(n,m) if 0 ≤ m ≤ n

0 if m > n.
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Alternate. Define Gm(y) =
∑

n≥0
f(n,m)yn. Then, for m ≥ 1, Equation (7.9) gives

Gm(y) =
∑

n≥0

f(n,m)yn =
∑

n≥0

(f(n− 1,m) + f(n− 1,m− 1)) yn

=
∑

n≥0

f(n− 1,m)yn +
∑

n≥0

f(n− 1,m− 1)yn

= yGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1− y
Gm−1(y). Using initial conditions, G0(y) =

1

1− y
. Hence,

Gm(y) =
ym

(1− y)m+1
. Thus,

f(n,m) = cf

[

yn,
ym

(1− y)m+1

]

= cf

[

yn−m,
1

(1− y)m+1

]

=

{

C(n,m) if 0 ≤ m ≤ n

0 if m > n.

4. Determine the sequence {S(n,m) | n,m ∈ N0} which satisfy S(0, 0) = 1, S(n,m) = 0 if

either m = 0 or n = 0 but not both and

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1), (n,m) 6= (0, 0). (7.10)

Ans: Define Gm(y) =
∑

n≥0
S(n,m)yn. Then, for m ≥ 1, Equation (7.10) gives

Gm(y) =
∑

n≥0

S(n,m)yn =
∑

n≥0

(mS(n− 1,m) + S(n− 1,m− 1)) yn

= m
∑

n≥0

S(n− 1,m)yn +
∑

n≥0

S(n− 1,m− 1)yn

= myGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1−my
Gm−1(y). Using initial conditions, G0(y) = 1 and hence

Gm(y) =
ym

(1− y)(1 − 2y) · · · (1−my)
= ym

m∑

k=1

αk

1− ky
, (7.11)

where αk =
(−1)m−kkm

k! (m− k)!
, for 1 ≤ k ≤ m. Thus,

S(n,m) = cf

[

yn, ym
m∑

k=1

αk

1− ky

]

=

m∑

k=1

cf

[

yn−m,
αk

1− ky

]

=

m∑

k=1

αkk
n−m =

m∑

k=1

(−1)m−kkn

k! (m− k)!

=
1

m!

m∑

k=1

(−1)m−kknC(m,k) =
1

m!

m∑

k=1

(−1)k(m− k)nC(m,k). (7.12)

Therefore, S(n,m) =
1

m!

m∑

k=1

(−1)k(m− k)nC(m,k).

This identity is generally known as the Stirling’s Identity.
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Observation.

(a) Let us consider Hn(x) =
∑

m≥0
S(n,m)xm. Then, verify that Hn(x) = (x+ xD)n · 1 as

H0(x) = 1. Therefore, H1(x) = x, H2(x) = x+ x2, · · · . Thus, we don’t have a single

expression for Hn(x) which gives the value of S(n,m)’s. But, it helps in showing that

S(n,m), for fixed n ∈ N, first increase and then decrease (commonly called unimodal).

The same holds for the sequence of binomial coefficients {C(n,m),m = 0, 1, . . . , n}.

(b) As there is no restriction on n.m ∈ N0, Equation (7.12) is also valid for n < m. But,

we know that S(n,m) = 0, whenever n < m. Hence, we get the following identity,

m∑

k=1

(−1)m−k kn−1

(k − 1)! (m− k)!
= 0 whenever n < m.

5. Bell Numbers For n ∈ N, the n-th Bell number, denoted b(n), is the number of partitions

of [n]. Thus, b(n) =
n∑

m=1
S(n,m), for n ≥ 1 and b(0) = 1. Hence, for n ≥ 1,

b(n) =
n∑

m=1

S(n,m) =
∑

m≥1

S(n,m) =
∑

m≥1

m∑

k=1

(−1)m−k kn−1

(k − 1)! (m− k)!

=
∑

k≥1

kn

k!

∑

m≥k

(−1)m−k

(m− k)!
=

1

e

∑

k≥1

kn

k!
=

1

e

∑

k≥0

kn

k!
as 0n = 0 for n 6= 0. (7.13)

Thus, Equation (7.13) is valid even for n = 0. As b(n) has terms of the form
kn

k!
, we

compute its egf. Thus, if B(x) =
∑

n≥0
b(n)

xn

n!
then,

B(x) = 1 +
∑

n≥1

b(n)
xn

n!
= 1 +

∑

n≥1




1

e

∑

k≥1

kn

k!




xn

n!

= 1 +
1

e

∑

k≥1

1

k!

∑

n≥1

kn
xn

n!
= 1 +

1

e

∑

k≥1

1

k!

∑

n≥1

(kx)n

n!

= 1 +
1

e

∑

k≥1

1

k!

(

ekx − 1
)

= 1 +
1

e

∑

k≥1

(
(ex)k

k!
− 1

k!

)

= 1 +
1

e

(
ee

x − 1− (e− 1)
)
= ee

x−1. (7.14)

Recall that ee
x−1 is a valid formal power series (see Remark 7.3.5).Taking logarithm of

Equation (7.14), we get logB(x) = ex − 1. Hence, B′(x) = exB(x), or equivalently

x
∑

n≥1

b(n)xn−1

(n− 1)!
= xex

∑

n≥0

b(n)
xn

n!
= x




∑

m≥0

xm

m!



 ·




∑

n≥0

b(n)
xn

n!



 .
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Thus,

b(n)

(n− 1)!
= cf



xn,
∑

n≥1

b(n)xn

(n− 1)!



 = cf



xn−1,
∑

m≥0

xm

m!
·
∑

n≥0

b(n)
xn

n!





=

n−1∑

m=0

1

(n− 1−m)!
· b(m)

m!
.

Hence, we get b(n) =
n−1∑

m=0
C(n− 1,m)b(m), for n ≥ 1, with b(0) = 1.

Exercise 7.5.4. 1. Find the number of binary words without having a subword 00 and 111.

2. Find the number of subsets of {1, . . . , n} not containing consecutive integers.

3. Prove that Fn divides Fnm where n,m are positive integers.

Objects

distinct?

Places

distinct?

Places

nonempty?
Relate Number

Y Y Y Onto functions

r!S(n, r) =
r−1∑

i=0
(−1)iC(r, i)(r − i)n

Y Y N All functions rn

Y N Y
r-partition of a

set
S(n, r)

Y N N
All partitions of

a set
b(n) =

r∑

i=1
S(n, i)

N Y Y
Positive integer

solutions
C(n− 1, r − 1)

N Y N
Nonnegative

integer solutions
C(n+ r − 1, r − 1)

N N Y r-partition of n πn(r) =

cf
[

xn−r, 1
(1−x)(1−x2)···(1−xr)

]

N N N
Partitions of n

of length ≤ r

r∑

i=1
πn(i)

Exercise 7.5.5. 1. Find the number of circular permutations of {A,A,B,B,C,C,C,C}.

2. Let S = {(n1, n2, n3) | ni ∈ N,
∑

ni = 15}. Evaluate
∑

(n1,n2,n3)∈S

15!

n1!n2!n3!
.

3. Each of the 9 senior students said: ‘the number of junior students I want to help is exactly

one’. There were 4 junior students a, b, c, d, who wanted their help. The allocation was

done randomly. What is the probability that either a has exactly two seniors to help him

or b has exactly 3 seniors to help him or c has no seniors to help him?

4. In a particular semester 6 students took admission in our PhD programme. There were

9 professors who were willing to supervise these students. As a rule ‘a student can have
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either one or two supervisors’. In how many ways can we allocate supervisors to these

students if all the ‘willing professors’ are to be allocated? What if we have an additional

condition that exactly one supervisor gets to supervise two students?

5. How many lattice paths are there from (0, 0) to (9, 9) which does not cross the dotted line?

(0, 0)

(9, 9)

6. (a) Prove combinatorially that, for n ≥ 2, we have Dn = (n − 1)(Dn−1 +Dn−2).

(b) Use Part (a) to show that the exponential generating function of Dn is
e−x

1− x
.

7. My friend says that he has n ≥ 2 subsets of [14] each of which has size 6. Give a value of

n so that we can guarantee ‘some two of his subsets have 3 elements in common’, without

seeing his collection’? What is the smallest possible value of n?

8. Find the number of words of size 12 made using letters from {A,B,C} in which ‘BCA’

does not appear (as a consecutive subword). For example: ABCABCCCCCBA has an

appearance of ‘BCA’ but BCCABCCABCCA does not.

9. Find the number of 8 letter words made using alphabets from {A,B,C,D} in which 3

consecutive letters are not allowed to be the same.

10. Evaluate
9∑

i1=1

i1∑

i2=1

i2∑

i3=1
· · ·

i8∑

i9=1
i29.

11. We have 3 blue bags, 4 red bags and 5 green bags. We have many balls of each of the colors

blue, red and green. Fill in the blank with the smallest positive integer.

If we distribute balls (without seeing the colors) into these bags, then one of the

following must happen:

(a) a blue bag contains 3 blue balls or 4 red balls or 5 green balls

(b) a red bag contains 3 blue balls or 5 red balls or 7 green balls

(c) a green bag contains 3 blue balls or 6 red balls or 9 green balls

12. We have an integer polynomial f(x). Fill in the blank with the smallest positive integer.

If f(x) = 2009 has many distinct integer roots, then f(x) = 9002 cannot have an

integer root.

13. In how many ways can one distribute

(a) 10 identical chocolates among 10 students?
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(b) 10 distinct chocolates among 10 students?

(c) 10 distinct chocolates among 10 students so that each receives one?

(d) 15 distinct chocolates among 10 students so that each receives at least one?

(e) 10 out of 15 distinct chocolates among 10 students so that each receives one?

(f) 15 distinct chocolates among 10 students so that each receives at most three?

(g) 15 distinct chocolates among 10 students so that each receives at least one and at

most three?

(h) 15 identical chocolates among 10 students so that each receives at most three?

14. In how many ways can one carry

(a) 15 distinct objects with 10 identical bags? Answer using S(n, r).

(b) 15 distinct objects in 10 identical bags with no empty bag? Answer using S(n, r).

(c) 15 distinct objects in 10 identical bags with each bag containing at most three objects?

(d) 15 identical objects in 10 identical bags?

(e) 15 identical objects in 10 identical bags with no empty bag?

(f) 15 identical objects in 20 identical bags with no empty bag?

15. What is the number of integer solutions of x + y + z = 10, with x ≥ −1, y ≥ −2 and

z ≥ −3?

16. Is the number of solutions of x+y+z = 10 in nonnegative multiples of 1
2 (x, y, z are allowed

to be 0, 1/2, 1, 3/2, . . .) at most four times the number of nonnegative integer solutions of

x+ y + z = 10?

17. How many words of length 8 can be formed using the English alphabets, where each letter

can appear at most twice? Give answer using generating function.

18. Let p1, . . . , pn, n ≥ 2 be distinct prime numbers. Consider the set {p1, . . . , pn, p21, . . . , p2n}.
In how many ways can we partition the set into subsets of size two such that no prime is

in the same subset containing its square?

19. What is the value of
15∑

k=0

(−1)kC(15, k)(15 − k)5?

20. What is the number of partitions

(a) of n with entries at most r? Give your answers using generating function.

(b) of n with most r parts? Give your answers using generating function.

(c) πn(r) of n with exactly r parts? Give your answers using generating function.

(d) πn(r) of n+ C(r, 2) with r distinct parts? Give your answers using generating func-

tion.

(e) of n with distinct entries? Give your answers using generating function.

(f) of n with entries odd? Give your answers using generating function.

(g) of n with distinct odd entries? Give your answers using generating function.

(h) of n which are self conjugate? Give your answers using generating function.
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21. How many words of length 15 are there using the letters A,B,C,D,E such that each letter

must appear in the word and A appears an even number of times? Give your answers

using generating function.

22. The characteristic roots of a LHRRCC are 2, 2, 2, 3, 3. What is the form of the general

solution?

23. Consider the LNHRRCC an = c1an−1 + · · ·+ cran−r + 5n. Give a particular solution.

24. Obtain the ogf for an, where an = 2an−1 − an−2 + 2n, a0 = 0, a1 = 1.

25. Solve the recurrence relation an = 2an−1 − an−2 + 2n + 5, a0 = 0, a1 = 1.

26. My class has n CSE, m MSC and r MC students. Suppose that t copies of the same book

are to be distributed so that each branch gets at least s. In how many ways can this be

done, if each student gets at most one? In how many ways can this be done, without the

previous restriction? Answer only using generating function.

Exercise 7.5.6. 1. My class has n CSE, m MSC and r MC students. Suppose that t distinct

books are to be distributed so that each branch gets at least s. In how many ways can this

be done, if each student gets at most one? In how many ways can this be done, without

the previous restriction? Answer only using generating function.

2. My class has N students. Assume that, to conduct an exam, we have M identical answer

scripts. In how many ways can we distribute the answer scripts so that each student gets

at least 2. Answer only using generating function.

3. My class has N students. Assume that, for an exam, we have M questions; each student

answers all the questions in an order decided by him/her (for example one can follow

1, 2, · · · ,M and another can follow M,M−1, · · · , 1). In how many ways can it happen that

some three or more students have followed the same order? Answer only using generating

function.

4. When ‘Freshers Welcome’ was organized 11 teachers went to attend. There were 4 types of

soft drinks available. In how many ways a total of 18 glasses of soft drinks can be served

to them, in general? Answer only using generating function.
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Chapter 8

Graphs

8.1 Basic Concepts

Experiment

‘Start from a dot. Move through each line exactly once. Draw it.’ Which of the following

pictures can be drawn? What if we want the ‘starting dot to be the finishing dot’?

b b

bb

b

b b

b

b b

bb

b

b b

b

b b

bb

b

b b

b

Later, we shall see a theorem by Euler addressing this question.

Definition 8.1.1. [Pseudograph, Vertex set and Edge set] A pseudograph or a general

graph G is a pair (V,E) where V is a nonempty set and E is a multiset of unordered pairs of

points of V . The set V is called the vertex set and its elements are called vertices. The set

E is called the edge set and its elements are called edges.

Example 8.1.2. G =
(

[4],
{
{1, 1}, {1, 2}, {2, 2}, {3, 4}, {3, 4}

})

is a pseudograph.

Discussion 8.1.3. A pseudograph can be represented in picture in the following way.

1. Put different points on the paper for vertices and label them.

2. If {u, v} appears in E some k times, draw k distinct lines joining the points u and v.

3. A loop at u is drawn if {u, u} ∈ E.

Example 8.1.4. A picture for the pseudograph in Example 8.1.2 is given in Figure 8.1.

Definition 8.1.5. [Loop, End vertex and Incident vertex/edge]

1. An edge {u, v} is sometimes denoted uv. An edge uu is called a loop. The vertices u and

v are called the end vertices of the edge uv. Let e be an edge. We say ‘e is incident on

u’ to mean that ‘u is an end vertex of e’.

145
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b b

b b1 2

3 4

Figure 8.1: A pseudograph

2. [Multigraph and simple graph] A multigraph is a pseudograph without loops. A

multigraph is a simple graph if no edge appears twice.1

3. Henceforth, all graphs in this book are simple with a finite vertex set, unless stated oth-

erwise.

4. We use V (G) (or simply V ) and E(G) (or simply E) to denote the vertex set and the

edge set of G, respectively. The number |V (G)| is the order of the graph G. Sometimes

it is denoted |G|. By ‖G‖ we denote the number of edges of G. A graph with n vertices

and m edges is called a (n,m) graph. The (1, 0) graph is the trivial graph.

5. [Neighbor and independent set] If uv is an edge in G, then we say ‘u and v are adjacent

in G’ or ‘u is a neighbor of v’. We write u ∼ v to denote that ‘u is adjacent to v’. Two

edges e1 and e2 are adjacent if they have a common end vertex. A set of vertices or edges

is independent if no two of them are adjacent.

6. [Isolated and pendant vertex] If v ∈ V (G), by N(v) or NG(v), we denote the set of

neighbors of v in G and |N(v)| is called the degree of v. It is usually denoted by dG(v) or

d(v). A vertex of degree 0 is called isolated. A vertex of degree one is called a pendant

vertex.

Discussion 8.1.6. Note that a graph is an algebraic structure, namely, a pair of sets satisfying

some conditions. However, it is easy to describe and carry out the arguments with a pictorial

representation of a graph. Henceforth, the pictorial representations are used to describe graphs

and to provide our arguments, whenever required. There is no loss of generality in doing this.

Example 8.1.7. Consider the graph G in Figure 8.2. The vertex 12 is an isolated vertex. We

have N(1) = {2, 4, 7}, d(1) = 3. The set {9, 10, 11, 2, 4, 7} is an independent vertex set. The set
{
{1, 2}, {8, 10}, {4, 5}

}
is an independent edge set. The vertices 1 and 6 are not adjacent.

Definition 8.1.8. [Complete graph, path graph, cycle graph and bipartite graph] Let G =

(V,E) be a graph on n vertices, say V = {v1, . . . , vn}. Then, G is said to be a

1. complete graph, denoted Kn, if each pair of vertices in G are adjacent.

2. path graph, denoted Pn, if E = {vivi+1 | 1 ≤ i ≤ n− 1}.
1A simple graph is a hypergraph, (V,E), if E is a collection of nonempty subsets of V .
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Figure 8.2: A graph G.

3. cycle graph, denoted Cn, if E = {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {vnv1}.

4. complete bipartite graph, denoted Kr,s and E = {vivj | 1 ≤ i ≤ r, r+ 1 ≤ j ≤ n} with
r + s = n.

The importance of the labels of the vertices depends on the context. At this point of time,

even if we interchange the labels of the vertices, we still call them a complete graph or a path

graph or a cycle or a complete bi-partite graph.

b b b b b

1 2 3 n− 1 n· · ·
Pn

b b b b b

1 2 3 n− 1 n· · ·
Cn

Figure 8.3: Pn and Cn.

Quiz 8.1.9. What is the maximum number of edges possible in a simple graph of order n?1

Lemma 8.1.10. [Hand shaking lemma] In any graph G,
∑

v∈V
d(v) = 2|E|. Thus, the number

of vertices of odd degree is even.

Proof. Each edge contributes 2 to the sum
∑

v∈V
d(v). Hence,

∑

v∈V
d(v) = 2|E|. Note that

2|E| =
∑

v∈V
d(v) =

∑

d(v) is odd

d(v) +
∑

d(v) is even

d(v)

is even. So,
∑

d(v) is odd
d(v) is even. Hence, the number of vertices of odd degree is even.

Quiz 8.1.11. In a party of 27 persons, prove that someone must have an even number of friends

(friendship is mutual). 2

Proposition 8.1.12. In a graph G with n = |G| ≥ 2, there are two vertices of equal degree.

1C(n, 2).
2Otherwise

∑
d(v) is odd.
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Figure 8.4: Some well known family of graphs

Proof. If G has two or more isolated vertices, we are done. So, suppose G has exactly one

isolated vertex. Then, the remaining n− 1 vertices have degree between 1 and n− 2 and hence

by PHP, the result follows. If G has no isolated vertex then G has n vertices whose degree lie

between 1 and n− 1. Now, again apply PHP to get the required result.

Example 8.1.13. The graph in Figure 8.5 is called the Petersen graph. We shall use it as

an example in many places.

b
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b

b

b

bb b

b

b

b

b

b

1

2

3

4
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78

9

10

Figure 8.5: Petersen graphs

Exercise 8.1.14. 1. Let X = (V,E) be a graph with a vertex v ∈ V of odd degree. Then,

prove that there exists a vertex u ∈ V such that there is a path from v to u and deg(u) is
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also odd.

2. Let X = (V,E) be a graph having exactly two vertices, say u and v, of odd degree. Then,

prove that there is a path in X connecting u and v.

Definition 8.1.15. [Regular graph, cubic graph] The minimum degree of a vertex in G is

denoted δ(G) and the maximum degree of a vertex in G is denoted ∆(G). A graph G is called

k-regular if d(v) = k for all v ∈ V (G). A 3-regular graph is called cubic.

Example 8.1.16. 1. The graph Kn is regular.

2. The graph K4 is cubic.

3. The graph C4 is 2-regular.

4. The graph P4 is not regular.

5. The Petersen graph is cubic.

6. Consider the graph G in Figure 8.2. We have δ(G) = 0 and ∆(G) = 3.

Quiz 8.1.17. Can we have a cubic graph on 5 vertices?1

Definition 8.1.18. [Subgraph, induced subgraph, spanning subgraph and k-factor] A graph

H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If U ⊆ V (G), then the subgraph

induced by U is denoted by 〈U〉 = (U,E), where the edge set E = {uv ∈ E(G) | u, v ∈ U}. A
subgraph H of G is a spanning subgraph if V (G) = V (H). A k-regular spanning subgraph is

called a k-factor.

Example 8.1.19. 1. Consider the graph G in Figure 8.2.

(a) Let H1 be the graph with V (H1) = {6, 7, 8, 9, 10, 12} and E(H1) =
{
{6, 7}, {9, 10}

}
.

Then, H1 is not a subgraph of G.

(b) Let H2 be the graph with V (H2) = {6, 7, 8, 9, 10, 12} and E(H2) =
{
{6, 7}, {8, 10}

}
.

Then, H2 is a subgraph but not an induced subgraph of G.

(c) Let H3 be the induced subgraph of G on the vertex set {6, 7, 8, 9, 10, 12}. Then, verify

that E(H3) =
{
{6, 7}, {8, 9}, {8, 10}

}
.

(d) The graph G does not have a 1-factor.

2. A complete graph has a 1-factor if and only if it has an even order.

3. The Petersen graph has many 1-factors. One of them is obtained by selecting the edges

{1, 6}, {2, 7}, {3, 8}, {4, 9}, and {5, 10}.

Quiz 8.1.20. Consider K8 on the vertex set [8]. How many 1-factors does it have?2

Definition 8.1.21. [Vertex/edge deleted graph] Let G be a graph and v be a vertex. Then,

the graph G − v is obtained by deleting v and all the edges that are incident with v. If

e ∈ E(G), then the graph G − e = (V,E(G) \ {e}). If u, v ∈ V (G) such that u ≁ v, then

G+ uv = (V,E(G)∪{uv}).
1No, as

∑
d(v) = 15, not even.

28!/(2!)4.
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Example 8.1.22. Consider the graph G in Figure 8.2. Let H2 be the graph with V (H2) =

{6, 7, 8, 9, 10, 12} and E(H2) =
{
{6, 7}, {8, 10}

}
. Consider the edge e = {8, 9}. Then, H2 + e is

the induced subgraph 〈{6, 7, 8, 9, 10, 12}〉 and H2 − 8 = 〈{6, 7, 9, 10, 12}〉.

Definition 8.1.23. [Complement graph] The complement G of a graph G is defined as

(V (G), E), where E = {uv | u 6= v, uv /∈ E(G)}.

Example 8.1.24. 1. See the graphs in Figure 8.6.
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Figure 8.6: Complement graphs

2. The complement of K3 contains 3 isolated points.

3. For any graph G, ‖G‖ + ‖G‖ = C(|G|, 2).

4. In any graph G of order n, dG(v) + dG(v) = n− 1. Thus, ∆(G) + ∆(G) ≥ n− 1.

Quiz 8.1.25. 1. Characterize graphs G such that ∆(G) + ∆(G) = n− 1.1

2. Can we have a graph G such that ∆(G) + ∆(G) = n?

3. Show that a k-regular simple graph on n vertices exists if and only if kn is even and

n ≥ k + 1.

Definition 8.1.26. [Intersection, union and disjoint union] The intersection of two graphs

G and H, denoted G∩H, is defined as (V (G)∩V (H), E(G)∩E(H)). The union of two graphs

G and H, denoted G∪H, is defined as (V (G)∪V (H), E(G)∪E(H)). A disjoint union of two

graphs is the union while treating the vertex sets as disjoint sets.

Example 8.1.27. Two graphs G and H are shown below. The graphs G ∪H and G ∩H are

also shown below.
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The disjoint union of G and G ∪H is G1 in Figure 8.7.

1If dG(u) < dG(v), then dG(u) = n− 1− dG(u). Hence, ∆(G) +∆(G) ≥ dG(v) + n− 1− dG(u) > dG(v) + n−

1− dG(v) ≥ n. Thus, the answer is regular graphs.
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Figure 8.7: Disjoint union and join of graphs

Definition 8.1.28. [Join of two graphs] If V (G) ∩ V (G′) = ∅, then the join G+G′ is defined

as G ∪ G′ + {vv′ : v ∈ V, v′ ∈ V ′}. The first ‘+’ means the join of two graphs and the second

‘+’ means adding a set of edges to a given graph.

Example 8.1.29. (a) K2 +K3 = K5.

(b) K2 +K2 = C4.

Quiz 8.1.30. What is the complement of the disjoint union of G and H?1

Definition 8.1.31. [Cartesian product of two graphs] Let G = (V,E) and G′ = (V ′, E′) be

two graphs. Then, the cartesian product of G and G′, denoted G×G′ = (V1, E1), is a graph

having V1 = V × V ′ and whose edge set consists of all elements {(u1, u2), (v1, v2)}, where either
u1 = v1 and {u2, v2} ∈ E′ or u2 = v2 and {u1, v1} ∈ E.

Example 8.1.32. See the graphs in Figure 8.8.
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X

1 2 3

Y

1a 2a 3a

1b 2b 3b

X × Y

11 21 31

12
22

32

13 23 33

Y × Y

Figure 8.8: Cartesian product of graphs

8.2 Connectedness

Definition 8.2.1. [Walk, trail, path, cycle, circuit, length and internal vertex] An u-v

walk in G is a finite sequence of vertices [u = v1, v2, · · · , vk = v] such that vivi+1 ∈ E, for all

i = 1, · · · , k − 1. The length of a walk is the number of edges on it. A walk is called a trail if

edges on the walk are not repeated. A v-u walk is a called a path if the vertices involved are all

distinct, except that v and u may be the same. A path can have length 0. A walk (trail, path)

1G+H .
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is called closed if u = v. A closed path is called a cycle/circuit. Thus, in a simple graph a

cycle has length at least 3. A cycle (walk, path) of length k is also written as a k-cycle (k-walk,

k-path). If P is an u-v path with u 6= v, then we sometimes call u and v as the end vertices

of P and the remaining vertices on P as the internal vertices.

Example 8.2.2.

(a) Take G = K5 with vertex set [5].

• Then, [1, 2, 3, 2, 1, 2, 5, 4, 3] is a 8-walk in G and [1, 2, 2, 1] is not a walk.

• The walk [1, 2, 3, 4, 5, 2, 4, 1] is a closed trail.

• The walk [1, 2, 3, 5, 4, 1] is a closed path, that is, it is a 5-cycle.

• The maximum length of a cycle in G is 5 and the minimum length of a cycle in G is 3.

• There are 10 = C(5, 3) many 3-cycles in G.

• Verify that the number of 4-cycles in G is not C(5, 4).

(b) Let G be the Petersen graph.

• There is a 9-cycle in G, namely, [6, 8, 10, 5, 4, 3, 2, 7, 9, 6].

• There are no 10-cycles in G. We shall see this when we discuss the Eulerian graphs.

Proposition 8.2.3 (Technique). Let G be a graph and u, v ∈ V (G), u 6= v. Let W = [u =

u1, . . . , uk = v] be a walk. Then, W contains an u-v-path.

Proof. If no vertex on W repeats, then W is itself a path. So, let ui = uj for some i < j. Now,

consider the walk W1 = [u1, . . . , ui−1, uj , uj+1, . . . uk]. This is also an u-v walk but of shorter

length. Thus, using induction on the length of the walk, the desired result follows.

Definition 8.2.4. [Distance, diameter, radius, center and girth] The distance d(u, v) of two

vertices in G is the shortest length of an u-v path in G. If no such path exists, the distance

is taken to be ∞. The greatest distance between any two vertices in a graph G is called the

diameter of G. We shall use diam(G) to denote the diameter of G. Let distv = max
u∈G

d(v, u).

The radius is the min
v∈G

distv and the center consists of all vertices v for which distv is the radius.

The girth, denoted g(G), of a graph G is the minimum length of a cycle contained in G. If G

has no cycle, then we put g(G) =∞.

Example 8.2.5. Let G be the Petersen graph. It has diameter 2. The radius is 2. Each vertex

is in the center. Its girth is 5.

Practice 8.2.6. Determine the diameter, radius, center and girth of the following graphs: Pn,

Cn, Kn and Kn,m = Kn +Km.

Exercise 8.2.7. Let G be a graph. Then, show that the distance function d(u, v) is a metric

on V (G). That is, it satisfies

1. d(u, v) ≥ 0 for all u, v ∈ V (G) and d(u, v) = 0 if and only if u = v,

2. d(u, v) = d(v, u) for all u, v ∈ V (G) and

3. d(u, v) ≤ d(u,w) + d(w, u) for all u, v, w ∈ V (G).
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Proposition 8.2.8 (Technique). Let G be a graph with ‖G‖ ≥ 1 and d(v) ≥ 2, for each vertex

except one, say v1. Then, G has a cycle.

Proof. Consider a longest path [v1, . . . , vk] in G (as V (G) is finite, such a path exists). As

d(vk) ≥ 2, it must be adjacent to some vertex from v2, . . . , vk−2, otherwise, we can extend it to

a longer path. Let i ≥ 2 be the smallest such that vi is adjacent to vk. Then, [vi, vi+1, . . . , vk, vi]

is a cycle.

Proposition 8.2.9 (Technique). Let P and Q be two different u-v paths in G. Then, P ∪ Q

contains a cycle.

Proof. Imagine a signal was sent from u to v via P and was returned back from v to u via Q.

Call an edge ‘dead’ if signal has passed through it twice. Notice that each vertex receives the

signal as many times as it sends the signal.

Is E(P ) = E(Q)? No, otherwise both P and Q are the same graphs.

So, there are some ‘alive’ edges. Get an alive edge −−→v1v2. There must be an alive edge
−−→v2v3.1 Similarly get −−→v3v4 and so on. Stop at the first instance of repetition of a vertex:

[v1, v2, · · · , vi, vi+1 · · · , vj = vi]. Then, [vi, vi+1 · · · , vj = vi] is a cycle.

Alternate. Consider the graph H =
(
V (P ) ∪ V (Q), E(P )∆E(Q)

)
, where ∆ is the symmetric

difference. Notice that E(H) 6= ∅, otherwise P = Q. As the degree of each vertex in the

multigraph P ∪Q is even and H is obtained after deleting pairs of multiple edges, each vertex

in H has even degree. Hence, by Proposition 8.2.8, H has a cycle.

Proposition 8.2.10. Every graph G containing a cycle satisfies g(G) ≤ 2 diam(G) + 1.

Proof. Let C = [v1, v2, . . . , vk, v1] be the shortest cycle and diam(G) = r. If k ≥ 2r + 2, then

consider the path P = [v1, v2, . . . , vr+2]. Since the length of P is r + 1 and diam(G) = r, there

is a vr+2-v1 path R of length at most r. Note that P and R are different v1-vr+2 paths. By

Proposition 8.2.9, the closed walk P ∪ R of length at most 2r + 1 contains a cycle. Hence, the

length of this cycle is at most 2r+1, a contradiction to C having the smallest length k ≥ 2r+2.

Definition 8.2.11. [Chord, chordal and acyclic graphs] Let C = [v1, . . . , vk = v1] be a cycle.

An edge vivj is called a chord of C if it is not an edge of C. A graph is called chordal if each

cycle of length at least 4 has a chord. A graph is acyclic if it has no cycles.

Example 8.2.12. Complete graphs are chordal, so are the acyclic graphs. The Petersen graph

is not chordal.

Quiz 8.2.13. 1. How many acyclic graphs are there on the vertex set [3]?2

2. How many chordal graphs are there on the vertex set [4]?3

1Otherwise, v2 is incident to just one alive edge and some dead edges. This means v2 has received more signal

than it has sent.
27: 3 edges can be put in 23 ways. One of them is a cycle.
361: 6 edges can be put in 26 ways. There are three 4-cycles.
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Definition 8.2.14. 1. [Maximal and minimal graph] A graph G is said to be maximal

with respect to a property P if G has property P and no proper supergraph of G has the

property P . We similarly define the term minimal.

Notice!

The class of all graphs with that property is the POSET here. So, the maximality and

the minimality are defined naturally.

2. [Clique, clique number and connected graph] A complete subgraph of G is called a

clique. The maximum order of a clique is called the clique number of G. It is denoted

ω(G). A graph G is called connected if there is an u-v path, for each u, v ∈ V (G).

3. [Disconnected graph and component of a graph] A graph which is not connected is

called disconnected. If G is a disconnected graph, then a maximal connected subgraph

is called a component or sometimes a connected component.

Example 8.2.15. Consider the graph G shown in Figure 8.2. Then,

1. some cliques in G are 〈{8, 10}〉, 〈{2}〉, 〈{1, 2, 4}〉. The first and the last are maximal cliques.

Notice that every vertex is a clique. Similarly each edge is a clique. Here ω(G) = 3.

2. the graph G is not connected. It has four connected components, namely, 〈{8, 9, 10, 11}〉,
〈{1, 2, 3, 4, 5, 6, 7}〉, 〈{12}〉 and 〈{13}〉.

Quiz 8.2.16. What is ω(G) for the Petersen graph?1

Proposition 8.2.17. If δ(G) ≥ 2, then G has a path of length δ(G) and a cycle of length at

least δ(G) + 1.

Proof. Let [v1, · · · , vk] be a longest path in G. As d(vk) ≥ 2, vk is adjacent to some vertex

v 6= vk−1. If v is not on the path, then we have a path that is longer than [v1, · · · , vk] path. A

contradiction. Let i be the smallest positive integer such that vi is adjacent to vk. Thus,

δ(G) ≤ d(vk) ≤ |{vi, vi+1, · · · , vk−1}|.

Hence, the cycle C = [vi, vi+1, · · · , vk, vi] has length at least δ(G)+1 and the length of the path

P = [vi, vi+1, · · · , vk] is at least δ(G).

Definition 8.2.18. [Edge density] The edge density, denoted ε(G), is defined to be the

number |E(G)|
|V (G)| . Observe that ε(G) is also a graph invariant.

Quiz 8.2.19. 1. When does ‘deletion of a vertex’ reduce edge density?2

2. Is δ(G)
2 a lower bound for ε(G)?3

12.
2Put H = G − v. Then, ‖H‖ = ε(G)n− d(v), so that ε(H) = ε(G)n−d(v)

n−1
= ε(G) + ε(G)−d(v)

n−1
. So, we should

choose a vertex v with degree more that ε(G).
3Yes.
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3. Suppose that ε(G) ≥ δ(G). Should we have a vertex v with ε(G) ≥ d(v)?1

Proposition 8.2.20. Let G be a graph with ‖G‖ ≥ 1. Then, G has a subgraph H with δ(H) >

ε(H) ≥ ε(G).

Proof. If ε(G) < δ(G), then we take H = G. Otherwise, there is a vertex v with ε(G) ≥ d(v).

Put G1 = G− v. Then, it can be easily verified that ε(G1) ≥ ε(G).

If ε(G1) < δ(G1), then we take H = G1. Otherwise, there is a vertex v ∈ G1 with ε(G1) ≥ d(v).

Put G2 = G1 − v. Then, we again have ε(G2) ≥ ε(G1) ≥ ε(G).

Continuing as above, we note that “Initially ε(G) > 0. At the i-th stage, we obtained the

subgraph Gi satisfying |V (Gi)| = |G| − i, ε(Gi) ≥ ε(Gi−1). That is, we have been reducing the

number of vertices and the corresponding edge densities have been nondecreasing.” Hence, this

process must stop before we reach a single vertex, as its edge density is 0.

So, let us assume that the process stops at H. Then, ‘ε(H) < δ(H)’ must be true, or else, the

process would not stop at H and hence the required result follows.

8.3 Isomorphism in graphs

Definition 8.3.1. [Isomorphic graphs] Two graphs G = (V,E) and G′ = (V ′, E′) are said to

be isomorphic if there is a bijection f : V → V ′ such that u ∼ v is G if and only if f(u) ∼ f(v)

in G′, for each u, v ∈ V . In other words, an isomorphism is a bijection between the vertex sets

which preserves adjacency. We write G ∼= G′ to mean that G is isomorphic to G′.

Example 8.3.2. Consider the graphs in Figure 8.9. Then, note that
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Figure 8.9: F is isomorphic to G but F is not isomorphic to H

1. the graph F is not isomorphic to H as the independence number, denoted α(F ), of F

(the maximum size of an independent vertex set) is 3 whereas α(H) = 2. Alternately, H

has a 3-cycle, whereas F does not.

2. the graph F is isomorphic to G as the map f : V (F ) → V (G) defined by f(1) = 1,

f(2) = 5, f(3) = 3, f(4) = 4, f(5) = 2 and f(6) = 6 gives an isomorphism.

1Yes. Otherwise, we have ε(G) < d(v), for each v. In particular ε(G) < δ(G), a contradiction.
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Check the adjacency

F G

1→ 2, 4, 6 f(1) = 1→ f(2) = 5, f(4) = 4, f(6) = 6

3→ 2, 4, 6 f(3) = 3→ f(2) = 5, f(4) = 4, f(6) = 6

5→ 2, 4, 6 f(5) = 2→ f(2) = 5, f(4) = 4, f(6) = 6

All edges are covered, no need to check any further.

Thus, f is an isomorphism.

Discussion 8.3.3. [Isomorphism] Let F and G be isomorphic under f : V (F ) → V (G). Take

F . Relabel each vertex v ∈ F as f(v). Call the new graph F ′. Then, F ′ = G. This is so, as

V (F ′) = V (G) and E(F ′) = E(G) due to the isomorphic nature of the function f .

Practice 8.3.4. Take the graphs F and G of Figure 8.9. Take the isomorphism f(1) = 1,

f(2) = 5, f(3) = 3, f(4) = 4, f(5) = 2 and f(6) = 6. Obtain the F ′ as described in Discussion

8.3.3. List V (F ′) and E(F ′). List V (G) and E(G). Notice that they are the same.

Definition 8.3.5. [Self-complementary] A graph G is called self-complementary if G ∼= G.

Example 8.3.6. 1. Note that the cycle C5 = [0, 1, 2, 3, 4, 0] is self complimentary. An iso-

morphism from G to G is described by f(i) = 2i (mod 5).

2. If |G| = n and G ∼= G then ‖G‖ = n(n− 1)/4. Thus, n = 4k or n = 4k + 1.

Exercise 8.3.7. 1. Construct a self-complementary graph of order 4k.

2. Construct a self-complementary graph of order 4k + 1.

Definition 8.3.8. A graph invariant is a function which assigns the same value (output) to

isomorphic graphs.

Example 8.3.9. Observe that some of the graph invariants are: |G|, ‖G‖, ∆(G), δ(G), the

multiset {d(v) : v ∈ V (G)}, ω(G) and α(G).

Exercise 8.3.10. How many graphs are there with vertex set {1, 2, . . . , n}? Do you find it easy

if we ask for nonisomorphic graphs (try for n = 4)?

Proposition 8.3.11 (Technique). Let f : G → H be an isomorphism and v ∈ V (G). Then,

G− v ∼= H − f(v).

Proof. Consider the bijection g : V (G− v)→ V (H − f(v)) described by g = fV (G−v).

Definition 8.3.12. An isomorphism of G to G is called an automorphism.

Example 8.3.13. 1. Identity map is always an automorphism on any graph.

2. Any permutation in Sn is an automorphism of Kn.

3. There are only two automorphisms of a path P8.

Proposition 8.3.14. Let G be a graph and let Γ(G) denote the set of all automorphisms of G.

Then, Γ(G) forms a group under composition of functions.
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Proof. Let V (G) = [n] and σ, µ ∈ Γ(G) be two automorphisms. Then,

ij ∈ E(G)⇔ µ(i)µ(j) ∈ E(G)⇔ (σ ◦ µ)(i)(σ ◦ µ)(j) ∈ E(G).

Thus, σ ◦ µ is an automorphism. Moreover, µ−1, σ−1 are indeed automorphisms.

Example 8.3.15. Determine Γ(C5).

Ans: Consider C5 = [1, . . . , 5, 1]. Note that σ = (2, 3, 4, 5, 1) is an automorphism. Hence,

{e, σ, σ2, . . . , σ4} ⊆ Γ(C5) as σ
5 = e.

Now, let µ be an automorphism with µ(1) = i. Put τ = σ6−iµ. Then, τ is an automorphism

with τ(1) = 1. If τ(2) = 2, then the adjacency structure implies that τ(j) = j for j = 3, 4, 5.

Hence, in this case, σ6−iµ = e and thus, µ = σi−6 = σi−1.

If τ(2) 6= 2, then τ(2) = 5, τ(3) = 4 and so τ = (2, 5)(3, 4) is the reflection which fixes 1. Let

us denote the permutation (2, 5)(3, 4) by ρ. Then, Γ(C5) is the group generated by σ and ρ and

hence Γ(C5) has 10 elements.

Example 8.3.16. Notice that Γ(C5) has a subgroup Γ1 = {e, σ, σ2, . . . , σ4}, with σ5 = e, of

order 5. Let G be a subgraph of C5 obtained by deleting some (zero allowed) edges. If ‖G‖ = 5,

then |Γ(G)| = 10. If ‖G‖ = 0, then |Γ(G)| = |S5| = 5!. If ‖G‖ = 4, then |Γ(G)| = 2. If ‖G‖ = 3,

then |Γ(G)| = 2 or 4. If ‖G‖ = 2, then |Γ(G)| = 4 or 8. If ‖G‖ = 1, then |Γ(G)| = 2× 3!. Thus,

there is no subgraph of G whose automorphism group is Γ1.

Exercise 8.3.17. 1. Determine the graphs G for which Γ(G) = Sn, the group of all permu-

tations of 1, . . . , n.

2. Compute Γ(G) for some graphs of small order.

3. Let G be a subgraph of H of the same order. Explore more about the relationship between

Γ(G) and Γ(H).

8.4 Trees

Definition 8.4.1. [Tree and forest] A connected acyclic graph is called a tree. A forest is a

graph whose components are trees.

Proposition 8.4.2. Let T be a tree and u, v ∈ V (T ). Then, there is a unique u-v-path in T .

Proof. On the contrary, assume that there are two u-v-paths in T . Then, by Proposition 8.2.9,

T has a cycle, a contradiction.

Proposition 8.4.3. Let G be a graph with the property that ‘between each pair of vertices there

is a unique path’. Then, G is a tree.

Proof. Clearly, G is connected. If G has a cycle [v1, v2, · · · , vk = v1], then [v1, v2, . . . , vk−1] and

[v1, vk−1] are two v1-vk−1 paths. A contradiction.

Definition 8.4.4. [Cut vertex] Let G be a connected graph. A vertex v of G is called a cut

vertex if G− v is disconnected. Thus, G− v is connected if and only if v is not a cut vertex.
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Proposition 8.4.5. Let G be a connected graph with |G| ≥ 2. If v ∈ V (G) with d(v) = 1, then

G− v is connected. That is, a vertex of degree 1 is never a cut vertex.

Proof. Let u,w ∈ V (G− v), u 6= w. As G is connected, there is an u-w path P in G. The vertex

v cannot be an internal vertex of P , as each internal vertex has degree at least 2. Hence, the

path P is available in G− v. So, G− v is connected.

Proposition 8.4.6 (Technique). Let G be a connected graph with |G| ≥ 2 and let v ∈ V (G). If

G− v is connected, then either d(v) = 1 or v is on a cycle.

Proof. Assume that G− v is connected. If dG(v) = 1, then there is nothing to show. So, assume

that d(v) ≥ 2. We need to show that v is on a cycle in G.

Let u and w be two distinct neighbors of v in G. As G − v is connected there is a path, say

[u = u1, . . . , uk = w], in G− v. Then, [u = u1, . . . , uk = w, v, u] is a cycle in G containing v.

Quiz 8.4.7. Let G be a graph and v be a vertex on a cycle. Can G− v be disconnected?1

Definition 8.4.8. [Cut edge] Let G be a graph. An edge e in G is called a cut edge or a

bridge if G− e has more connected components than that of G.

Proposition 8.4.9 (Technique). Let G be connected and e = [u, v] be a cut edge. Then, G− e

has two components, one containing u and the other containing v.

Proof. If G − e is not disconnected, then by definition, e cannot be a cut edge. So, G − e has

at least two components. Let Gu (respectively, Gv) be the component containing the vertex u

(respectively, v). We claim that these are the only components.

Let w ∈ V (G). Then, G is a connected graph and hence there is a path, say P , from w to

u. Moreover, either P contains v as its internal vertex or P doesn’t contain v. In the first case,

w ∈ V (Gv) and in the latter case, w ∈ V (Gu). Thus, every vertex of G is either in V (Gv) or in

V (Gu) and hence the required result follows.

Proposition 8.4.10 (Technique). Let G be a graph and e be an edge. Then, e is a cut edge if

and only if e is not on a cycle.

Proof. Suppose that e = [u, v] is a cut edge of G. Let F be the component of G that contains

e. Then, by Proposition 8.4.9, F − e has two components, namely, Fu that contains u and Fv

that contains v.

Let if possible, C = [u, v = v1, . . . , vk = u] be a cycle containing e = [u, v]. Then, [v =

v1, . . . , vk = u] is an u-v path in F − e. Hence, F − e is still connected. A contradiction. Hence,

e cannot be on any cycle.

Conversely, let e = [u, v] be an edge which is not on any cycle. Now, suppose that F is the

component of G that contains e. We need to show that F − e is disconnected.

Let if possible, there is an u-v-path, say [u = u1, . . . , uk = v], in F − e. Then, [v, u =

u1, . . . , uk = v] is a cycle containing e. A contradiction to e not lying on any cycle.

Hence, e is a cut edge of F . Consequently, e is a cut edge of G.

1Yes. Take G = ([4], {{1, 2}, {1, 3}, {1, 4}, {3, 4}}) and v = 1.
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Proposition 8.4.11. The center of a tree always consists of a set of at most two vertices.

Proof. Let T be a tree of radius k. Since the center contains at least one vertex, let u be a vertex

in the center of T . Now, let v be another vertex in the center. We claim that u is adjacent to v.

Suppose u ≁ v. Then, there exists a path from u to v, denoted P (u, v), with at least one

internal vertex, say w. Let x be any pendant (d(x) = 1) vertex of T . Then, either v ∈ P (x,w)

or v /∈ P (x,w). In the latter case, check that ‖P (x,w)‖ < ‖P (x, v)‖ ≤ k.

b b b b bb

b b

u w v

x

b b b b b

b b

b
u w v

x

If v ∈ P (x,w), then u /∈ P (x,w) and ‖P (x,w)‖ < ‖P (x, u)‖ ≤ k. That is, the distance from w

to any pendant vertex is less than k. Hence, k is not the radius, a contradiction. Thus, uv ∈ T .

We cannot have another vertex in the center, or else, we will have a C3 in T , a contradiction.

Theorem 8.4.12. Let G be a graph with V (G) = [n]. Then, the following are equivalent.

1. G is a tree.

2. G is a minimal connected graph on n vertices.

3. G is a maximal acyclic graph on n vertices.

Proof. (a)⇒(b). Suppose that G is a tree. If it is not a minimal connected graph on n vertices,

then there is an edge [u, v] such that G− [u, v] is connected. But then, by Theorem 8.4.10, [u, v]

is on a cycle in G. A contradiction.

(b)⇒(c). Suppose G is a minimal connected graph on n vertices. If G has a cycle, say Γ, then

select an edge e ∈ Γ. Thus, by Theorem 8.4.10, G − e is still connected graph on n vertices, a

contradiction to the fact that G is a minimal connected graph on n vertices. Hence, G is acyclic.

Since G is connected, for any new edge e, the graph G + e contains a cycle and hence, G is

maximal acyclic graph.

(c)⇒(a). Suppose G is maximal acyclic graph on n vertices. If G is not connected, let G1 and

G2 be two components of G. Select v1 ∈ G1 and v2 ∈ G2 and note that G + [v1, v2] is acyclic

graph on n vertices. This contradicts that G is a maximal acyclic graph on n vertices. Thus, G

is connected and acyclic and hence is a tree.

Exercise 8.4.13. 1. Show that a graph G is a tree if and only if between each pair of vertices

of G there is a unique path.

2. Draw a tree on 8 vertices. Label V (T ) as 1, . . . , 8 so that each vertex i ≥ 2 is adjacent to

exactly one element of [i− 1].

Proposition 8.4.14. Let T be a tree. Then, any graph G with δ(G) ≥ |T | − 1 has a subgraph

H ∼= T .

Proof. We prove the result by induction on n = |T |. The result is trivially true if n = 1 or 2.

So, let the result be true for every tree on n− 1 vertices and take a tree T on n vertices. Also,

suppose that G is any graph with δ(G) ≥ |T | − 1.
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Let v ∈ V (T ) with d(v) = 1. Take u ∈ V (T ) such that uv ∈ E(T ). Now, consider the tree

T1 = T − v. Then, δ(G) ≥ |T | − 1 = n − 1 > n − 2. Hence, by induction hypothesis, G has a

subgraph H such that H ∼= T1 under a map, say φ. Let h ∈ V (H) such that φ(h) = u. Since

δ(G) ≥ |T | − 1, h has a neighbor, say h1, such that h1 is not a vertex in H but is a vertex in G.

Now, map this vertex to v to get the required result.

Proposition 8.4.15. Let T be a tree on n vertices. Then, T has n− 1 edges.

Proof. We proceed by induction. Take a tree on n ≥ 2 vertices and delete an edge e. Then, we get

two subtrees T1, T2 of order n1, n2, respectively, where n1+n2 = n. So, E(T ) = E(T1)∪E(T2)∪
{e}. By induction hypothesis ‖T‖ = ‖T1‖+‖T2‖+1 = n1−1+n2−1+1 = n1+n2−1 = n−1.

Proposition 8.4.16. Let G be a connected graph with n vertices and n − 1 edges. Then, G is

acyclic.

Proof. On the contrary, assume that G has a cycle, say Γ. Now, select an edge e ∈ Γ and note

that G− e is connected. We go on selecting edges from G that lie on cycles and keep removing

them, until we get an acyclic graph H. Since the edges that are being removed lie on some

cycle, the graph H is still connected. So, by definition, H is a tree on n vertices. Thus, by

Proposition 8.4.15, |E(H)| = n − 1. But, in the above argument, we have deleted at least one

edge and hence, |E(G)| ≥ n. This gives a contradiction to |E(G)| = n− 1.

Proposition 8.4.17. Let G be an acyclic graph with n vertices and n − 1 edges. Then, G is

connected.

Proof. Let if possible, G be disconnected with components G1, . . . , Gk, k ≥ 2. As G is acyclic,

by definition, each Gi is a tree on, say ni ≥ 1 vertices, with
∑

i = 1kni = n. Thus, ‖G‖ =
k∑

i=1
(ni − 1) = n− k < n− 1 = ‖G‖, as k ≥ 2. A contradiction.

Theorem 8.4.18. The following are Equivalent for a graph of order n.

(a) G is a tree.

(b) G is minimal connected.

(c) G is maximal acyclic.

(d) G is acyclic with ‖G‖ = n− 1.

(e) G is connected with ‖G‖ = n− 1.

Proof. Left as an exercise.

Exercise 8.4.19. Let G be a graph on n > 2 vertices. If ‖G‖ > C(n − 1, 2), is G necessarily

connected? Give an ‘if and only if ’ condition for the connectedness of a graph with exactly

C(n− 1, 2) edges.

Proposition 8.4.20. A tree on n ≥ 2 vertices has at least two pendant vertices.



8.4. TREES 161

Proof. Let T be any tree on n vertices. Then,
∑

v∈V (T )

d(v) = 2‖E(T )‖ = 2(n − 1) = 2n − 2.

Hence, by PHP, T has at least two vertices of degree 1.

Definition 8.4.21. Let T be a tree with vertices labeled by n integers, say [n]. The Prüfer

code PT of T is a sequence X of size n− 2 created in the following way.

1. Find the largest pendant vertex, say v1. Let u1 be the neighbor of v1. Put X(1) = u1.

2. Let T1 = T − v1 and find X(2).

3. Repeat the procedure to obtain X(3), . . . ,X(n − 2).

Example 8.4.22. For example, Consider the tree T in Figure 8.10.

b b b b

b

b

b

1 2

3

4

5

6

Figure 8.10: A tree T on 6 vertices

Then, the above process proceeds as follows.

Step Pendant vi Neighbor ui PT = X(1),X(2), . . . Ti = T− vi

1 5 2 2

b b b bb

b

1 2

3

46

2 4 2 2,2

b b bb

b

1 2

3

6

3 3 2 2,2,2

b b b

1 26

4 2 6 2,2,2,6

b b

1 6

Exercise 8.4.23. In the above process, prove that uj = i, for some j, if and only if d(i) ≥ 2.

Example 8.4.24. Can I get back the original tree T from the sequence 2, 2, 2, 6? Ans: Yes.

The process of getting back the original tree is as follows.

1. Plot points 1, 2, . . . , 6.

2. Since ui is either 2 or 6, it implies that 2 and 6 are not the pendant vertices. Hence, the

pendant vertices in T must be {1, 3, 4, 5}. Thus, the algorithm implies that the largest

pendant 5 must be adjacent to (the first element of the sequence) 2.

3. At step 1, the vertex 5 was deleted. Hence, V (T1) = {1, 2, 3, 4, 6} with the given sequence

2, 2, 6. So, the pendants in T1 are {1, 3, 4} and the vertex 4 (largest pendant) is adjacent

to 2.
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4. Now, V (T2) = {1, 2, 3, 6} with the sequence as 2, 6. So, 3 is adjacent to 2.

5. Now, V (T3) = {1, 2, 6} with the sequence as 6. So, the pendants in the current T are

{1, 2} and 2 is adjacent to 6.

6. Lastly, V (T4) = {1, 6}. As the process ends with K2 and we have only two vertices left,

they must be adjacent.

The corresponding set of figures are as follows.

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

Proposition 8.4.25. Let T be a tree on the vertex set [n]. Then, d(v) ≥ 2 if and only if v

appears in the Prüfer code PT . Thus, {v : v /∈ PT } are precisely the pendant vertices in T .

Proof. Let d(v) ≥ 2. Since the process ends with an edge, there is a stage, say i, where d(v)

decreases strictly. Thus, till at the (i − 1)-th stage, v was adjacent to a pendant vertex w and

at the i-th stage v was deleted and thus, v appears in the sequence.

Conversely, let v appear in the sequence at k-th stage for the first time. Then, the tree Tk had

a pendant vertex w of highest label that was adjacent to v. Note that Tk − w is a tree with at

least two vertices. Thus, d(v) ≥ dTk
(v) ≥ 2.

Exercise 8.4.26. Prove that in the Prüfer code of T a vertex v appears exactly d(v)− 1 times.

[Hint: If v is the largest pendant adjacent to w and T ′ = T − v, then PT = w,PT ′ .]

Proposition 8.4.27. Let T and T ′ be two trees on the same vertex set of integers. If PT = PT ′ ,

then T = T ′.

Proof. The statement is trivially true for |T | = 3. Assume that the statement holds for 3 <

|T | < n. Now, let T and T ′ be two trees with vertex set [n] and PT = PT ′ . As PT = PT ′ , T

and T ′ have the same set of pendants. Further, the largest labeled pendant w is adjacent to

the vertex X(1) in both the trees. Thus, PT−w = PT ′−w and hence, by induction hypothesis

T − w = T ′ − w. Thus, by PMI, T = T ′.

Proposition 8.4.28. Let S be a set of n ≥ 3 integers and X be a sequence of length n − 2 of

elements form S. Then, there is a tree T with V (T ) = S and PT = X.

Proof. Verify the statement for |T | = 3. Now, let the statement hold for all trees T on n > 3

vertices and consider a set S of n + 1 integers and a sequence X of length (n − 1) of elements

of S.
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Let v = max{x ∈ S : x /∈ X}, S′ = S − v and X ′ = X(2), . . . ,X(n − 1). Note that as

v 6= X(i), for any i, X ′ is a sequence of elements of S′ of length n− 2. As |S′| = n, by induction

hypothesis, there is a tree T ′ with PT ′ = X ′.

Let T be the tree obtained by adding a new pendant v at the vertex X(1) of T ′. In T ′, the

vertices X(i), for i ≥ 2, were not available as pendants and now in T the vertex X(1) is also

not available as a pendant. (Here some X(i)’s may be the same). Let R′ = {x ∈ S′ : x /∈ X ′}
be the pendants in T ′. Then, the set of pendants in T is (R′ ∪ {v}) \ {X(1)} which equals

{x ∈ S : x /∈ X}. Thus, v is the pendant of T of maximum label. Hence, PT = X.

Theorem 8.4.29. [A. Cayley, 1889, Quart. J. Math] Let n ≥ 3. Then, there are nn−2

different trees with vertex set [n].

Proof. Let F be the class of trees on the vertex set [n] and let G be the class of n− 2-sequences

of [n]. Note that the function f : F → G defined as f(T ) = PT , the Prüfer code, is a one-one

and onto mapping. As |G| = nn−2, the required result follows.

Exercise 8.4.30. 1. Find out all nonisomorphic trees of order 7 or less.

2. Show that every automorphism of a tree fixes a vertex or an edge.

3. Give a class of trees T with |Γ(T )| = 6.

4. Let T be a tree, σ ∈ Γ(T ), u ∈ V (T ) such that σ2(u) 6= u. Can we have an edge [u, v] ∈ T

such that σ(u) = v?

5. Let T be a tree with center {u} and radius r. Let v satisfy d(u, v) = r. Show that r is a

pendant.

6. Let T be a tree with |T | > 2. Let T ′ be obtained from T by deleting the pendant vertices of

T . Show that the center of T is the same as the center of T ′.

7. Let T be a tree with center {u} and σ ∈ Γ(T ). Show that σ(u) = u.

8. Is it possible to have a tree such that |Γ(T )| = 7?

9. Construct a tree T on vertices S = {1, 2, 3, 6, 7, 8, 9} for which PT = 6, 3, 7, 1, 2.

10. Practice with examples: get the Prüfer code from a tree; get the tree from a given code and

a vertex set.

11. How many trees of the following forms are there on the vertex set [100]?

b

b

b

b

b

b

...

b

b

b

b

b

b

...

b

b

b

b

b

b

...
b b b b b· · ·

12. Show that any tree has at least ∆(T ) leaves (pendant edges).

13. Let T be a tree and T1, T2, T3 be subtrees of T such that T1 ∩ T3 6= ∅, T2 ∩ T3 6= ∅ and

T1 ∩ T2 ∩ T3 = ∅. Show that T1 ∩ T2 = ∅.
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14. Let T be a set of subtrees of a tree T . Assume that the trees in T have nonempty pairwise

intersection. Show that their overall intersection is nonempty. Is this true, if we replace

T by a graph G?

15. Recall that a connected graph G is said to be unicyclic if G has exactly one cycle as it’s

subgraph. Prove that if |G| = ‖G‖, then G is a unicyclic graph.

8.5 Connectivity

Proposition 8.5.1. Let G be a connected graph on vertex set [n]. Then, its vertices can be

labeled in such a way that the induced subgraph on the set [i] is connected for 1 ≤ i ≤ n.

Proof. If n = 1, there is nothing to prove. Assume that the statement is true if n < k and let G

be a connected graph on the vertex set [k]. If G is a tree, pick any pendant vertex and label it

k. If G has a cycle, pick a vertex on a cycle and label it k. In both the case G− k is connected.

Now, use the induction hypothesis to get the required result.

Definition 8.5.2. [Separating set] Let G be a graph. Then, a set X ⊆ V (G) ∪ E(G) is called

a separating set if G−X has more connected components than that of G.

Let X be a separating set of G. Then, ‘there exists u, v ∈ V (G) that lie in the same component

of G but lie in different components of G −X’. If {u} ⊆ V (G) is a separating set of G, then u

is a cut vertex. If {e} ⊆ E(G) is a separating set of G, then it is a bridge/cut edge.

Example 8.5.3. 1. In a tree, each edge is a bridge and each non-pendant vertex is a cut

vertex. Is it true for a forest?

2. The graph K7 does not have a separating set of vertices. In K7, a separating set of edges

must contain at least 6 edges.

Definition 8.5.4. [Vertex connectivity] A graph G is said to be k-connected if |G| > k and

G is connected even after deletion of any k − 1 vertices. The vertex connectivity κ(G) of a

non trivial graph G is the largest k such that G is k-connected. Convention: κ(K1) = 0.

Example 8.5.5. 1. Each connected graph of order more than one is 1-connected.

2. A 2-connected graph is also a 1-connected graph.

3. For a disconnected graph, κ(G) = 0 and for n > 1, κ(Kn) = n− 1.

4. The graph G in Figure 8.11 is 2-connected but not 3-connected. Thus, κ(G) = 2.

b b b

bbb

b

b

b

b

b

b

Figure 8.11: graph with vertex connectivity 2

5. The Petersen graph is 3-connected.
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Definition 8.5.6. [Edge connectivity] A graph G is called l-edge connected if |G| > 1 and

G − F is connected for every F ⊆ E(G) with |F | < l. The greatest integer l such that G is

l-edge connected is the edge connectivity of G, denoted λ(G). Convention: λ(K1) = 0.

Example 8.5.7. 1. Note that λ(Pn) = 1, λ(Cn) = 2 and λ(Kn) = n− 1, whenever n > 1.

2. Let T be a tree on n vertices. Then, λ(T ) = 1.

3. For the graph G in Figure 8.11, λ(G) = 3.

4. For the Petersen graph G, λ(G) = 3.

Exercise 8.5.8. Let |G| > 1. Show that κ(G) = |G| − 1 if and only if G = Kn. Can we say

the same for λ(G)?

Theorem 8.5.9. [H. Whitney, 1932] For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Proof. If G is disconnected or |G| = 1, then we have nothing to prove. So, let G be connected

graph and |G| ≥ 2. Then, there is a vertex v with d(v) = δ(G). If we delete all edges incident

on v, then the graph is disconnected. Thus, δ(G) ≥ λ(G).

Suppose that λ(G) = 1 and G − uv is disconnected with components Cu and Cv. If |Cu| =
|Cv| = 1, then G = K2 and κ(G) = 1. If |Cu| > 1, then we delete u to see that κ(G) = 1.

If λ(G) = k ≥ 2, then there is a set of edges, say e1, . . . , ek, whose removal disconnects G.

Notice that G − {e1, . . . , ek−1} is a connected graph with a bridge, say ek = uv. For each of

e1, . . . , ek−1 select an end vertex other than u or v. Deletion of these vertices from G results

in a graph H with uv as a bridge of a connected component. Note that κ(H) ≤ 1. Hence,

κ(G) ≤ λ(G).

Exercise 8.5.10. Give a lower bound on the number of edges of a graph G on n vertices with

vertex connectivity κ(G) = k.

Theorem 8.5.11. [Chartrand and Harary, 1968] For all integers a, b, c such that 0 < a ≤ b ≤ c,

there exists a graph with κ(G) = a, λ(G) = b and δ(G) = c.

Proof. Omitted, as it is out of the scope of this book.

Theorem 8.5.12. [Mader, 1972] Every graph G of average degree at least 4k has a k-connected

subgraph.

Proof. For k = 1, the assertion is trivial. So, let k ≥ 2. Note that

n = |G| ≥ ∆(G) ≥ 4k ≥ 2k − 1 and (8.1)

m = ‖G‖ = 2kn ≥ (2k − 3)(n − k + 1) + 1. (8.2)

We shall use induction to show that if G satisfies Equations (8.1) and (8.2), then G has a k-

connected subgraph. If n = 2k−1, thenm ≥ (2k−3)(n−k+1)+1 = (n−2) (n+1)
2 +1 = n(n−1)

2 . So,

G is a graph on n vertices with at least n(n−1)
2 edges and hence G = Kn. Thus, Kk+1 ⊆ Kn = G.

Assume n ≥ 2k. If v is a vertex with d(v) ≤ 2k − 3, then we apply induction hypothesis to

G − v to get the result. So, let d(v) ≥ 2k − 2, for each vertex v. If G is k-connected then, we
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have nothing to prove. Assume, if possible that G is not k-connected. Then, G = G1 ∪G2 with

|G1 ∩ G2| < k and |G1|, |G2| < n. Thus, both G1 − V (G2) and G2 − V (G1) have at least one

vertex and there is no edge between them. As the degree of these vertices is at least 2k − 2, we

have |G1|, |G2| ≥ 2k − 1.

If G1 or G2 satisfies Equation (8.2), using induction hypothesis, the result follows. Otherwise,

‖Gi‖ ≤ (2k − 3)(|Gi| − k + 1), for i = 1, 2 and hence

m = ‖G‖ ≤ ‖G1‖+ ‖G2‖ ≤ (2k − 3)(|G1|+ |G2| − 2k + 2) ≤ (2k − 3)(n − k + 1),

a contradiction to Equation (8.2) and hence the required result follows.

Theorem 8.5.13. [Menger] A graph is k-edge-connected if and only if there are k edge disjoint

paths between each pairs of vertices. A graph is k-connected if and only if there are k internally

vertex disjoint paths between each pairs of vertices.

Proof. Omitted.

8.6 Eulerian Graphs

Definition 8.6.1. [Eulerian graph] AnEulerian tour in a graphG is a closed walk [v0, v1, . . . , vk, v0]

such that each edge of the graph appears exactly once in the walk. The graph G is said to be

Eulerian if it has an Eulerian tour.

Note that by definition, a disconnected graph is not Eulerian. In this section, the graphs can

have loops and multiple edges. The graphs that have a closed walk traversing each edge exactly

once have been named “Eulerian graphs” due to the solution of the famous Königsberg bridge

problem by Euler in 1736. The problem is as follows: The city Königsberg (the present day

Kaliningrad) is divided into 4 land masses by the river Pregel. These land masses are joined by

7 bridges (see Figure 8.12). The question required one to answer “is there a way to start from

a land mass that passes through all the seven bridges in Figure 8.12 and return back to the

starting land mass”? Euler, rephrased the problem along the following lines: Let the four land

masses be denoted by the vertices A,B,C and D of a graph and let the 7 bridges correspond to

7 edges of the graph. Then, he asked “does this graph have a closed walk that traverses each

edge exactly once”? He gave a necessary and sufficient condition for a graph to have such a

closed walk and thus giving a negative answer to Königsberg bridge problem.

One can also relate the above problem to the problem of “starting from a certain point, draw a

given figure with pencil such that neither the pencil is lifted from the paper nor a line is repeated

such that the drawing ends at the initial point”.

Theorem 8.6.2. [Euler, 1736] A connected graph G is Eulerian if and only if d(v) is even, for

each v ∈ V (G).

Proof. Let G have an Eulerian tour, say [v0, v1, . . . , vk, v0]. Then, d(v) = 2r, if v 6= v0 and v

appears r times in the tour. Also, d(v0) = 2(r − 1), if v0 appears r times in the tour. Hence,

d(v) is always even.
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B D

C

A

Figure 8.12: Königsberg bridge problem

Conversely, let G be a connected graph with each vertex having even degree. Let W =

v0v1 · · · vk be a longest walk in G without repeating any edge in it. As vk has an even degree

it follows that vk = v0, otherwise W can be extended. If W is not an Eulerian tour then there

exists an edge, say e′ = viw, with w 6= vi−1, vi+1. In this case, wvi · · · vk(= v0)v1 · · · vi−1vi is a

longer walk, a contradiction. Thus, there is no edge lying outside W and hence W is an Eulerian

tour.

Proposition 8.6.3. Let G be a connected graph with exactly two vertices of odd degree. Then,

there is an Eulerian walk starting at one of those vertices and ending at the other.

Proof. Let x and y be the two vertices of odd degree and let v be a symbol such that v /∈ V (G).

Then, the graph H with V (H) = V (G) ∪ {v} and E(H) = E(G) ∪ {xv, yv} has each vertex of

even degree and hence by Theorem 8.6.2, H is Eulerian. Let Γ = [v, v1 = x, . . . , vk = y, v] be an

Eulerian tour. Then, Γ− v is an Eulerian walk with the required properties.

Exercise 8.6.4. Let G be a connected Eulerian graph and e be any edge. Show that G − e is

connected.

How to find an Eulerian tour (algorithm)?

Start from a vertex v0, move via edge that has not been taken and go on deleting them.

Do not take an edge whose deletion creates a non trivial component not containing v0.

Exercise 8.6.5. Find Eulerian tours for the following graphs.

b b b b

bbbb

b b b b

b bbbb

b

b

b

b

b

b

bb

b

b

b

b

b
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b

b

b
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b

b

8

1 2

7

3

6

4

5

9

16
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15 13
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b
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Theorem 8.6.6. [Finding Eulerian tour] The previous algorithm correctly gives an Eulerian

tour whenever, the given graph is Eulerian.

Proof. Let the algorithm start at a vertex, say v0. Now, assume that we are at u with H as the

current graph and C as the only non trivial component of H. Thus, dH(u) > 0. Assume that
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the deletion of the edge uv creates a non trivial component not containing v0. Let Cu and Cv

be the components of C − uv, containing u and v, respectively.

We first claim that u 6= v0. In fact, if u = v0, then H must have all vertices of even degree

and dH(v0) ≥ 2. So, C is Eulerian. Hence, C − uv cannot be disconnected, a contradiction to

C−uv having two components Cu and Cv. Thus, u 6= v0. Moreover, note that the only vertices

of odd degree in C is u and v0.

Now, we claim that Cu is a non trivial component. Suppose Cu is trivial. Then, v0 ∈ Cv, a

contradiction to the assumption that the deletion of the edge uv creates a nontrivial component

not containing v0. So, Cu is non trivial.

Finally, we claim that v0 ∈ Cv. If possible, let v0 ∈ Cu. Then, the only vertices in C − uv of

odd degree are v ∈ Cv and v0 ∈ Cu. Hence, C − uv+ v0v is a connected graph with each vertex

of even degree. So, by Theorem 8.6.2, the graph C − uv + v0v is Eulerian. But, this cannot be

true as vv0 is a bridge. Thus, v0 ∈ Cv.

Hence, Cu is the newly created non trivial component not containing v0. Also, each vertex of

Cu has even degree and hence by Theorem 8.6.2, Cu is Eulerian. This means, we can take an

edge e′ incident on u and complete an Eulerian tour in Cu. So, at u if we take the edge e′ in

place of the edge e, then we will not create a non trivial component not containing v0.

Thus, at each stage of the algorithm either u = v0 or there is a path from u to v0. Moreover,

this is the only non trivial connected component. When the algorithm ends, we must have

u = v0. Because, as seen above, the condition u 6= v0 gives the existence of an edge that is

incident on u and that can be traversed (as dH(u) is odd). Hence, if u 6= v0, the algorithm

cannot stop. Thus, when algorithm stops u = v0 and all components are trivial.

Exercise 8.6.7. Apply the algorithm to graphs of Exercise 8.6.5. Also, create connected graphs

such that each of its vertex has even degree and apply the above algorithm.

Definition 8.6.8. [bipartite graph] A graph G = (V,E) is said to be bipartite if V = V1 ∪ V2

such that |V1|, |V2| ≥ 1, V1 ∩V2 = ∅ and ‖〈V1〉‖ = 0 = ‖〈V2〉‖. The complete bipartite graph

Km,n is shown below. Notice that Km,n = Km +Kn.

all possible edges

Km Kn

Exercise 8.6.9. 1. Give a necessary and sufficient condition on m and n so that Km,n is

Eulerian.

2. Each of the 8 persons in a room has to shake hands with every other person as per the

following rules:

(a) The handshakes should take place sequentially.
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(b) Each handshake (except the first) should involve someone from the previous hand-

shake.

(c) No person should be involved in 3 consecutive handshakes.

Is there a way to sequence the handshakes so that these conditions are all met?

3. Let G be a connected graph. Then, G is an Eulerian graph if and only if the edge set of G

can be partitioned into cycles.

8.7 Hamiltonian Graphs

Definition 8.7.1. [Hamiltonian] A cycle in G is said to be Hamiltonian if it contains all

vertices of G. If G has a Hamiltonian cycle, then G is called a Hamiltonian graph. Finding a

nice characterization of a Hamiltonian graph is an unsolved problem.

Example 8.7.2. 1. For each positive integer n ≥ 3, the cycle Cn is Hamiltonian.
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Figure 8.13: A Hamiltonian and a non-Hamiltonian graph

2. The graphs corresponding to all platonic solids are Hamiltonian.

3. The Petersen graph is a non-Hamiltonian Graph (the proof appears below).

Proposition 8.7.3. The Petersen graph is not Hamiltonian.

Proof. Suppose that the Petersen graph, say G, is Hamiltonian. Also, each vertex of G has

degree 3 and hence, G = C10 +M , where M is a set of 5 chords in which each vertex appears

as an endpoint. We assume that C10 = [1, 2, . . . , 10, 1]. Now, consider the vertices 1, 2 and 3.
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Since, g(G) = 5, the vertex 1 can only be adjacent to one of the vertices 5, 6 or 7. Hence,

if 1 is adjacent to 5, then the third vertex that is adjacent to 10 creates cycles of length 3

or 4. Similarly, if 1 is adjacent to 7, then there is no choice for the third vertex that can be

adjacent to 2. So, let 1 be adjacent to 6. Then, 2 must be adjacent to 8. In this case, note that

there is no choice for the third vertex that can be adjacent to 3. Thus, the Petersen graph is

non-Hamiltonian.

Theorem 8.7.4. Let G be a Hamiltonian graph. Then, for S ⊆ V (G) with S 6= ∅, the graph

G− S has at most |S| components.

Proof. Note that by removing k vertices from a cycle, one can create at most k connected

components. Hence, the required result follows.

Theorem 8.7.5. [Dirac, 1952] Let G be a graph with |G| = n ≥ 3 and d(v) ≥ n/2, for each

v ∈ V (G). Then, G is Hamiltonian.

Proof. Let is possible, G be disconnected. Then, G has a component, say H, with |V (H)| = k ≤
n/2. Hence, d(v) ≤ k − 1 < n/2, for each v ∈ V (H). A contradiction to d(v) ≥ n/2, for each

v ∈ V (G). Now, let P = [v1, v2, · · · , vk] be a longest path in G. Since P is the longest path, all

neighbors of v1 and vk are in P .

We claim that there exists an i such that v1 ∼ vi and vi−1 ∼ vk. Otherwise, for each vi ∼ v1,

we must have vi−1 ≁ vk. Then, |N(vk)| ≤ k−1−|N(v1)|. Hence, |N(v1)|+ |N(vk)| ≤ k−1 < n,

a contradiction to d(v) ≥ n/2, for each v ∈ V (G). So, the claim is valid and hence, we have a

cycle P̃ := v1vivi+1 · · · vkvi−1 · · · v1 of length k.

We now prove that P̃ gives a Hamiltonian cycle. Suppose not. Then, there exists v ∈ V (G)

such that v is outside P and v is adjacent to some vj . Note that in this case, P cannot be the

path of longest length, a contradiction. Thus, the required result follows.

Theorem 8.7.6. [Ore, 1960] Let G be a graph on n ≥ 3 vertices such that d(u) + d(v) ≥ n, for

every pair of nonadjacent vertices u and v. Then, G is Hamiltonian.

Proof. Exercise.

Exercise 8.7.7. Let u and v be two vertices such that d(u)+ d(v) ≥ |G|, whenever uv /∈ E(G).

Prove that G is Hamiltonian if and only if G+ uv is Hamiltonian.

Definition 8.7.8. [closure of a graph] The closure of a graph G, denoted C(G), is obtained

by repeatedly choosing pairs of nonadjacent vertices u, v such that d(u) + d(v) ≥ n and adding

edges between them.

Proposition 8.7.9. The closure of G is unique.

Proof. Let K be a closure obtained by adding edges e1 = u1v1, . . . , ek = ukvk sequentially and F

be a closure obtained by adding edges f1 = x1y1, . . . , fr = xryr sequentially. Let ei be the first

edge in the e-sequence which does not appear in the f -sequence. Put H = G+ e1 + · · · + ei−1.

Then, ei = uivi implies that ei /∈ E(H) and dH(ui)+dH(vi) ≥ n. Also, H is a subgraph of F and
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hence, dF (ui) + dF (vi) ≥ n. Moreover, ei = uivi /∈ F as ei does not appear in the f -sequence.

Thus, F cannot be a closure and therefore the required result follows.

Exercise 8.7.10. Let G be a graph on n ≥ 3 vertices.

1. If G has a cut vertex, then prove that C(G) 6= Kn.

2. Then, prove a generalization of Dirac’s theorem: If the closure C(G) ∼= Kn, then G is

Hamiltonian.

Theorem 8.7.11. Let d1 ≤ · · · ≤ dn be the vertex degrees of G. Suppose that, for each k < n/2

with dk ≤ k, the condition dn−k ≥ n− k holds. Then, prove that G is Hamiltonian.

Proof. We show that under the above condition H = C(G) ∼= Kn. On the contrary, assume

that there exist a pair of vertices u, v ∈ V (G) such that uv /∈ E(G) and dH(u) + dH(v) ≤ n− 1.

Among the above pairs, choose a pair u, v ∈ V (G) such that uv /∈ E(H) and dH(u) + dH(v) is

maximum. Assume that dH(v) ≥ dH(u) = k (say). Clearly, k < n/2.

Now, let Sv = {x ∈ V (H) | xv /∈ E(H), x 6= v} and Su = {w ∈ V (H) | wu /∈ E(H), w 6= u}.
Therefore, the assumption that dH(u) + dH(v) is the maximum among each pair of vertices u, v

with uv /∈ E(H) and dH(u) + dH(v) ≤ n − 1 implies that |Sv| = n − 1 − dH(v) ≥ dH(u) = k

and for each x ∈ Sv, dH(x) ≤ dH(u) = k. So, there are at least k vertices in H (elements of Sv)

with degrees at most k.

Also, for any w ∈ Su, note that the choice of the pair u, v implies that dH(w) ≤ dH(v) ≤
n − 1 − dH(u) = n − 1 − k < n − k. Moreover, |Su| = n − 1 − k. Further, the condition

dH(u) + dH(v) ≤ n − 1, dH(v) ≥ dH(u) = k and u /∈ Su implies that dH(u) ≤ n− 1− dH(v) ≤
n− 1− k < n− k. So, there are n− k vertices in H with degrees less than n− k.

Therefore, if d′1 ≤ · · · ≤ d′n are the vertex degrees of H, then we observe that there exists a

k < n/2 for which d′k ≤ k and d′n−k < n− k. As k < n/2 and di ≤ d′i, we get a contradiction.

Exercise 8.7.12. Complete an alternate proof of Theorem 8.7.11. Let R denote the property:

R : ‘If dk ≤ k then dn−k ≥ n− k, for each k < n/2’.

We know that G has this property.

1. Let e be an edge not in G. Show that G+ e also has the property. What about the closure

H := C(G) of G?

2. Assume that max{d(u) + d(v) : u, v ∈ H are not adjacent} ≤ n − 2. Let e be an edge not

in H. Does H + e have property R? Is C(H + e) = H + e?

3. In view of the previous observations assume that G is an edge maximal graph with property

R which is not Hamiltonian. Do you have C(G) = G? Show that there are some k vertices

having degree at most k and some n− k vertices having degree less than n− k. Does that

contradict R?

Definition 8.7.13. [Line graph] The line graph H of a graph G is a graph with V (H) = E(G)

and e1, e2 ∈ V (H) are adjacent in H if e1 and e2 share a common vertex/endpoint.
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Example 8.7.14. Verify the following:

1. Line graph of C5 is C5.

2. Line graph of P5 is P4.

3. Line graph of any graph G contains a complete subgraph of size ∆(G).

Exercise 8.7.15. 1. Let G be a connected Eulerian graph. Then, show that the line graph

of G is Hamiltonian. Is the converse true?

2. What can you say about the clique number of a line graph?

Theorem 8.7.16. A connected graph G is isomorphic to it’s line graph if and only if G = Cn,

for some n ≥ 3.

Proof. If G is isomorphic to its line graph, then |G| = ‖G‖. Thus, G is a unicyclic graph.

Let [v1, v2, . . . , vk, vk+1 = v1] form the cycle in G. Then, the line graph of G contains a cycle

P = [v1v2, v2v3, . . . , vkv1]. We now claim that dG(vi) = 2.

Suppose not and let dG(v1) ≥ 3. So, there exists a vertex u /∈ {v2, vk} such that u ∼ v1. In

that case, the line graph of G contains the triangle T = [v1v2, v1vk, v1u] and P 6= T . Thus, the

line graph is not unicyclic, a contradiction.

Exercise 8.7.17. 1. Determine the closure of G.

2. Show that H is not Hamiltonian.
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3. Give a necessary and sufficient condition on m,n ∈ N so that Km,n is Hamiltonian.

4. Show that any graph G with |G| ≥ 3 and ‖G‖ ≥ C(n− 1, 2) + 2 is Hamiltonian.

5. Show that for any n ≥ 3 there is a graph H with ‖G‖ = C(n− 1, 2) + 1 that is not Hamil-

tonian. But, prove that all such graphs H admit a Hamiltonian path (a path containing

all vertices of H).

8.8 Bipartite Graphs

Definition 8.8.1. [2-colorable graphs] A graph is 2-colorable if it’s vertices can be colored with

two colors in a way that adjacent vertices get different colors.

Lemma 8.8.2. Let P and Q be two v-w-paths in G such that length of P is odd and length of

Q is even. Then, G contains an odd cycle.
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Proof. Suppose P,Q have an inner vertex x (a vertex other than v,w) in common. Then, one

of P (v, x), P (x,w) has odd length and the other is even, say, P (v, x) is odd. If the lengths of

Q(v, x) and Q(x,w) are both odd then we consider the x-w-paths P (x,w) and Q(x,w), otherwise

we consider the paths P (v, x) and Q(v, x).

In view of the above argument, we may assume that P,Q have no inner vertex in common. In

that case it is clear that P ∪Q is an odd cycle.

Theorem 8.8.3. Let G be a connected graph with at least two vertices. Then, the following

statements are equivalent.

1. G is 2 colorable.

2. G is bipartite.

3. G does not have an odd cycle.

Proof. Part 1 ⇒ Part 2. Let G be 2-colorable. Let V1 be the set of red vertices and V2 be the

set of blue vertices. Clearly, G is bipartite with partition V1, V2.

Part 2 ⇒ Part 1. Color the vertices in V1 with red color and that of V2 with blue color to get

the required 2 colorability of G.

Part 2 ⇒ Part 3. Let G be bipartite with partition V1, V2. Let v0 ∈ V1 and suppose Γ =

v0v1v2 · · · vk = v0 is a cycle. It follows that v1, v3, v5 · · · ∈ V2. Since, vk ∈ V1, we see that k is

even. Thus, Γ has an even length.

Part 3 ⇒ Part 2. Suppose that G does not have an odd cycle. Pick any vertex v. Define

V1 = {w | there is a path of even length from v to w} and V2 = {w | there is a path of odd length

from v to w}. Clearly, v ∈ V1. Also, G does not have an odd cycle implies that V1 ∩ V2 = ∅. As
G is connected each w is either in V1 or in V2.

Let x ∈ V1. Then, there is an even path P (v, x) from v to x. If xy ∈ E(G), then we have

a v-y-walk of odd length. Deleting all cycles from this walk, we have an odd v-y-path. Thus,

y ∈ V2. Similarly, if x ∈ V2 and xy ∈ E, then y ∈ V1. Thus, G is bipartite with parts V1, V2.

Exercise 8.8.4. 1. There are 15 women and some men in a room. Each man shook hands

of exactly 6 women and each woman shook hands of exactly 8 men. How many men are

there in the room?

2. How do you test whether a graph is bipartite or not?

8.9 Matching

Definition 8.9.1. [Matching in a graph] A matching in a graph G is an independent set of

edges. A maximum matching is a matching with maximum number of edges. A vertex v is

saturated by a matching M if there is an edge e ∈M incident on v. A matching is a perfect

matching if every vertex is saturated.

Example 8.9.2. 1. In Figure 8.14, M1 = {u1u2} is a matching. So, is M2 = {e}, where e is

any edge. The set M3 = {u3u2, u4u7} is also a matching. The set M4 = {u1u2, u4u5, u6u7}
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Figure 8.14: A graph

is also a matching and it is maximum (why?). Can you give another maximum matching?

2. Any non trivial graph G has a maximum matching.

3. Vertices that are saturated for M3 are {u2, u3, u4, u7}.

4. Any graph with a perfect matching must have even order. The Figure 8.14 cannot have a

perfect matching.

Definition 8.9.3. [Alternating path] Let M be a matching in G. A path P is called M-

alternating if its edges are alternately from M and from G−M . An M -alternating path with

two unmatched vertices as end points is called M-augmenting. Convention: Each path of

length 1 in M is M -alternating.

Example 8.9.4. Consider Figure 8.14.

1. The path [u1, u2] is M1-alternating. The only path of length 2 which is M1-alternating is

[u1, u2, u3].

2. The path [u1, u2, u4, u7] is not M3-alternating. But, [u2, u3, u4, u7] is M3-alternating.

3. The path P = [u1, u2, u3, u4, u7, u6] is M3-alternating and M3-augmenting. This gives us

a way to get a larger (in size) matching M5 using M3: throw away the even edges of P

from M3 and add the odd edges; i.e., M5 = M3 − {u2u3, u4u7}+ {u1u2, u3u4, u7u6}.

Theorem 8.9.5. [Berge, 1957] A matching M is maximum if and only if there is no M -

augmenting path in G.

Proof. Let M = {u1v1, . . . , ukvk} be a maximum matching. If there is an M -augmenting path

P , then (P \M) ∪M \ P is a larger matching, a contradiction. Conversely, suppose that M is

not maximum. Let M∗ be a maximum matching. Consider the graph H = (V,M ∪M∗). Note

that dH(v) ≤ 2, for each vertex in H. Thus, H is a collection of isolated vertices, paths and

cycles. Since a cycle contains equal number of edges of M and M∗, there is a path P which

contains more number of edges of M∗ than that of M . Then, P is an M -augmenting path. A

contradiction.

Exercise 8.9.6. How do we find a maximum matching in a graph G.

Example 8.9.7. Can we find a matching that saturates all vertices in the graph given below?
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1

2

3

Ans: No. Let X be the given graph and take S = {1, 2, 3}. If there is such a matching then

|N(S)| should at least be |S|. But this is not the case with this graph.

Question: What if |N(S)| were at least |S|, for each S ⊆ X?

Theorem 8.9.8. [Hall, 1935] Let G = (X∪Y,E) be a bipartite graph. Then, there is a matching

that saturates all vertices in X if and only if for all S ⊆ X, |N(S)| ≥ |S|.

Proof. If there is such a matching, then obviously |S| ≤ |N(S)|, for each subset S of X.

Conversely, suppose that |N(S)| ≥ |S|, for each S ⊆ X. Let if possible, M∗ be a maximum

matching that does not saturate x ∈ X.

As |N({x})| ≥ |{x}|, there is a y ∈ Y such that xy /∈ M∗. Since M∗ cannot be extended, y

must have been matched to some x1 ∈ X.

Now consider N({x, x1}). It has a vertex y1 which is adjacent to either x or x1 or both by an

edge not in M∗. Again the condition that M∗ cannot be extended implies that y1 must have

been matched to some x2 ∈ X. Continuing as above, we see that this process never stops and

thus, G has infinitely many vertices, which is not true. Hence, M∗ saturates each x ∈ X.

Corollary 8.9.9. Let G be a k-regular (k ≥ 1) bipartite graph. Then, G has a perfect matching.

Proof. Let X and Y be the two parts. Since G is k-regular |X| = |Y |. Let S ⊆ X and E be the

set of edges with an end vertex in S. Then k|S| = |E| ≤ ∑

v∈N(S)

d(v) = k|N(S)|. Hence, we see

that for each S ⊆ X, |S| ≤ |N(S)| and thus, by Hall’s theorem the required result follows.

Definition 8.9.10. [Covering of a graph] Let G be a graph. Then, S ⊆ V (G) is called a

covering of G if each edge has at least one end vertex in S. A minimum covering of G is a

covering of G that has minimum cardinality.

Exercise 8.9.11. 1. Show that for any graph G the size of a minimum covering is n−α(G).

2. Characterize G in terms of it’s girth if the size of a minimum covering is |G| − 2.

Proposition 8.9.12. Let G be a graph. If M is a matching and K is a covering of G, then

|M | ≤ |K|. If |M | = |K|, then M is a maximum matching and K is a minimum covering.
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Proof. By definition, the proof of the first statement is trivial. To prove the second statement,

suppose that |M | = |K| and M is not a maximum matching. Let M∗ be a matching of G with

|M∗| ≥ |M |. Then, using the first statement, we have |K| ≥ |M∗| > |M |. Thus, M is maximum.

As each covering must have at least |M | elements, we see that K is a minimum covering.

Exercise 8.9.13. Let G = Kn, n ≥ 3. Then, determine

1. the cardinality of a maximum matching?

2. the cardinality of a minimum covering?

Is the converse of Proposition 8.9.12 necessarily true? Can you guess the class of graphs for

which the converse of Proposition 8.9.12 is true?

Theorem 8.9.14. [Konig, 1931] Let M∗ be a maximum matching in a bipartite graph G and

let K∗ be a minimum covering. Then, |M∗| = |K∗|.

Proof. Let V = X ∪ Y be the bipartition of V and let M be a maximum matching. Let U be

the vertices in X that are not saturated by M and let Z be the set of vertices reachable from U

by an M -alternating path.

Put S = Z ∩ X, T = Z ∩ Y and K = T ∪ (X \ S). Then, U ⊆ Z ⊆ X ∪ Y . Also, every

vertex in T is saturated by M (as M is a maximum matching) and N(S) = T . Further, a vertex

v ∈ X \ S is matched to some vertex y /∈ T . Thus, |K| = |T ∪ (X \ S)| ≤ |M |. If K is not a

covering, then there is an edge xy ∈ G with x ∈ S and y /∈ T , a contradiction to N(S) = T .

Thus, K is a covering and hence, using |K| ≤ |M | and Proposition 8.9.12, we get |K| = |M |.
Furthermore, by Proposition 8.9.12, we also see that K is a minimum covering.

Exercise 8.9.15. How many perfect matchings are there in a labeled K2n?

8.10 Ramsey Numbers

Recall that in any group of 6 or more persons either we see 3 mutual friends or we see 3 mutual

strangers. Expressed using graphs it reads ‘let G = (V,E) be a graph with |V | ≥ 6. Then, either

K3 ⊆ G or K3 ⊆ G.’

Definition 8.10.1. [Ramsey number] The Ramsey number r(m,n) is the smallest natural

number k such that any graph G on k vertices either has a Km or a Kn as it’s subgraph.

Example 8.10.2. As C5 does not have K3 or K3 as it’s subgraph, r(3, 3) > 5. But, using

the first paragraph of this section, we get r(3, 3) ≤ 6 and hence, r(3, 3) = 6. It is known that

r(3, 4) = 9 (see the text by Harary for a table).

Proposition 8.10.3. Let G be a graph on 9 vertices. Then, either K4 ⊆ G or K3 ⊆ G.

Proof. Assume that |V | = 9. Then, we need to consider three cases.

Case I. There is a vertex a with d(v) ≤ 4. Then, |N(a)c| ≥ 4. If all vertices in N(a)c are

pairwise adjacent, then K4 ⊆ G. Otherwise, there are two nonadjacent vertices, say b, c ∈ N(a)c.

In that case a, b, c induces the graph K3.
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Case II. There is a vertex a with d(a) ≥ 6. If 〈N(a)〉 has a K3, we are done. Otherwise,

r(3, 3) = 6 implies that 〈N(a)〉 has a K3 with vertices, say, b, c, d. In that case a, b, c, d induces

the graph K4.

Case III. Each vertex has degree 5. This case is not possible as
∑

d(v) should be even.

Exercise 8.10.4. Can you draw a graph on 8 vertices which does not have K3,K4 in it?

Theorem 8.10.5. [Erdos & Szekeres, 1935] Let m,n ∈ N. Then, r(m,n) ≤ r(m − 1, n) +

r(m,n− 1).

Proof. Let p = r(m− 1, n) and q = r(m,n − 1). Now, take any graph G on p + q vertices and

take a vertex a. If d(a) ≥ p, then 〈N(a)〉 has either a subgraph Km−1 (and Km−1 together

with a gives Km) or a subgraph Kn. Otherwise, |N(a)c| ≥ q. In this case, 〈N(a)c〉 has either a
subgraph Km or a subgraph Kn−1 (Kn−1 together with a gives Kn).

8.11 Degree Sequence

Definition 8.11.1. [Degree sequence] The degree sequence of a graph of order n is the tuple

(d1, . . . , dn) where d1 ≤ · · · ≤ dn. A nondecreasing sequence d = (d1, . . . , dn) of nonnegative

integers is graphic if there is a graph whose degree sequence is d.

Exercise 8.11.2. Show that (1, 1, 3, 3) is not graphic.

Theorem 8.11.3. Fix n ≥ 1 and the natural numbers d1 ≤ · · · ≤ dn. Then, d = (d1, . . . , dn) is

the degree sequence of a tree on n vertices if and only if
∑

di = 2n− 2.

Proof. If d = (d1, . . . , dn) is the degree sequence of a tree on n vertices then
∑

di = 2|E(T )| =
2(n − 1) = 2n− 2.

Conversely, let d1 ≤ · · · ≤ dn be a sequence of natural numbers with
∑

di = 2n − 2. We

use induction to show that d = (d1, . . . , dn) is the degree sequence of a tree on n vertices. For

n = 1, 2, the result is trivial. Let the result be true for all n < k and let d1 ≤ · · · ≤ dk, k > 2, be

natural numbers with
∑

di = 2k − 2. Since,
∑

di = 2k − 2, we must have d1 = 1 and dk > 1.

Then, we note that d′2 = d2, · · · , d′k−1 = dk−1 and d′k = dk − 1 are natural numbers such that
∑

d′i = 2(k−1)−2. Hence, by induction hypothesis, there is a tree T ′ on vertices 2, · · · , k−1, k

with degrees d′i’s. Now, introduce a new vertex 1 and add the edge {1, k} to get a tree T that

has the required degree sequence.

Theorem 8.11.4. [Havel-Hakimi, 1962] The degree sequence d = (d1, . . . , dn) is graphic if and

only if the sequence d1, d2, . . . , dn−dn−1, dn−dn − 1, . . . , dn−1 − 1 is graphic.

Proof. If the later sequence is graphic then we introduce a new vertex and make it adjacent to

the vertices whose degrees are dn−dn − 1, . . . , dn−1 − 1. Hence, the sequence d = (d1, . . . , dn)

is graphic. Now, assume that d is graphic and G is a graph with degree sequence d. Let n be

a vertex with dn = k and suppose that the vertices 1, . . . , k are adjacent to n in G. Also, let

deg(1) be the minimum among deg(1), . . . ,deg(k). If deg(1) ≥ deg(k + 1), . . . ,deg(n− 1), then
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G − n is the required graph. So, let deg(k + 1) > deg(1). Then, k + 1 has a neighbor v 6= 1, n

with v 6∼ 1. Now, consider the graph G′ = G−{k+1, v}+ {n, k+1}+ {1, v}−{1, n}. Then, G′

a also has d as it’s degree sequence with a better degree of neighbors. Note that the

average increases by at least 1
k . Obviously the average cannot go beyond n− 1. Thus, repeating

the above procedure a finite number of times, the required result follows.

Exercise 8.11.5. 1. How many different degree sequences are possible on a graph with 5

vertices? List all the degree sequences and draw a graph for each one. (Include connected

and disconnected graphs.)

2. Which of the sequences below are graphic? Draw the graph or supply an argument.

(a) (2, 2, 3, 4, 4, 5)

(b) (1, 2, 2, 3, 3, 4)

(c) (22, 36, 42) = (2, 2, 3, 3, 3, 3, 3, 3, 4, 4)

3. If two graphs have the same degree sequence, are they necessarily isomorphic?

4. If two graphs are isomorphic, is it necessary that they have the same degree sequence?

8.12 Planar Graphs

Definition 8.12.1. [Embedding, Planar graph] A graph is said to be embedded on a surface

S when it is drawn on S so that no two edges intersect. A graph is said to be planar if it can

be embedded on the plane. A plane graph is a graph which is embedded on the plane.

K5-Non-planar K3,3-Non-planar K4 K4 - Planar embedding

Figure 8.15: Planar and non-planar graphs

Example 8.12.2. 1. A tree is embed-able on a plane and when it is embedded we have only

one face, the exterior face.

2. Any cycle Cn, n ≥ 3 is planar and any plane representation of Cn has two faces.

3. The planar embedding of K4 is given in Figure 8.15.

4. Draw a planar embedding of K2,3.

5. Draw a planar embedding of the three dimensional cube.

Definition 8.12.3. [Face of a planar embedding] Consider a planar embedding of a graph

G. The regions on the plane defined by this embedding are called faces/regions of G. The

unbounded face/region is called the exterior face (see Figure 8.16).
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Figure 8.16: Planar graphs with labeled faces to understand the Euler’s theorem

The faces of the planar graph X1 and their corresponding edges are listed below.

Face Corresponding Edges

f1 {9, 8}, {8, 9}, {8, 2}, {2, 1}, {1, 2}, {2, 7}, {7, 2}, {2, 3}, {3, 4}, {4, 6}, {6, 4}, {4, 5},
{5, 4}, {4, 12}, {12, 4}, {4, 11}, {11, 10}, {10, 13}, {13, 14}, {14, 10}, {10, 8}, {8, 9}

f2 {10, 13}, {13, 14}, {14, 10}
f3 {4, 11}, {11, 10}, {10, 4}
f4 {2, 3}, {3, 4}, {4, 10}, {10, 8}, {8, 2}, {2, 15}, {15, 2}

From the table, we observe that each edge of X1 appears in two faces. This can be easily

observed for the faces that don’t have pendant vertices (see the faces f2 and f3). In faces f1

and f4, there are a few edges which are incident with a pendant vertex. Observe that the edges

that are incident with a pendant vertex, e.g., the edges {2, 15}, {8, 9} and {1, 2} etc., appear

twice when traversing a particular face. This observation leads to the proof of Euler’s theorem

for planar graphs which is the next result.

Theorem 8.12.4. [Euler formula] Let G be a connected plane graph with f as the number of

faces. Then,

|G| − ‖G‖+ f = 2. (8.3)

Proof. We use induction on f . Let f = 1. Then, G cannot have a subgraph isomorphic to a

cycle. For if, G has a subgraph isomorphic to a cycle then in any planar embedding of G, f ≥ 2.

Therefore, G is a tree and hence |G| − ‖G‖+ f = n− (n − 1) + 1 = 2.

So, assume that Equation (8.3) is true for all plane connected graphs having 2 ≤ f < n. Now,

let G be a connected planar graph with f = n. Now, choose an edge that is not a cut-edge, say

e. Then, G − e is still a connected graph. Also, the edge e is incident with two separate faces

and hence it’s removal will combine the two faces and thus G− e has only n− 1 faces. Thus,

|G| − ‖G‖+ f = |G− e| − (‖G− e‖+ 1) + n = |G− e| − ‖G− e‖+ (n− 1) = 2

using the induction hypothesis. Hence, the required result follows.

Lemma 8.12.5. Let G be a plane bridgeless graph with ‖G‖ ≥ 2. Then, 2‖G‖ ≥ 3f . Further,

if G has no cycle of length 3 then, 2‖G‖ ≥ 4f .
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Proof. For each edge put two dots on either side of the edge. The total number of dots is 2‖G‖.
If G has a cycle then each face has at least three edges. So, the total number of dots is at least

3f . Further, if G does not have a cycle of length 3, then 2‖G‖ ≥ 4f .

Theorem 8.12.6. The complete graph K5 and the complete bipartite graph K3,3 are not planar.

Proof. If K5 is planar, then consider a plane representation of it. By Equation (8.3), f = 7.

But, by Lemma 8.12.5, one has 20 = 2‖G‖ ≥ 3f = 21, a contradiction.

If K3,3 is planar, then consider a plane representation of it. Note that it does not have a C3.

Also, by Euler’s formula, f = 5. Hence, by Lemma 8.12.5, one has 18 = 2‖G‖ ≥ 4f = 20, a

contradiction.

Definition 8.12.7. [Subdivision, homeomorphic] Let G be a graph. Then, a subdivision of

an edge uv in G is obtained by replacing the edge by two edges uw and wv, where w is a new

vertex. Two graphs are said to be homeomorphic if they can be obtained from the same graph

by a sequence of subdivisions.

For example, for each m,n ∈ N, the paths Pn and Pm are homeomorphic. Similarly, all the

cyclic graphs are homeomorphic to the cycle C3 if our study is over simple graphs. In general,

one can say that all cyclic graphs are homeomorphic to the graph G = (V,E), where V = {v}
and E = {e, e} (i.e., a graph having exactly one vertex and a loop). Also, note that if two graphs

are isomorphic then they are also homeomorphic. Figure 8.17 gives examples of homeomorphic

graphs that are different from a path or a cycle.

Figure 8.17: Homeomorphic graphs

Theorem 8.12.8. [Kuratowski, 1930] A graph is planar if and only if it has no subgraph

homeomorphic K5 or K3,3.

Proof. Omitted.

We have the following observations that directly follow from Kuratowski theorem.

Remark 8.12.9. 1. Among all simple connected non-planar graphs

(a) the complete graph K5 has minimum number of vertices.

(b) the complete bipartite graph K3,3 has minimum number of edges.

2. If Y is a non-planar subgraph of a graph X then X is also non-planar.

Definition 8.12.10. [Blocks of a graph] Let G be a graph. Define a relation on the edges of G

by e1 ∼ e2 if either e1 = e2 or there is a cycle containing both these edges. Note that this is an
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equivalence relation. Let Ei be the equivalence class containing the edge ei. Also, let Vi denote

the endpoints of the edges in Ei. Then, the induced subgraphs 〈Vi〉 are called the blocks of G.

Proposition 8.12.11. A graph G is planar if and only if each of its blocks are planar.

Proof. Omitted.

Definition 8.12.12. [Maximal planar] A graph is called maximal planar if it is planar and

addition of any more edges results in a non-planar graph. A maximal plane graph is necessarily

connected.

Proposition 8.12.13. If G is a maximal planar graph with m edges and n ≥ 3 vertices, then

every face is a triangle and m = 3n− 6.

Proof. Suppose there is a face, say f , described by the cycle [u1, . . . , uk, u1], k ≥ 4. Then, we

can take a curve joining the vertices u1 and u3 lying totally inside the region f , so that G+u1u3

is planar. This contradicts the fact that G is maximal planar. Thus, each face is a triangle. It

follows that 2m = 3f . As n−m+ f = 2, we have 2m = 3f = 3(2− n+m) or m = 3n− 6.

Exercise 8.12.14. 1. Suppose that G is a plane graph with n vertices such that each face is

a 4-cycle. What is the number of edges in G?

2. Show that the Petersen graph has a subgraph homeomorphic to K3,3.

3. Show that a plane graph on n ≥ 3 vertices can have at most 2n− 5 bounded faces.

4. Is it necessary that a plane graph G should contain a vertex of degree less than 5?

5. Let G be a plane graph on n vertices, m edges, f faces and k components. Prove by

induction that n−m+ f = k + 1.

6. If G is a plane graph without 3-cycles, then show that δ(G) ≤ 3.

7. Show that any plane graph on n ≥ 4 vertices has at least four vertices of degree at most

five.

8. Produce a planar embedding of the graph G that appears in Figure 8.18.
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6

5

4

7

Figure 8.18: A graph on 8 vertices
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8.13 Vertex Coloring

Definition 8.13.1. [k-colorable] A graph G is said to be k-colorable if the vertices can be

assigned k colors in such a way that adjacent vertices get different colors. The chromatic

number of G, denoted χ(G), is the minimum k such that G is k-colorable.

Theorem 8.13.2. For every graph G, χ(G) ≤ ∆(G) + 1.

Proof. If |G| = 1, the statement is trivial. Assume that the result is true for |G| = n and let G

be a graph on n + 1 vertices. Let H = G− 1. As H is (∆(G) + 1)-colorable and d(1) ≤ ∆(G),

the vertex 1 can be given a color other than its neighbors.

Theorem 8.13.3. [Brooks, 1941] Every non complete graph which is not an odd cycle has

χ(G) ≤ ∆(G).

Theorem 8.13.4. [5-color Theorem] Every Planar graph is 5-colorable.

Proof. Let G be a minimal planar graph on n ≥ 6 vertices and m edges, such that G is not

5-colorable. Then, by Proposition 8.12.13, m ≤ 3n − 6. So, nδ(G) ≤ 2m ≤ 6n − 12 and hence,

δ(G) ≤ 2m/n ≤ 5. Let v be a vertex of degree 5. Note that by the minimality of G, G − v is

5-colorable. If neighbors of v use at most 4 colors, then v can be colored with the 5-th color

to get a 5-coloring of G. Else, take a planar embedding in which the neighbors v1, . . . , v5 of v

appear in clockwise order.

Let H = G[Vi ∪ Vj ] be the graph spanned by the vertices colored i or j. If vi and vj are in

different connected components of H, then we can swap colors i and j in a component that

contains vi, so that the vertices v1, . . . , v5 use only 4 colors. Thus, as above, in this case the

graph G is 5-colorable. Otherwise, there is a 1, 3-colored path between v1 and v3 and similarly,

a 2, 4-colored path between v2 and v4. But this is not possible as the graph G is planar. Hence,

every planar graph is 5-colorable.

8.14 Adjacency Matrix

Definition 8.14.1. [adjacency matrix] Let G = (V,E) be a simple (undirected) graph on

vertices 1, . . . , n. Then, the adjacency matrix A(G) of G (or simply A) is described by

aij =

{

1 if {i, j} ∈ E,

0 otherwise.

Let H be the graph obtained by relabeling the vertices of G. Then, note that A(H) =

S−1A(G)S, for some permutation matrix S (recall that for a permutation matrix St = S−1).

Hence, we talk of the adjacency matrix of a graph and do not worry about the labeling of the

vertices of G.

will give an adjacency matrix, say B. But, the
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Example 8.14.2. The adjacency matrices of the 4-cycle C4 and the path P4 on 4 vertices are

given below.

A(C4) =









0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0









, A(P4) =









0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0









.

Exercise 8.14.3. A graph G is not connected if and only if there exists a permutation matrix

P such that A(G) =

[

A11 0

0 A22

]

, for some matrices A11 and A22.

Theorem 8.14.4. The (i, j) entry of B = A(G)k is the number of i-j-walks of length k.

Proof. Note that by the definition of matrix product

bij =
∑

i1,...,ik−1

aii1ai1i2 · · · aik−1ik .

Thus, bij = r if and only if we have r sequences i1, . . . , ik−1 with aii1 = · · · = aik−1ik = 1. That

is, bij = r if and only if we have r walks of length k between i and j.

Theorem 8.14.5. Let G be a graph G of order n. Then, G is connected if and only if
[
I +

A(G)
]n−1

is entrywise positive.

Proof. Put B = I +A and let G be connected. If P is an i-j-path of length n− 1, then Bn−1
ij ≥

An−1
ij ≥ 1. If P = [i, i1, . . . , ik = j] is an i-j-path of length k < n−1, then bii . . . biibii1 . . . bik−1j =

1, where bii is used n− 1− k times. Thus, Bn−1
ij > 0.

Conversely, let Bn−1
ij > 0. Then, the corresponding summand bii1 . . . bin−1j is positive. By

throwing out entries of the form bii, for 1 ≤ i ≤ n, from this expression, we have an expression

which corresponds to an i-j-path of length at most n − 1. As Bn−1 is entrywise positive, it

follows that G is connected.

Do you want to put Vertex-edge incidence matrix or the {−1, 0, 1}-
incidence matrix? If so, which results other than Matrix Tree
Theorem should be stated. We need not give the proofs.

Definition 8.14.6. [Vertex-edge incidence matrix] The vertex-edge incidence matrix M

of G is a |G| × ‖G‖ matrix whose (i, j)-entry is described by

mij =

{

1 if edge ej is incident on vi,

0 else.

8.15 More Exercises

Exercise 8.15.1. 1. Can there be a graph in which the size of a minimum covering is |G|?

2. Characterize G if the size of a minimum covering is |G| − 1.

3. What relationship is there between the size of a minimum covering and α(G)?
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4. Is it necessary that a plane graph G should contain a vertex of degree at most 5?

5. Is K5 − e planar, where e is any edge?

6. Is K3,3 − e planar, where e is any edge?

7. Is it true that any group of 7 persons there are 3 mutual friends or 4 mutual strangers?

8. Prove/disprove: A two colorable graph is necessarily planar.

9. Draw the tree on the vertex set [12] whose Prüfer code is 9954449795.

10. A game of ‘thief ’ is played in the following way: There is a coin. There are n participants.

One participant takes the coin and passes it to whoever he/she wishes to. Whoever has

the coin must pass to somebody (other than the person from whom he/she received it) as

quickly as possible. When the music stops, the person with the coin is the ‘thief ’.

My class students (there are 115 in total) were playing it. There were 2009 passes when

the music stopped. I guarantee that the person who started it is not the thief. How?

Not able to understand

11. How many chordal graphs are there on the vertex set [4]?

12. Count with diameter: how many nonisomorphic trees are there of order 7?

13. List the automorphisms of the following graph.

b

b

b

b

b

b

b

b

1

2

3

4

5

6
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M -augmenting, 174
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hAUB, 149
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dom f , 7

∩
α∈S

Bα, 29

κ(G), 164

λ(G), 165

A, 44

πn, 109

πn(k), 109

rng f , 7

∪
α∈S

Bα, 29

{Ax}x∈A, 29
{f1, . . . , fn} ⇒ g, 67

a+ b, 55

ab, 55

d(v), 146

dG(v), 146

fA, 8

k-colorable, 182

k-connected, 164

k-factor, 149

k-place predicate, 71

k-regular, 149

k-th difference, 132

l-edge connected, 165

n-set, 90

p implies q, 59

r-combination, 93

r-permutation, 90

r-sequence, 90

r(m,n), 176

s(n, k), 109

u-v walk, 151

x-bound part, 72

xn, 109

acyclic, 153

addition rule, 89

adequate, 63

adjacency matrix, 182

adjacent, 146

algebraic, 45

algebraic expansion, 96

anti-chain, 46

antisymmetric, 46

argument, 57

assignment, 58

atom, 85

atomic formula, 58, 72

atomic variable, 58
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automorphism, 156

axiom of choice, 51

basic solution, 134

Bell Numbers, 139

bijection, 9

bipartite, 168

blocks, 181

Boolean algebra, 83

Boolean homomorphism, 86

Boolean isomorphism, 86

bound, 72

bounded lattice, 81

bridge, 158

Cardinal numbers, 44

cartesian product, 5, 151

Catalan number, 111

Cauchy product, 122

center, 152

chain, 46

characteristic equation, 133

chord, 153

chordal, 153

chromatic number, 182

circular permutation, 97

clique, 154

clique number, 154

closed, 152

closure, 170

co-prime, 17

codomain set, 7

coin problem/ money changing problem, 130

commutative ring with unity, 25

comparable, 46

complement, 5, 81, 150

complemented, 81

complete, 81, 146

complete bipartite graph, 147

component, 154

composite, 19

composition, 31

conclusion, 67

congruent, 21

conjugate, 128

conjunction/and, 58

conjunctive normal form, 65

connected, 154

connected component, 154

connected permutation, 131

connectives, 60

contradiction (F ), 61

contrapositive, 60

converse, 60

countable, 43

covering, 175

cubic, 149

cut edge, 158

cut vertex, 157

cycle graph, 147

cycle/circuit, 152

degree, 146

degree sequence, 177

derangement, 120

diameter, 152

dictionary, 47

difference equation, 132

direct product, 79

disconnected, 154

disjoint, 6

disjoint union, 150

disjunction/or, 58

disjunctive normal form, 65

distance, 152

distributive lattice, 77

divide, 17

divisor, 17

domain of f , 7

domain set, 7

dual, 66

Durfee square, 131
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edge connectivity, 165

edge density, 154

edge set, 145

edges, 145

egf, 123

embedded, 178

end vertices, 145

end vertices of P , 152

enumeration, 43

equivalence class, 33

equivalence relation, 31

equivalent, 9, 61, 73

Euclid’s Algorithm, 17

Euclid’s algorithm, 18

Euclid’s lemma, 19

Euler’s totient function, 120

Eulerian, 166

Eulerian tour, 166

exponential generating function, 123

exterior face, 178

faces/regions, 178

falling factorial, 91, 109

family of finite character, 52

family of sets, 29

Ferrer’s Diagram, 128

Fibonacci sequence, 132

field, 23

finite, 10

first difference, 132

forest, 157

Formal power series, 122

differentiation, 125

integration, 125

formal power series, 122

free, 72

free Boolean algebra, 84

Frobenius number, 130

Function

Identity, 36

function, 7

functionally complete, 63

Fundamental theorem of arithmetic, 20

general graph, 145

girth, 152

graph invariant, 156

graphic, 177

greatest common divisor, 17

greatest lower bound (glb), 49

Hamel basis, 53

Hamiltonian, 169

Hasse diagram, 48

height, 46

homeomorphic, 180

homogeneous recurrence relation, 132

hypergraph, 146

hypothesis/premise, 67

identity relation, 31

image, 7

incident, 145

independence number, 155

independent, 146

induced, 149

induced partial order, 52, 85

infinite, 10

infinite cardinal numbers, 45

initial condition, 132

initial segment of a, 50

injection, 8

internal vertices, 152

interpretation, 72

interpretation of f , 72

intersection, 6, 29, 150

inverse, 7, 83

isolated, 146

isomorphic, 155

join, 151

lattice, 77

lattice homomorphism, 80
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lattice isomorphism, 80

lattice of n-tuples of 0 and 1, 79

lattice path, 110

least common multiple, 20

least upper bound (lub), 49

length, 151

lexicographic, 47

LHRRCC, 132

line graph, 171

linear/complete/total order, 46

linearly ordered set, 46

literal, 65

LNHRRCC, 132

logical conclusion, 67

loop, 145

lower bound, 49

matching, 173

maximal, 49, 154

maximal planar, 181

maximum, 49

maximum matching, 173

minimal, 49, 154

minimum, 49

minimum covering, 175

multigraph, 146

multiplication rule, 89

multiplicative, 121

multiset, 92

negation, 58

neighbor, 146

Newton’s Identity, 95

nonhomogeneous recurrence relation, 132

ogf, 123

one-one, 8

onto, 9

orbit, 98

orbit size, 98

order, 146

order of operations, 67

ordinary generating function, 123

partial order, 46

partially ordered set, 46

partition, 105

partition of n into k parts, 109

partition of S, 105

path, 151

path graph, 146

pendant, 146, 159

perfect matching, 173

permutation, 90

Petersen graph, 148

Pigeonhole principle (PHP), 115

planar, 178

plane graph, 178

Polish notation, 67

poset, 46

Prüfer code, 161

pre-image, 7

prime, 19

principal connective, 66

principle of duality, 84

principle of transfinite induction, 50

product, 51

propositional function, 71

pseudograph, 145

quantifiers, 71

quotient, 16

radius, 152

Ramsey number, 176

range of f , 7

reciprocal, 124

recurrence relation, 132

reflexive, 31

relation, 7

relation on X, 31

relatively prime, 17

remainder, 16

residue, 21
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restriction of f to A, 8

rising factorial, 109

rotation, 98

satisfiable, 67

saturated by a matching, 173

scope, 72

self conjugate, 128

self-complementary, 156

separating set, 164

Set

Cartesian Product, 5

Complement, 5

Composition of Relations, 31

Difference, 6

Equality, 5

Equivalence Class, 33

Equivalence Relation, 31

Identity Relation, 31

Intersection, 6

Power Set, 6

Subset, 5

Symmetric Difference, 6

Union, 6

set difference, 6

simple graph, 146

single valued, 7

solution, 132

spanning subgraph, 149

Squarefree, 26

squarefree, 88

standard representative, 21

Stirling number of the first kind, 109

Stirling numbers of the second kind, 106

Stirling’s Identity, 138

subdivision, 180

subgraph, 149

subset, 5

substitution instance, 62

surjection, 9

symmetric, 31

symmetric difference, 6

tautology (T ), 61

trail, 151

transcendental, 45

transitive, 31

tree, 157

trivial graph, 146

truth function, 61

truth table, 59

truth value, 58

uncountable, 43

union, 6, 29, 150

unit, 19

unity, 19

universe of discourses, 71

upper bound, 49

usual partial order, 46

valid, 73

vertex connectivity, 164

vertex set, 145

vertex-edge incidence matrix, 183

vertices, 145

well formed formulae (wff), 60

well order, 50

width, 46

Wilson’s Theorem, 24

word expansion, 96


