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Abstract

Designers of integrated circuits have always been concerned about the damaging effects of ESD
(Electrostatic Discharge). However, as their designs become increasingly more complex, the problem of
analyzing the schemes they develop to protect against ESD is quickly becoming too difficult perform
manually. Current VLSI (Very Large Scale Integration) designs exceed one hundred bondpads, through
which the device communicates with the outside environment, and through which harmful amounts of
current might enter the chip. A protection scheme for a complex device such as this might require a net-
work of thousands of non-trivial connections between the bondpads to keep harmful amounts of current
from the chip’s delicate core. In order to measure the robustness of a protection scheme designers would
like to be able to take resistance measurements between bondpad pairs. On such large designs, this can
be a monumental task. In this paper we focus on two things: the automation of strategies previously per-
formed manually, and an in-depth development of (newer) more accurate techniques provided by network
flow algorithms, each for gauging the degree of protection afforded by ESD Protection Schemes. The
underlying algorithms we will discuss for automating this ESD Analysis are well understood. However,
their application, and the introduction of more advanced simulation techniques make this discussion orig-
inal. We would like to develop a tool which not only accurately models the protection scheme against an
ESD event, but also helps to pinpoint its weaknesses. In many cases it is not obvious that the techniques
we suggest can be applied or adapted to the simulation of electrical devices and networks. It is also
interesting that such techniques make no direct use of Kirchoff’s Voltage or Current Laws (KVL/KCL)
yet still produce meaningful and accurate results. This document is intended to summarize standard
techniques for analysis of ESD protection schemes, as well as to introduce some clever variations on
more complicated algorithms whose intent is to generate more meaningful results never before feasible
manually.



1 Overview

One of the most harmful environments for integrated circuits is the human hand. The human body stores
electric potential which can cause irreparable damage to integrated circuits if not averted. When static
electric potential is unleashed the event is called Electrostatic Discharge or ESD. In order to protect these
delicate circuits from ESD, designers incorporate protection hardware into the chip’s input/output (I/0)
package to divert harmful amounts of current away from the core of the device. Once such hardware is
developed it needs to be tested, and debugged. It is much cheaper to analyze the integrity of a protection
scheme in the Computer Aided Design (CAD) environment than it is to perform physical simulations on
fabbed chips. Hence, designers are interested in simulating ESD events in the CAD environment so that
the layouts/schematics for the protection schemes can be modified prior to an expensive fabrication process.
This paper addresses the development of software for the simulation of ESD events, and subsequently the
analysis of ESD protection schemes. Such an analysis can occur in several stages with several strategies,
from debugging plans and schematics, to an actual event being simulated on the final layout. Automations
of schematic level simulations have most recently been addressed in an article supporting a scheme entitled
VerifyESD [3]. We are concerned with simulations on layouts which are more difficult to do by hand, and
for which there is currently no software available. But first, before we get into the actual techniques, it is
necessary to situate the problem in a more well-defined environment: enumerate all of the variables, and more
specifically depict structure of ESD protection schemes. After constructing this perspective, and following a
general discussion of the input and instances of our problem, the complex nature the ESD analysis problem
we are considering will become more apparent.

Typically, an integrated circuit is entirely surrounded by an I/O ring wherein any ESD protection hard-
ware resides. The I/O ring interacts with the outside environment through a series of bondpads, or pins,
through which all electrical current enters and exits the integrated circuit. The basic theme of the ESD
protection schemes we wish to analyze is based on diverting dangerous amounts current from one bondpad
(the zapped bondpad) to a bondpad with a connection to ground without it passing through the delicate core
of the chip. The success of a protection scheme can be measured by the voltage drop between zapped and
grounded bondpads. This voltage drop (or excitation level) for each bondpad pair is commonly referred to as
the ESD Budget for that pair. If the excitation level is too high then dangerous amounts of electrical current
will likely trigger the gate-oxide, and thereby leak out of the I/O ring and possibly damage the circuit. We
are interested in measuring the excitation levels between bondpad pairs in order to aid designers in devel-
oping more robust ESD protection schemes for their IC’s. The input to such an analysis is the I/O package
to be analyzed and the magnitude of the ESD Current incident on the device. The currents corresponding
to an ESD event are typically based on an experimental Human Body Model, or HBM.

In order to construct a more focused discussion of the underlying algorithms for analyzing ESD events,
we will not concern ourselves with appropriate inputs or use of output, but rather the analysis of a protection
scheme under several reasonable assumptions, and only the variables just mentioned. However, since these
simulations do indeed take place in a CAD environment we will concern ourselves with developing an accurate
interpretation of the I/O package, its electrical components, and the providing of meaningful output, and a
reasonable, flexible and useful interface for the designer. Therefore, the first section of this paper is devoted
to CAD issues, the representation of electrical networks (netlists), allowing for the capability of the user to
define the simulation of the ESD event globally, the individual components used in ESD protection hardware
locally, and most importantly to describing a graphical representation of electrical devices. Any tool for
analyzing ESD events on an arbitrary layout will have to accurately model the devices it contains. In order
to simplify this discussion we concern ourselves with only a basic set of devices, and argue that such a set is
sufficient for a thorough discussion and simulation, placing no serious limitations on input or implementation.

In the next section we address the type(s) of analysis which were previously done by hand. These
techniques take the form of overestimating excitation levels between pairs of bondpads by guessing the
path of least resistance between them. We first formalize this technique and prove that it yields the desired
overestimate. Techniques of this flavor have their analog in Shortest Path algorithms such as those suggested
by Dijkstra and Floyd-Warshall. We will discuss these algorithms, their utility and complexity, and the
meaning of the data they produce. We also discuss the grossness of the overestimate obtained by using these
algorithms, devise some techniques for obtaining a less pessimistic overestimate, and argue that any drastic



improvements require a different algorithmic strategy. The expected efficiency of these algorithms in practice
can vary greatly from the results suggested by their theoretical analysis. These topics will be discussed as
part the decomposition of each algorithm, along with implementation issues, solutions, and shortcuts as they
arise in our unique electrical environment.

The third section of the paper is devoted to techniques for solving the voltage drop problem exactly. This
will require techniques from the Network Flow class of Linear Programming algorithms. In this section we
begin by addressing the motivation for such an approach, as well as its feasibility. Next, we discuss Network
Flow algorithms in general, and the assumptions we must impose on the data in order to exploit them.
Following, we discuss the class of Network Flow problems which are best suited to our needs: Minimum
Cost Mazimum Flow (MCMF), its algorithms, and a slight variation of this class called Convex Flows which
best suits the electrical model we are trying to simulate. Once enumerating this class of problems and their
motivation, we will discuss the Successive Shortest Paths Convexr Flow MCMF algorithm in detail, as well
as the deviations we take from it to get the output we require with the greatest possible efficiency. This
discussion relies heavily on the data structures used to represent graphs, the concept of residue and residue
graphs, their properties, and the optimality principles inherent in the MCMF problem. After enumerating
the relevant optimality conditions, one in particular is discussed in detail- reduced cost optimality conditions.
From this we derive the Successive Shortest Paths Algorithm and discuss it in detail. Afterwards, we discuss a
variation on the Successive Shortest Paths Algorithm where by scaling flow augmentations and subsequently
reducing the scale in phases we can reduce the algorithm’s theoretical complexity. Finally, we enumerate any
limitations our initial assumptions impose, and suggest implementation schemes which avoid them. As this
section is the heart of the paper, it will contain the most rigorous mathematical justification, treatment of
the analysis, and detailed description of the techniques. As already mentioned, the class of Minimum Cost
Maximum Flow problems yields several different algorithmic approaches of varying complexity. However,
since each approach is based on similar optimality conditions, we discuss these conditions in detail, but focus
on only a limited set of algorithms which are particularly well-suited to our task, leaving many of the other
algorithms which exploit these and similar conditions to our references. In addition, we will also suggest
paths of further research and similar techniques though in much less detail.



2 Preprocessing & Graphing Electrical Components

2.1 PREPROCESSING

We begin by discussing the Computer Aided Design (CAD) environment, the typical input to our ESD
analysis problem, and the preprocessing required to obtain such a suitable input. As mentioned in the
overview section, there are two types of inputs on which an ESD analysis might be performed: schematic,
and layout. The schematic-level can be characterized by a symbolic description of an integrated circuit,
consisting of symbols which represent diodes, transistors, etc. On the other hand, a layout describes the
integrated circuit and its components in terms of layers of metal, silicon, etc. We are interested in layout-level
analysis for the following reasons:

1. There already exist tools for schematic-level ESD analysis (see VerifyESD [3]).

2. Layout extractions tend to produce quite large netlists which make other recursive/exhaustive ap-
proaches (as suggested by VerifyESD) inappropriate.

3. Layout extractions produce netlists which use devices from a small subset of components (resistor,
diode, transistor, net connections) and which have simple graph (arc) representations.

4. Schematic-level representations lack any information about the parasitic resistance across metal lay-
ers and long busses of metal which greatly impact the voltage drop measurement across a pair of
components when the IC is stressed during an ESD event.

Since a typical layout representation itself is a poor representation of a graph and electrical makeup of the
device from a programming perspective (simply because is it more of a diagram than a list of connections)
we require a tool which can extract the necessary information (parasitic resistances, physical components,
etc.) from the diagram, and a tool which can make a so-called netlist from this extracted information. It is
this netlist which is the input to our ESD analysis routines. The netlist is an ASCII representation of the
electrical network represented by a layout. The netlist describes both where the components in the layout are
connected, how they are connected, and give a device hierarchy. Since all we wish to measure is the voltage
drop (or excitation level) between pairs of components in the I/O portion of the integrated circuit, we are
only interested in a subset of the layout, and therefore only a subset of the components and connections in
its netlist. Since the purpose of an ESD protection scheme is simply to divert harmful amounts of current
away from the core of the chip, we can make several assumptions which further simplify the input:

1. Current incident on the device in a simulation always corresponds to an ESD event. Thus, only the
components which might be involved in such an event are relevant to the analysis. All others can be
excluded.

2. Since we are only concerned with the direction of the current and the excitation level between pairs
of components, we need only consider components which exhibit directional, resistive, and hierarchical
properties:

i. resistors
ii. diodes
iii. non-resistive, undirected connections
iv. transistors
v. larger (blackbox) single or multi-directional parasitics

vi. If the netlist has any hierarchy information (which is usually desired), then this hierarchy can
be encoded in terms of the above types of connections, and yet require no other devices for our
purpose.



The term blackbox refers to complex ESD protection devices themselves, such as latchbacks and crowbars
which, as a functional unit, behave as one resistive and/or directional device during an ESD event. In other
words, it can be thought of as a large diode or resistor (though perhaps with a variable, or threshold triggered
voltage drop or resistance).

It is easy enough to see that none of the above assumptions places any real limitation on the types of
layouts we can analyze. However, each (especially the last) will often require another level of preprocessing,
in the form of compiling the original netlist (raw netlist) into another netlist— one more friendly to our
analysis. In other words, netlists often come in several flavors, and many do not represent the extracted
layout as a single, flat, sequence of connections. Instead, subcomponents of the device may be enumerated
individually, and then referred to as devices of other subcomponents, or sections of a larger device. Thus we
require a compiler, or set of compilers, in order to translate an arbitrary netlist to one which is explicit and
flat (every connection is described at the resistor, diode, connect, or blackbox level). In addition, we want
this compiler to preserve hierarchy so that a complimentary compiler can also be written to translate the
results back into the layout domain.

We now conclude our discussion of the input so as to proceed with the general discussion of ESD analysis
based on the above assumptions.

2.2 GRAPHING, REPRESENTATION OF ELECTRICAL COMPONENTS

In short, we would like to represent each of the components in the above list (resistors, diodes, non-resistive
connections, transistors, blackboxes) graphically. Connection types (i-iii) have a natural arc graphical rep-
resentation, which will be discussed, briefly, below. Connection type (iv), transistors, have a less natural
graphical representation. The main reason for this is the following: connection types (i-iii) have two termi-
nals, but transistors, of which there are many flavors, typically have three or more. In the type of analysis we
are performing we need not consider transistors as part of our model. That is, they (or groups of them) can
often be abstracted by a blackbox component. Therefore, we will leave the discussion of transistors to the
Further Considerations section of this paper, and furthermore leave them out of our general analysis, making
only anecdotal references to them from time to time. While we do not require blackbox components to have
just two terminals, we do insist that in the netlist-preprocessing phase each of its pairs of terminals can be
described as a single resistive and/or directional component. In this way, one blackbox with two or more
terminals can be described as a network of two terminal devices, each with the same name. This reduces the
problem of representing a blackbox component graphically to describing it as sequence of resistors, diodes,
and/or non-resistive connections.

Now that we have simplified our input model to only basic two-terminal devices, we can proceed to
describe their representation in a relatively straightforward manner.

The graphs we will use for describing our electrical networks will be defined in the following way: We
say that a (weighted and directed) graph' G = (N, A) is a set of nodes (or vertices) N and arcs (or edges)
A, where an arc is an ordered pair of distinct nodes from N. For each arc (i,j) € A we associate a cost
function ¢ : N2 — R. We say that a (directed) path is a sequence P = (a1,...,a,), where a; € N and
(ai,a;y1) € A for integers ¢ € {1,...,n — 1}, and n > 2. On such a path we say that a; is the parent of
a;+1. Since the arcs have a cost associated with them, the cost of traversing this path is 2?2_11 c(ai, aiv1).
A cycle is a path (a1, ..., a,) together with the arc (an,a1) or equivalently {(ai,...,an,a1). We leave other
definitions of graphs and their properties to our references?, and enumerate them as they become relevant to
the discussion. For example, as we begin talking about Network Flows in the third section of this paper we
will introduce the concept of flow and residue, demand at a node, etc. An example pictorial representation
of a graph is provided in Figure 1.

We now describe the central topic of this section: representing our three connection types graphically. A
resistor has two terminals, which we call A and B, and the resistance between them we will call 7 4 g, measured

1We adopt the Graph representation used in the text by Ahuja, Magnanti & Orlin Network Flows[1]. For other, equivalent
graph representations, such as G = (V, E), please refer to the references concluding this document.
2See [2], [1], and [6]



Figure 1: A simple example of a graph. Each arc is associated a cost which is beside it. The nodes s ant ¢
can be thought of as the source and sink for the graph (i.e. the zapped and grounded terminals in an ESD

event).

in ohms (Q). See Figure 2. Current may flow along a resistor from A to B or from B to A. Therefore,
a resistor can be thought of simply as a bi-directional arc with a bi-directional cost between nodes A and
B which is equal to its resistance. Since our definition refers to arcs as only having one direction we must
express our resistor graphically as two arcs between A and B, one for each direction. With this in mind we
create an arc (A, B) with ¢(A, B) = rag, and an arc (B, A) with ¢(B,A) = rag-

c(A,B)=r(A,B)

r(A,B)
A ) (s

A B C(B,A)=r(A,B)

Figure 2: (Left) Electrical representation/notation for a resistor with terminals A and B. r(A4, B) = rap
(the resistance between terminals A and B). (Right) Graphical (edge/arc) representation/notation of the
resistor on the left.

Similarly, a diode has two terminals— again call them A and B- but we only allow current to flow in one
direction (see Figure 3). Diodes also have an associated voltage drop® (v(A, B)), measured experimentally
(in volts) with the Transmission Line Pulse Technique (TLP). Since we are assuming some current I incident
on our ESD protection scheme, we can write the ”cost” of this current across a diode in the same units as
our resistor, namely ohms. Therefore, we can represent a diode graphically as directed arc (A, B) with
¢(A,B) = vap/I. This assumes that the diode’s reverse direction (opposite the arrow of the diode) has an
infinite resistance all of the time, which is equivalent to there being no edge (B, A) in our graph.

3usually around 0.7 volts at 1.3 amperes Current, depending on the dimensions and makeup of the diode



v(A,B)/I
c(A,B)=v(A,B)/I

Figure 3: (Left) Electrical representation/notation for a diode with terminals A and B. v(A, B) = vag,
(the voltage drop from terminal A to terminal B). (Right) Graphical (edge/arc) representation/notation of
the diode on the left.

Finally, we have left to describe the graphical representation of a non-resistive, bi-directional connection.
However, this should not be too difficult, since this is essentially the same as a resistor with zero resistance.
In fact, this is exactly the situation in which such an entry is called for in a netlist. The netlister requires a
connection between two (or more) other elements of the layout where one or both (or all) of whose terminals
share the same location (e.g. a bondpad and its pin, see Figure 4).

(n =) L L

Figure 4: (Left) Electrical representation/notation for a non-resistive connection with terminals A and B.
(Right) Graphical (edge/arc) representation/notation of the connection on the left.

A non-resistive bi-directional connection might be used to connect the terminals of two different diodes in
order to represent them hierarchically as a back-to-back diode-pair (a standard component in ESD protection
schemes). See Figure 5. Since this is a typical construction for ESD protection it is often defined as an
abstracted device, or sub-circuit. Therefore, in a netlist it might appear as a single device whose definition is
included somewhere else in the netlist (indicating that the sub-circuit named “back2back_diode” is really just
a pair of diodes where the anode of one is connected to the cathode of the other, and vice-versa). Arcs in our
graphical representation are therefore required in order to “connect” the diodes as described in sub-circuit
definition. This is also shown in Figure 5. A more complicated example of such sub-circuit definitions might
include an abstracted device which contains more than two shared terminals. In addition, we might come
across a reference to an abstracted device which itself contains nested sub-circuits. Non-resistive hierarchical
connections handle this nicely. If these connections are named appropriately, the graph can remain backward
compatible with the netlist.

With an electrical network composed of the above components we can now create a graph using the
arcs described above to represent the connections between terminals which will be represented as nodes.
The remaining sections of this paper will cover algorithms which assume input like the graphs we have
just discussed. As always, when preparing to discuss algorithms which work with data structures such as
graphs we must also talk about how these structures are represented. In this discussion we make use of
two representations*: Adjacency List and Adjacency Matriz. These will be discussed in more detail as we

“4please refer to the references for these and other representations [1], [2], and [6]
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Figure 5: (Top) Back to Back diodes example of two components sharing the same terminals A and B.
(Bottom) Graphical representation of the Back-To-Back diode on the Top. Extra arcs with zero resistance
must be used to represent the compound device which is really two devices sharing the same terminals A
and B. The “a” and “c” respectively in the intermediate node names are used denote the “anode” and
“cathode” of each diode.

introduce our analysis techniques in the next sections. Hopefully, at that point, the reasons behind our
choosing them will be immediately apparent.



3 Overestimating & Shortest Paths

3.1 OVERESTIMATING

We proceed now with our first discussion of estimating the voltage drop, or excitation level, between terminal
pairs. This first scheme we will cover is an automation of an imalgum of techniques previously performed
by hand, and often “eye-balled” by designers at the schematic level. A technique of this sort involves an
overestimation of the voltage drop between pairs of components by computing the voltage drop across the
single least resistive path, without considering parallel components or parallel paths of components in series.
This approach yields an overestimation because parallel components, or paths on which current can flow,
lessens the effective resistance just as parallel river-beds, or channels, allow a greater amount of water to
flow downhill. Thus, leaving such “channels” out of the analysis yields a pessimistic estimate on how much
water can be expected at the bottom of the mountain. Such techniques, and similar methods for making
estimates in the realm of electrical networks, are analogous to shortest path algorithms on graphs. While
somewhat feasible at the schematic level, manually running algorithms which are based on this approach is
tedious, and for the most part infeasible at the layout level which involves considering parasitic resistances
along long metal busses. Since shortest paths problems and their algorithms on graphs are well understood,
we shall first proceed with verifying that automatons of this type do indeed yield useful results. Next, we
cover some these shortest paths algorithms in detail. Finally, we end the section by discussing how these
techniques might be tuned (or optimized) as situated in our CAD environment.

As mentioned above, this section relies on the following elementary observation which we will phrase
in the form of a theorem. It is this very result, which should be obvious to any experienced Electrical
Engineer, which motivated the previous manual computations. We formalize it here as it is the backbone of
the remainder of the section.

Theorem 1 (Resistive Path Overestimation). The actual resistance between two terminals is greater
than or equal to the resistance of any single resistive path between them, without considering parallel compo-
nents.

Proof. Here, the proof we offer has more of an Electrical Engineering flavor (involving KVL/KCL and Ohm’s
Law). In the third (Network Flow) section of this paper we will offer another, more algebraic and graphically
motivated, proof based on augmenting flow on parallel paths to yield a lesser resistance.

We proceed now with our first proof: Let P be a resistive path from some source s to any sink ¢. That is

R1 R2 Rn

P= SG—/\/\/\—@—/\/\/\—G --------- 6—/\/\/\—@'[

which has the following effective resistance, with respect to resistors in series [8] along P, (again, not
considering any parallel components)

R(P)= Ry =Y R (1)

Suppose, then, that there exists some parallel component to P, say P’ such that we have the following
picture (resistors along the parallel component are primed) P||P' =

Ri Ri+1 R’j

R1 R2 Ri Ri+1 R Rn



As above, we can break the effective resistance into four sets of resistors in series, two of which are parallel:
/ _\VJ !
Rsitj - k=i #

i—1 n
_§ : —_ N\ — § :
Rssi - Rk ’ Rsit]‘ - k=i Rk 3 Rt]-t - Rk
k=1 k=j+1

which results in the following picture.

R’si—tj

Si tj
S G—/\/\/\— t

Rs—si Rsi-tj Rtj-t
Similarly, (1) can be broken apart and written as
R(P) = Rst = Rssi + Rs,'tj + Rt]'t' (2)

Now we have parallel resistors Rls,-tj and Rs,¢; which can be combined into one resistor R by the parallel

resistor formula®
R =R, |IR Bty * Busts, _ 3
= . . 4. = ° < 1.
! sut 1Pt Ry, + Roit; ~ i ®)

from which it follows that
R(P“Pl) = Rssi + R|| + Rsitj < Rssi + Rsitj + RSitj = R(P) (4)

From this we have that the effective resistance from s to ¢t along any path is greater than the resistance
where we include one parallel component for current to flow along. Clearly, by extending this argument
to include all parallel components we can conclude that if we allow parallel components from the entire
electrical network to be included in our “path”, then the actual resistance between s and t Ay < R(P) for
any resistive path P joining terminals s and ¢. O

Corollary 1 (Least Resistive Path Overestimation). The total resistance of the least resistive path
between two components is greater than or equal to the actual resistance between them.

Proof. This follows immediately from Theorem 1. O

Therefore, since an electrical network can be represented graphically (as discussed in the previous section)
we can use any of the well-known shortest path algorithms on directed graphs to get an overestimate on the
total resistance between any two terminals. Such information is useful even with the existence of algorithms
which allow us to compute the excitation levels exactly. The algorithms we discuss in this section are far less
complex than the network flow algorithms for finding the exact excitation levels (which themselves are far
more efficient and applying KVL/KCL to a large network), and they make it easy to identify trouble-spots
in the ESD protection network (such as an open circuit between bondpad pairs). If nothing else, the shortest
paths algorithms can help to identify “bad” terminal pairs for further analysis. See Example 3 in the final
section of this paper.

Designers of ESD protection schemes use these results (Theorem 1 & Corollary 1) in order to estimate,
by hand, the voltage drop between bondpad pairs. It is a simple matter to use Ohm’s Law to translate
resistance into voltage drop along a single path when assuming an incident current (say 1.3 amps). Using
the result of Corollary 1 as our motivation, the rest of this section is dedicated to discussing algorithms for
computing shortest paths on graphical representations of electrical networks. These algorithms will serve the
task of automating the computation of a path-overestimate of the actual excitation level between terminal

5see [8] or (9) later in this section
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pairs— essentially the process previously performed by hand. After discussing two fundamental shortest paths
algorithms in depth, we conclude this section by discussing the accuracy of such overestimates, and some
techniques for improving them. Such topics make a nice segue into our third topic of computing the voltage
drop between terminal pairs exactly.

The basic idea behind each algorithm we will discuss is that given a source s, if a shortest path to some
sink ¢ passes through some intermediate node v, then the path P, from s to v is itself a shortest path, and
Py 4 from v to t is must also be a shortest path (note that it is possible that v = s, and thus P, ;) = (v,1)).
To be formal, we say that a path P = (s = a; ...ay = t) between s and ¢ is a shortest path if and only if for
any other path P' = (s = aj ...a} = t) that Zf;ll clai,air1) < ZZ:_II c(aj, aj,,)

3.2 SINGLE SOURCE SHORTEST PATHS (DIJKSTRA)

The first algorithm which we will cover resembles the particular techniques which designers have used perform
analyses by hand. This algorithm, attributed to Dutch mathematician E. Dijkstra , involves the creation of
a shortest paths tree from the source s to all sinks ¢ by adding arcs a one at a time from the arc set A, in a
greedy fashion®. Formally, Dijkstra’s SSSP (Single Source Shortest Paths) algorithm proceeds as follows:

First, we denote the distance label of a node v to be the overestimate to the shortest path cost from a
source s to this node as follows: If P, = (s = v1,vs2 ...ax = v) then d(v) = Zfz_ll c(vi,vi41)- Our goal then
will be to find the minimally optimal distance labels for all v € N. Furthermore, we denote the parent of a
node v to be the last node on the path P, which is not itself the sink. Dijkstra’s SSSP algorithm maintains
two sets (with respect to d) which partition the node set N:

i. S = {permanently labeled nodes}
ii. S= N —S = {temporarily labeled nodes}

We begin with s as the only node in the tree. The distance label d(s) = 0 is permanent, and p(s) = nil.
For all v € N, such that v # s, (temporarily) let d(v) = oo, and grow the tree by finding “better” (shorter
in our case) distances to the other nodes as follows.

That is, we start with S = {s}, and S = N — S. From s (initially the only permanently labeled node) we
consider all nodes v adjacent to s (all nodes v for which (s,v) € A), and calculate

d(w) = d(s)+c(s,v)
= 0+4c(s,v)

= ¢(s,v).

Then, if d'(v) < d(v), we have found a shorter path to v, and so let p(v) = s and d(v) = d'(v). Otherwise,
we do nothing, and move onto the next node adjacent to s until all have been exhausted. We then eliminate
s from the current legal set of nodes and continue by letting s be the node v with the smallest d(v) > d(s),
and then repeat. That is, put v in S, removing it from S, thus making its distance label permanent, and
repeat as if v were the original source. The process stops only when there are no legal nodes left (S = 0).

The procedure necessarily terminates since a node is removed from S at each iteration. The resulting
shortest paths tree can be recovered by using the recorded parent information. That is, the shortest path
from the original source s to any node v € N is the shortest path from s to p(v) with arc (p(v),v). This
suggests a recursive procedure for recovering the entire shortest path P,. Thus, the resulting tree returned
by Dijkstra’s SSSP algorithm contains all the information necessary to build a shortest paths tree from the
original source source s to all nodes v € N. A shortest paths labeling and tree is given in Figure 7.

In the situation where there might be parallel arcs in our graph we will need to keep track of more
than just parent node information in order to be able to reconstruct the shortest paths in terms of the arcs
involved in the path. This can be done by keeping track of the parent arc. That is, line (11) can be followed
by

6Dijkstra References: [4], [2], and [1].
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(0) 1let w(i,j) = c(i,j) for all (i,j) in A(G)

procedure DijksraSSSP(s,G=(N,A))

begin

(1) PriorityQueue pq

(2)

(3) d(v) = infinity, forall v in N

(4) d4(s) =0

(5) pg->d(v) = d(v), forall v in N

(6) s = pg->min() // min over all temp distance labels
(7) pg—>remove(s) // thus making d(s) permanent

(8) while s != nil do

9 foreach v adjacent to s do

(10) if pq->d(v) < pgq->d(s) + w(s,v) then

(11) p(v) = s

(12) d(v) = pg->d(s) + w(s,v)

(13) pa—>d(v) = d(v) // (decrease key)

(14) endif

(15) enddo

(16) s = pg->min() // min over all temp distance labels
(17) pg-—>remove(s) // thus making d(s) permanent
(18) enddo

end

Figure 6: Pseudocode for Dijkstra Single Source Shortest Paths (SSSP) procedure, using a priority queue
abstract data type. The procedure takes a source node s € N and a graph G = (N, A) as input. The
algorithm uses an auxiliary weight vector w(4,j) = ¢(4, j) instead of the actual costs c(¢, ) themselves. This
is will make it easier to use Dijkstra’s SSSP algorithm on something other than the arc costs in the Network

Flows section by simply redefining line (0).

(11.5) parc(v) = (v,s)

where (v, s) was the particular arc chosen in line (9). This will come in especially handy in the Network
Flows section when we wish to augment some amount of flow along the chosen arcs of a path from the source
to the sink.

There is another option for keeping track of arcs in a shortest path which is slightly less desirable in
general since it requires manipulating the graph representation. It involves marking the arcs of the graph
whenever a node is removed from the priority queue (except for the source). This, of course, cannot be done
without the parent arc pointers discussed above. Otherwise, without them we would not know which edge
to mark. In this way we add a line (17.5) like

(17.5) G->markEdge (parc(s))

and the result will be that the entire shortest paths tree will be marked after a call to DijkstraSSSP. On the
other hand, the parc and p information is usually enough to recover the shortest path and tree information
in general. Nonetheless, marking arcs is useful when a procedure requires that the shortest paths tree be
traversed breadth first, rather than recursively. In addition, marking arcs can be useful for duplicating the
part of the graph which is the shortest paths tree, etc. Of course, it is important to remember to remove
any marks before a subsequent call to the marking routine.

A Priority Queue’ data structure is used as an abstraction to many of the operations described above;
to keep track of the ordering of nodes with respect to their temporary distance label, adjust that distance

"see [9], [6], and [1]
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Figure 7: An example of a shortest paths tree on the graph given in Figure 1. The source is s and we
can think of all other nodes as sinks, or specifically ¢. The optimal distance labels d(-) are given next to the

nodes. The arcs in the shortest paths tree are darkened.

label, and thus adjust the priority of that corresponding node. In this way, the priority queue indirectly
maintains the partition S and S. Using a minimizing priority queue (the highest priority is the entry with
the smallest value) we can write Dijkstra’s SSSP algorithm using pseudocode in Figure 6°.

Theorem 2 (Dijkstra SSSP Correctness). Dijkstra’s SSSP algorithm, given a source node s € N, pro-
duces distance labels d(v) which are the cost of the shortest path P, from s to v for each v € N.

Proof. The proof of this is left to the Appendix and our references®. O

Data Structures and Runtime Analysis:

There are two key abstract data types (ADT’s) used the Dijkstra SSSP algorithm. The algorithm relies
on the ability to quickly find all of the nodes adjacent to a particular node v (line 9), and the efficiency of
all of the priority queue operations, and assignments. Therefore, before discussing the running time of the
algorithm, we must address these issues.

The first is quite straightforward. It is clear that for Dijkstra’s SSSP algorithm we would like to be able
to access all of the nodes adjacent to any node v € N, which we will call Adj(v). For such a purpose we
have what is called an adjacency list data structure. This data structure depicts the graph G = (N, A) as
an array of lists. There is a list for each node v € N, and the elements of the list are the nodes w € N such
that the arc (v,w) € A. Using this data structure, each execution in the foreach loop (line 9) is constant.

The second is less straightforward. The reason for this is that there are many different ways to implement a
Priority Queue which yield the same worst case analysis with respect to Dijkstra’s SSSP algorithm. However,
there are some priority queue implementations which are well-suited to our procedure, and perform especially
well in sparse networks, as often arise in practice, especially in our domain of I/Q peripherals of Integrated
Circuits. The two priority queue operations most relevant to Dijkstra’s SSSP algorithm are min (line 7)
and decrease key (line 13). Of less significance (but still worth noting) is the operation which manages the
creation of the structure itself, and what exactly it means to delete an element from the priority queue.
Here, we highlight three (of the many) priority queue data structures. The first we illustrate because its

8this code is intended to be a self-contained, easy to implement and read. It resembles some of the similar descriptions
provided in (all of) our references. In particular, it most resembles a Java-pseudocode version presented in [2].
9see [1], [6], and [2]
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implementation is straight-forward, the second because of its theoretical significance, and the third because
of its efficiency in sparse networks. None of these will we discuss in great detail however, and, especially in
the case of the latter two, we leave the specifics to our references.

As mentioned above, the priority queue operations we are interested in with respect to Dijkstra’s SSSP
algorithm are:

e initialize: create and initialize the structure to be empty.
e insert: insert a new element into the priority queue.

e extract min: return the entry in the priority queue with greatest priority (in our case this is least cost)
and remove it from the priority queue.

o decrease key: change the priority of a particular entry to something less than its current value.

The data structure for the first type of priority queue is simply a node-name ordered array pq[]. The
structure assumes that the nodes are named 1...n, where for each v; € N we have pq[i|=d(v;). This makes
it trivial (O(1)) to find or change the priority (or cost) of any node. Removing any node from the priority
queue can also be done trivially if we add a boolean field to each priority queue entry indicating whether or
not to include this node in min operations. Creating a new priority queue is O(n) and inserting an element
is O(1). The initialization is a trivial ©(n) operation to create and initialize an array structure of suitable
size, decrease key is ©(1), and min is an O(n) for-loop which must potentially examine all nodes in the
array. This data structure is the easiest of the three to implement. As we shall soon see, we might be able
to improve upon the complexity of the min operation, by using a data structure called a Fibonacci Heap as
our priority queue. However, we will do no better in the worst case.

| | Trivial Array | Fibonacci Heap | Binary Heap |

initialize O(n) o(1) O(n)
insert 0(1) 0(1) O(logn)
extract min O(n) O(logn) O(logn)
decrease key oQ o) O(logn)

| Dijkstra SSSP | O(n?) | O(m+nlogn) | O(nlogn) |

Figure 8: Complexity Table for three Priority Queue data structures often used in Dijkstra’s SSSP algo-
rithm. As usual, n = |[N| and m = |A]|.

The Fibonacci Heap is a very powerful data structure which is efficient because it is lazy. This priority
queue is desirable when the number of extract min operations is small relative to the total number of priority
queue operations. It maintains several linked tree structures each of which represent a partial ordering on
the elements contained in the priority queue, further maintaining that the element with the greatest priority
is at the root of one of these trees, which it keeps a special pointer to. We will not continue with a full
description of this structure and its analysis, since such is long and of only theoretical interest, and is well
documented!®. However, we hi-light the key results in the table in Figure 8 which pertain Dijkstra’s SSSP
algorithm. A technique known as amortized analysis'! is used to measure the complexity of Fibonacci Heap
operations. The basic idea comes from the accounting method of a similar name. Since the Fibonacci Heap
is lazy, many of its operations are trivial (O(1)), but to account for this lazy nature the data structure
must execute a more expensive operation every once in a while in order to “clean up” the data structure.
That is, every operation except for extract min has a constant amortized cost. Intuitively, we can think
of the other operations as paying some amount in advance for the mess they are making by being lazy.
While the Fibonacci Heap priority queue is theoretically more desirable than the Trivial Array we must still

10gee [6], Chapter 21
gee [9], Chapter 3.5 and [6] Chapter 18
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keep in mind their “implementation complexity”. Since Fibonacci Heaps are far more complicated, from
an implementation standpoint, we can think of the @-expressions for the running times of its operations as
having large constant terms. It is because of this complexity that in practice Fibonacci Heaps only out-
perform other implementations— our Trivial Array in particular— for large entry (node) sets. Further analysis
of Dijkstra’s SSSP algorithm with respect to an arbitrary choice of Priority Queues is left to the Appendix.

Using a Fibonacci Heap implementation of a priority queue we cannot expect to do better than the Trivial
Array in the worst case. It is easy to conclude, from the table in Figure 8, that if we were to use a Fibonacci
Heap, Dijkstra’s SSSP algorithm will run in time O(m + nlogn). For dense networks (m = n(n — 1)/2),
this is no better than our Trivial Array implementation. For sparse networks this is an improvement on the
worst case. Again, we must also take into consideration the implementation complexity of the Fibonacci
Heap versus the Trivial Array. The former, in this case, is far more complex than the latter, which means
that we would certainly do better using a Trivial Array on smaller graphs. On the other hand, one might
even be able to assume that the graph which represents an ESD protection scheme is extremely sparse by
appealing to the geography of I/0 rings, thus providing a strong argument in favor of using an approach as
suggested by Fibonacci Heaps.

There are definitely other ways of maintaining a priority queue, some which are more appropriate than
others. For example, Dial’s'?, Johnson’s'®, and the Radiz Heap'* Implementations for most cases out-
perform all of the other methods in practice, and especially in the case of Dial’s Implementation are easy
to implement. However, each of these approaches have the disadvantage that they require the costs of arcs
be integral, whereas extracted resistances are typically rational with large decimal expansions. At first this
seems like no big deal because we can always scale rationals by an arbitrarily large powers of 10 to get integers
representing the same measurement, but then the time complexity of these priority queue operations are
functions of cost of the most expensive arc. This is not likely not to be polynomial in the size of the graph.
We will run into this problem again when we talk about Network Flows.

Still, there are other examples of Priority Queues, such as the standard'® Binary Heap Implementation,
which are indeed well-suited to our model. The time complexity for this implementation (with respect to
Dijkstra’s Algorithm) are included in the table of Figure 8 for this very reason. Note that for sparse graphs
this implementation is preferred to the Trivial Array, but for dense graphs it has a theoretically worse bound.
Fibonacci Heaps have better bounds than Binary Heaps for all occasions.

In conclusion, Dijkstra’s SSSP algorithm makes for a nice manual, or interactive tool for use in any
environment. With appropriate input and output formats it is convenient to make requests about arbitrary
pairs of terminals in the input graph, even sets of pairs of terminals, with a quick turnaround. If our graph
is backward compatible with the netlist, and the corresponding extracted layout representation of the ESD
protection device, then we might be able to display the shortest paths in the layout itself by highlighting the
components that were chosen by the algorithm. The only downside to this is that unless we have a clever way
of recording the results of previous calls to the Dijkstra SSSP subroutine, we may be forced to unnecessarily
recalculate a shortest paths tree, for say two non-successive shortest paths requests which have the same
source. When a request calls for a set of pre-designated pairs of shortest paths then we can serialize the
process by ensuring that we invoke the sub-routine for each source only once. However, when shortest paths
are required for all pairs of terminals in a device, or should we find it beneficial to record, and reference a
pre-computed table of shortest paths, there is a more clever and faster way of accomplishing this.

3.3 ALrL PAIRS SHORTEST PATHS (FLOYD-WARSHALL)

If we are interested in voltage drop information for all pairs of components in an ESD Protection Scheme we
can run Dijkstra’s SSSP algorithm for every source node in the graph. Doing this would require a mechanism
for keeping track of the distance labels of sink nodes corresponding to each source node, requiring ©(n?)

125ee page 113 of [1]

Bgee [7]

4gee page 116 of [1]

15¢can be found in any algorithms text such as [2], [9], and [6]
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space. Calling Dijkstra’s SSSP algorithm for each source would then be in time ©(n?), and we can do no
better for dense graphs. However, in this section we introduce a simple dynamic programming!® algorithm
for the All Pairs Shortest Paths problem called Floyd- Warshall APSP'". Although the Floyd Warshall APSP
algorithm is theoretically as complex as Dijkstra’s SSSP algorithm run for each source node, the simplicity
of the Floyd-Warshall APSP algorithm makes using it over the later more desirable when an analysis on the
entire network is desired. As we will soon see, since the heart Floyd-Warshall APSP algorithm can be written
with just three “tight” loops (no complicated priority queue operations) the constant terms hidden in the
O expressions for its runtime are small compared to those for the Dijkstra SSSP algorithm. Furthermore,
keeping track of permanent distance labels for all pairs of source and sink nodes is implicit, and only minor
modifications are needed in order to keep track of the actual shortest paths between all pairs of terminals.

There are two key ingredients that go into designing a dynamic programming problem: (1) a recurrence
that characterizes optimal solutions, which in our case are shortest paths, and (2) the ability to represent
the input and optimal solutions to subproblems so that they can be easily referenced (e.g. as in a table). We
address the second ingredient first as it allows us to bring up another common way of representing graphs,
and after which it will be clear how the first ingredient can take advantage of such a representation.

The input graph G = (N, A), where N = {v,vs,...,v,}, to the Floyd-Warshall APSP algorithm is an
Adjacency Matriz. This matrix is actually an n x n two-dimensional array A (or table, where n = |N|). The
entries in the table are filled in in the following way:

. if (ui,0;) ¢ A(G)
Alil[j] = { z(ovi,vj) theUCOZt of (vi,v;) € A(G) ®)

Therefore an arc (v;,v;) € A is represented by its cost ¢(v;,v;), and the entries of the table A[¢][j] are oo if
there is no such arc in A. There is a slight limitation in representing the graph of an electrical network in
this fashion since there may be multiple arcs between any pair of nodes. As we will see in the next part of
this section, with a little preprocessing this is no limitation after all.

However, for the Floyd-Warshall APSP algorithm it is useful to think of the entries in the table A in a
slightly different way. Given the Adjacency Matrix A for a graph G = (N, A) we can think of the entries
A[i][j] as the cost of the shortest path from wv; to v; which uses only one arc. Or, alternatively, A[i][;]
is the cost of the shortest path from v; to v; which uses no intermediate nodes. With this in mind we
develop some new notation. Let Dy[i][j] be the cost of the shortest path from v; to v; which can use any of
{v1,...,vt} C N as intermediate nodes. Therefore, we clearly have Dy[i][j] = A[i][j]. As before, with the
Dijkstra SSSP algorithm, we can think of Dy as a table of temporary distance labels, and the entries of D,,
as permanent distance labels.

With this new notation we can now present the recurrence, or principle of optimality, underling the Floyd-
Warshall APSP algorithm: Given a graph G = (N, A) which can be represented by an Adjacency Matrix A,

the shortest path Dy[d][j] from v; to v; which uses only elements of {v1,...,v5} C N as intermediate nodes
is given by:
Joa [ AL if k=0
Dilillj) = { min { Dy _1[il[j], De_1[illk] + Dx_1[K][j]}  otherwise 6)

This recurrence is valid for the following reason. It is easy to see that the shortest path, which might
include the first k£ nodes, is either the same as the shortest path which includes the first kK — 1 nodes (that
is, the shortest path does not include the kth node) in which case we have Dy[i][j] = Dg—1[¢][j]. Otherwise
the kth node is included, and then we have Dgl[i][j] = Dg—1[é][k] + Dx—1[k][j]. This result leads to a very
easy algorithm to implement. The pseudocode for the complete procedure can be found in Figure 9. The
result is a table D,[i][j] of permanent distance labels which represents the cost of the shortest paths from
v; to v; for v;,v; € N.

165 template for designing algorithms where the principle of optimality for a problem can be written as a recurrence, and the
problem can be solved quickly by memoizing the optimal solutions of subproblems and using them to find the optimal solutions
to larger subproblems using the recurrence. The most benefit is gained when many larger subproblems share the same smaller
subproblems.

17attributed to both Floyd for APSP and Warshall for Transitive Closure who separately developed similar algorithms for
solving these slightly different problems at about the same time.
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procedure FloydWarshallAPSP(A[1..n][1..n])
begin

(1) float D[1..n][1..n][1..n]

(2) D[0] =A

(3

(4) for k=1 to n do

(5) for i=1 to n do

(6) for j=1 to n do

N if D[k-11[i] [k1+D[k-11[k][j] < D[k-11[i]1[j] then
€)) D[k][i]1[j] = D[k-1][i] [k]1+D[k-1] [k]1[j]
(9) else

(10) D[k][i]1[j]1 = D[k-11[i][j]

(11) endif

(12) enddo

(13) enddo

(14) enddo

end

Figure 9: Pseudocode for the Floyd-Warshall All Pairs Shortest Paths (APSP) procedure. The procedure
takes an Adjacency Matriz representation of a graph G = (N, A) as input.

The Floyd-Warshall APSP algorithm clearly runs in time ©(n3), and space ©(n®). However, since we
only really need Dy, in order to compute Dy, if we are clever we can use only two n x n tables, and thereby
save a great deal of space. In fact, we can get away with having just one n x n sized table D by noticing
that the table Dy is filled in top down. In either case we use only ©(n?) space.

Next, since the Floyd-Warshall APSP algorithm in Figure 9 only keeps track of distance labels, there is
still the issue of recovering the actual shortest path information. However, this too is easy, since we can do
pretty much the same thing we did for Dijkstra’s SSSP algorithm. This means keeping n x n table of parents
Py, where Py[i][j] = i, and we add lines to the pseudocode in Figure 9, described in Figure 10.

(8.5) P[k][i][j]
(10.5) P[k][i][j]

P[k-1] [k] [j]
P[k-1][i][j]

Figure 10: Additions to the Floyd-Warshall SSSP algorithm to keep track of path information by recording
the parent of a sink in a table P.

Py like Dy, as in Figure 10, requires ©(n?) space for each of the n tables corresponding to the n tables
of distance labels, @(n®) total. However, the same observation can be made for P; as for D, and we can
get away with using only one table P, thereby using space in ©(n?). Therefore, since we have added only
a constant amount of work to the entire procedure, including the code for path information, this does not
change our asymptotic measure of space or time. We formalize these results in the form of a theorem.

Theorem 3 (Floyd-Warshall Complexity). Given an Adjacency Matrix representation of a graph G =
(N, A) the Floyd-Warshall APSP algorithm runs in time ©(n?) and uses space in ©(n?), where n = |N|.

In summary, while Dijkstra’s SSSP algorithm makes for a nice interactive Shortest Paths analysis tool,
we consider the Floyd-Warshall algorithm as being the most efficient procedure for characterizing an entire
network— producing a complete Shortest Paths Certificate of sorts for the entire network. This is because
of the compactness of its loops, and because it does not require any complicated abstract data types, like
priority queues. For this reason the constant in the ® expression for the Floyd-Warshall APSP algorithm
is likely to be much smaller than that for the Dijkstra APSP modification. In addition, the Floyd-Warshall
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APSP algorithm is far easier to implement, especially in a low-level programming language. Moreover,
compilers are good at optimizing loops, but do not know much about priority queues. Lastly, the two tables
produced by the Floyd-Warshall APSP algorithm are computationally and implementationally easy to store
in memory or on disk for later reference— at least much more so than trying a scheme which provides similar
results using Dijkstra’s SSSP algorithm- or as a “snapshot” in the development process of an I/O protection
scheme, thus making the procedure a nice “batch process” on large networks. Of course, if all we require is
the budget information between bondpad pairs, which make up only a small fraction of the total number of
possible terminal pairs in an I/O portion of an integrated circuit, we may be doing much more work than
required. In this case the Floyd-Warshall APSP algorithm still runs in ©(n®), whereas running the Dijkstra
SSSP routine with each of k bondpads as a source will run in O(kn?), which is likely to be faster when
E<n.

3.4 GRAPH-SIZE REDUCTIONS, OPTIMIZATIONS & IMPROVING OVERESTIMATES

As mentioned in the previous section, the Adjacency Matriz data structure for representing a graph G =
(N, A) cannot represent parallel arcs in A. This is simply a result of the fact that there is only one location
A[i][4] in the table, which means that there is room for only one arc like (v;,v;). Since it is possible, and even
likely, that the electrical networks we are dealing with have parallel connections (parallel diodes, resistors,
etc), something must certainly be done in order to accommodate this. The first solution to come to mind is
probably a non-trivial extension of the the adjacency matrix format, perhaps in terms of creating a linked
list at each matrix entry location. However, we will be much better off in the long run if we can find a way
of getting rid of parallel arcs in the graph G all together. That is, without destroying any of the underlying
electrical network which the graph G represents. As we will soon see, this limitation of the adjacency matrix
data structure is a blessing in disguise. Not only will it be advantageous to eliminate parallel arcs for
adjacency matrix representations, but also for the adjacency lists representation as well. While Dijkstra’s
SSSP algorithm can handle parallel arcs, a smaller network is certainly more desirable.

The preprocessing step which we will soon propose for eliminating parallel arcs relies on an important
property of electrical networks. Furthermore, it suggests not only an algorithm for eliminating parallel
arcs, which eliminates our representation problem for the adjacency matrix, but it also reduces the arc set
A, thereby yielding faster shortest paths algorithms. Most importantly however, performing the following
reduction guarantees that our shortest paths algorithm will produce a more accurate resulting ESD Budget
overestimate.

We generalize the following basic property of parallel resistors in an electrical network: When there exist
any number of resistors Ry, Ra,..., R, in parallel, that is, each R; has the same terminal pair as others
(call them A, and B), the effective resistance from A to B, R is less that that of any one of the resistors
R;. In the simplest case of a pair of parallel resistors R;, Ra, where Ry = Rs = R, we can expect to have
the effective resistance Rog = R/2 (much like two downhill river-beds which begin and end at the top and
bottom of the hill respectively, and have the same slope— the total amount of water allowed to flow downhill
is twice that of any single river-bed) between A and B. The general case of n resistors in parallel is easiest
to work out if we think in terms of the conductance % = % Since the current from A to B is just the sum
of the currents on each resistor I;, assuming one unified voltage, we have that the total conductance from A
to B is the sum of the conductances:

i + i + + i — i (7)
R, Ry R, R.g
We introduce the notation || to mean parallel, and write:
Ri||Rol|---[|Rn = Reg ®)
Again, going back to the simple case of two resistors we have:
R1 * R2
Ri||Ry = ——— 9
IR = 72— 9)
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And we now have a way of getting rid of parallel arcs which represent parallel resistors without violating
any electrical properties, and thus leaving the underlying network unchanged. It should be obvious that all
other connection types (diode, hierarchical) can be handled in the same way, since in the first chapter we
were able to argue that each can be viewed as a resistor of sorts. However, it might be advantageous to
execute this preprocessing as a two part process. First, eliminate parallel resistors in the most raw (or low)
level netlist representation of the electrical network. Second, after translating the netlist, thereby encoding
hierarchy, etc, eliminate any parallel components which are left by the encoding, if any (this depends on
encoder, perhaps a good encoder would not leave any).

Having eliminated all parallel arcs in a graph G = (N, A) (producing G = (N, A"), A’ C A) we have not
only solved our adjacency matrix representation problem, and reduced the size of the arc set A, but even
more significantly we have eliminated some parallel paths. All in all, this is a quite desirable side effect, since
our Shortest Paths algorithms, which before did not take any parallel paths into account, when run on the
preprocessed graph G’ now inherently consider paths with “degree 1” parallelism. That is, if it chooses an
arc a € A’ to be part of a shortest path, it has effectively chosen to augment current on perhaps an entire
network of parallel arcs in A (which a replaced in A'), thus yielding a tighter overestimate for the actual
voltage drop of the component (or components) whose shortest path contain the arc a. This is motivation
in and of itself for the development of such a preprocessing scheme as was previously motivated mostly by
convenience.

Unfortunately, there is at least one problem with eliminating arcs (or components) from the graph
G = (N, A) which represents an electrical network. Since we have already shown that after preprocessing
the electrical network we produce is effectively equivalent, there is no problem here. The problem arises
in the CAD environment. While the underlying network remains unchanged, there is an inherent loss of
information. When the results of a Shortest Paths analysis are completed and fed back to the calling (CAD)
environment, it may be that there are parallel arcs used in some shortest path, but only one of them is
accounted for by G, or any of the shortest paths trees from G. This means that if we want an accurate
“backward comparability” after preprocessing, we need to somehow keep track of eliminated components, and
the remaining arcs of A’ which represent them. This can easily be done by generating a list of equivalences
for the arcs of A’ for translation of the output of the shortest paths algorithm back to the CAD environment.

While on the topic, we might wish to consider another preprocessing step which consolidates elements
in series. However, there is no accuracy advantage to this, and this has an even greater negative impact
on backward compatibility (from G back to the CAD netlist and graphical representation of the underlying
electrical network). Furthermore, this is only possible if the nodes of components in series have absolutely no
arcs leaving or entering them not in the series (or, for some reason we can be guaranteed that they will never
be on a shortest path). Or, perhaps we might consider eliminating all “degree 2” parallel arcs. However,
pretty soon, the complexity of the preprocessing will exceed that of the actual shortest paths procedure.
In the next section we present a far more powerful technique for estimating the actual voltage drop more
accurately.

There are a number of other things that can be done in order to reduce the size of the input netlist
which apply in general. The first of these simply involves the symbolic removal of components from the
analysis. That is, if it is known in advance that some components in the layout (or, in particular, large sets
of components representing un-affected portions of the device) will not be used in a shortest path, then they
can be removed, thereby reducing the size of the input graph. This can be handled by the preprocessing
compiler discussed in the previous section. This may also be useful for finding “alternate shortest paths”.
That is, if it is known in advance (say by previous simulations) that certain components play a pivotal role
in many shortest paths, it might be interesting to examine a simulation where that component is off limits.
Of course we would like to do this without actually modifying the layout itself. Therefore, we should like the
ability to flag components to be removed by the preprocessor. For example, we may want to go so far as to
remove all internal nodes along this shortest path, to find the “degree 2” shortest path, and then combine
the results as discussed previously. This can be repeated until no such path exists, and we have yet another
way of further parallelizing the shortest path result. Of course, neither of these strategies guarantees more
accurate budget information, but prove to be useful ways of speeding up the analysis, and allow the user to
get more meaningful results quickly, as well as making the tool more flexible.
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4 Convex Flows

4.1 CALLING ALL PATHS

Our previous discussion was motivated by a simple observation at the network level. Namely, by ignoring
parallel paths/components, and focusing on just a single resistive path from the source to the sink, we could
get a great deal of useful information about the ESD budget rather quickly. This part of our discussion
focuses on computing the resistance (thereby essentially computing the excitation level) between terminal
pairs exactly. This means that we must take into consideration all parallel paths and components. Or, to
be more exact, we must consider the entire network with the possibility of current flow on every arc if we
are to attempt to compute the effective resistance between terminals exactly.

The end result of our discussion is that there is a class of Network Flow algorithms called Convex
Minimum Cost Mazimum Flow (or simply Convex Flow) which suits our problem nicely. However, unlike
in the previous section, rather than having the some proven property of electrical networks motivate our
discussion, we proceed first with a general discussion of Flows, Networks and Minimum Cost Maximum Flow
algorithms, then conclude the section with results motivated by the algorithms themselves. Once we show
that this result does indeed accurately report the excitation level between terminal pairs, we can then offer
a more algorithmic explanation of our first theorem for overestimating in the previous section. After the
motivation and basic algorithms are laid out, we will discuss ways of optimizing such procedures by taking
advantage of our domain, and a clever scaling technique. Unfortunately, a general discussion of Minimum
Cost Maximum Flows is quite disjoint from the topic of electrical networks, properties, or current flows. For
this reason we take a brief departure from the electrical domain. We return to the topic of computing the
excitation level between terminal pairs exactly when we begin discussing Convex Flows.

4.2 NETWORKS, MINIMUM CosT MAXIMUM FLOW & RESIDUE GRAPHS

First off, some definitions and the description of a helpful augmentation of our graphical representation are
in order. Minimum Cost Maximum Flow (MCMF) is an optimization problem whereby we think of the arcs
of the graph as conduits on which some amount of commodity can flow while accruing travel-cost between
locations which are designated as nodes. We think of certain nodes as suppliers of this commodity (sources)
and others as having some demand (sinks) for the commodity. Still, there are some nodes/locations which
neither supply nor demand anything, but still may be used as intermediates in some flow from a source
to a sink node. This problem would be less interesting without the idea of an arc in the network having
a maximal capacity. Without such a constraint the problem essentially reduces to being a Shortest Paths
problem. This is especially true in the case where there is only one source and an arbitrary number of sinks.
As we saw in the previous section, Dijkstra’s SSSP algorithm solves this problem quite nicely. For this reason
we introduce the notion of a capacity constraint on an arc. When we come back to talking about electrical
networks and Convex Flows we will argue that no such constraint is necessary, or even useful. However, we
will be assuming a much more complicated cost model where it will not be advantageous to send all of the
flow along a shortest path. Note that this capacity constraint is in addition to the cost ¢(i, j) (or ¢;;) already
associated with an arc.

Formally, we say that an arc (i,j) € A has capacity u(i,j) (or u;;). This means that we are not
allowed transport more than w;; units of flow along (i, j) € A. Similarly, we designate z;; to be the current
(nonnegative) amount of commodity flowing (or simply, flow) on arc (¢,7). This means that at all times
during the running of any algorithm we must have the following invariant!8:

0< Tij < WUgj- (10)

18we might also like to include lower bounds l;; to model things like transistors. This will be discussed in the Further
Considerations section at the end of this paper

20



Although this is not necessarily true of all MCMF algorithms!?, the algorithms we discuss always maintain
the above invariant.

With the concept of flow along an arc emerges a slightly different idea of a cost across that arc. We
think of ¢;; (constant) as being the cost of shipping one unit of commodity, or flow, from node i to node j.
Therefore, we have that the actual cost of shipping along an arc (i,5) € A varies linearly?® with the amount
of flow on that arc. We could define

C(.Z'”) = (ZI?,']' + 1) * Cij (11)

to be our new arc-cost to send an additional unit of flow along (4, 7). This is useful as an illustration of what
we mean by linearization of the cost of an arc. However, this will not get much use in our further discussion.
A generalization of (11) will be useful for the Convex Flow problem. Furthermore, we define b: N — R be
the supply/demand vector, or function. In an instance of the MCMF problem each node ¢ € V is either a
supply node, corresponding to b(i) > 0, a demand node when b(7) < 0, or it is an intermediate node, whereby
b(i) = 0. The vector b is referred to as the mass balance constraint for the MCMF problem. Note that in
order for the problem to make sense we must have

> b)) =0 (12)

VieN

which simply states that the total supply must equal the total demand. We call an input graph G = (N, A)
with these extra specifications a network.

Having developed some new notation it is now possible to formally describe Minimum Cost Maximum
Flow as an optimization problem. These formalizations are an intermediate step toward formulating the
actual optimization problem for our electrical network simulations. The program we are really interested in
will vary slightly from the one below in that the objective function (13) will be convex. This will be motivated
by a quadratic dissipation of power across resistors, where in general we will be interested in finding the
equilibrium current across each resistor in the network. The optimality results and implementation of
algorithms for each model are similar. However, assuming a linear cost model will simplify the following
discussion, which will easily be generalized in the next section. For now, we will be interested in the following:

n

minimize Z CijTij (13)
j=1
subject to Z Tij — Z zj; = bi) VieN (14)
ji(i,5)€A j:(i,3)€EA
0<wmy <wij  V(i,j) € A (15)

Notice that (14) corresponds to enforcing that the inflow of any node i is equal to its outflow. Also, for
supply nodes the outflow is positive, and for demand nodes the outflow is negative (corresponding to positive
inflow), and for all other nodes the inflow/outflow must be is zero. Typically, the flow on the entire network,
or equivalently the arc set A, is referred to as = (using vector notation) rather than z;; V(i,j) € A. A flow
z which satisfies both the arc capacity constraints u (15) defined similarly over A, and the mass balance
constrains (14), is said to be feasible. When referring to an optimal flow (one which minimizes (13)), we
usually write * to notate that x is optimal, rather than just x.

Such a formulation as shown above is common for optimization problems, especially those of a Linear
Programming flavor. Although we do not use Linear Programming directly to solve MCMF problems, the
algorithms we discuss do take advantage of some nice results from Linear Programming such as duality,
reduced cost, complimentary slackness, etc. Nonetheless, our discussion of such properties, especially re-
duced cost, is completely disjoint from a Linear Programming approach. It is noteworthy to mention that

19Pre-Flow Push, etc, which will be discussed briefly after we enumerate the Successive Shortest Paths Algorithm in this
section

20 Again, as we will see when we discuss Convex flows, we have useful ways of interpreting the cost of an arc in the network,
which help us more accurately simulate the underlying graph as an electrical network.
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combinatorial optimization problems formulated as in (13-15) are often easily adapted to be solved using the
simplex method employed by many commercial Linear Programming solvers?!. However, we do not discuss
adaptations of MCMF problems to the simplex method in any further detail as it will be difficult to port the
end result (Convex Flow algorithms) to this domain. Furthermore, Network Flow algorithms are somewhat
of a special case of the general Linear Programming class of optimization problems, and one can typically
do better than the simplex method (and even better than the specialized Network Simplex Method) by
employing a more direct approach.

We will be interested in exploiting algorithms which work on Graph Abstract Data Types. Therefore, for
the time being we must pull away from the Linear Programming MCMF problem, and pay closer attention
to the problem presented from a graph implementation standpoint. The data structure that will be most
useful is essentially the same Adjacency List structure used by Dijkstra’s SSSP algorithm. However, it will
be useful to keep track of more information (flow, capacity, etc) about each arc in the graph. Actually,
Dijkstra’s SSSP algorithm will be a subroutine to the main MCMF algorithm we will present shortly. The
most important deviation from the representation that was discussed in the previous two sections is the
concept of a residue graph. The algorithms which we present for the MCMF optimization problem converge
to a solution by making what seems to be the best move available at the time. Such a “move” is usually along
the lines of augmenting some amount of flow along a subgraph (path, cycle, or subnetwork) of G = (N, A),
usually to satisfy the supply and demand of a source and sink pair. However, we should like to keep the
option open of sending flow along the opposite direction of an arc to reduce the cost of a flow, or to satisfy
some other demand. A residue graph G(x) is essentially the original graph G, together with extra arcs which
facilitate the ability to remove flow, or send flow backwards on an arc. That is, if any directed arc (i,j) € A
has been assigned flow z;; we have that in the residue graph G(z) there is a directed arc (j,4) with capacity
zi;j (uj; = xi;) and cost —c;; (¢j; = —c¢ji;). In some sense, G(z) is a function of G and z, which is the reason
it is written in this fashion. See Figure 11 for an example network, and Figure 12 for an example flow.

Figure 11: A simple example of a network. Each arc is associated a capacity, and a cost (written u, c).

More formally, the residual network G(x) of an input network G is defined in the following way. For each
directed arc (7, j) in G we have the arc (i, j) with capacity u;; and cost ¢;; together with a new arc (j, ) with
capacity x;; and cost —c¢;;, both in G(z). If ever an arc in (4, j) € A(G(z)) has zero (non-positive) remaining
capacity (c¢;; — ;) this arc is not considered to (currently) be part of the residual network. Usually this
entails a symbolic removal of the arc from an implementation standpoint, since we are likely to need it
later. This allows us to think of G(z) starting out as G, since before any flow is augmented, those arcs not
originally in G should have zero capacity. Similarly, G(z) should finish again as G. That is, in the end there

211indo, Mathematica / Maple, etc; see also [4] and [10], and other LP references.
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Figure 12: An example of a valid flow for the network given in Figure 11. Note that the mass-balance and
capacity constraints are satisfied when s is taken to be the source, and ¢ the sink. The value of the flow is
6 (s sources 6 and t sinks 6). As in Figure 12 the pair u, ¢ represent the cost and capacity of each arc. The
third value represents the flow along that arc. Arcs without flow are left unlabeled.

should be no flow on any of the arcs not originally in G.

We refer to arcs in G(z) which were actually present in the original graph G as forward arcs. Arcs of
G(x) which were not originally in G, but are byproducts of the residue of z, will be referred to as reverse arcs
(or sometimes residue arcs). Reverse arcs exist solely so that we can augment flow backwards on an existing
forward arc, thereby actually reducing the flow on the corresponding forward arc. In other words, it does
not make sense for flow to ever be augmented on a reverse arc, since such an operation really corresponds
to a decrease in flow on the corresponding forward arc. This supports the decision for the capacity of a
reverse arc equaling the flow on the corresponding forward arc. See Figure 13 for general illustration of the
construction of a residual network.

For bookkeeping purposes, we introduce the notion of an antagonist (or anti-parallel) arc. An antagonist
of a forward arc is a reference to its corresponding reverse arc. Similarly, the antagonist of a reverse arc
is a reference to the corresponding forward arc. This serves two purposes. The first purpose is that it
allows our discussion of arcs in G(z) to be more general. Rather than explicitly indicate whether an arc
is a forward or reverse arc when referring to its anti-parallel mate, we can reference its antagonist. In
general, we shall refer to the antagonist of an arc (i,j) € A(G(z)) as (¢,7) regardless of whether (i,7) is
a forward or reverse arc. The second reason for introducing the notion of an antagonist is implementation
driven. Each arc in the graph implementation of G(z) will have an antagonist pointer. This pointer will
allow an arc easy access to its corresponding anti-parallel mate. This way, whenever flow is augmented along
any arc, the corresponding adjustments to the anti-parallel arc can be made in constant time (say by a
similar routine with the antagonist as an argument). Using an adjacency list data structure, these pointers
represent the bookkeeping necessary to represent undirected arcs in a directed network, as well as paired
parallel arcs. Without antagonist pointers it would be difficult to keep track of which arc in all of A(G(z))
is the corresponding antagonist for any given arc (i,5) € A(G). In general there may be several directed
parallel or anti-parallel arcs between nodes i and j.

Furthermore, it will be useful to assume that the network represented by G(x) contains an uncapacitated
directed path between each pair of nodes in V. This assumption imposes no theoretical or implementational
restriction on the input graphs since we can always add arcs of infinite capacity, with infinite cost, into the
network between all possible sources and sinks. Clearly, such an arc will not be in any minimum cost solution
to the MCMF problem unless it has no feasible solution.

In light of the previous comments, G(z) will typically serve as a general representation of the input
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Figure 13: For the flow given in Figure 12 we produce the corresponding residue graph. Arcs which are
dashed are reverse arcs. Solid arcs are forward arcs. This time the arcs are labeled (v — x,c) by remaining
capacity, and cost. Note that the reverse arcs whose antagonist have no flow have been left out, since they
have no capacity. Likewise forward arcs which are carrying flow to their capacity are not included.

graph G at some intermediate stage of an MCMF computation. While at times we may refer to G or G(x)
separately, only as input and output to our routines will the graph G by itself be the sole description of
the underlying electrical network. Similarly, a network is only ever described in terms of G(z) alone when
discussing the network at some intermediate point in a computation. That being said, we now turn to some
key properties of our networks from which our algorithms for the MCMF problem are derived.

4.3 PRINCIPLES AND CONDITIONS OF OPTIMALITY

There are two key properties of network flow problems as phrased in terms of residual networks G(x) which
pretty much write their own algorithms. Unfortunately, since this is not a paper on Graph Theory in general,
in some cases we will be forced to leave much of the dirty work to our references in order to move on to
more interesting results. The algorithm which can be developed from our first principle is straightforward.
The second principle (the Reduced Cost optimality conditions) is a useful extension of the first, and the
algorithms which we discuss for the remainder of the paper employ this so-called “certificate of optimality”.
The algorithms which are developed from each result will make extensive use of subroutines and data
structures already familiar to us at this point (Dijkstra SSSP, and adjacency lists).

Negative Cycle:

This first optimality condition applies to an existing feasible flow on a intermediate network. Given
a feasible flow = and corresponding (intermediate) residual network G(z) the Negative Cycle Optimality
Condition describes the following certificate of optimality. That is, the feasible flow x is optimal if and
only if it satisfies this condition. However, this condition is also a principle which can be employed in
order to improve the flow x with respect to the objective (13). First, a few comments on negative cycles
are in order. A negative cost directed cycle in a any graph G = (N, A) (we will use G(x)) is a cycle
W = (v1,v2,...,Up—1,Vp = v1) such that (vi,vit1) € A, Uyp;1; — Toseiy; > 0 (i.e. the flow can still be
augmented along (v;,v;)), for i € {1,2,...,n — 1}, and most importantly E?;ll Coivisr < 0 (negative total
cost on W). Note that augmenting flow along such a cycle does not violate the mass-balance constraints b,
because the augmented inflow equals the augmented outflow along the arcs of the cycle.
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Theorem 4 (Negative Cycle Optimality Conditions). A feasible solution z* is an optimal solution to
the Minimum Cost Maximum Flow problem if and only if the residual network G(z*) contains no negative
cost directed cycles.

Proof. Showing the first direction of the if and only if statement is rather straightforward. Suppose that
x* is an optimal solution to the Minimum Cost Maximum Flow Problem. Furthermore, suppose (for the
sake of contradiction) that there exists a negative cycle W in G(z*). But then, clearly we can augment
some positive amount flow along the arcs of W thereby improving the objective function value (13). This
contradicts that z* is was an optimal flow. Therefore we conclude that a feasible solution z* is not optimal
an solution to the Minimum Cost Maximum Flow problem if the residual network G(z*) contains a negative
cost directed cycle.

Showing the other side of this if and only if statement is less straightforward, and will rely on several
key properties and results concerning augmenting cycles?? and flow decomposition®3. While we state and use
these results here, we leave their formulation and proofs to our references [1]. The following, then, is more
of a proof sketch than a true proof.

Define Cost(z) to be the total cost of a flow 2 in G(z). More precisely,

Cost(x) = Z X5 Cij - (16)

(4.5)€A(G(=))

The augmenting cycle property states that for any two feasible flows z and z' we have that the flow z is
the same as z’ plus the flow on at most m = |A(G(z'))| directed cycles in G(z'). Furthermore, if ¢ is the
sum of the cost of augmenting flow on these cycles in G(z'), then the total cost of x with respect to z' is
Cost(z) = Cost(z') + ¢. Or, equivalently ¢ = Cost(z) — Cost(z').
Suppose then that G(z) contains no negative cycle. Moreover, let * be an optimal flow with respect to
(13) such that z* # x, so we have that
Cost(z*) < Cost(x) (17)

as =* is optimal. By the augmenting cycle property the difference between the flow z* and x can be decom-
posed into at most m directed cycles in G(z). In addition, the sum of the flows on these cycles must be
¢ = Cost(z*) — Cost(z). Since G(x) contains no negative cycles we must have that ¢ > 0. Or, equivalently:

0<e¢ = Cost(z*)— Cost(z)
0 < Cost(z*) — Cost(x)
Cost(z) < Cost(z*).

From (17) this implies that Cost(z) = Cost(z*), showing that the flow z is optimal, as desired.
Therefore, we conclude that a feasible solution z* is an optimal solution of the Minimum Cost Maximum
Flow problem if and only if the residual network G(z*) contains no negative cost directed cycles. O

This optimality condition immediately suggests an algorithm for solving the MCMF optimization prob-
lem. The procedure simply entails finding a feasible flow z in G and then while the resulting G(z) contains
a negative cycle, detect one of these cycles and then augment flow along it. An approach of this sort is one
which maintains feasibility while moving toward optimality. Implementing such a routine requires an efficient
algorithm for identifying negative cycles. A slight modification to the Floyd-Warshall APSP algorithm can
accomplish this. If any intermediate adjacency matrix Ay in the Floyd-Warshall APSP algorithm run on
G(z) has a negative entry on its diagonal (i.e. Ag[i,i] < 0 for some 0 < ¢ < |N|), then there is a negative
cycle which begins and ends at node i. Finding the other nodes and arcs on the cycle is then a simple matter
of tracing through the associated predecessor matrix.

Of course, then there is the question of establishing an initial feasible flow (without regard to cost) to
start off this Cycle Canceling algorithm. This is basically an optimization problem in its own right, known
as the Mazimum Flow problem. While there are well-known algorithms for solving such problems (including

22Theorem 3.7 [1]
23Theorem 3.5 [1]
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almost trivial applications of the simplex method) we end this discussion here in search of much more
efficient algorithm which solves the MCMF problem in one swoop. This algorithm relies on a re-phrasing of
the negative cycle optimality condition.

Reduced Cost:

Our second optimality condition relies heavily on the following observation. For the shortest paths
problem (in particular, one that can be solved by the Dijkstra SSSP algorithm) as long as there are no
negative cycles in the graph G = (N, A) we had that an arc (7, j) is only present in the shortest paths tree
(part of the optimal solution) for some source s if

d(j) < d(i) + cij- (18)

Recall that if there were negative cycles in G the shortest paths problem would not be well-defined. Rewritten
as
cfj = cij +d(i) —d(j) 20 V(i,j) € A (19)

we define the reduced cost of an arc (i,5) € A for the shortest paths problem. c;-ij can be thought of as

measuring the cost of the arc (i,j) relative to the shortest path distances from some source to its end
vertices. Note also that cfj is always nonnegative. What these reduced costs tell us is that if we knew the
shortest paths tree distances d with respect to some source, finding the actual shortest paths would be easy
since every arc in the tree would have zero reduced cost. Our goal will be to enumerate similar conditions
for the Minimum Cost Maximum Flow problem.

With the goal in mind of producing similar reduced costs for arcs in G(z) with respect to the MCMF
problem, we replace d in (19) by the unknown potential vector 7. Without actually quantifying = we can
define the reduced cost of an arc for an instance of an MCMF problem and show some important properties
with respect to these reduced costs which are independent of a chosen potential. Eventually we will prove a
theorem which will produce a suitable potential, and enumerate the reduced cost optimality conditions. Our
ultimate goal will be to show that an optimal solution to the MCMF problem must satisfy these conditions.
This result will give us a nice handle on an iterative method for solving the MCMF problem much in the
same way as (18) did for the shortest paths problem.

With this in mind, let the reduced cost for the MCMF problem on graph the G(z) be written as

1,

¢y =cij —wli] + 7] >0 V(i,j) € AG(x)). (20)

Here 7[] can be thought of as a mechanism for altering the cost of an arc (i,5) so as to reflect its utility to
some source, without making it negative. This cost is the reduced cost cJ;.

Lemma 1 (Directed Paths with respect to cfj) For any directed path
P={(v=uwv,vq,...,0p, = w)
we have that

Z iy = Z cij | — wv] + ww] (21)

(i,4)EP v(i,j)EP

Proof. From the definition of ¢j; we have that

Z C;rj = Z Cij — w[i] + 4] (22)

(i,j)EP (i,§)EP
= oo |+ D] —wlil+al] |- (23)
(i,§)eP (i,j)eP
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But then the second sum in the last line above is a telescoping sum.
Y —alil+ali] = o] = wfos]) + (wfos] = -+ = woe_a]) + (wloe—r] = 7lor])
(4,5)eP
m[v1] — wlog]

= 7v] — ww].

From this result and (23) we have that

o= Y ey | —ale] +afwl

(i,5)eP (i,5)eP
as desired. 0

This lemma tells us that the reduced cost along path a P = (v = v;,va,...,v; = w) has little to do with
the choice of potential function 7 in that it is only affected by 7 at the origin and terminus of P. The choice
of potential has even less of an impact on the cost of directed cycles.

Lemma 2 (Directed Cycles with respect to c;). For any directed cycle W = (v = v;,v2,...,v5 = v)
we have that
> = X (24)
(i,5)EW (i,))eW

Proof. The proof of (2) is almost exactly the same as the proof of Lemma 1. However, instead of (24) we
have m[u] — m[u] = 0, and thus from (23) we have }_; »ew ¢f; = 2(; jyew Cij» as desired. O

The previous lemma is very useful because it provides an anchor to the cycle canceling optimality con-
dition. Namely, regardless of our choice of potential, if W is a negative cycle with respect to c;; then it is
also a negative cost cycle with respect to the reduced costs c;.

With these properties of reduced costs ¢f; under our belt we now have the artillery necessary to proceed
with showing and formalizing the result which will be the backbone of the remainder of the paper.

Theorem 5 (Reduced Cost Optimality Conditions). A feasible solution z* to the minimum cost maz-
imum flow problem on G = (N, A) is an optimal solution if and only if there exists a set of node potentials
m such that

ci; =ciy — i) +7w[j] >0 V(i,j) € A(G(z)). (25)

)

Proof. We shall show this result by showing that the reduced cost optimality conditions (cf; > 0) are
equivalent to the negative cycle optimality conditions of Theorem 4.

First, suppose that the flow z* satisfies the negative cycle optimality conditions with respect to G(z*).
That is, G(z*) contains no negative cycles. Now, choose any s € N, and let d(j) be the shortest path from
s to every node j € N. Since there are no negative cycles in G(z*) these distances are well-defined. From
(18) we have that

d(j) <d(i) +ci;  V(i,7) € A(G(z")).

However, this can be rewritten as

cij +d(i) —d(j) = 0 (26)
¢ij = (=d(@) + (=d(7)) > 0 (27)

for all (i,7) € A(G(z*)). If we substitute
wli] = —d(i) VieN (28)
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into (27) and call the result cf; we get

C% =Cij — 71'[2] + TF[]] > 0. (29)
Thus we have defined the potentials 7 which satisfy the reduced cost optimality conditions, namely ¢f; > 0,
subsequently establishing (25).

On the other hand suppose that the flow z* satisfies the reduced cost optimality conditions. That is, for
every arc (i,j) € A(G(z")), cf; > 0. Lemma 2 says that for any directed cycle W in G(z*)

> = D >0
(i,5)EW (i,))eW
and so G(x*) can contain no negative cycle, as desired. O

In general, we say that a flow z satisfies the reduced cost optimality conditions (cf; > 0) when the reduced
costs cf; are nonnegative for (i,j) € A(G(x)), where G(z) is the residue graph imposed by =.

Figure 14: Here we have assigned potentials to each node of the residue graph given in Figure 13. The
arc labels represent the reduced costs. Note that they are all non-negative. As we will see shortly, these
potentials were not chosen arbitrarily, and neither was the flow which generated this residue graph.

The result provided by Theorem 5 suggests a natural algorithm. Since the node potentials turned out
to be closely related to shortest paths distances there is likely to be a shortest paths subroutine in a larger
algorithm which exploits the reduced cost optimality conditions. See Figure 14 for an example of reduced
costs on a residue graph. We proceed now with the description of such an algorithm. As it turns out, the
resulting technique generalizes nicely to the Convex Minimum Cost Maximum Flow problem which best
suits our ESD event simulation problem.

4.4 SUCCESSIVE SHORTEST PATHS ALGORITHM

By employing Theorem 5 the Successive Shortest Paths algorithm maintains optimality while attempting to
attain feasibility. While the algorithm never violates the capacity constraint (10), an intermediate flow in
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the algorithm may not satisfy the demand described by the vector b. Such a flow which satisfies the capacity
constraint but fails to satisfy the mass balance constraint of some of the nodes in NV is called a pseudoflow.
We define the imbalance of a node i with respect to a pseudoflow z as

e(i) = b(i) + ( Z .Z'z'j) — ( Z .’L’ij> Vie N. (30)
(=*))}

{i:GHeA(@ {7:(6,5) € A(G(z*))}

Like the mass balance constraint b, if e(7) > 0 then we say that i € N(G(z*)) is in ezxcess, and when e(i) < 0
we refer to ¢ as being in deficit. Otherwise, if e(i) = 0 we must have that e(i) = b(7), and in this situation
we say that the node 4 is in balance. Similarly, as in (12) we enforce that

> e(i) =0. (31)
ieN
Therefore, if we define the sets E for excess, and D for deficit
E = {ieN:e(i)>0} (32)
D = {ieN:e(i) <0} (33)
we also have that (as required by (12))
D () == ed). (34)
icE ieD

In our original formulation of the successive shortest paths algorithm the imbalance e of the intermediate
graph G(z) will always be in direct correspondence with the mass balance constraints b. That is, once a node
i is in balance (i.e. e(i) = 0) it will remain in balance for the remainder of the algorithm. However, when we
employ a so-called capacity scaling technique for boosting the performance of the algorithm, such will often
not be the case. In addition, it is possible that the reduced costs become negative in this technique, which
will require some work around when we get to that section.

In the next lemma and theorem let d(-) represent the shortest paths distances from some node s to all
other nodes ¢ € N with respect to the reduced costs cf;. Therefore, from (18) we have that

d(j) <d(@) +cjj V(i )) € A(G(x)) (35)
where 7 can be any valid node potential. Let z be a pseudoflow which satisfies cJ;.

Lemma 3 (Dynamic Node Potentials). If x is a pseudoflow which satisfies ci; 2 0, then z also satisfies

cfj' > 0 where ' = m — d; where d() is computed with respect to cf; and some source s.

Proof. Since the pseudoflow z satisfies the reduced cost optimality conditions with respect to w, we have
that cf; > 0. Substituting the definition cf; = ¢;; — 7[i] + 7[j] into (35) we get

d(j) <d(i) + cij — wlil + 7[j]  V(i,j) € A(G(2)). (36)

Switching things around a bit:

cij +d(i) —d(j) — il +=[j] > 0
cij — wli] +d(i) +7[j] —d(j) > O
cij — (nfi] — d@@)) + (n[j] - d(j)) > 0
and letting 7[-]' = «[-] — d(-)
cij — ] +7'[j] > 0
c}}l > 0
establishes the desired result. O
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This result suggests a legal dynamic realignment of the node potentials for the reduced cost of an inter-
mediate solution to the MCMF problem. When push comes to shove we need to be able to assign flow to the
arcs of the network. We would like to be able to do so in such a way so as to continue to maintain the opti-
mality of the solution. Of course, the measure of this optimality is our reduced cost optimality conditions.
We now claim that these conditions hold up under flow augmentation along shortest paths with respect to
the reduced costs in the residual network, so long as we redefine the potential after every augmentation along
such a path (as described by the previous lemma).

Theorem 6 (Successive Shortest Paths). Suppose that in G(x) there remain nodes s with excess and t
with deficit. Then we can obtain a valid pseudoflow x' from x by sending flow along a shortest path in G(z)
with respect to cf;, such that 2’ also satisfies the reduced cost optimality conditions.

Proof. Consider the situation where, after augmenting flow along a shortest path, we redefine the node
potentials as in Lemma 3 (whose result is such that the original flow z will also satisfy these new conditions).
The situation is no different for the flow z', except that augmenting flow on an arc (u,v) € A(G(z)) may
introduce a new antagonist arc (u,v) = (v,u) € A(G(z')) that was not present in A(G(x)). In such an event
we must be careful to maintain that (v,u) satisfies the reduced cost optimality condition as well. Recall
that (v,u) did not previously have to satisfy the reduced cost optimality conditions since it was not present
in A(G(z)). Therefore, in order to establish the desired result, we must verify that ¢7, > 0 when (u,v) is
introduced. However, consider the very next shortest path P from some source s to some sink ¢ with respect
to cg;’. In this situation we necessarily have that

d(j) =d(i) +cf; V(i,j)€P (37)

since this is the very definition of an arc (i, j) being on a shortest path. Proceeding as in the proof to Lemma,
3, now instead of cfj' > 0 we get c?j' = 0 for each arc (4,j) € P. But then our arc (u,v) must have been on a
shortest path in order to have its flow augmented, and z,, = 0 as a forward arc (or Z,, = ¢y, as a reverse).
Therefore, ¢, = 0, and since

—ci; = —(cij —m'li] +7'[§])
= —cj +'[i] = 7'[j])
= cji —7'[j] +7'[1]

’
Y

= Cj’i
we must also have that cg; = 0, asserting that (v,u) satisfies the reduced cost optimality conditions with
respect to w'. Therefore, all (i,5) € A(G(z')) satisfy the reduced cost optimality conditions. O

These results translate nicely into an iterative algorithm for solving the MCMF problem. Note that the
node potentials play a key role in this algorithm. If we manipulate them correctly then not only do they
provide us with a certificate of optimality, but they ensure that the arc costs with respect to cf; are always
nonnegative. This means that we can use an algorithm like Dijkstra SSSP for finding shortest paths from
nodes with excess to others with deficit. Note that the reduced costs and the flow given for the network in
Figure 14 was obtained by two iterations of the Successive Shortest Paths algorithm algorithm. Since the
reduced costs induced by two 7 = 7 — d updates, and the reduced costs of arcs of G(z) are nonnegative, the
given pseudoflow z is optimal. See Figure 15 for a pseudocode depiction of the Successive Shortest Paths
algorithm.

Most of the algorithm is straightforward, in light of the previous argument. However, we have said very
little about the details behind lines (11-13), and nothing about their implementation. Clearly, there are
many ways to execute line (10). We have many choices when it comes to finding a shortest path P from a
source s to some sink ¢. Several times we have suggested that Dijkstra’s SSSP algorithm is an appropriate
choice. However, Dijkstra’s algorithm does much more than just find a shortest path between two nodes;
we saw in the previous section that the Dijkstra SSSP algorithm finds shortest paths distances d from some
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procedure SuccessiveShortestPaths(G=(N,A), b)
begin
(1) flow x(i,j) = 0, for all (i,j) in A
(2) potential pi[] = 0;
(3) let G(x) =G // either implicitly, or explicitly
(4) imbalances e[] = b[] // assert mass balance constraints
(6) 1let E = {i: e(i)>0, i in N}
(6) let D ={i: e(i)<0, i in N}
(7)  G(x)->setWeightsToReducedCosts (pi)
// initially, just the costs

(8) while (E not empty) do

9 choose some s in E and t in D
(10) d[] = Shortest Path Distances from s

with respect to the reduced costs
(11 let P be the shortest path from s to t, by d[]
(12) let delta = min { u(i,j) in path P, e(s), -e(t) }
(13) x = augmentAlongPath(G(x), P, delta)

// and making appropriate updates to G(x)
// based on new flow

(14) pi=pi-d

(15) if (e(s) == 0) then discard s from E endif
(16) if (e(t) == 0) then discard t from D endif
7) G(x)->setWeightsToReducedCosts (pi)

(18) enddo

end

Figure 15: Pseudocode for the Successive Shortest Paths Algorithm, for solving the minimum cost maxi-
mum flow algorithm. Requires mass balance constraints b from (12) and the network G as input. We assume
that the Shortest Paths Algorithm referred to in lines (7) nd (15) use a weight field for each arc in calculating
the shortest paths. The pseudocode given here is an adaptation of similar code given in [1] (Chapter 9).

source s to all other nodes (sinks) t € N. What does this mean for line (14) which calls for calculating
7' = m — d? What exactly is behind choosing an appropriate amount of flow () in line (12) to augment
along P, and what exactly does such an augmentation entail?

To answer the first question, the distance vector d returned from Dijkstra’s SSSP algorithm presents no
trouble at all. In fact, Lemma 3 requires that d represent the shortest paths distances from the source s to
all other nodes in the graph. This is just what we get from Dijkstra’s SSSP algorithm. Notice that if we were
to modify Dijkstra’s algorithm to stop finding shortest paths once it finds a path to any node with excess,
this will likely boost the run-time performance our overall successive shortest paths algorithm. However, one
must be careful in this case not to revise a reduced cost when d(i) = oo for some node 7 which the shortest
paths algorithm has not reached yet. In our implementation of Dijkstra’s SSSP algorithm, if stopped early,
it might have not found any path to some nodes, like 7, and d(i) = oco. In this case, performing the operation
7' = 7 — d, may not be well-defined, and may indeed produce negative reduced costs! In this case we can
adopt the convention the potentials remain unmodified for for arcs adjacent to nodes i where d(i) = oo.
Clearly, no flow is augmented on arcs adjacent to nodes unreachable from the source. Therefore, the old
potential will suffice for keeping such an arc’s reduced cost non-negative.

Determining just how much flow should be augmented along the path P is a simple matter of checking
capacity constraints, excesses and deficits. Clearly we cannot augment more flow than can be sourced from
the excess, or sinked at the deficit. Hence the last two terms in the min of line (12). Then, along the path
P we cannot augment more than the remaining capacity for any arc, taking into consideration the amount
of flow already on that arc. If the capacity for each forward and reverse arc in the network is included
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in our graphical representation (as in our working representation discussed earlier), then determining an
appropriate § is just a matter of traversing the path, all-the-while computing a minimum of the remaining
capacity minus the flow on those arcs. Thus we have that augmenting

6 = min{ (i {uij —zi;} e(s),e(t)} (38)
units of flow along P provides the maximum flow increase which still maintains the feasibility of the pseud-
oflow.

Once 4 is determined, actually augmenting this amount of flow along an arc (i,j) € P is a matter of
determining whether this arc is a forward arc or a reverse arc, and making the appropriate changes to G(x).
In the case where the arc (4,j) € P is a forward arc, this amounts to increasing the flow along z;;, and
increasing the capacity of its antagonist m If (i,7) is a reverse arc, we must find its associated forward
arc (i, j), decrease the flow on this arc, and then recalculate the capacity of our original reverse arc. If, after
augmenting flow along any arc, the flow on this arc or its antagonist equals its capacity, then this arc must
be (symbolically) removed, or temporarily decomissioned, from G(z).

For any path P, the maximum amount of flow that can be augmented on P is sometimes referred to as
the increment of P, written ¢(P). The increment of a single arc a € A(G), alone, is the difference between
the amount of flow on the arc and its capacity, written i(a). In this way, we have that i(P) corresponds to
the first set of terms in the minimum of (38). Normally, the increment of a reverse arc is written in terms of
its antagonist, forward arc. However, since we have defined the capacity of reverse arcs to be equal to the
amount of flow on its antagonist, forward arc, and we never allow reverse arcs to have nonzero flow, these
two notions of increment are essentially equivalent.

After augmenting flow along the path returned by running Dijkstra’s SSSP algorithm on G(z) with
respect to the reduced costs, and after the potentials have been updated, all there is left to do is recalculate
the reduced costs for the arcs of G(z). However, given 7, the pseudocode of lines (17) and (6) take the place
of a simple subroutine which can loop over all of the arcs of G(z) and calculate the reduced cost of each arc,
and subsequently set its weight w to be this value.

Correctness:

Having built up this algorithm from several lemmas and theorems all regarding optimality, and describing
how to move from one optimal solution to another; and then producing an algorithm motivated by these
results; we must only show that the pseudocode of Figure 15 does indeed converge to an optimal solution to
the MCMF problem.

e Theorem 6 shows that after each iteration the reduced cost optimality conditions are satisfied. More-
over, since the initial flow z = 0 is a valid pseudoflow, and since 7 starts as the zero vector we have
that all of the reduced costs are non-negative

cij = cij — i) + 7]

= Cij—0+0
= ;20 V(ij) € AG()).

Furthermore, since we have assumed that all of the arc-costs themselves are non-negative, we have that
x = 0 satisfies the reduced cost optimality conditions. Inductively, assuming that before an iteration of
the while loop of line (8) x is a valid pseudoflow which satisfies the reduced cost optimality conditions,
Theorem 6 shows that z’ induced by the flow augmentation along P of line (12) must also satisfy these
conditions before the next iteration.

e Each time flow is augmented, an amount of flow described by the increment i(P) is sent into each node,
and out of that node, for every node along this path— which is not the source s or sink ¢t. Therefore,
the balance of each node i € N(P) — {s,t} is preserved. That is, each b, (i) = b,/ (¢) for an initial flow
z and the flow z' resulting from the augmentation, along P.

e After each iteration of the while loop the excess and deficit of two nodes are reduced, so (as long
as we enforce that a certain minimum § is augmented along each augmenting path) we have that E
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and D must eventually empty. Recall that we required previously that G(z) must always contain an
uncapacitated path between every pair of nodes in N. In particular, there will be an uncapacitated
path for every excess and deficit pair. Once E and D have been emptied, our algorithm has satisfied
the mass balance constraints b, and this means it must have established a feasible flow. Furthermore,
since this flow satisfies the reduced cost optimality conditions, and the supply/demand vector b, we
can conclude that this flow is a solution to the MCMF problem.

The above facts and the supporting arguments given previously verify that the algorithm given in Figure
15 solves the combinatorial optimization problem as given (13) and (14). We have thereby established the
correctness of the Successive Shortest Paths algorithm given in Figure 15. (]

Runtime:

The runtime of the Successive Shortest Paths algorithm depends heavily on the shortest paths algorithm
we choose to use as a subroutine. Having already enumerated a good shortest paths algorithm, namely
Dijkstra SSSP which runs in O(n?) time, we can certainly get an upper bound on the running time of the
entire procedure by determining the number of iterations of the while loop in line (8) of Figure 15. Each
time through the while loop some amount of excess and deficit is relaxed, as computed in line (11). If we
enforce that capacities and flow augmentations are integral, then in the worst case this amount flow is 1.
This integrality assumption will be made throughout our further discussion. It is from this observation that
we can conclude that after each iteration of the while loop in line (8) at least one unit of flow is augmented
along a path from an excess node to a deficit node. Therefore, in the worst case, if U is the initial sum of
the excess over the entire network, i.e.

U=> e, (39)
iEN
then U must also be the maximum number of iterations in the while loop. From this we conclude that the
Successive Shortest Paths algorithm runs in time O(Un2). However, since we showed in the previous section
that with different, more clever, priority queue implementations we can do better than O(n?) with Dijkstra’s
SSSP algorithm on sparse graphs. See Figure 16.

| || Trivial Array | Fibonacci Heap | Binary Heap |
| SSP Algorithm || O(Un?) | OUm +Unlogn) | O(Umlogn) |

Figure 16: Addendum to the Complexity Table for three Priority Queue data structures often used in
Dijkstra’s SSSP algorithm.

We would like to be able to compare these results to other algorithms for solving the MCMF problem.
Currently, we have only one other algorithm, namely the Cycle Canceling Algorithm. This algorithm requires
two powerful subroutines, namely one which establishes a maximum flow, and another which identifies
negative cost cycles. Using such high level subroutines is doomed to fail. As already mentioned, we can use
the Floyd-Warshall APSP algorithm to identify negative cycles. We might even be able to come up with an
algorithm for identifying negative cost cycles in O(n?) time, perhaps by modifying the Dijkstra SSSP routine.
However, even if this were possible we may need to identify U many of these cycles which means that we
are already doing no better than the SSP algorithm. While there are still other algorithms for solving the
MCMF problem?* we leave these descriptions to our references, in particular [1]. Each of these algorithms
has some advantage over the SSP algorithm, though not necessarily in terms of worst case complexity.

Note that since the value U does not necessarily need to be polynomial in the number of nodes or
arcs, the runtime of any of the algorithms mentioned above is only pseudo-polynomial. However, there are

24the Primal-Dual algorithm which is similar to the SSP algorithm, but involving sending flow along all shortest paths rather
than the one between the excess and deficit; the Out-Of-Kilter algorithm which contrary to the SSP algorithm maintains a
feasible flow at every iteration, and strives to attain optimality by augmenting flows on shortest paths; as well as others like
the Relaxation Algorithm which relies on some heuristics which make it efficient for most MCMF instances.

33



scaling techniques which produce polynomial analogues of these procedures. The SSP algorithm receives the
largest boost of the pseudo-polynomial algorithms by employing this scaling procedure. We will illustrate
the capacity scaling technique following the Convex Flow section, and then conclude this discussion with a
polynomial time algorithm for solving our ESD Budget Analysis Problem.

4.5 ConvEXx FLows

Finally, there are two fundamental differences between the general MCMF optimization problem and the
problem we are trying to solve.

The first difference is that in some sense the MCMF optimization problem as formulated at the beginning
of this chapter is too general. We are only interested in the excitation level between bondpad pairs when
one of them is “zapped” and the other is grounded. While it is entirely possible that more than one of
the bondpads of the integrated circuit I/O be “zapped”, and more than one grounded, this generalization
is a less extreme case. Certainly, if the ESD protection holds up under the one-source one-sink model, a
protection scheme can provide more protection when there are more avenues on which the current can flow.
This is just what happens when the current enters and/or exits the device from more than one terminal.
Furthermore, having a capacity constraint on an electrical device such as a resistor is in most respects an
unrealistic modeling, and therefore not a necessarily useful variable in the problem. If we were to impose
a capacity constraint, what would it be? Would this constraint help us model our situation under fixed, or
variable currents? Such is not likely if we wish to model an electrical network during an ESD event.

The second difference is that the arcs in our network represent resistors, diodes, etc which carry current.
We are essentially faced with the same problem as when we discussed Shortest Paths for overestimating
excitation levels, earlier. While we now a have mechanism to augment flow on multiple parallel paths, we
have little mechanism to force current flow to act as it would in a real simulation. In fact, what we really
want to know is: How much current is flowing on each resistor (arc) in the network. Clearly, if we could
obtain this information we will have solved the crux of our problem. Once we have the amount of current
flowing on each component in the electrical network during a simulated ESD event, calculating the voltage
drop between terminal pairs is a simple matter of applying Ohm’s law to each component along any single
path, and summing voltage drop contributions. This will be the culminating result of this section.

Our first task is to rephrase the optimization problem. The motivation behind this new formulation is
that Ohm’s law shows that a resistor with resistance r dissipates rI? watts of power, where I is the amount
of current flowing along the resistor. Therefore, we wish to find the equilibrium current on each arc in our
network under this cost model. That is, for each arc (i,5) € A(G) which collectively depicts our network
graphically, we wish to learn the equilibrium current z;; for each arc where the cost of augmenting current
along the arc (¢,j) varies (convexly as opposed to just linearly) as the square of the amount of flow along
that arc, times its resistive component ¢;;. With this in mind we rewrite the Minimum Cost Maximum Flow
problem of (13-15) as

minimize Z C(zij) (40)

j=1
subject to Z Tij — Z zj; = b(i) Vv, €N (41)
0<wzy <wuy; V(,j)eA (42)

and take our convex cost C' to be C(xij) = ¢;; * x7;. That is, the objective (40) changes, but everything
else stays the same. We make the one general assumption that C'(z;;) = 0 when z;; = 0, but this is already
taken care of by the quadratic convex cost function we have chosen. A formulation of this type, where the
cost of an arc varies convexly in the amount of flow placed along it, is referred to as a Convex Minimum
Cost Maximum Flow Problem, Convex Cost Flow, or simply Convex Flow.
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As mentioned previously, being able to specify a capacity for each arc in the network isn’t very relevant
or helpful since we are interested in finding the optimal amount (eguilibrium) current along each resistor, and
don’t really care how much current is on any single resistor. Therefore we let u;; = oo for all (4, j) € A(G).
We may wish, however, to keep the capacity constants around for the reverse arcs in a residue graph since
augmenting flow on a reverse arc is essentially reducing flow on the antagonist forward arc, as we can only
reduce as much flow as is currently assigned to the forward arc.

Since we haven’t changed the overall optimization problem much, we should be able to get away with a
similar algorithmic approach to producing the optimal flow as was used for the (linear cost) MCMF problem.
In fact, this is just what we will do! The goal of the remainder of the section will be to adapt the Successive
Shortest Paths algorithm of Figure 15 to the Convex Flow optimization problem, and further fine tune it to
our specific ESD Analysis problem. The biggest difference is that whenever flow on an arc is augmented,
the cost of that arc changes! That is, we need to compute the costs of arcs based on the amount of flow we
intend to augment along that arc. However, such foresight is not easy to abstract or program. Although it
may seem like we can augment any amount of flow we choose along a path from the source to the sink, there
are several reasons why it is not to our advantage to do this.

1. Recall that reverse arcs in A(G(x)) cannot have infinite capacities, and shortest paths often contain
reverse arcs.

2. The more flow we augment along each path the faster we will come to a maximal flow, (that is, we
may be able to find a feasible flow faster, one which satisfies the mass balance constraints), but the
less accurate our calculation of the equilibrium currents along each arc in the final flow will be.

Therefore, in order to get an appropriate minimum 4 amount of flow to augment along a path, we insist
that in order for an arc to be (symbolically) included in the residual network G(z), that the capacity of the
arc is at least 4 so that the increment i(a) > 4 for all a € A(G(z)). This way we can shortcut the computation
of i(P) when preparing to augment flow. We would like to further insist only a certain minimum (4) amount
of flow is augmented along a path at any one time, so that future arc-costs are predictable. Essentially, the
effect we are aiming for is a like a piecewise linearization of the convex cost of an arc into segments of a
fixed length (§). This can accomplished simply by setting the increment § = § < i(P) in line (11) of Figure
15, and be sure to subsequently recompute the cost of an arc after flow has been augmented on it, knowing
that the next augmentation will also attempt to augment this same amount of flow. The most sensible value
for & is 1. There are at least two reasons for this. Firstly, we would like the linearization to provide a nice
approximation to the true convex cost function, and secondly because working with integers is nice. In other
words, we now require that flow be incremented one unit at a time; no more, no less.

Implementationally, we define the convex cost of each edge (i,j) € A(G(x)) to be cc;j. That is, ccyj is
the convex cost of augmenting one unit of flow along arc (i,j) € A(G(z)).

ccij = C(zy; + 1) — C(a;;), for forward arcs (3, 5) € A(G(x)) (43)

and
ccji = C(mij — 1) — C(xi5), for reverse arcs (j,1) € A(G(x)). (44)

In this way we have that the cost of augmenting flow along any arc can vary convexly in the amount of flow
already on that arc— for a fixed amount of flow which can be augmented each time through the while-loop
of Figure 15. In the case of forward arcs this means that the cost will be greater than before the previous
augmentation. For reverse arcs this means that the cost will be less (yielding a larger refund) than before
the previous augmentation. Computing the reduced cost of an arc under these revisions must use the convex
costs
;rj = ccij + W[l] - W[j] (45)
Having modified the successive shortest paths algorithm it is important to discuss the information gained
in terms of equilibrium currents from the resulting minimum cost convex flow. If the current I incident on
the circuit is a simulated ESD event (either through one source, or many sources) and U is the sum of the
excess (31), then we can interpret the resulting equilibrium current as a percentage of the total current on any
arc in the graph G. In this way, the convex flow simulation has essentially done the hard work of indirectly

C

35



applying Kirchoff’s Current and Voltage Laws, assigning currents to arcs using Ohm’s Law. Returning to
the single source and single sink model, all that is left to do is find a path P = (s = vy, va,...,v; = t) from
the source to the sink (e.g. using a breadth first search). Then, if f = U represents 100% of the total amount
of current sourced on the network, we can determine the exact voltage drop along a path from the source to
the sink by computing the sum

avVd = § (i c(vi_1,v;) .x*(vi_l,vi)> (46)

=2

where I represents the current of the ESD event based on some Human Body Model (HBM). We call this
quantity the actual voltage drop (or aVd), which is a near perfect approzimation to the true excitation level
between terminal pairs. To clarify, we say near perfect because we are only augmenting flow in integral
amounts. Note that this is no great limitation since by scaling rational input we can get results to any
desired accuracy. Here, we use f rather than U to distinguish this quantity it as a variable. It will be a
parameter to the Convex SSP analysis. We will discuss the accuracy of this simulation, the wisdom behind
choosing f, and some results in the following section. Note that while we can perform a simulation where
there are multiple sources and multiple sinks and obtain useful current information, the computation of an
excitation level between pairs of terminals isn’t as straight-forward. For each pair of source and sink we can
get ESD Budget information, but only all of the paths together can accurately represent the results of a
simulated ESD event. Perhaps taking the maximum of the voltage drop for each pair would yield the desired
result, but this is no more efficient than running a separate simulation for each pair of sources and sinks.

At this point we rewrite the Successive Shortest Paths algorithm for our new quadratic cost setting,
single source, single sink, and finally the computation of the actual voltage drop. See Figure 17.

Note that Figure 17 makes no explicit use of the imbalances e or the sets E and D, describing them
earlier was not in vain. We will use them again when we discuss the capacity scaling technique for finding a
polynomial time algorithm. It should be obvious that the worst case complexity of this modified Successive
Shortest Paths algorithm is the same as the original one discussed earlier. In fact, since we only augment
& = 1 units of flow at each iteration of the while loop the worst case time complexity is the same as the best
case. The summary of the complexities like Figure 16 is included for completeness in Figure 18.

After computing the optimal (equilibrium) current on each arc, we wish to compute actual voltage drop
(aVd) between the source and the sink. This is done just as we have already described, and is illustrated in
Figure 19. We might choose to use Dijkstra’s SSSP algorithm using the flow computed in Figure 17 as our
weights, or simply set all of the arc weights to one— thus simulating a breadth first search. Nonetheless, we
illustrate the breadth first search explicitly in Figure 19, and other details involved in computing the actual
voltage drop.

Shortest Paths Overestimation (Theorem 1) Revisited:

In the shortest paths section of this paper we showed in Theorem 1 that the resistance along any path
P from some source s to any sink ¢ (not considering parallel components) is an overestimate of the effective
resistance between s and ¢. In the proof of this theorem we promised to show an alternative method which
uses Network Flows. We now have the appropriate artillery to do this, namely Convex Flows.

The fraction of the total current assigned to each arc (i,j) € P is z;;. When we compute the adjusted
voltage drop as in Figure 19 and (46) the result is a scaling down of a similar flow where instead we could

have
f U
n—1 n-—1

Tij =

V(i, ) € P. (47)

This basically means that each arc in the path is carrying 100% of the flow among its n — 1 components
(between n terminals). But then this is just the same as the resistance along any single path (without parallel
components). In Figure 19 we chose to take the path to be that with the least number of arcs, but this was
only for efficiency of the routine— as the computed excitation level should be the same for any s — ¢ path.
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let C(x) = x"2

procedure ESDbudgetSSP(G=(N,A), source, sink, flow)
begin
(1) flow x(i,j) = 0, for all (i,j) in A
(2) potential pi[] = 0;
(3) let G(x) =G // either implicitly, or explicitly
(4) rem_flow = flow
(6) s = source
(6) t = sink
(7)  G(x)->setWeightsToReducedCosts(pi)
// initially, just the costs

(8) while (rem_flow > 0) do

(€)] d[] = Shortest Path Distances from s to t
with respect to the reduced costs

(10) let P be the shortest path from s to t, by d[]

(11) let delta = 1

(12) x = augmentAlongPath(G(x), P, delta)

// and making appropriate updates to G(x)
// based on new flow

(13) pi=pi-d

(14) rem_flow = rem_flow - delta

(15) recomputeConvexCostsAlongPath(G(x), P)

(16) G(x)->setWeightsToReducedConvexCosts(pi, C(x))
(17) enddo

end

Figure 17: Pseudocode for the ESD Budget Analysis Convex Cost Successive Shortest Paths Algorithm.
Requires only a single source and a single sink node, and the desired amount of current “flow” f representing
100% of the current between them as input. We assume that the Shortest Paths Algorithm referred to in
line (9) uses a weight field for each arc in calculating the shortest paths. Note that, implicitly, E = {s} and
D = {t}.

| || Trivial Array | Fibonacci Heap | Binary Heap |
| ESDbudgetSSP || 0(Un?) | ©(Um +Unlogn) | ©([Umlogn) |

Figure 18: Addendum to the Complexity Table for three Priority Queue data structures often used in
Dijkstra’s SSSP algorithm.

In other words, we have that for any s — ¢ path P with n—1 arcs, from (46) and the fact that z;; < f =U
as a result of any Convex Flow

aVd (s =»t) =

( i c(vi—1,v;) - x*(vi_l,vi)>

=2
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procedure aVd(G=(N,A), source, sink, I, flow) -> real

begin
1
(2)
(3)
(4)
(5)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
7)
(18)
(19)
(20)
(21)

(22)
(23)
(24)
(25)
(26)
@27
(28)
(29)

(30)
(31)
end

G->setAllArcWeights(1)
PriorityQueue pq
d(v) = infinity, forall v in N
d(source) = 0
pq->insert (source)
while (pq not empty) do

u = pq->min()

foreach v adjacent to u

if d(v) == infinity then
d(v) = d(u) + 1
p(v) =u
parc(u) = (u,v)
pg->insert (u)
endif
if v == sink then break endif
enddo
pg->remove (u)
enddo
cost = 0
u = sink
while (u != source) do

c(u,v) = parc(u)->cost
x(u,v) = parc(u)->flow
cost = c(u,v) * x(u,v) / flow
u = p(u)
enddo

aVd = I * cost // I is current
return aVd

Figure 19: Given a graph G, with optimal flow which corresponds to equilibrium currents along its arcs,

we wish to return the excitation level information. Lines (1-21) correspond to the breadth first search. If we
find the sink before the search is finished, we cut it short in line (18). In lines (22-29) the adjusted voltage
drop is computed.
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From this we conclude that the actual resistance Ay = aVd (s = t)/I < R(P(y)), which is our desired
result. As in the proof to Theorem 1, we have shown that the sum of the resistance along any path between
a pair of terminals is an overestimate of the actual resistance, or corresponding excitation level. O
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Concluding this section, we turn now to some appropriate uses of a simulation tool built around the
algorithm of Figure 17, a few details and remarks, and some experimental test cases and results.

4.6 SOME RESULTS & INTEGRALITY OF DATA

So far we have said little about how to choose f = U, the total amount of flow to source. In fact, perhaps
it is not even obvious yet why f is a “variable” in our ESD Budget Simulation technique. This variable is
necessitated by the model mismatch which has arisen due to the fact that we have an integer-valued vector
x representing a fraction of the total rational-valued current flowing on an electrical device. Since the flow
on any arc in the network, as determined by our convex flow algorithm, represents a percentage of the total
flow across the components of the entire network, and since we augment flow in integral amounts (namely
unit amounts), this percentage is based on a fraction whose denominator is the total flow. Therefore, the
larger the total amount flow the greater the precision of the resulting fraction. Note that when we speak of
flow in this sense (f = U, the amount we source in a simulation) we are not speaking of current flow based
on some HBM. This value I will be used only in converting to units of voltage from resistance for the final
output.

In general, when dealing with parameters like voltage, current, and resistance which are typically repre-
sented as rationals in engineering or scientific notation, it is important to remember that computers don’t
do perfect rational arithmetic. That is, while computing a value like aVd, or most importantly the reduced
costs, there may be truncation, roundoff, or overflow error resulting from floating-point arithmetic. Inac-
curate computer arithmetic of this sort could cause catastrophic results. For example, arithmetic overflow
might cause the reduced cost of some arc to become negative. This would void all of those nice results we
showed about non-negative reduced costs, which the correctness of the algorithms of this section hinge on.
In retrospect, the motivation behind our previous choice to augment flow in integral amounts was twofold.
As already noted, this puts no real restriction on the types of data we can represent or use in our calcula-
tions. This is because it is always possible to scale rational input in order to coerce it to be integral, yet
while retaining the measurement represented by the rational. However, one might need a “long unsigned”
integer to represent such a rational as an integer to the desired precision. Initially, we could have made the
assumption that all input data were integral. In fact, many Network Flow texts do just this. However, from
a general and implementation standpoint, this is not usually necessary. All that is really necessary for our
purposes is that the amount of flow which we augment (0) is always bigger than some constant €, throughout
the entire algorithm, in order to guarantee that we eventually converge to an feasible solution.

Returning matter of choosing f: In terms of accuracy, the more we scale our rational input, and the more
integral flow source in our simulation, the more accurate our aVd excitation level output will be. In principle,
the source flow f should be no less than an integer multiple of the number of arcs in the resulting flow. Since
it is not possible to know how many such arcs there will be in advance we might naively try increasing powers
of 10. Following are several examples of this. In the first two examples the effective resistance between the
source s and the sink ¢ is a factor of more than two and three (respectively) less than the shortest paths
result. In these small examples the effective resistance can easily be computed by hand. The third example
serves as a demonstration of how the shortest path and convex flows compare on a larger, more expository
example— the simulation of an ESD event on a real ESD protection scheme. These experiments were run on
280MHz HPUX workstations.

Example 1 (Parallel Resistors). Two resistors of equal resistance in parallel. See Figure 20.

The effective resistance of the parallel resistor in Figure 20 can be easily computed to be %R by using the
parallel resistor formula of (9). It is also quite obvious that any shortest paths result is R. In this simple
example, any choice of even f > 2 yields the expected equilibrium currents of 50% for each resistor. These
results are tabulated in Figure 21. This is because all of the (two) resistors will be used when current flows
from s to t.
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Figure 20: Parallel resistors R = Ry = R».

| eff | SP |avdf=2]| f=10 | f=11 | f=100 | f=1000
Ri2| R R+05 | Rx0.50 | R+0.4545 | R 0.500 | R *0.5000
<<05| <<05 | <05 <0.5 0.5 0.5~ 1.0

Resistance
Time (sec)

Figure 21: Parallel Resistor ESD Budget Table

As this is a particularly simple example we get the exact result for all (even) positive values of f. Note
that if we employ the resistor combination described for reducing parallel arcs at the end of the shortest
paths section, we would get the exact result for the overestimation. Without it we are off by a factor of two.
In our next example we will be able to better demonstrate the choosing of an appropriate total flow f.

Example 2 (Resistor Cube). A classic example of multiple parallel paths is the resistor cube with twelve
resistors of equal resistance. See Figure 22.

AW ot

= v 2

s AN

Figure 22: Equal R resistor cube.

In this example, since all twelve resistors would be involved in current flowing from s to ¢ it makes no sense
to source less than f = 12 units of flow. In fact, we will get the exact effective resistance for all f = 12k for
k€ {1,2,...}, and we do “good enough” for all 10* for k € {2, 3, ...} thereby obtaining greater precision, but
we must wait exponentially longer, and we require a larger integer representation, for increasing k. Note also
that in this case the shortest paths resistance is very pessimistic, and that attempting to combine parallel
arcs gives no improvement (since there are none).

The same results are obtained for any polygon of resistors. The aVd will agree with the effective resistance
when the total flow f is a multiple of the number of resistors (or arcs) in the network as long as the
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| ef | SP | f=12 | f=100| f=1000 | f=10000 | f = 100000
Resistance || 5R/6 3R R%0.833 | R+x0.82 | R+0.832 | Rx0.8332 | R%0.83332
Time (sec) << 0.5 ] <<0.5 <0.5 05-1 1-2 2-3

Figure 23: Resistor Cube ESD Budget Table

resistances on all of the arcs are the same. Unfortunately (or fortunately) ESD protection schemes are far
more complicated than these simple examples. In general their graphical representations have components
numbering in the thousands, and there is no easy way to decide how much flow f to source on the network.
This is because there is no easy way (other than running a preliminary simulation) to tell how many arcs will
carry flow between the source and sink. Not only that, but the resistance of the components an arbitrary
network are not necessarily equal. Therefore, our last example will demonstrate the use of a tool implemented
using the Convex Flow SSP algorithm on an actual I/O ring ESD protection scheme?®.

Example 3 (QUBiIC3 D_Cell Peripheral).

In this example our netlist had approximately 1800 components, which was reduced down to approx-
imately 1500 by combining (600) immediately parallel components. At least three quarters of these arcs
represented resistors extracted from parallel metal layer busses. In order to provide the most dramatic
example possible with this design we first use the shortest paths tool to create an ordering on the pairs of
bondpads from most to least problematic (from an ESD Protection prospective). Then we use the convex
flow tool for increasing f-values in powers of 10 to get a more realistic assessment of the integrity of the
protection scheme. In order to enforce that all input data are integral, the resistive costs (the majority of
which were between 0 and 1 ohms) were scaled by 10* and then coerced to be integers. See Figure 24.

from to SP f=100 | f=10®| f=10*
BPESDSH.3 | BPESDSH_ 2 || 13.6137v | 9.07485v | 9.10738v | 9.10572v
BPESDSH_ 2 | BP_19 13.5447v | 10.9408v | 10.9546v | 10.9581v
BPESDSH_ 2 | BP_20 13.4844v | 10.9239v | 10.9434v | 10.9471v
BPESDSH. 4 | BPESDSH_ 2 || 13.3537v | 8.95845v | 8.9853v | 8.98386v
BPESD_10 BPESDSH_2 || 13.1206v | 8.96288v | 8.99333v | 8.992v

BPESD .3 BPESDSH.2 || 12.894v | 8.81708v | 8.80018v | 8.80309v
BPESD.9 BPESDSH.2 || 12.8844v | 8.78777v | 8.8183v | 8.81684v
BPESDSH_2 | BPESD_3 12.8671v | 11.2804v | 11.2768v | 11.2788v
BPESD._8 BPESDSH_2 || 12.8428v | 8.75754v | 8.75781v | 8.75771v
BPESD._7 BPESDSH.2 || 12.735v | 8.77394v | 8.75591v | 8.75783v
Time (sec) <1 ~ 15 ~ 120 ~ 800

Figure 24: QUBiC D_Cell_Peripheral Excitation Level Table. Resistances were converted to integers by a
scale factor of 10,000 (for convex flow). It took approximately 10 seconds to generate and sort the entire
automated shortest paths portion of the table. 1.3A current was used, and all diodes were taken to have
0.7v drop.

Clearly, as f increases, the precision of the aVd increases by the same factor. However, as f increases,
so does the amount of time we must wait for our results (by the same factor). We are noticing the effects of
a pseudo-polynomial time algorithm as we require more and more precision. Of course, since we only scaled
the resistances to 10* we can expect to get less accurate results for flows f > 10%. If nothing else, from the

25The netlist(s) for this device is copywrited by Philips Semiconductors

41



shortest paths information in this table alone, it should be apparent that BPESDSH_2 is a weak link in the
protection scheme. In fact, it is in every pair!

4.7 CAPACITY SCALING

In this section we modify the Convex Cost Successive Shortest Paths algorithm to get a polynomial time
algorithm. As noted in the table of Figure 18, the algorithm with Dijkstra’s SSSP algorithm as a subroutine
runs in some polynomial of the number of nodes and arcs, times the total flow U. As shown in the Examples
(1-3) we get a more accurate ESD Budget when U is large, receiving greater precision for U values of greater
powers (of ten). Therefore, as we require greater precision, the running time of our Convex SSP algorithm
will take exponentially longer to finish.

The main reason for this is that the algorithm augments too little flow at each iteration. In particular,
when we set § = 1 (in line 11 of Figure 17) the result is that only one unit of flow is augmented between the
source and sink, thereby relaxing only one unit of U. Clearly, augmenting more flow each time through the
while loop (of line 9) will cause the algorithm to satisfy U faster. However, this will lead to a less accurate
result. Therefore, what we want is a way to linearize the convex cost function into segments of unit length,
yet still be able to augment more than one unit of flow at each iteration. This can be accomplished by
linearizing the convex cost function is several phases. That is, let ¢ start as a large integer. When there
are no more J-augmenting paths (paths whose arcs have capacity at least §), decrease § = §/2, and repeat.
Of course, since none of the forward arcs in our simulation of an ESD event have any capacity constraint,
this procedure will never terminate. Since we want to eventually get down to § = 1, in order to linearize
to convex cost by segments of unit length, we must impose some capacity constraint, even if it must be
artificial. Therefore, let u;; = U for each forward arc (i,j) € A. Note that if we were still augmenting only
unit flow along paths this would impose no constraint on each arc since we never augment more than the
remaining flow at the source, which is itself never more than U. This capacity constraint will guarantee that
eventually § = 1, at which point we have essentially reduced to the original Convex SSP algorithm. Only
now much of the original flow U has been satisfied. All that is left to do is augment the remaining flow,
while still satisfying the reduced cost optimality conditions.

More precisely, let the first scaling phase begin at § = 2U°8UJ TInitialize the flow z = 0, and the
potentials 7 = 0. At the beginning of each d-scaling phase the algorithm must now maintain what we will
call a d-residual network G(z,d). The forward arcs of G(z,d) will be those arcs of (i,j) € A(G) such that
x;; + 0 < u;j where in which case we let

(i,7) € A(G(z,9)) be a forward arc such that
CCij = (C(.Z',‘j + 6) - C(.Z’ZJ))/(S

Us5 = d.
The reverse arcs will be those arcs (j,4) such that (4, j) € A(G) and that z;; > 6 where in which case we let

(j,i) € A(G(z,9)) be a reverse arc such that
ccji = (C(zs5 — 6) — Clzy)) /6

Uj; = 0.

Next, we must verify that each of the arcs of G(z,d) satisfy the reduced cost optimality conditions. At
first, this is trivial since x = 0 and 7 = 0, and G(x,d) = G. However, after the first §-scaling phase, none
of this is true. Furthermore, even though we have that after the previous (2d)-scaling phase the reduced
cost optimality conditions are satisfied, changing from 26 to § changes the convex costs cc, and therefore
the reduced costs. In particular, the reduced cost of an arc might become negative. Still, after a simple
increase or decrease of § units of flow along such an incriminating arc (or its antagonist), both the arc and
its antagonist will again satisfy the reduced cost optimality conditions. This can be done according to the
following three cases for a forward arc (i,j) where either it, or its antagonist, violates the reduced cost
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optimality conditions. The proof of this is left to the Appendix. For succinctness, let us say that an arc not
in the §-residue graph always has non-negative reduced cost.

1. when ¢f; <0 and ¢f; > 0 increase z;; by 4 units of flow, and update the antagonist.
2. when cf; > 0 and cJ; < 0 decrease z;; by ¢ units of flow, and update the antagonist.
3. and ¢f; <0 and ¢J; <0 cannot happen.

Unfortunately, such an operation will cause the imbalances (b) of some nodes to violate the mass balance
constraints. Therefore, we re-introduce the sets E and D as in (32) and (33) and fill them appropriately.
We proceed as in the algorithm of Figure 15 in choosing s and ¢ from E and D, terminating the while loop
when one of E and D are empty. At this point we enter the next (§/2) scaling phase. The optimality of the
rest of this §-scaling phase follows from Theorem 6. Inductively, since we end up eventually with § = 1, we
have an optimal convex flow from linear segments of unit lengths, just as was produced by the algorithm in
Figure 17.

The implementation of such a scaling scheme can typically be complicated, and messy. A good program-
mer will attempt to abstract the original procedure as much as possible, as well as the pre and post-processing
to each of the scaling phases. While this is usually a good practice, there are many pitfalls involved in this
approach. Some of these include

e Although we assumed that there is always an uncapacitated path between every source and sink node
for the original SSP algorithm, we certainly wouldn’t want this to be the case in any d-scaling phase,
except possibly the last one (§ = 1).

o Iterating though pairs of elements of E and D can be complicated. There may be paths in the §-residual
network for some pairs and not for others. Therefore, there are actually two criteria for removing a
node from either set: (1) its excess/deficit is less than 4, or (2) the excess/deficit is greater than §, but
there exist no augmenting paths between it and any element of the other set in G(z, d).

e Satisfying the reduced cost optimality conditions at the beginning of each J-scaling phase. This typ-
ically not only involves checking arcs against the cases enumerated above, but asserting that the
resulting augmentations have actually satisfied them.

e There are now three graphs which we must maintain, either explicitly or implicitly: G, G(z), G(z,9).

e Any other assertions or pitfalls which are necessitated by the fact that we are now dealing with the
implementation of a rather large program.

Therefore, it might be easier to altogether come up with a new procedure, and data structures to best
accommodate these modifications.

Capacity Scaling SSP Complexity: As before, the complexity of this routine can be measured by how
many augmentations are made along shortest paths overall. This requires that we know about how many
augmentations are made at each scaling phase. This can be computed by noting that a previous (2§)-scaling
phase must have ended when one of E or D (both of which can contain at most n nodes) was emptied—
after which the sum of the excesses can be at most 2nd. At the beginning of the § scaling phase, in order
to satisfy the reduced cost optimality conditions, the flow on any arc (of which there are m) may require
a positive augmentation of at most ¢ units of flow. Together, we conclude that at the beginning of any
d-scaling phase the total excess is at most 2(n + m) - 6. Therefore, at each §-scaling phase, there can be at
most O(max{n,m}) path-augmentations of § units of flow until there no longer exist nodes with imbalance
whose magnitude is greater than J. Altogether there are O(logU) d-scaling phases, which means that the
algorithm performs O(max{n, m}logU) C O(n%logU) path-augmentations. This yields a running time of
O(SP(n,m,C) - max{n,m}logU) depending on the running time SP of the shortest paths algorithm (and
priority queue in the case of Dijkstra) we choose. Altogether, we have now shown that the ESD Budget
Problem can be solved exactly in time O(n*logU) if we choose Dijkstra’s SSSP algorithm with a Trivial
Array priority queue, which is polynomial!
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4.8 FURTHER CONSIDERATIONS

Earlier we alluded to the possibility of implementing a more careful representation of electrical components.
This topic can be addressed from several angles. Representing a multi-terminal device graphically is not
difficult. However, enforcing that such a representation act like a transistor during a simulation is not trivial.
There are extensions to the capacity constrains of MCMF Networks which allow lower bounds on flow to
be placed on arcs (as well as upper bounds.) See [1]. Clearly, this is useful for modeling simple transistors.
However, it is less clear how the equilibrium current provided by a solution the convex flow problem can be
used here, or what appropriate weights for the arcs should be. Using any of the techniques discussed in this
paper requires the use of an auxiliary network when arcs are given non-zero lower bounds.

Also worth noting (again mentioned previously) is that MCMF problems make nice linear programs
(see [10] of [4]). [4] gives a nice description of how many network flow problems can be phrased as a linear
program. The convex cost network flow problem described for finding equilibrium currents requires quadratic
programming, which is in general much more difficult (see [10]). Nonetheless, the existence a tool which
solves quadratic problems greatly reduces the number on implementation details required to solve the ESD
Budget problem. It would be interesting to study the subset of quadratic programming problems which
represent ESD Budget calculations. In addition, the shortest paths problem can also be phrased as a linear
program. However, this is more complicated. This involves first reducing the SSSP problem to as Optimal
Matching problem on an auxiliary bipartite network, which in turn has an associated Integer Linear Program.
The general Integer Linear Programming problem is NP-hard (see [10]). Nonetheless, it turns out in this
case that basic solutions from the simplex methods for such reductions from matchings problems are integral
if any integral solutions exist.

44



A

Appendix

A.1 D1KSTRA SSSP CORRECTNESS

The correctness of Dijkstra’s algorithm can be proved by induction?® : Since at any point in the algorithm
the node set N is partitioned by S and S representing permanently labeled and temporarily labeled nodes
respectively, we should like to prove both of the following:

i

ii.

the distance labels of nodes in S are optimal

for each ¢t € S, the cost of the shortest path P, = (s = v1,v2,...,v; = t), from the original source s to
t, is equal to d(t) provided that v; € S, for i € {1,...,j}. That is, each internal node in the path lies
in S.

Proof. by induction on |S|.

Base: |S| = 1. This means that S = {s}, therefore we want that d(s) = 0, and that the internal nodes

P; are all in S. The shortest path to s, since it is the source, is obviously zero and s is clearly the only node
on the path.

Inductive Step: Assume |S| > 1 and that the distance label of nodes in S’ are optimal, where |S'| = |S|—1.

Furthermore, assume that each internal node on the corresponding path is in S’. We want to show that:

i. The distance labels of nodes in S, created when Dijkstra’s SSSP algorithm adds another node from
S’ to S, are optimal.
The algorithm proceeds by choosing the node v in the priority queue (in gl) whose temporary distance
label is smallest (line 5), and then removes it from the priority queue (thus removing it from S’ and
placing it in S’ (which will then become S)). By the inductive hypothesis, the temporary distance label
d(v) corresponds to the shortest path P, in which all of the internal nodes on the path belong to S’.
Now suppose that d(v) were not optimal. Then, there must exist a path P, = (s = v}, v}, ..., v}, = v),
such that 2?2—11 c(vi, viy1) < d(v), where at least one of v; for i € {1,2...,n} is not in S’. Therefore in

v; € S'. Let u € S be the first such node on this shortest path. The path P] can be decomposed into
P,, the current path to u found by the algorithm, and P, ), some short path from u to v. But then
the temporary label d(u) > d(v) since it was not the minimum from the priority queue min operation.
That is, both u and v were in 3’, but v won the min operation, and therefore must have priority less
than or equal to u. From this we have that the total cost of P, is at best d(v). Since we assumed
that there were no negative arc-costs, the total cost of P, ,) can be at best zero. But this contradicts
that P, is optimal, since clearly P, is better. We conclude that since the shortest path cannot contain
any nodes from ?I, the distance label d(v) must be optimal. Therefore the distance labels of nodes in
S = S§'"U{v} are optimal, as desired.

ii. The optimal distance labels of nodes t € S, created when Dijkstra’s Algorithm adds another node
from S to S’ , is equal to d(t) provided that each internal node lies in S’.

We first observe that a parent p(v) of a node v € N (line 11) is always an element of S’ (line 6).
Therefore, when Dijkstra’s algorithm removes a node v from the priority queue, thus permanently
labeling it (placing it in S), this may cause a decrease of the temporary labels of vertices ¢t € S.
After this update, the paths from the nodes ¢ back to the source s, which are recovered by recursively
traversing the parents (p(t)), satisfy d(t) = d(p(t)) + c¢(p(t),t), by the inductive hypothesis. Therefore
we have that that d(t) is the distance of the shortest path from the original source s to ¢ € S provided
that each internal node on the path is in S.

Therefore, by the principle of mathematical induction, we conclude that Dijkstra’s SSSP algorithm is correct.

O

26hypothesis from [1] page 110. The proof of these hypothesis are based on [1] and [6]
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A.2 DikSTRA COMPLEXITY FOR ARBITRARY PRIORITY QUEUES

Now that we have discussed all of the details of Dijkstra’s SSSP algorithm, and the abstract data types
which it uses, we can talk generally about its time and space complexity. It is then straightforward to make
an analysis with respect to a specific priority queue data structure.

The key to the runtime analysis of Dijkstra’s SSSP algorithm, which is in general true of many greedy
algorithms, is the number of times the contents of a loop are executed. The first key observation, in our
case, is that the foreach loop (line 9) is executed at most once for every arc in the graph. Within this loop
there is a decrease key operation. In a dense graph, this operation might potentially be executed each time
through the loop. The second key observation is that each node in the graph is inserted into the priority
queue data structure (line 5) before anything interesting happens. Before the each execution of the while
expression (line 8) a node is removed from the priority queue (lines 6-7 and 16-17) and we choose the next
node by a min priority queue operation.

Before choosing a priority queue implementation we can formulate the runtime of Dijkstra’s SSSP algo-
rithm by abstracting the runtime of the priority queue operations. If we let:

PQinit = pq initialization running time
PQins = pq insert running time
PQin = pq extract min running time
PQgi.c = pq decrease key running time

we can make the following general analysis. Up to the choice of the priority queue, Dijkstra’s SSSP algorithm
runs in:
G)(Panzt +n PQins +n* Pszn + m * PQdec) (48)

on graph G = (N, A), where n = |N| (number of nodes), and m = |A| (number of arcs).

If we use a Trivial Array as our priority queue data structure we get the following (infamous) short-answer
to how fast Dijkstra’s algorithm runs. It turns out that this is the best that we can do, using any of the
priority queues mentioned, for completely dense networks. The decrease key and initialize operations are in
time O(1) for this implementation, and initialization is in time O(n), while all of the extract min operations
run in no better than time

ii=n+(n—1)+...+1:@eO(nQ). (49)

which accounts for the size of the legal elements in the priority queue decreasing each time through the while
loop (line 17). Since m = |A(G)| (number of arcs in G) is less than or equal to the number of arcs in a
complete directed graph with n nodes (n(n —1)/2), we have m < n(n —1)/2 € O(n?), and we conclude that
Dijkstra’s Algorithm using the Trivial Array priority queue data structure runs in O(n?).

A.3 CAPACITY SCALING: 0-SCALING PHASE ARC AUGMENTATIONS

We continue here, where we left off in the Capacity Scaling section, and offer a proof that we can ensure
that the reduced cost optimality conditions on all of the arcs of any G(6,z) are satisfied before any path
augmentations are made during the J-scaling phase. As already noted, this is true for our base case,
§ = 208Ul and so we are left only with showing that as long as the reduced cost optimality conditions are
satisfied after the (24)-scaling phase, they are also satisfied before the path augmentations of the §-scaling
phase— although we may have to augment, or decrease, the flow on some arcs in order for this to be true.
Recall that for any arc (i, j) or (¢,7) which did not satisfy the reduced cost optimality conditions, there were
three cases with respect to the forward arc (4, j).
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1. when ¢f; <0and c}; >0

Here, we want to show that increasing the flow on (i, 7) by 0 that

A. (i,j) satisfies the reduced cost optimality conditions, namely that cf; = cci; — n[i] + 7[j] =
(Clas; +20) — Clai; +6))/0 — [i] +x[j] > 0, and

i,J) = (j,1) satisfies the reduced cost optimality conditions, namely that cJ; = ccj; — w[j] +7[i] =
(

B. |
(C(zi5) — Clzij +6))/6 — m[j] + =[] > 0.

Since the reduced cost optimality conditions were satisfied at the end of the (2§)-scaling phase we have
that

< (Clzij +20) — Clxiz))/(26) — w[i] + w[j] (50)

0
0 = Cl(zs +20) — Clzyy) — 207[i] + 267[j] (51)

and from our assumption this produces

0 > ¢ (52)
= (Clzij +0) — C(xi;)) /0 — x[i] + 7[j] (53)
0 = C(zij +0) — C(wij) — onli] + onf]. (54)

Therefore, from (51) and (54) we can write
C(Jiij +26) — C(xm) — 26m[i] + 26w[j] > C(.’Eij +9) — C(.’L'“) — om[i] + on[j]
which implies that (moving everything onto one side of the inequality)

0 < C(:cij+26)—C(mij+5)—57r[i]+57r[j]
= (C(zij +20) — C(zij +6))/d — 7[i] + 7[j]

which satisfies A. Now, note that at (54) we essentially have that

—(C(zi; + 0) — C(=ij) — om[i] + on[j]) > O
C(xij) — C(wij + 0) — om[i] + dm[j] > O
(C(zij) = Clxij +0))/0 = nljl +7li] = 0
thus showing B. O

2. when cJ; > 0 and cJ; < 0 decrease z;; by ¢ units of flow, and update the antagonist.

This follows practically verbatim from Case 1, dealing instead with the antagonist arc (i,7) = (j,14),
and decreasing the flow by & rather than increasing it. O

3. both c; <0 and ¢j; < 0 cannot happen for convex cost functions.

To see this, we need a formal definition of a conver function?”, namely: A real-valued function f defined
in some interval (a,b) is said to be convex if

fOz+ (1= XNy) <Af(z) + (1= N)F(y) (55)

whenever a <z < b, a <y < b, and 0 < A < 1. In particular, for any flow z;;, and our convex function
C(x;j), we can take a = 0 and b = u;; (which are of little significance here). We have then, by our
convexity assumption

C((IIJ,’J' + 6))\ + (1 - )\)(.’L‘U - (5) < )\C(xij + (5) + (1 — )\)C(CL’“ - (S)

27taken from p.101 of [11]
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Suppose that we let A = 1/2, and then rewrite the above equation:

Oy +0)+ 3wy —6) < 3C(ny +0) + 50l —0) (56)
C(zi;) < %C(xz'j +94) + %C(xz'j —9) (57)
2:C(zi5) < C(=ij +6) + C(wij — 9). (58)

Now let us further suppose (for the sake of contradiction) that it is possible that both cJ; < 0 and
¢j; < 0. As in Case 1 we have that

C(SL‘,'J‘ +9) — C(.’L‘z]) - 57‘(’[2] + 57T[J] < 0

C(Z‘,’j - (5) — C(.’L’,J) — (571'[2] + (SW[J] < 0

Taking the sum of the above two equations we get

C(IE,'J' +5) +C(.’L‘i]’ —5) - Q-C(xi]’) <
C(.’L'ij + (5) + C(SL'” - (5) < 2- C(SL',J)

which contradicts (58). Therefore, or assumption that both cf; and cJ; could both be less than zero
must have been false. O
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