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The Air Force Research Laboratory at Tyndall Air Force Base, Florida, has 

contracted the University of Florida to develop autonomous navigation for various 

ground vehicles.  Autonomous vehicle navigation can be broken down into four tasks.  

These tasks include perceiving and modeling the environment, localizing the vehicle 

within the environment, planning and deciding the vehicle’s desired motion, and finally, 

executing the vehicle’s desired motion.  The work presented here focuses on tasks of 

deciding the vehicle’s desired motion and executing the vehicle’s desired motion. 

The third task above involves planning the vehicle’s desired motion as well as 

deciding the vehicle’s desired motion.  In this work it is assumed that a planned path 

already exists and therefore only a technique to decide the vehicle’s desired motion is 

required.  Screw theory can be used to describe the instantaneous motion of a rigid body, 

i.e., the vehicle, relative to a given coordinate system.  The concept of vector pursuit is to 

calculate an instantaneous screw that describes the motion of the vehicle from its current 
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position and orientation to a position and orientation on the planned path.  Once the 

desired motion is determined, a controller is required to track this desired motion. 

The fourth task for autonomous navigation is to execute the desired motion.  In 

order to accomplish this task, two fuzzy reference model learning controllers (FRMLCs) 

are implemented to execute the vehicle’s desired turning rate and speed.  The controllers 

are designed to be dependent on certain vehicle characteristics such as the maximum 

vehicle speed maximum turning rate.  This is done to facilitate the transfer of these 

controllers to different vehicles. 

The vector pursuit path-tracking method and the FRMLCs were first tested in 

simulation by modeling the Navigation Test Vehicle (NTV) developed by the Center for 

Intelligent Machines and Robotics (CIMAR) at the University of Florida.  In addition to 

testing in simulation, vector pursuit path tracking and the FRMLCs were implemented on 

the NTV.  Results show that vector pursuit is more robust with respect to disturbances 

and to different vehicle speeds compared with other geometric path-tracking techniques. 
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CHAPTER 1 
INTRODUCTION 

An autonomous vehicle is one that is capable of automatic navigation.  It is self-

acting and self-regulating, therefore it is able to operate in and react to its environment 

without outside control.  The process of automating vehicle navigation can be broken 

down into four steps: 1) perceiving and modeling the environment, 2) localizing the 

vehicle within the environment, 3) planning and deciding the vehicle’s desired motion 

and 4) executing the vehicle’s desired motion [1].  There has been much interest and 

research done in each of these areas in the past decade.  The research proposed here 

focuses on deciding the vehicle’s desired motion and then executing that desired motion. 

Problem Statement 

Given: 

A path made up of two or more waypoints that an Autonomous Ground 
Vehicle (AGV) must track.  It is assumed that the AGV has a path planner, 
position system, and a vehicle control unit that conform to the interface 
specification in the MAX Architecture currently being developed at the 
University of Florida.  (See Appendix A) 

Develop: 

A path-tracking algorithm for an AGV to navigate a given path accurately 
at speeds up to 4.5 meters per second (~10 mph).  This is the principle task 
of the mobility control unit in the MAX architecture.  This task can be 
broken down into two subtasks.  First, develop an algorithm that 
determines the current desired motion of the AGV that causes it to track 
the given path.  Second, develop a control algorithm that executes this 
desired motion. 
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Project Background 

The Center for Intelligent Machines and Robotics (CIMAR) began working with 

autonomous vehicles in 1990 and has continued working with them to the present day.  

The Air Force Research Laboratory located at Tyndall Air Force Base, Florida, sponsors 

this work. 

History of Vehicles Automated at CIMAR 

In 1991, CIMAR completely automated its first vehicle.  A Kawasaki MULE 500 

all-terrain vehicle was modified for computer control and currently serves as a 

Navigation Test Vehicle (NTV) at the University of Florida.  Computer control of the 

vehicle was accomplished by mounting motors and encoders on the vehicle’s steering 

wheel, throttle, brake and transmission.  An integrated inertial navigation unit (INU) and 

differential global positioning system (DGPS) provided real-time vehicle position and 

velocity data for feedback.  An array of sonar sensors was mounted on the front of the 

vehicle to detect any unexpected obstacle in the vehicle’s path.  The NTV has undergone 

several revisions, over the years, as current technology continues to advance.  Figure 1.1 

shows a picture of the NTV as it is today. 

 

 
Figure 1.1:  Navigation Test Vehicle. 
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The technology developed on the NTV has been used to automate several other 

vehicles.  Figure 1.2 shows a John Deere Gator that was automated to serve as an 

autonomous survey vehicle (ASV).  It was designed to survey various Department of 

Defense (DOD) facilities that contain buried unexploded ordnance (UXO).  The John 

Deere Gator tows a sensor package, which is composed of a magnetometer array and 

ground-penetrating radar, over the entire area to be surveyed.  As the ASV navigates, it 

collects and stores time-tagged position data and data from the sensor package.  This data 

can then be postprocessed to determine the location of possible buried UXO. 

 

 
Figure 1.2:  Autonomous Survey Vehicle. 

A John Deere Excavator also was automated using the technology developed on 

the NTV.  The John Deere Excavator, shown in Figure 1.3, was automated in order to 

navigate to the location of buried UXO.  After navigating to the location of the buried 

UXO, an operator was able to dig up and remove the UXO through a tele-remote 

procedure. 

The technology developed on the NTV also was used to automate a D7G 

bulldozer for the Marines.  Figure 1.4 shows the D7G bulldozer outfitted with a mine 

plow and explosive netting. Its mission was to clear a 50x50-yard area of mines and other 
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obstructions in order to create a landing area for the deployment of the Marines and their 

supplies. 

 

 
Figure 1.3:  Autonomous John Deere Excavator. 

 
Figure 1.4:  Autonomous D7G Bulldozer. 

The latest vehicle to use the technology developed on the NTV is the All-Purpose 

Remote Transport System (ARTS) shown in Figure 1.5.  ARTS is a commercially 

available vehicle outfitted with a tele-remote package developed by Applied Research 

Associates, Inc. of Tyndall Air Force Base, FL.  This vehicle was automated for a 

demonstration during the October 1999 Joint Architecture for Unmanned Ground 

Vehicles (JAUGS) working group meeting held at the University of Florida. 
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Figure 1.5:  Autonomous ARTS. 

Evolution of the NTV’s Architecture 

The original NTV architecture was a blackboard approach.  An area in memory 

was created to which each system had access for reading and writing to allow them to 

communicate with other systems.  This approach has the advantage of allowing a system 

the ability to share its resultant data easily and immediately with other systems running in 

parallel.  This architecture was implemented on the NTV with a VME chassis with 

multiple 68030 CPU boards.  Shared memory was created to allow the systems running 

in parallel on different CPU boards to communicate their results via the VME backplane. 

There are two major problems with this blackboard implementation that make it 

difficult to maintain and upgrade.  First, debugging system software can be very difficult.  

For example, system A may have a memory leak that overwrites data in shared memory 

but appears to be operating correctly.  System B now uses this data not knowing it has 

been overwritten by system A.  By simply looking at its results, system B would appear 

to have a software bug in it and system A would not. To make things worse, different 

programmers may be responsible for different systems, where each programmer may 

require changes to variables in shared memory.  This has the possibility of quickly 

becoming a debugging nightmare with each programmer blaming another. 
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A second problem with this blackboard implementation is the difficulty in 

transferring only one system to another application or replacing an existing system with a 

different one.  Take for example a system that provides position feedback for the AGV.  

Suppose the positioning system on AGV 1 was tested fully and known to operate 

correctly.  Now, it is desired to use this positioning system on a newly developed AGV 2.  

In order for this transfer to work, both the hardware and software on AGV 2 must be 

identical to AGV 1.  That is, AGV 2 also must have a VME chassis and must have the 

exact shared memory structure.  Obviously this is not always the case, and substantial 

hardware and software changes must be made in order to use the positioning system on 

AGV 2. 

Because of these problems a new architecture was designed.  Based on experience 

from previous work, one main requirement was specified for this new architecture.  The 

architecture must allow systems to be self-contained submodules, where only the 

interface of each submodule is defined rigorously.  The effect of this requirement benefits 

both the developer and the user. The developer now has a great amount of freedom in 

choosing specific hardware and software for his or her system.  And, the user now has the 

ability to scale his or her AGV’s functionality by combining different submodules.  

Developing an architecture that meets this requirement is a two-step process 

accomplished by first determining a list of submodules required to automate a vehicle 

and then determining their interface.  The Modular Architecture eXperimental (MAX), 

currently being developed at the University of Florida, attempts to meet this requirement. 

MAX currently consists of the following submodules: Position System (POS), 

Vehicle Control Unit (VCU), Path Planner (PLN), Detection and Mapping System 



7 

 

(DMS) and Mobility Control Unit (MCU).  The modular structure of MAX is shown in 

Figure 1.6.  The interface between each submodule defined by MAX (See Appendix A) 

allows communication with other submodules and/or the user. 

 

Mobility
Control

Unit

Operator
Control

Unit

Path
Planner

Position
System

Detection &
Mapping
System

Vehicle
Control

Unit

 
Figure 1.6:  MAX sub-module structure. 

Research Motivation 

As indicated in the problem statement, there are two tasks considered in this 

research.  The first task of this research is to develop an algorithm to determine the 

current desired motion of the AGV that causes it to track a given path.  Currently various 

methods exist that are based on the geometry of some look-ahead point on the path 

relative to a vehicle coordinate system.  The distance to this look-ahead point is used as a 

tuning parameter.  Unfortunately there is a tradeoff in setting the look-ahead distance.  

For accurate path tracking it is desirable to have a look-ahead distance that is small so 

that the lateral error is reduced quickly.  On the other hand, a large look-ahead distance is 

desirable when considering system stability.  These methods only consider the position of 

the look-ahead point and not the orientation of the path at that point.  The motivation 
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behind this part of the research is to allow for smaller look-ahead distances without 

giving up system stability. 

The second task of this research is to develop a control algorithm that executes the 

AGV’s desired motion.  There are two main motivations for this work.  The first 

motivation is to have the ability to operate the NTV under various conditions and speeds.  

Operating conditions most likely change as new applications are established for the 

technology developed on the NTV.  Some possible changes in operating conditions 

include the weight of the payload, towing a trailer, the desired vehicle speed, and the type 

of ground on which it is operating (i.e., asphalt, grass, sand, etc…).  All of these 

conditions affect the ability of the NTV to navigate a path accurately.  Currently, if the 

operating conditions are too different, the NTV must be re-tuned to achieve an acceptable 

performance. 

Using the MAX architecture, it is desired to develop an MCU that has the ability 

to operate under these various conditions without the need to re-tune it.  This suggests 

that the MCU must have the ability to adapt to its current operating conditions. 

The second motivation for this part of the research is to reduce the amount of time 

required to transfer the technology to different vehicles.  One of the main reasons for 

developing a modular architecture is to have the ability of transferring a module from one 

vehicle to another or to be able to use modules that are made up differently on the same 

vehicle.  This makes sense for a POS module since it is, for the most part, independent of 

the vehicle it is on.  For example, one positioning system could be made up of GPS and 

INS units while another positioning system could be made up of just a GPS unit.  Since 
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by using MAX the interfaces between the two positioning systems are the same, they can 

easily be switched on the same vehicle or transferred to a new vehicle. 

The ability to switch or transfer modules becomes much more difficult when 

dealing with the MCU module.  Without using MAX architecture, control of a ground 

vehicle was accomplished typically by commanding a throttle position and steering wheel 

angle for a car-like vehicle or commanding left track and right track velocities for a 

tracked vehicle.  Obviously the commands depended highly on the type of vehicle.  By 

using MAX, the commands to control the vehicle are now the same, a propulsive wrench 

and a resistive wrench.  Additionally, ground vehicles typically will use the same 

components of the propulsive wrench and resistive wrench.  The component Fx is used to 

control the vehicle’s linear speed, and the component Mz is used to control the vehicle’s 

angular speed. 

Having the commands to control an AGV be the same for most ground vehicles 

makes the idea of being able to switch out or transfer the MCU more feasible.  Therefore, 

the second motivation for this part of the research is to develop an MCU that can be 

transferred to different vehicles with few or no changes to the MCU.  This suggests that 

the MCU must have the ability to adapt not only to different operating conditions but also 

to different vehicles. 

Research Objective 

The objective of this research is to develop an adaptive control algorithm for the 

NTV to track a given path accurately at speeds up to 4.5 meters per second.  This task is 

broken down into two subtasks.  First, develop an algorithm to determine the current 
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desired motion of the AGV that causes it to track the given path.  Second, develop an 

adaptive control algorithm that executes the AGV’s desired motion. 

The remainder of this dissertation is outlined as follows: Chapter 2 is a broad 

overview of different AGVs and their navigation architectures.  Chapter 3 introduces a 

new path-tracking algorithm that gives the vehicle’s desired motion based on the current 

vehicle position and orientation relative to a path.  Chapter 4 presents a fuzzy model 

reference learning controller (FMRLC) to track the AGV’s desired motion.  Chapter 5 

presents the development of a simulation of the NTV and presents the results of using the 

simulation to test the new path-tracking algorithm and the adaptive control algorithm.  It 

also presents the test results from implementing the algorithms on the NTV.  Chapter 5 

concludes by presenting the test results from implementing the path-tracking algorithm 

and adaptive control algorithm on a synchronous drive vehicle and a tracked vehicle.  

And finally, Chapter 6 presents some conclusions and future work. 
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CHAPTER 2 
REVIEW OF THE LITERATURE 

Recently, within the past couple of decades, there has been much research in the 

area of autonomous mobile robots.  The reason for the sudden interest in autonomous 

mobile robots is the advancement of supporting technology.  Both sensor and computing 

technology have increased greatly.  Sensors are more accurate and give more information 

about the current state of the robot and its environment.  And computers are faster and 

have larger memory to run larger, more complicated programs.  The advancement of 

these two areas has made possible the idea of autonomous mobile robots.  Today, 

autonomous mobile robots consist of air, land, and sea vehicles.  This chapter focuses on 

the research done on autonomous mobile land vehicles, or autonomous ground vehicles 

(AGVs).  First we consider some of the current applications of AGVs.  Then we review 

the current research on various navigation architectures. 

Autonomous Ground Vehicle Applications  

There are many applications for autonomous ground vehicles.  The motivations 

for automating different vehicles are typically to reduce risk of human life or injury in 

hazardous areas, to relieve human operators from overly monotonous tasks, or to increase 

the precision of navigation.  Some of these applications are discussed below. 

Planetary Rovers 

Green et al. present an algorithm that achieves path tracking and obstacle 

avoidance for a planetary rover [2,3].  Path tracking is accomplished through the 

feedback of position and orientation errors relative to the planned path.  The position and 
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orientation of the rover is estimated using an inertial navigation unit integrated with an 

odometer.  The rover avoids obstacles by creating an artificial potential field from the 

data received from a range sensor.  An obstacle avoidance error is calculated from this 

artificial potential field.  Both the tracking and the obstacle avoidance errors are used as 

inputs to a linear-feedback steering controller.  Simulated results of the controller are 

presented. 

Boissier presents the work done by the French Space Agency on planetary rovers 

for the IARES Eureka project [4].  The IARES mobile robot has six independent 

steerable wheels, three rotating axles, wheel and walking modes, passive adaptation to 

obstacles along the transversal axis and mixed passive/active longitudinal deformation, 

active wheel loading equalization on slopes and maximum speeds of 0.10 m/s or 0.35 

m/s.  It has a SAGEM inertial unit for localization that uses zero velocity updates to 

minimize the amount of drift in position.  The IARES mobile robot also has stereovision 

in order to create a digital terrain model that is used to navigate the vehicle.  It was 

evaluated successfully in different terrain conditions for both predictive tele-remote 

operation and autonomous navigation. 

Agricultural Vehicles 

O’Connor et al. at Stanford University rely solely on Carrier Phase Differential 

GPS (CPGPS) to provide position and attitude feedback to control the position of 

agricultural equipment relative to a preplanned path [5].  The position and attitude are 

calculated using four single-phase GPS antennas on the vehicle.  The test platform used 

by O’Connor et al. to test autonomous navigation is a John Deere 7800 tractor.  A hybrid 

controller is used to control the vehicle’s heading.  For large heading errors, a “bang-

bang” control technique is used.  Otherwise, for small heading errors, a Linear Quadratic 
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Regulator is used.  Tests showed the lateral position standard deviation to be less than 2.5 

cm and the heading standard deviation to be less than 1 degree. 

Another group interested in autonomous agriculture vehicles is from the Silsoe 

Research Institute in Bedford, UK [6].  Marchant et al. present a row-following 

autonomous vision-guided agriculture vehicle.  They use image analysis and odometer 

data to localize the vehicle.  A proportional controller is used to track the desired path.  

Marchant tested the vehicle on four fields of cauliflower.  The control error for these runs 

was determined to be less than 20 mm RMS. 

Cleaning Vehicles 

Hofner and Schmidt present MACROBE, an autonomous floor-cleaning and 

inspecting robot [7,8].  Navigation is achieved by executing one of five preprogrammed 

motion macros.  A planner on MACROBE uses its current knowledge of the workspace 

to generate a serpentine path made up of these motion macros.  If an unexpected obstacle 

is encountered, MACROBE adds it to its knowledge of the workspace and then plans a 

new path. 

Ulrich et al., from the Swiss Institute of Technology in Lausanne, Switzerland, 

present an autonomous vacuum cleaner [9].  A Koala robot is used as the platform for the 

autonomous vacuum cleaner.  The robot is equipped with a 2-DOF arm that is used to 

facilitate the cleaning process.  The arm also is used tactically to sense unknown objects 

and then classify them as legs, walls, corners or unknowns.  Through the use of the object 

data along with compass and odometer data, the robot builds a map of its workspace.  An 

algorithm to clean the workspace begins by attempting to travel the perimeter of the 

workspace.  This allows the robot to build an initial map of its workspace.  After the 

perimeter is traversed, the robot attempts to clean the interior part of the workspace by 
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traveling back and forth between known walls.  Ulrich tested the robot in a 2-3 square 

meter area that was covered with sawdust.  The robot was able to clean 95% of the area 

in its internal map. 

Nolfi uses a recently developed technique to evolve the desired behavior of an 

autonomous vehicle to collect garbage and remove it from an arena [10].  The platform 

chosen is a Khepera robot that is developed at EPFL in Lausanne, Switzerland.  It is a 

wheeled vehicle controlled by two DC motors with incremental encoders.  The Khepera 

robot also is equipped with a gripper module that has 2-DOF and eight infrared proximity 

sensors.  The robot is automated through the use of a neural controller.  The neural 

network chosen is made up of seven sensory neurons, 16 motor neurons and no internal 

neurons.  A genetic algorithm is used to evolve this neural network to perform various 

tasks such as exploring the environment, locating and picking up target objects and 

removing the objects from the arena.  As the network evolves, the number of successful 

pickup and release tasks increases and the number of crashes decreases. 

Passenger Vehicles 

Two areas of research for the development of an Automated Highway System 

(AHS) are vehicle longitudinal control and lateral control.  Longitudinal control typically 

involves controlling the vehicle’s throttle and brake.  Spooner and Passino present their 

results of two fuzzy longitudinal controllers for vehicle following [11].  The controllers 

they use are a direct adaptive controller and an indirect adaptive controller that use 

Takagi-Sugeno fuzzy systems.  Performance results of their controllers in simulation are 

shown graphically. 

Huang and Ren also have done work on vehicle longitudinal control [12].  Their 

work deals with a switching strategy between the throttle and brakes.  They compute a 
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control signal for the throttle and a control signal for the brake.  Each signal is optimized 

in order to meet some tracking criterion by a learning algorithm.  These two signals then 

are used to determine brake and throttle positions.  Results from simulations are 

presented graphically. 

Vehicle lateral control, on the other hand, involves controlling the vehicle’s 

steering.  Unyelioglu et al. present their design and stability analysis of a controller for 

lane following [13].  Their objective is to steer a vehicle so that it stays in the middle of 

the lane.  This is accomplished by defining a reference line in the middle of the lane and a 

look-ahead point on the vehicle’s longitudinal axis at a given distance in front of the 

vehicle.  The controller uses the offset distance between the look-ahead point and the 

point on the reference line closest to the look-ahead point.  Using Routh-Hurwitz stability 

criterion they prove that for a given range of speeds, by choosing a sufficiently large 

look-ahead distance, the system is stable for that range.  Simulation results are given to 

demonstrate the performance of their controller. 

O’Brien et al. also address the lateral motion control of automated highway 

vehicles [14].  They designed an H∞ controller to track the center of the current lane on 

both curved and straight highways.  The result of considering performance requirements 

in the controller design, is a controller that is robust to model uncertainty.  The 

controller’s robustness to different speeds, road conditions and wind gusts are examined.  

The controller is tested in simulation for various conditions.  For each condition tested, 

the lateral offset is less than 20 centimeters and the yaw angle error is less than 0.01 

radians. 

Two other areas of research dealing with passenger vehicles are active steering 

assistance and parallel parking.  The concept behind active steering assistance is to 
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monitor the driver’s actions and to intervene when needed.  Hsu et al. developed a system 

named cooperative copilot that keeps a vehicle safely in its lane [15].  The copilot 

generates bounds of feasible steering angles and determines whether a correction should 

be applied.  The steering angle bounds are determined from the current road curvature, 

vehicle motion and road width.  A driving simulator is used to test the performance of the 

copilot and to determine how it works with a human driver. 

Parallel parking can be a difficult task for many people.  Therefore automating 

this procedure would be very useful and appreciated.  Gorinevsky et al. developed an 

automated parking control system that uses artificial neural network technology [16].  

The neural network is used to generate a trajectory and to control the automated car.  The 

design is based on a radial basis function architecture to calculate the reference trajectory 

and a feedback-feedforward controller to track the reference trajectory.  The design is 

tested in simulation for different parking situations. 

Paromtchik and Laugier present an iterative algorithm for parallel parking based 

on ultrasonic range data [17,18].  They use sinusoidal reference functions to control the 

steering angle and the vehicle’s velocity.  The control scheme is implemented in a 

reactive scheme in order to avoid obstacle collisions.  They experimentally verify their 

algorithm on a LIGIER electric autonomous vehicle. 

Military Vehicles 

There are many areas where the military is researching the use of AGVs.  One 

area is in a project for the United States Army that involves automatic target acquisition 

(ATA) [19].  A typical mission involves a scout driving from a secondary observation 

point to a main observation point.  This allows the vehicle to record a path using position 

data from an integrated inertial navigation system and a differential global positioning 
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system.  A remote operator then takes over and the ATA mission begins.  The operator is 

alerted to any possible target by the ATA, at which point the operator can request 

additional data.  At any point during the mission the operator has the option to command 

the vehicle to return to the secondary observation point.  The vehicle then autonomously 

drives back to the secondary observation point.  Murphy and Legowik from the National 

Institute of Standards and Technology present their work on the mobility system that 

controls the vehicle during autonomous navigation for this project.  They use a pure 

pursuit algorithm to track the recorded path and a gain-scheduling algorithm to track a 

commanded speed.  Results on performance of the autonomous navigation are not given. 

Another area in which the military has shown an interest in AGVs is the Defense 

Advanced Research Program Agency’s (DARPA) program for Tactical Mobile Robots 

(TMR) [20].  The main goal of the TMR program is to develop the technology for small 

robots that can be deployed easily in urban environments.  This places some unique 

requirements on system size, navigation capabilities, communication capabilities and 

operator interface.  The size restrictions they are trying to achieve are a maximum size of 

24” x 20” x 8” and a maximum weight of 20-25 pounds.  This allows the robot to be 

deployed and controlled at the platoon or squad level.  The TMR robots must be able to 

navigate in urban environments.  This requires the robot to be able to open and close 

doors, to navigate over rubble, and up and down stairs.  The environment may not be 

communication-friendly, but each robot must keep in contact with its operator and other 

TMR robots in the area.  Finally, the TMR robots must be able to operate with a 

minimum level of intuitive operator direction.  This project currently is scheduled for 

completion by the year 2002. 
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Security Vehicles 

There are many applications for both indoor and outdoor security AGVs.  

ROBART III is an indoors-nonlethal autonomous security response robot presented by 

Ciccimaro et al. [21].  It is designed to operate in a previously unexplored area with little 

support required from the operator.  It is capable of detecting intruders through the use of 

eight passive-infrared motion detectors.  The infrared motion detectors are validated 

partially by a Doppler microwave motion detector.  A black-and-white video surveillance 

camera mounted to the robot’s head is used for further assessment of possible intruders.  

The nonlethal response capabilities include a Gatling gun and three sirens.  The Gatling 

gun is a six-barreled pneumatically powered gun capable of firing tranquilizer darts.  A 

visible laser is used to facilitate the accuracy of the gun when it is operated remotely.  

The three sirens are capable of an ear-piercing 103 decibels that can alert those nearby 

and disorient the intruder. 

Pastore et al. present their work on the Mobile Detection Assessment and 

Response System-Exterior (MDARS-E), an outdoor security AGV [22].  Robotics 

Systems Technology developed the MDARS-E.  Navigation is accomplished by 

combined inputs from differential GPS, a fiber-optic gyro, a wheel odometer, and 

landmark recognition.  Obstacle avoidance is achieved with a two-tier layered approach.  

Long-range sensors are used to provide first-alert obstacle detection from 0 to 100 feet.  

Short-range sensors are used to provide higher resolution data for precise obstacle 

avoidance.  The sensors that are used for obstacle detection include radar, laser ranging, 

ultrasonic ranging, and stereovision.  Two sensors are used for intruder detection, vision 

and radar, to achieve a high probability of detection and to minimize false detections. 
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Inspection Vehicles 

AIRIS 21 is an underwater inspection robot presented by Koji [23].  The specific 

task for the AIRIS 21 robot is to inspect the outside surface of a reactor pressure vessel of 

nuclear power stations.  It performs a nondestructive inspection of welds in the reactor 

pressure vessel shell from the inside.  The AIRIS 21 uses thrusters to provide a chamber 

underneath it with negative pressure.  This allows it to be sucked securely onto the 

reactor pressure vessel’s wall.  Two drive wheels and one idle wheel enable it to 

maneuver on the wall.  Position of the robot is accomplished with a depth gauge, an 

optical beam, gravity sensor and an encoder.  The depth gauge is used to determine the 

elevation of the robot.  The optical beam is used to locate a known structure relative to 

the robot.  Then, a map of the operating environment is used to locate the robot.  The 

gravity sensor is used to determine the direction of travel while the encoder keeps track 

of the distance traveled. 

A wheeled, multi-articulated robot that operates in a sewage system is presented 

by Cordes et al. [24].  The objective behind this project is to be able to inspect Germany’s 

360,000-km long public sewage system.  Germany’s public sewage system is over 25 

years old and possibly could be polluting the soil and ground water.  The robot is 

required to operate wirelessly, to navigate 90-degree turns and steps of 0.3 meters high, 

and to operate in pipes with a diameter of 20 to 80 centimeters.  The design looks like a 

wheeled snake that consists of different modules.  These modules include sensor, drive, 

and power supply modules.  This allows the driving and the sensing modules to be 

developed independently. 
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Autonomous Ground Vehicle Navigation Architecture 

In general, current navigation architectures are labeled as behavioral, hierarchical 

or a hybrid of behavioral and hierarchical.  Behavioral architectures, also known as 

reactive architectures, assign the AGV to execute a particular behavior because of current 

sensor readings.  The behaviors are defined in such a way that they cause the AGV to 

tend toward completing its task.  This allows the vehicle to navigate reliably with quick 

response in a dynamic environment.  However, as the complexity of the AGV’s task or 

its operating environment increases, the number of behaviors usually increases as well.  

This makes it very difficult to predict the behavior of the AGV, and it makes it more 

difficult for the designer to determine the correct behavior for all possible sensor 

readings.  Also, behavioral architectures do not guarantee the best solution since they 

consider only the current sensor readings. 

Hierarchical, or top-down, architectures break down the AGV’s task into subtasks 

and create functions to achieve these subtasks.  This allows for the design of a 

straightforward approach to accomplishing the task.  Hierarchical architectures typically 

maintain a model of its operating environment.  They use this model along with 

sophisticated planners to determine the best course of action in order to achieve a task.  

Unfortunately, using sophisticated planners also tends to be complex, and results in a 

slow response to changing environments. 

Hybrid architectures attempt to combine behavioral and hierarchical architectures 

in order to attain the desirable qualities of both architectures while overcoming their 

individual shortcomings. 
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Behavioral Architecture 

Some of the recent methods used to implement behavioral architecture include 

potential field [25], fuzzy logic [26-32], neural networks [33-35] and genetic algorithms 

[36,37].  Some researchers have combined one or more of these methods in an attempt to 

overcome the weaknesses of a particular method with the strengths of another.  Some of 

these combinations are fuzzy-neural networks [38-42], fuzzy-genetic algorithms [43], 

fuzzy potential field [44,45] and fuzzy-neural networks-genetic algorithms [46]. 

Song and Sheen present a fuzzy-neural controller for obstacle avoidance of a 

differentially driven vehicle [40].  The operating environment is assumed to be unknown 

completely and, the vehicle is required to maneuver to a target location.  Heuristic rules 

are combined with a neural network to map input from sonar sensors to the left and right 

motor velocities.  Two behaviors implemented for vehicle navigation include avoid 

obstacle and danger.  The avoid obstacle behavior attempts to navigate the vehicle in the 

direction of the target unless impeded by an obstacle.  The danger behavior is used to 

escape from any undesirable situations.  When the danger behavior is activated, the 

vehicle spins around to find a direction of escape.  The danger behavior takes priority 

over the avoid obstacle behavior.  Results are shown graphically of a robot navigating to 

a target while avoiding walls and a box-shaped obstacle. 

A sensory-based navigation scheme is presented by Tani and Fukumura [35].  The 

navigation architecture consists of two levels, a control level and a navigation level.  The 

control level incorporates a potential method in order to limit the desired trajectories so 

that each one is smooth and avoids obstacles.  This leaves the task of the navigation level 

to decide the direction of travel at branches in the task space.  A recurrent neural network 
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is used to accomplish this task.  The network is trained through the supervision of a 

trainer who knows the optimal path. 

The mobile robot YAMABICO is used to test this navigation technique.  The 

experiment involves navigating the task space by alternating between a figure 8 route and 

a figure 0 route.  At a specific branch in the task space, the vehicle must switch between 

the two different routes by deciding the direction of travel.  Results of this test are shown 

graphically where for the most part, the navigation level chose the correct direction of 

travel at the various branches in the task space. 

Hoffman and Pfister present a fuzzy logic controller to navigate a vehicle to a 

goal point while avoiding obstacles [43].  The fuzzy logic controller is used to map the 

perceived input to an appropriate control action.  This fuzzy logic controller is designed 

automatically through the use of a genetic algorithm.  The genetic algorithm uses an 

objective function to select the best individuals for reproduction of offspring.  The fuzzy 

logic controller’s performance is measured with respect to the two tasks of reaching the 

goal and avoiding obstacles.  If the vehicle collides with an obstacle the controller is 

given a reward proportional to the number of steps prior to the collision.  If the vehicle 

does not collide but does not reach the goal in the allotted steps, an additional reward is 

given depending on how close the vehicle is to the goal.  If the vehicle is within a given 

distance to the goal, the controller receives a third reward.  The method was applied 

successfully and the results are shown graphically. 

Hierarchical Architecture 

Hierarchical architectures typically involve either a path-tracking or trajectory-

tracking algorithm.  Since the work done here involves path tracking, a more detailed 

review of hierarchical architectures is warranted.  Desired paths or trajectories can be 
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generated in real-time based on current sensor readings or generated once based on a map 

of the operating environment.  The method used, either real-time or not, to generate the 

paths or trajectories generally depends on whether the operating environment is known a 

priori and if it is static.  Once the path or trajectory is known, there are several different 

techniques used to track the path or trajectory.  Some of these techniques include 

Proportional-Integral-Derivative (PID) [47-53], pure pursuit [54-56], sliding-mode 

[57,58], state feedback [59-66], fuzzy logic [67,68], neural networks [69-73] and fuzzy 

neural networks [74,75]. 

PID techniques calculate errors based on the path or trajectory and the current 

vehicle pose and velocity.  These errors, and possibly their derivative and integral, are 

multiplied by gains to determine the controlled input to the system.  The first method 

used to control the NTV, called follow-the-carrot, is a PID technique. The follow-the-

carrot path tracking method comes from the idea of holding a carrot in front of a farm 

animal in order to coax the animal to move in a desired direction.  With this in mind, the 

follow-the-carrot method calculates a desired heading from the current vehicle position to 

a look-ahead point called the carrot. The look-ahead point is a point on the path that is a 

given distance in front of the orthogonal projection of the current vehicle position onto 

the path.  A PID controller is used with the error between the vehicle’s current heading 

and desired heading as its input and outputs the current steering wheel angle.  This 

method works well for straight paths but has problems with curved paths. By having the 

look-ahead point a certain distance in front of the vehicle on the path, the desired heading 

causes the vehicle to cut corners.  Even if the vehicle were able to track the desired 

heading with no errors, the vehicle would still have errors in its position. 
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Kanayama and Fahroo propose a new steering function as a line tracking method 

for nonholonomic vehicles [51].  The current state of a ground vehicle can be represented 

by its current linear speed, v, and its current path curvature, κ = 1/r.  Therefore, their 

controller is designed to determine the optimal change in path curvature in order to track 

a given line.  They choose to control the vehicle’s path curvature because it is related 

more directly to vehicle control, and it is independent of the global coordinate system.  

The steering function they propose is: 

( ) dcba
ds

d
∆−−−−= 1θθκ

κ
, 

where a, b and c are positive constants, κ is the current vehicle’s path curvature, θ-θ1 is 

the vehicle’s heading error and ∆d is the vehicle’s position error.  Immediately, it is 

apparent that there is a problem of mixed units in their proposed steering function.  

Unfortunately, Kanayama and Fahroo did not address this issue.  By requiring that the 

magnitude of (θ-θ1) be less than π/2, they determined that the relationship between the 

constants should be, a = 3k, b = k2 and c = k3, for the controller to be stable.  The term k is 

the gain of the steering function and controls how fast or how slow the vehicle converges 

to the line.  This technique was tested in simulation as well as on the autonomous vehicle 

Yamabico.  The results of these tests are shown graphically for different values of the 

steering function gain k. 

Egerstedt et al. present the autonomous navigation of a car-like robot by tracking 

a reference point [49]. As long as the vehicle’s position and heading errors relative to the 

reference point are small, the reference point moves along the path as the vehicle follows 

it.  If the errors are too large, the reference point may stop to wait for the vehicle.  

Therefore, they call the reference point a virtual vehicle.  The location of the virtual 

(2.1)
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vehicle depends on both the vehicle’s current speed and position.  Once the location of 

the virtual vehicle is determined, the steering is controlled by the proportional controller: 

( )df k ϕϕδ −−= , 

where δf is the steering angle, ϕ is the vehicle heading, ϕd is the desired heading and k is 

chosen based on the vehicle’s maximum steering angle.  This technique was tested on a 

modified radio-controlled car and a Nomad 200.  Results for both vehicles are shown 

graphically and considered satisfactory. 

A geometric path-tracking control of a differential drive vehicle that takes into 

account the kinematic and dynamic properties of the vehicle is proposed by DeSanits 

[48].  The vehicle has rear differentially driven wheels and a front castor wheel.  A 

reference frame is placed at the center of the rear wheel’s axle.  Using this reference 

frame, differential equations of the vehicle’s dynamic model are derived.  Then, this 

model is simplified by assuming no slip in either the lateral or longitudinal directions.  A 

path is assumed to be defined by a set of continuous functions of position and orientation 

that the guide point must track.  It is assumed also that both velocity and acceleration 

profiles of the path are given and described by continuous functions.  A path-tracking 

controller is designed then in terms of the heading, lateral, and velocity errors.  Assuming 

the errors are kept sufficiently small, the vehicle’s controller can be decentralized 

allowing separate controllers for speed and steering.  It turns out that the speed controller 

is in the form of a PI controller and the steering controller is in the form of a PID 

controller.  Therefore, the gains of the controllers are determined through the use of 

classical PID techniques.  An example of applying this control technique to a wheelchair 

is given, but no results are given of its accuracy. 

(2.2)
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Lee and Williams present a control method for a differentially driven autonomous 

mobile robot [52].  The control structure is made up of two loops.  In the vehicle 

controller loop, a trajectory generator first provides the desired displacement and rate.  

Then, the errors between the desired and actual are used as input to a PID controller that 

converts them to a desired torque.  The second loop calculates an error between a desired 

posture and an actual posture.  The desired posture is determined using the desired 

displacement and rate along with a kinematic model of the vehicle.  Similarly, the actual 

posture is determined with the measured displacement and rate along with a kinematic 

model of the vehicle.  The error in posture is used then to calculate a torque in order to 

drive the error to zero.  The total commanded torque is the sum of the torque calculated 

from the vehicle controller and the torque computed from the error in posture. 

This navigation technique was tested both in simulation and experimentally.  

Experimental results are shown graphically of the controller’s ability to handle an initial 

lateral error of 1 cm, initial longitudinal errors of 0.5, 1 and 2 cm, and initial heading 

errors of 1, 2 and 3 degrees.  The lateral error converged almost to zero in approximately 

six seconds.  The longitudinal and heading errors were able to converge to zero in about 

0.2 seconds. 

Choi presents an adaptive controller for the lateral position of a vehicle for the 

Intelligent Vehicle Highway System (IVHS) [47].  The lateral error is measured using 

look-down sensing which can be realized using electrified wires, radar reflection or 

buried permanent magnets.  Using the lateral error as input, a PD type controller is 

presented.  This results in the possibility of a steady state error.  In order to deal with this, 

the PD controller is modified by adding an unknown lateral disturbance force.  This 

lateral force is used to model unmeasured disturbances such as wheel misalignment, 
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unbalanced tire pressure, side wind, and offset errors on the steering actuator or its 

sensor.  This unknown lateral force is updated continually based on Lyapunov criterion.  

The controller was tested on a track that is 330 meters long and 5 meters wide.  

Permanent magnets, 2.2 cm in diameter and 10.2 cm long, were placed every meter.  At a 

low speed of 10 m/s, the vehicle followed the center of the track with a maximum lateral 

error of 0.1 meters.  The controller was tested also at a higher speed of 22 m/s and again 

the maximum lateral error was 0.1 meters. 

A control technique for high-speed autonomous navigation of a full-size outdoor 

vehicle is presented by Shin et al. [53].  This technique separates the control of the 

vehicle speed and steering by choosing the center of the rear axle as the point on the 

vehicle to control.  The desired speed of the vehicle is determined by factors such as the 

current path curvature and the vehicle’s distance to nearby obstacles.  To control the 

vehicle’s steering, a feedforward module that incorporates the vehicle’s dynamics is used 

in conjunction with a feedback controller.  The control input then takes the form: 

iii KeRU += , 

where Ri is the feedforward compensation and Kei is the feedback error multiplied by 

some gain. 

The dynamic model of the feedforward compensator considers only the latency of 

the steering.  The latency is considered the dominant characteristic of the vehicle’s 

dynamics.  It is modeled using a lumped system of first-order lag.  The feedforward 

compensator, in effect, sends commands in advance so that the steering maneuver starts 

before a turn is encountered. 

The feedback controller uses the vehicle’s position, heading, and curvature errors.  

Using the geometry of the errors, a quintic polynomial function is determined that 

(2.3)
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converges to zero at a specified look-ahead distance.  Then, the variation of the steering 

angle is determined from this polynomial.  The look-ahead distance is used to adjust the 

sensitivity of the system and is a function of the current vehicle speed. 

Testing of this autonomous navigation technique was accomplished in simulation 

and through experiments.  In simulation, the technique was tested using an open-loop 

controller, just the feedback controller, just the feedforward controller, and finally with 

both the feedback and feedforward controller.  The best results were obtained using the 

feedback with the feedforward controller.  The results of this technique had a position 

error of 0.1 meters with a standard deviation of 0.1 meters, and a velocity error of 2.8 

meters per second with a standard deviation of 4.8 meters per second. 

Shin et al. used the autonomous vehicle Navlab as a test bed.  The desired path 

consisted of a 20-meter straight line ending with a 5-meter lateral jump and then followed 

by an additional 80-meter straight line.  Results are shown graphically for various 

feedforward compensation times.  With these results the feedforward compensation time 

of Navlab is determined to be 0.5 seconds.  Using this time, the navigation technique is 

tested on a path that is over 500 meters in length at speeds up to 10 meters per second.  

Results of this test are shown graphically and are considered acceptable. 

Jagannathan et al. present the path planning and control of a nonholonomic 

vehicle [50].  A path planner that considers the nonholonomic constraints generates a 

desired trajectory.  The control structure consists of an inner feedback linearizing loop to 

eliminate the nonlinearities in their equation to model the vehicle dynamics.  A second 

feedback linearization loop is required after converting the path trajectories to a local 

vehicle coordinate system.  Finally, Lyapunov techniques are used to design an outer 
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control loop to guarantee that the vehicle follows the desired trajectory.  This selection of 

the control law yields a PD controller. 

The path planning and control proposed by Jagannathan et al. is tested in 

simulation.  The width of the vehicle is assumed to be 10 cm and the radius of its wheels 

is assumed to be 3 cm.  The position and velocity gains for the outer loop PD controller 

are set to 100 and 20, respectively, for a critically damped system.  Several tests are done 

where an initial position and orientation are specified, as well as a goal position and 

orientation.  Results of these tests are shown graphically. 

Murphy presents a simple vehicle and path following model for vehicle 

navigation at highway speeds [55].  A military HMMWV was modified by attaching 

motors to the steering wheel, brake, and throttle.  In addition, a video camera was 

mounted on the vehicle in order to determine its lateral position on the road.  Pure pursuit 

is used to determine the instantaneous curvature of the vehicle’s path.  Using the models 

developed, it is proven that the system’s stability increases by reducing the controller 

delay and decreases by increasing the vehicle speed.  In order to compensate for the 

computational delay of the vision, Murphy suggests using an inertial navigation sensor. 

Ollero and Heredia present their stability analysis of a pure pursuit path tracking 

technique that is applied to a computer controlled HMMWV [56].  Kinematic equations 

of the vehicle’s motion are determined in terms of the vehicle’s speed and angular 

velocity.  The vehicle’s angular velocity is modeled by a first order differential equation.  

The vehicle’s desired turning radius is calculated using pure pursuit: 

x

L
R

2

2

= , (2.4)
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where L is the look-ahead distance and x is the lateral error.  This is a proportional 

controller where the look-ahead distance determines the gain to be applied to the lateral 

error.  Assuming a small lateral error and a small angle between the vehicle heading and 

the heading from the vehicle position to the look-ahead position, they derive the 

condition for stability to be L≥1. 

Next, the stability is analyzed by assuming a time delay, τ, of the steering 

command due to computing and communication delays.  Conditions for stability are 

derived and shown graphically by plotting the nondimensional quantities τ/T by L/(VT), 

where T is the steering time constant and V is the vehicle velocity. 

To determine the accuracy of their stability analysis, experimental data is taken of 

the computer controlled HMMWV at speeds of 3, 6 and 9 meters per second.  For each 

speed, the minimum and maximum look-ahead distance that results in a stable system is 

determined.  The results are displayed graphically by plotting the stable look-ahead 

distance determined by the analysis without delay and with delay as a function of velocity 

and plotting the experimental results on the same plot.  The experimental results require a 

slightly larger look-ahead distance than the stability analysis with delay requires.  This is 

accounted for because of the fact that nonlinear terms are not considered in the vehicle 

model. 

Ku and Tsai present an autonomous navigation of an indoor vehicle that follows a 

person [54].  The navigation technique presented is broken down into seven steps.  First, 

acquire an image.  An image of the environment in front of the vehicle is captured using a 

CCD camera that is mounted on the vehicle.  In order to reduce the time to detect the 

person to follow, a rectangular shape is attached to their back. The second step involves 

detecting feature points of this rectangular shape.  Third, transform the feature points 
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from the image coordinate system to a 3-dimensional space coordinate system and 

determine the location of the person.  Fourth, using a sequential pattern recognition 

technique, determine if the person is walking straight or turning.  Step five calculates the 

speed of the person from the location of the person in consecutive cycles.  Step six 

calculates a desired turning radius of the vehicle using pure pursuit.  Finally, step seven 

controls the speed of the vehicle using a fuzzy control technique.  This method is tested 

using an autonomous vehicle and results are shown graphically.  Successful and smooth 

navigation is claimed while a person walks in different directions. 

Balluchi et al. present a path-tracking controller designed according to sliding-

mode techniques for Dubin’s cars, i.e., cars that can only move forward with curvature 

bounds [57].  They assume the forward velocity is given, and therefore consider only the 

lateral stabilization of the vehicle to the desired path.  The input of their controller 

consists of the lateral and heading errors, the sign of the path curvature and the current 

vehicle speed.  Note that only the sign of the path’s curvature is used and not its 

magnitude.  This is a result of assuming that the path shape is not known a priori.  Using 

the sliding-mode design technique an equivalent control is derived.  This result did not 

satisfy the minimum turning radius constraint of their Dubin’s car.  A control law similar 

in form of the equivalent control is proposed instead.  This control law converges to the 

reference path while satisfying the constraints provided the initial position and heading 

errors are small.  This technique is tested in simulation and the results are shown 

graphically. 

State feedback techniques generally use kinematic equations to model the 

vehicle’s motion.  Then, these equations are converted and possibly linearized, to state 
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space equations. Using various methods, a feedback gain matrix is determined to control 

the system. 

Aguilar et al. present a path-following controller for differential drive mobile 

robots [59].  It is assumed that a path exists whose curvature is both continuous and 

bounded.  A moving reference frame is defined with the origin located at the orthogonal 

projection of the vehicle’s position onto the reference path and orientated with the 

tangential of the path at that point in the direction to follow.  Differential equations of the 

position and heading errors are derived based on the location of the vehicle’s reference 

frame relative to the moving reference frame.  Using these differential equations and 

assuming a nonzero linear velocity, a state feedback controller is presented to control the 

vehicle’s angular velocity that drives the position and heading errors to zero. 

Two constraints on the system are required for guaranteeing exponential stability.  

The first constraint requires the distance from the vehicle to the path be less than the 

current reference path curvature.  This is required in order to be able to define the 

reference frame uniquely.  A second constraint is a result of dealing with discontinuities 

with the path curvature.  This constraint limits the distance the vehicle can be from the 

path as a function of the current velocity. 

The control laws are implemented on a robot of the Hilare family.  The robot’s 

position and orientation are determined by integrating the variation of each wheel.  Two 

different paths made up of line segments and arcs are used to test the controller.  Results 

of these two tests are presented graphically. 

Hemami et al. present their work on the path tracking control of a mobile robot 

with front steering [62].  Only the kinematic equations of the system are considered as the 

vehicle is intended to operate at low speeds.  The equations derived are based on a 
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coordinate system at the center of mass.  With these equations, a state feedback controller 

is designed to minimize the control input as well as the position and heading errors.  The 

performance index used to accomplish this is: 

( )∫
∞

++=
0

22
2

2
1 tan dtrqqJ d δεε θ , 

where εd is the position error, εθ is the heading error, δ is the steering angle and q1, q2, 

and r are weighting factors.  The state feedback gain matrix is derived as functions of 

known variables and of the weighting factors.  Examples are presented that calculate the 

state feedback gain matrix at different forward velocities.  No results of its accuracy to 

track paths are given from real experimental data or simulation. 

Guldner et al. present a controller for the automatic steering of passenger cars 

[63].  Some of the performance requirements of their design include being robust with 

changing road adhesion due to different weather conditions, limiting the lateral 

displacement to 0.15 meters with good road adhesion and 0.3 meters with poor road 

adhesion, and keeping the passenger comfort similar to a manually steered vehicle.  Their 

control design considers a lookdown reference system where sensors to measure the 

lateral offsets of the vehicle are placed on the front and rear bumpers.  Dynamic 

equations are derived in terms of the front and rear lateral displacements and their 

derivatives.  In order to deal with the performance requirements, the parameter space 

approach in an invariance plane is used to determine a state feedback controller. 

The controller is tested on a Pontiac 6000 STE Sedan.   A 2-kilometer test track is 

made up of straight sections as well as left and right turns with a turning radius of 800 

meters.  Magnets are placed every 1.2 meters over the entire track.  The vehicle has a 

gyroscope and accelerometer to record the motion of the vehicle, as well as 

(2.5)
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magnetometers on the front and rear bumpers.  Results of the experiments are shown 

graphically where the steady state error in the curves is approximately 0.2 meters for 

good road adhesion and approximately 0.5 meters for poor road adhesion. 

Behringer and MŸller present an autonomous vehicle based on vision that is able 

to navigate on public roads in normal traffic [61].  One of the requirements of this vehicle 

is to be able to recognize intersections and then to navigate the vehicle in the right 

direction.  In addition to the vision, a dead-reckoning system, made up of an odometer 

and gyros, is used to measure the current state of the vehicle.  Separate feedback 

controllers are used to control the vehicle’s lateral and longitudinal movements.  The 

longitudinal controller is based on lookup tables to actuate the vehicle’s brake and 

throttle.  The lateral controller uses state feedback where the states are defined to be the 

lateral offset, yaw angle rate, yaw angle, slip angle, and steering angle. 

The autonomous navigation is tested on a track that includes curves of constant 

radii of 40, 50 and 100 meters, as well as curves with approximately clothoid shape.  The 

results of these tests are shown graphically.  The steering algorithm is claimed to be 

sufficiently reliable such that the operation on arbitrary intersections is assumed to work 

as well. 

The tracking control of a mobile robot, using a time-varying state feedback 

controller based on the backstepping technique, is presented by Jiang and Nijmeijer [64].  

Local and global controllers are presented based on a kinematic model of the vehicle.  In 

addition, another controller is presented based on a simplified dynamic model.  

Simulations in MATLAB were carried out to test the local and global controllers.  The 

results of their simulation showed that the local controller performs better for small initial 
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tracking errors and that the global controller was able to handle large initial tracking 

errors. 

Astolfi presents a controller for chained systems with two control inputs using a 

discontinuous state feedback control law and applies it to a drive car-like vehicle [60].  

The kinematic model of the car is given by 
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where x and y are the location of the vehicle with heading θ, φ is the steering wheel angle, 

and v1 and v2 are the vehicle velocity and steering wheel, respectively.  This system is put 

into a chained form using the state transformation: 
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Results of this controller, which was tested in simulation with different initial conditions, 

are presented graphically. 

Mouri and Furusho compare the results of using a PD controller versus using a 

state feedback controller that was developed using linear quadratic (LQ) control for 

navigating a vehicle on a highway [65].  The PD controller uses the lateral error to 

(2.6)

(2.7)

(2.8)
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determine a steering command.  The proportional gain can be increased to achieve the 

desired response and still converge by setting the derivative gain up to a certain point.  

After that point, continuing to increase the proportional gain results in not being able to 

construct a controller that provides both good response and convergence.  Because of this 

fact, a state feedback controller is developed using LQ control, where the lateral velocity 

and the lateral deviation are chosen as states. 

These two methods were tested on a vehicle with a speed of 80 km/h.  The lateral 

offset was determined from a magnetic sensor on the front bumper of the car that was 

able to detect magnetic markers buried in the road.  The PD control had large overshoots 

when attempting to improve the systems time response.  The system was also more 

susceptible to noise.  The gains for the LQ control could be increased by a factor of 10 

compared to the PD controller gains that gave them the desired response and still 

achieved the desired lateral convergence. 

Rekow et al. present an adaptive steering controller for tractors using a 

differential global positioning system [66].  The following vehicle model is used: 
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where y is the lateral error, ϕ is the heading error, Ωz is the yaw rate, δ is the steering 

angle, ω is the slew rate, vx is the forward velocity, and p2 through p5 are unknown 

vehicle parameters.  A least mean square algorithm is used to identify the unknown 

parameters.  A linear Kalman filter is used to estimate the unmeasured states required by 

(2.9)
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the least square algorithm.  Finally, a feedback controller uses the estimated parameters 

to calculate linear quadratic regulator control gains. 

The control algorithm is tested using a tractor equipped with carrier phase 

differential global positioning system that provides position data to within 2 cm and 

attitude data to within 0.1 degrees.  Results of these tests are shown graphically.  

Additionally, the average lateral error is claimed to be 2.55 cm with a standard deviation 

of 3.1 cm. 

One of the more recent techniques of path or trajectory tracking is fuzzy logic.  

One of the main attractions to using fuzzy logic is the ability to develop a controller 

without the need of a precise vehicle model.  Baxter and Bumby present a fuzzy logic 

navigation controller for an autonomous vehicle in the presence of obstacles [67].  Five 

principles are used to develop fuzzy sets and rules to navigate to a desired location with a 

desired orientation.  First, if the vehicle is a large distance from the goal, then steer the 

vehicle to have a heading that goes to the goal.  Second, if the vehicle is a medium 

distance from the goal, then steer the vehicle to have a heading that goes to the goal and 

has the same orientation as the goal orientation.  Third, if the vehicle is a small distance 

from the goal, then steer so that the current orientation goes directly to the goal position 

and equals the desired goal orientation.  Fourth, if the third step is unattainable, then steer 

away from the goal for a new approach.  And fifth, if the vehicle is almost on top of the 

goal position, then steer to achieve desired goal orientation.  Obstacle avoidance is 

achieved by adding rules that inhibit the vehicle from steering in certain directions.  By 

using rules that inhibit motion, the number of possible active outputs is reduced.  The 

navigation control is tested in simulation and experimentally at a constant speed of 0.1 

m/s.  Results of these tests are shown graphically. 
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Sánchez et al. present an adaptive fuzzy control for autonomous navigation [68].  

The inputs to the fuzzy controller are the vehicle’s distance from the goal point, the 

vehicle’s velocity, the difference between the vehicle’s heading and the path heading, and 

the vehicle’s curvature.  The outputs of the controller are the vehicle’s required curvature 

and velocity.  The controller attempts to adapt to the current system and operating 

conditions by using a learning function that estimates the values of the center and width 

of membership functions of the input vector and the values of the singleton output vector.  

The learning function uses measured data of the controller’s input and the measured data 

of the controller’s output that an expert provides during a learning stage. 

This control technique is applied to the autonomous mobile robot Romeo 3R.  

Romeo 3R was developed by adapting a conventional tricycle electric vehicle.  The 

controller was trained first from data obtained in experiments performed with a human 

driver.  Results of the path-tracking algorithm with an initial position error are given 

graphically. 

Another more recent technique to track paths or trajectories is neural networks.  

Neural networks can be used to determine the controlled inputs to the plant based on 

current measurements or it can be used to estimate model parameters.  Yang et al. present 

a predictive control approach to path tracking [73].  The basic concept of their predictive 

controller is first to estimate the future location and orientation of the vehicle based on 

the current location and orientation and the current control inputs.  An error is calculated 

then based on this prediction by comparing it to the desired path.  Finally, an 

optimization technique is used to determine the output of the controller for the next time 

period. 
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The predictive controller uses a kinematic model of the vehicle that is dependent 

on the current vehicle velocity and steering wheel angle.  The vehicle velocity is modeled 

by a simple linear system.  The model of the vehicle steering, on the other hand, is 

determined by using a neural network.  Unfortunately, using a neural network to identify 

the steering model is computationally intensive.  Therefore, tuning this model must be 

done off-line. 

Yang et al. apply their predictive controller to a four-wheel outdoor vehicle, 

THMR-III.  Results of the vehicle’s ability to track a given path are shown graphically 

and considered quite satisfactory. 

Fierro and Lewis present a controller that is designed to deal with trajectory 

tracking, path tracking and stabilizing about a point [69-71].  The controller requires no 

knowledge of the vehicle’s dynamics.  The task of the neural network is to learn the 

vehicle dynamics on-line and a kinematic controller is used to determine the controlled 

input to the system.  The control scheme presented is valid as long as the velocity control 

inputs are small, smooth and bounded, and the disturbances are bounded also. 

The neural network control scheme is tested in simulation and compared to a 

controller that assumes perfect velocity tracking, and a controller that assumes complete 

knowledge of the vehicle’s dynamics.  The performance of each controller is shown 

graphically.  The performance of the controller assuming perfect velocity tracking is 

considered poor.  It is noted that the controller that assumes to know the vehicle’s 

dynamics requires exact knowledge in order to work properly.  The neural network 

controller’s response is considered to be improved compared to the previous two 

controllers. 
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A guidance controller for automated transit vehicles is presented by Rajagopalan 

and Minano [72].  The controller is based on a feedforward neural network with the back 

propagation algorithm for learning.  The back propagation network is used because of its 

capability to learn constantly through nonlinear mapping.  The neural network takes the 

current position and heading error as inputs and then generates the steering angle 

command.  This command is used by a kinematic model to determine the desired 

velocities of the left and right wheels.  The controller is tested in simulation where it is 

able to reduce tracking errors quickly and minimize overshoot for vehicle speeds up to 

4.0 m/s. 

Hybrid Architecture 

Hybrid architectures [76-85] combine the methods described in the previous two 

sections, and therefore is mentioned here briefly.  Hybrid architectures typically are used 

to accomplish path tracking or trajectory tracking, as well as obstacle avoidance.  This is 

accomplished by combining a technique that uses behavioral architecture for obstacle 

avoidance, and a technique that uses hierarchical architecture for path tracking.  

Therefore, some arbitration is required then to decide whether to track the path or 

trajectory or to avoid the obstacle. 
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CHAPTER 3 
VECTOR PURSUIT PATH TRACKING 

This chapter presents a new geometric path-tracking method for navigating AGVs 

with nonholonomic constraints.  This method uses the theory of screws that was 

introduced by Sir Robert S. Ball in 1900 [86].  Screw theory can be used to describe the 

instantaneous motion of a moving rigid body relative to a given coordinate system.  It 

therefore is natural and appropriate to use screw theory to represent the instantaneous 

desired motion of an AGV, i.e., a rigid body, from its current position and orientation to a 

desired position and orientation that is on a given path.  Before developing the new path-

tracking method, a brief overview of screw theory used in these methods is presented. 

Screw Theory Basics 

A screw consists of a centerline that is defined in a given coordinate system and a 

pitch.  The motion of a rigid body at any instant can be represented as if it was attached to 

a screw and rotating about that screw at some angular velocity. 

One way to define the centerline of a screw is by using Plücker line coordinates.  

Two points given by the vectors r1 and r2 in a given coordinate system define a line as 

shown in Figure 3.1.  This line can also be defined as a unit vector, S, in the direction of 

the line and a moment vector, S0, of the line about the origin. From Figure 3.1 we see 

that: 
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and 

SrS ×= 10 . 

 

 Figure 3.1:  Line Defined by Two Points 

The vectors (S ; S0) are the Plücker line coordinates of this line.  By defining S = 

[L, M, N]T and S0 = [P, Q, R]T, and noting that r1 = [x1, y1, z1]
T and r2 = [x2, y2, z2]

T, we see 

that: 
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Figure 3.2 depicts the instantaneous motion of a rigid body rotating with an 

angular velocity, ω, about a screw, $, that has a centerline defined by (S ; S0) and that has 

a pitch, h.  The velocity of any point on the rigid body is equal to the velocity due to the 

rotation plus the translational velocity due to the pitch of the screw.  The velocity of the 

rigid body can be quantified by: 

),;($ 0hSS ωωω =  

where 

,00 ShSrShSS h +×=+=  

and r is any vector from the origin to the centerline of the screw.  The instantaneous 

velocity of a point in the rigid body that is coincident with the origin of the coordinate 

system is given by: 

.0hSω  

 

 
Figure 3.2:  Instantaneous Motion About a Screw. 

Two specific screws are used in developing the path-tracking algorithms in this 

chapter, translation screws and rotation screws.  The motion about a screw with an 

infinite pitch models pure translation of a rigid body at a velocity v along the direction S.  

In the limit, as the pitch goes to infinity, (3.9) simplifies to: 

(3.9)

(3.10)

(3.11)
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);0($ Svv = , 

which is a screw that has a centerline at infinity. 

On the other hand, the motion about a screw whose pitch is equal to zero models 

pure rotation of a rigid body.  By substituting a pitch, h, equal to zero, (3.9) simplifies to: 

);($ 0SS ωωω = . 

In addition to using rotation and translation screws, a property of instantaneous 

screws that proves to be very useful is that they are additive.  Note that the units of (3.12) 

and (3.13) are the same even though (3.12) is a translation screw and (3.13) is a rotation 

screw. 

Vector Pursuit 

Vector pursuit is a new geometric path-tracking method that uses the theory of 

screws.  This is a new technique that is developed here and which represents one of the 

contributions of this dissertation.  It is similar to other geometric methods in that a look-

ahead distance is used to define a current goal point, and then geometry is used to 

determine the desired motion of the vehicle.  On the other hand, it is different from 

current geometric path-tracking methods, such as follow-the-carrot or pure pursuit, which 

do not use the orientation at the look-ahead point. Proportional path tracking is a 

geometric method that does use the orientation at the look-ahead point.  This method 

adds the current position error multiplied by some gain to the current orientation error 

multiplied by some gain, and therefore becomes geometrically meaningless since terms 

with different units are added.  Vector pursuit uses both the location and orientation of 

the look-ahead point while remaining geometrically meaningful. 

(3.12)

(3.13)
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The first step in vector pursuit calculates two instantaneous screws.  The first 

instantaneous screw, $t, accounts for the translation from the current vehicle position to 

the location of the look-ahead point while the second instantaneous screw, $r, accounts 

for the rotation from the current vehicle orientation to the desired orientation at the look-

ahead point.  The second step uses the additive property of instantaneous screws to 

calculate $d, the sum of $t and $r, which defines the desired instantaneous motion of the 

vehicle.  Two different methods are considered to calculate the two screws, $t and $r.  

The first method initially ignores the nonholonomic constraints of the vehicle to calculate 

$t and $r and then deals with the constraints after adding the two instantaneous screws.  

Conversely, the second method does not ignore the nonholonomic constraints to calculate 

$t and $r.  It turns out, for this method, that the sum of $t and $r also does not violate the 

nonholonomic constraints.  Finally, the last step calculates a desired turning radius, or a 

desired turning rate if the current vehicle velocity is considered, from $d. 

Defined Coordinate Systems 

Before developing the screw theory based path-tracking methods, a few 

coordinate systems must first be defined.  First, the world coordinate system is defined 

where the x-axis points north, the z-axis points down and the y-axis points east to form a 

right hand coordinate system.  The origin of the world coordinate system defined here is 

determined by the conversion from a geodetic coordinate system to a UTM coordinate 

system.  It is assumed that the desired path is given, or can be converted to, the world 

coordinate system.  The world coordinate system can be seen in Figure 3.3. 

In addition to the world coordinate system, both a moving and the vehicle 

coordinate systems are shown in Figure 3.3 also.  A moving coordinate system is defined 

where the origin is a point on the planned path, the look-ahead point, which is a given 
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distance called the look-ahead distance, L, in front of the orthogonal projection of the 

vehicle's position onto the planned path.  Its x-axis is oriented in the direction of the 

planned path at that point, i.e., the direction from the previous waypoint wi-1 to the current 

waypoint wi, the z-axis is down and the y-axis is defined to form a right hand coordinate 

system.  Since the moving coordinate system’s origin is located at the look-ahead point, 

this coordinate system will be referred to as the look-ahead coordinate system.  The 

selection of the distance L will be discussed later. 
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Figure 3.3:  Defined Coordinate Systems. 

Finally, the vehicle coordinate system is defined where the x-axis is in the 

forward direction of the vehicle, the z-axis is down and the y-axis forms a right hand 

coordinate system.  The origin of the vehicle coordinate system depends on the type of 

vehicle.  For nonholonomic vehicles, it is defined in a way that decouples the control of 

the linear and angular velocities.  For example, on a car-like vehicle with rear wheel 
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drive, the origin is defined to be the center of the rear axle.  With these three coordinate 

systems defined, the development of vector pursuit path tracking is presented now. 

A method is required to indicate the coordinate system a vector is referenced 

since more than one coordinate system was defined here.  Therefore, vectors are written 

with a leading superscript indicating the coordinate system to which they are referenced. 

Method 1 

Recall that this first method initially ignores the nonholonomic constraints of the 

vehicle.  With this in mind and using (3.12), $t is defined to be: 
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where d is the distance from the look-ahead point to the vehicle position, (WxL,WyL) are the 

coordinates of the look-ahead point in the world coordinate system, and (WxV,WyV) are the 

coordinates of the vehicle position in the world coordinate system.  The term kt is a 

weighting factor that will be dealt with later.  Similarly, using (3.13), $r is defined to be: 
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where kr is a weighting factor.  Note that the axis of rotation is chosen to be the origin of 

the vehicle coordinate system so that no translation is associated with $r.  Now the 

desired instantaneous screw, $d, is calculated to be: 
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The weighting factors kt and kr are used to control how much the desired 

instantaneous screw is influenced by $t and $r, respectively.  To determine these 

weighting factors it is noted from (3.12) and (3.13) that kt is a linear velocity and kr is an 

(3.14)

(3.15)

(3.16)
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angular velocity.  Assuming the vehicle travels on the screw defined by $t at some 

velocity, kt = v, the time required for the vehicle to reach the look-ahead point would be: 

v

d
tt = . 

Using the same line of reasoning, if the vehicle travels on the screw defined by $r 

at some angular velocity, kr = ω, the time required for the vehicle to rotate from its 

current orientation to the orientation at the look-ahead point would be: 

ω
θθ VL

rt
−

= , 

where θL is the angle from the x-axis of the world coordinate system going clockwise to 

the x-axis of the look-ahead coordinate system, θV is the angle from the x-axis of the 

world coordinate system going clockwise to the x-axis of the vehicle coordinate system, 

and their difference must be in the interval (-π,π].  Next, the assumption is made that the 

relationship between tt and tr can be defined by: 

tr ktt = , 

where k is some positive constant greater than zero.  Therefore, the weighting factors can 

now be determined from: 

vkt = , 

and 
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where again, the difference θL-θV must be in the interval (-π,π]. 

In order to determine the desired motion of the vehicle defined by this 

instantaneous screw, the location of its centerline must be determined in the vehicle 

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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coordinate system.  To do this, the location of the desired instantaneous screw’s 

centerline is determined first in the world coordinate system by: 
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Note that equations (3.22) and (3.23) are valid only if kr, i.e. θL-θV, is nonzero.  If 

kr is nonzero, the location of the desired instantaneous screw’s centerline in the vehicle 

coordinate system is determined by: 
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Otherwise, if kr is zero, equation (3.16) reduces to equation (3.14), which is a 

screw whose centerline in the vehicle coordinate system is located at infinity in a 

direction perpendicular to the line that connects the vehicle position and the look-ahead 

point. 

The desired motion of the vehicle can be determined now that the location of the 

desired screw’s centerline is determined in the vehicle coordinate system.  An example of 

a desired instantaneous screw and its associated desired motion is shown graphically in 

Figure 3.4.  In this figure, one instantaneous screw is executed continually over time to 

exaggerate the desired vehicle motion.  From Figure 3.4, it is noted that the initial desired 

motion from the current vehicle location is a translation along the vehicle’s negative y-

(3.22)

(3.23)

(3.24)

(3.25)
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axis and a rotation clockwise.  This motion is not possible for a vehicle that is constrained 

to translational motion only in the direction of its current orientation.  In other words, in 

order for the vehicle in Figure 3.4 to translate in the direction of the current vehicle’s 

negative y-axis, it must first rotate counter-clockwise.  This is opposite of the desired 

rotation defined by the instantaneous screw.  Therefore, it is noted that the possibility 

exists where the vehicle may be unable to execute the motion defined by the desired 

instantaneous screw defined in equation (3.16) because of the motion constraints of the 

vehicle. 

 

VX ωV$d

Vy$d

Vx$d
VY

 
Figure 3.4:  Vehicle Motion if Desired Instantaneous Screw is Continually Executed. 

Nonholonomic constraints exist when the motion orthogonal to the vehicle’s 

forward direction is not possible.  In other words, using the vehicle’s coordinate system 

defined earlier, motion is restricted at any instant only in a direction parallel vehicle’s x-
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axis.  Therefore, the velocity along the vehicle’s y-axis must be equal to zero.  This can 

be expressed as an equation in the world coordinate system through a simple coordinate 

transformation as: 

0)cos()sin( =− V
W

V
W yx θθ && . 

In order to deal with these constraints, a new desired screw, $d’ is calculated based 

on the previously calculated desired screw, $d.  The new desired screw is determined by 

first obtaining a new look-ahead point that is a distance L from the vehicle’s position 

along an arc defined by the desired screw (see Figure 3.5).  A circle can then be obtained 

that passes through both the new look-ahead point and the vehicle point and that is 

tangent to the vehicle direction.  The new desired screw, $d’, with its corresponding 

desired screw, $d, can be seen in Figure 3.5. 
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ωV$d
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Figure 3.5:  Desired Screw, W$d, and New Desired Screw, W$d’. 

(3.26)
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Unfortunately, this could place a restriction on the location of $d’s centerline in 

order for the new look-ahead point to exist.  The distance from the vehicle position to the 

centerline of $d must be greater than ½L.  This restriction turns out to be a case where the 

vehicle needs to simply turn around, and therefore the location of the new desired screw, 

$d’, in the vehicle’s reference frame can be determined by the vehicle’s minimum turning 

radius rmin using: 

0$ =
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xV  

and 

min$ ry
d
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, 

if the direction of the desired screw’s centerline is in the positive z-direction, or: 
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, 

if the direction of the desired screw’s centerline is in the negative z-direction. 

If the distance to the centerline of $d is greater than ½L, then two points exist on a 

circle whose center is the centerline of $d and whose radius is the distance to the vehicle 

position that are a distance L away from the vehicle position.  This can be seen in Figure 

3.6.  In order to determine the location of these two points in the vehicle coordinate 

system, the angle from the x-axis of the vehicle coordinate system to the centerline of $d 

is determined first by: 
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Next, it is noted through symmetry that the angle between the line from the 

vehicle position to p1 and the line from the vehicle position to $d’s centerline is equal to 

the angle between the line from the vehicle position to p2 and the line from the vehicle 

position to the desired screw’s centerline.  Through simple geometry, the magnitude of 

this angle can be determined by: 
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where β must be in the interval (0,π/2] radians.  Now the angle from the x-axis of the 

vehicle coordinate system to both p1 and p2 can be determined by: 

βαγ ±= . 
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Figure 3.6:  Possible Look-ahead Points p1 and p2. 

Only one of these two points is used as the new look-ahead point, so to determine 

which point to use, the direction of $d’s centerline is considered.  The new look-ahead 

(3.32)

(3.33)
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point is defined to be the point that is encountered first by traveling along the arc defined 

by $d starting from the vehicle position.  Therefore, if the direction of $d’s centerline is in 

the positive z-axis of the vehicle coordinate system, then the angle from the vehicle 

coordinate system’s x-axis to the look-ahead point is: 

βαγ −= . 

This is the case of the desired screw, $d, shown in Figure 3.6 where p1 is determined now 

to be the new look-ahead point.  Similarly, if the direction of the desired screw’s 

centerline is in the negative z-axis of the vehicle reference frame, the angle from the x-

axis of the vehicle coordinate system to the new look-ahead point is: 

βαγ += . 

Since the angle from x-axis to the new look-ahead point is determined in the 

vehicle coordinate system, the location of the new look-ahead point in the vehicle 

coordinate system can be calculated by: 

)cos(γLxL
V = , 

and 

)sin(γLyL
V = . 

Now that the location of the new look-ahead point is known in the vehicle’s 

coordinate system, the location of the new desired screw’s centerline can be located in 

the vehicle’s coordinate system.  Assuming p = p1 or p = p2, from Figure 3.7 we see that 

the location of the new desired screw’s centerline is on the vehicle’s y-axis at a distance 

R from the x-axis.  From Figure 3.7, 

222 Rxa p
v =+ . 

Substituting: 

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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p
V yRa −= , 

222
1 p

V
p

V yLx −= , 

and solving for R gives: 

p
V y

L
R

2

2

= . 

Therefore, the new desired screw’s centerline is located at: 
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Figure 3.7:  Locating V$d’’s centerline. 

The direction of the new desired screw’s centerline can be determined by the 

location of the new look-ahead point in the vehicle’s coordinate system.  The direction of 

the commanded screw’s centerline depends on which quadrant of the vehicle’s coordinate 

system the new look-ahead point is located.  This is summarized in Table 3.1. 

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)



56 

 

Table 3.1:  Desired Screw’s Centerline Direction. 

sign of Vxp sign of Vyp 
Screw’s Centerline Direction 

Along the z-axis 
Positive Positive Positive 
Positive Negative Negative 
Negative Positive Negative 
Negative Negative Positive 

 

Note that when the new look-ahead point’s x-value is negative, the vehicle’s 

velocity would have to be negative, or in other words, the vehicle direction would have to 

change from forward to reverse.  In order to keep the vehicle direction from changing, the 

x-value of the look-ahead point must be greater than zero, otherwise the vehicle is 

commanded simply to turn around.  Equations (3.27) and (3.28) or equations (3.29) and 

(3.30) are used again to calculate the location of the commanded screw’s centerline in 

this situation. 

Finally, it is important to note that the look-ahead distance, L, and the constant k, 

are free choices and as such represent parameters that must be selected in order to 

optimize or tune the vehicle’s performance. 

Method 2 

The second method developed to calculate $t and $r takes into account the 

vehicle’s nonholonomic constraints.  In order to satisfy the constraints, the centerlines of 

the instantaneous screws must be on the vehicle’s y-axis and a distance from the x-axis 

greater than or equal to the vehicle’s minimum turning radius.  The requirement that the 

instantaneous screws’ centerlines be a distance greater than or equal to the vehicle’s 

minimum turning radius from the x-axis is ignored initially.  It is ignored at first because 

of the fact that some vehicles, e.g., a differentially driven vehicle, with nonholonomic 

constraints have no minimum turning radius.  Therefore, the only initial constraint placed 
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on the location of the centerlines of the instantaneous screws is that they must be on the 

vehicle’s y-axis.  With this in mind, the screw to correct the translational error, $t, was 

selected as the center of a circle that passes through the origins of the vehicle coordinate 

system and the look-ahead coordinate system and which is tangent to the vehicle’s 

current orientation, i.e. the x-axis of the vehicle coordinate system.  (See Figure 3.8)  

Hence, $t is defined to be: 

( ) ( ) 




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+−+= 0,sin

2
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2
;1,0,0$
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d
yk θθ , 

where d is the distance from the origin of the vehicle coordinate system to the origin of 

the look-ahead coordinate system (where the look-ahead coordinate system is defined as 

before), (VxL,VyL) are the coordinates of the look-ahead coordinate system’s origin in the 

vehicle coordinate system, (WxV,WyV) are the coordinates of the vehicle position in the 

world coordinate system, and θV is the angle from the x-axis of the world coordinate 

system to the x-axis of the vehicle coordinate system.  The term kt is used again as a 

weighting factor that will be dealt with later.  Equation (3.44) is valid only if the term VyL 

is nonzero.  Otherwise, $t is determined by: 
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The instantaneous screw, $r, is defined to be: 

( )0,,;1,0,0$ V
W

V
W

rr

W xyk −= , 

which is the same as equation (3.15), but the weighting factor kr is determined differently. 

(3.44)

(3.45)

(3.46)
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Figure 3.8:  Instantaneous Screw for Translating to Look-ahead Point. 

Now the desired instantaneous screw is determined as either 
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if the term VyL is nonzero, or 
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if the term VyL is zero. 

The weighting factors kt and kr are used again to control how much the desired 

instantaneous screw is influenced by $t and $r, respectively.  These two weighting factors 

(3.47)

(3.48)
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are related again by the time required to translate to the look-ahead point and rotate to the 

desired orientation.  Assuming that the term VyL is nonzero, note that while the 

instantaneous screw defined in equation (3.44) describes a motion to translate the vehicle 

from its current location to the look-ahead point, it also describes a motion that rotates the 

vehicle.  This can easily be seen in Figure 3.9.  Therefore, from equation (3.13), the 

weighting factor kt is an angular velocity now instead of a linear velocity.  The amount of 

rotation, φ, can be determined by: 

( ) ( )( ) 



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V
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dyxdyφ . 

where φ must be in the interval (0,2π] radians.  It is noted that the last part of Equation 

(3.49) will always be ±π/2 radians depending only on the sign of VyL. 
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Figure 3.9:  Rotation defined by $t Instantaneous Screw. 

(3.49)
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The time required to translate from the current vehicle position to the look-ahead 

point, assuming that kt = ωt, some angular velocity, is determined by 

t
tt ω

φ
= . 

The time required to rotate from the current vehicle orientation to the orientation 

at the look-ahead point must also account for the rotation, φ, due to $t.  This will either 

increase or decrease the time needed to rotate.  Assuming kr = ωr, some angular velocity, 

this time can be determined by: 

( )
r

VL
rt ω

φθθ −−
= . 

Again, the assumption is made that the relationship between tt and tr can be 

defined by: 

,tr ktt =  

where k is some positive constant greater than zero.  Therefore, the weighting factors can 

now be determined from: 

ttk ω= , 

and 
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Using equation (3.47), the centerline of the desired screw can be determined in 

the world coordinate system by: 

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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Note that the above calculations of the weighting factors assumed that VyL was 

nonzero.  If, on the other hand, VyL is zero, then from equation (3.12), the weighting 

factor kt is a linear velocity.  The amount of time to translate from the current vehicle 

position to the look-ahead point at some velocity, kt = v, can be determined by: 

v

d
tt = . 

The time required to rotate from the current vehicle orientation to the orientation 

at the look-ahead point can be calculated using equation (3.51) where φ is now zero.  

Therefore, assuming kr = ω, some angular velocity, this time can be determined by: 

ω
θθ VL

rt
−

= . 

Using equation (3.52) for the relationship between the two times, the weighting 

factors can be determined from: 

,vkt =  

and 
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(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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Using equation (3.48), the centerline of the desired screw can be determined in 

the world coordinate system by: 
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Finally, using equations (3.24) and (3.25), the centerline of the desired 

instantaneous screw can be determined in the vehicle coordinate system to determine the 

desired motion of the vehicle.  Recall that the vehicle’s nonholonomic constraints were 

considered when calculating $t and $r but that the minimum turning radius was ignored.  

This has a nice result where Vx$d will always equal zero, which does not break the 

nonholonomic constraints.  In order to comply with the minimum turning radius 

constraint, the magnitude of Vy$d must be greater than or equal to the minimum turning 

radius.  If it is less than the minimum turning radius, equations (3.27) and (3.28) or 

equations (3.29) and (3.30) are used again to calculate the location of the desired screw’s 

centerline in the vehicle coordinate system. 

As in the first method, the direction of the desired screw’s centerline is 

determined by the location of the look-ahead point in the vehicle’s coordinate system and 

Table 3.1.  Again, when the look-ahead point’s x-value is negative, the vehicle direction 

would have to change from forward to reverse.  In order to keep the vehicle direction 

from changing, the x-value of the look-ahead point must be greater than zero, otherwise 

the vehicle is commanded to turn around.  Equations (3.27) and (3.28) or equations (3.29) 

(3.61)

(3.62)
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and (3.30) are used again to calculate the location of the commanded screw’s centerline 

in this situation. 

Finally, it is important to note again that the look-ahead distance, L, and the 

constant k, are free choices in this method too and as such represent parameters that must 

be selected in order to optimize or tune the vehicle’s performance. 

Desired Vehicle Velocity State 

The desired velocity-state of the AGV for it to track the given path can now be 

determined from the final desired screw calculated from either method 1 or method 2.  

The velocity-state is made up of two vectors, a linear velocity vector, v = [vx, vy, vz]
T, and 

an angular velocity vector, ω = [ωx, ωy, ωz]
T, that can represent the motion of any rigid 

body in three-dimensional space.  In the vehicle coordinate system the linear velocity of 

the AGV is limited to the x-axis and the angular velocity is limited to rotation about the 

z-axis because of the nonholonomic constraints.  Therefore, only the terms vx and ωz need 

to be determined.  The desired linear velocity, vx, is determined by the desired speed to 

follow the path.  The user, based on the current mission of the AGV, typically decides 

this.  The desired angular velocity, ωz, is calculated based on the current location of the 

desired screw’s centerline and the current velocity of the AGV.  The desired angular 

velocity is calculated by: 

d
y

v
V
current

z

$

=ω  , 

where Vy$d is equal to Vy$d’ for the first method. 

Recall that the task of an AGV to accurately track a given path was broken down 

into two steps.  The first step is to determine the AGV’s desired motion, or velocity state, 

(3.63)
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which was accomplished in this chapter.  The second step is to execute the desired 

velocity-state. This is the topic of the next chapter. 
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CHAPTER 4 
EXECUTION CONTROL 

Execution control is the task of executing the AGV’s desired velocity-state as 

determined in Chapter 3.  After considering the motion constraints of an AGV, the only 

two components of an AGV’s velocity-state that can influence the system are vx and ωz.  

By carefully choosing the origin of the vehicle’s coordinate system, vx and ωz can be 

decoupled allowing for the design of separate controllers.  There are a number of 

different control techniques that would work here and therefore a design choice must be 

made. 

Some of the more conventional control techniques include classical control, 

proportional-integral-derivative control (PID), adaptive control, and state space methods.  

These techniques require a relatively accurate model of the system in order to develop a 

satisfactory controller.  In addition, these techniques typically restrict the complexity of 

the system model (e.g., linearity).  Some of the newer control techniques that could be 

used here include fuzzy logic control and neural networks.   One draw back with neural 

network controllers is that they typically require a long learning time where they are 

“taught” how to control a system, before they can be effectively used.  Fuzzy logic 

controllers, on the other hand, do not require a model of the system and do not require a 

long learning time.  Instead, they rely on the knowledge of an expert on controlling the 

particular system.  Therefore, with all of this in mind, the proposed controllers of vx and 

ωz are both chosen to be fuzzy controllers. 
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This chapter begins with an introduction to the fuzzy controller and a general 

introduction to the fuzzy reference model learning controller (FRMLC) [87], which is a 

direct adaptive controller.  It concludes by presenting the designed FRMLC for executing 

the AGV’s desired linear and angular velocities, respectively. 

Fuzzy Controller 

Before designing any controller, the inputs and outputs of the process must be 

determined.  The input variables to the controller are used to determine how to control the 

process.  The output variables of the controller must therefore have some impact on 

process. A feedback fuzzy controller shown in Figure 4.1 has three steps: fuzzification, 

inference and defuzzification.  The fuzzification step takes the crisp inputs of the process 

and converts them to linguistic variables.  The inference step uses these linguistic 

variables to decide the best course of action based on the knowledge of an expert. The 

expert’s knowledge is stored in a rule-base made up of a set of if-then statements.  The 

defuzzification step takes the linguistic results of the inference step and converts them to 

crisp outputs. 
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Figure 4.1:  Feedback Fuzzy Controller. 
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Fuzzification 

Fuzzification is the process of taking a crisp value and converting it to a linguistic 

variable.  This is accomplished by using membership functions.  Membership functions 

take a crisp value and map it to a linguistic variable with a value between 0 and 1.  For 

example, Figure 4.2 shows graphically the membership functions that convert the crisp 

value of height, h, to the linguistic variables short, medium and tall.  Figure 4.2 shows the 

very common triangular membership function with saturated boundaries.  From Figure 

4.2, a height equal to 5.8 feet gives the linguistic variable “tall” a membership value of 

0.8, or µtall(5.8) = 0.8.  Similarly, the linguistic variables medium and short would have a 

membership values of 0.2 and 0.0, respectively, or  µmedium(5.8)= 0.2 and  µshort(5.8)= 0.0. 
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Figure 4.2:  Height Membership Functions. 

A membership function is not limited to being triangular.  This can be seen by 

other examples of membership functions in Figure 4.3.  The choice of the membership 

function depends on the application and the designer or the expert.  Fuzzification is 

therefore a highly subjective process where two different designers may quantify the 

same variable differently and both be considered correct. 
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Figure 4.3:  Possible Fuzzy Membership Functions. 

Inference Mechanism 

The inference mechanism is made to imitate the expert’s decision process as if he 

or she was controlling the process directly.  In other words, it interprets the current state 

of the process and then uses its knowledge of the plant to decide the best way to control 

the plant. 

The knowledge of how to control the plant is represented by creating a rule-base 

of if <premise>, then <consequent> statements.  Take, for example, the inverted 

pendulum problem shown in Figure 4.4a.  It is desired to balance the pendulum in a 

vertical position by controlling the force F.  Suppose that the angular error, θ, from the 

vertical and its derivative are measured and used as inputs.  Using the membership 

functions shown in Figure 4.4b, one rule may be, if the error is “Positive Small” (PS) and 

the change in error is “Negative Large” (NL), then the force is “Positive Medium” (PM).  

A second rule may be if the error is “Zero” (Z) and the change in error is “Positive 

Small” (PS), then the force is “Negative Small” (NS).  A rule for each possible 

combination of error and change in error can be determined similarly.  If the number of 
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inputs is small, around two or three, a convenient way to store the rules is in a tabular 

form as shown in Table 4.1. 

F

θa.

NL NM NS PS PM PLZ

NL NM NS PS PM PLZ

NL NM NS PS PM PLZ

b.
µ(θ)

µ(θ)
.

µ(F)

θ
(degrees)

θ
(degrees/sec)

.

F
(lbf)

-30   -20   -10             10     20     30

-15   -10     -5              5      10 15

-8  -6     -4     -2               2       4     6      8

 
Figure 4.4:  Pendulum Example. 

Table 4.1:  Rule Base for Inverted Pendulum. 
Change in Error Force 

NL NM NS Z PS PM PL 
NL PL PL PL PL PM PS Z 
NM PL PL PL PM PS Z NS 
NS PL PL PM PS Z NS NM 
Z PL PM PS Z NS NM NL 
PS PM PS Z NS NM NL NL 
PM PS Z NS NM NL NL NL 

 
 
 

Error 

PL Z NS NM NL NL NL NL 
 

 
The inference step is simply the conclusions determined by the rule-base.  In 

order to determine the conclusions of the rule-base, the premise must first be quantified.  

Typically, the premise contains two or more linguistic terms that are combined by the 
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(4.1)

“and” logical operator.  Two common ways to define the “and” operator is the minimum 

or the product of the operands.  This can be easily seen through an example.  Consider 

again the example of the inverted pendulum.  Suppose that the current angular error was 

–6 degrees and the current change in error was –4 degrees/second.  From Table 4.1, one 

of the rules is, if the error is “Negative Small” (NS) and the change in error is “Negative 

Small” (NS), then the force is “Positive Medium” (PM).  Using the membership 

functions from Figure 4.4b, the membership of linguistic variable negative small for the  

–6 degrees error is 0.6 and the membership of linguistic variable negative small for the –4 

degree/second change in error is 0.8.  The premise can now be quantified for this rule by 

finding the minimum or the product of these values, i.e. µpremise = minimum[0.6,0.8] = 

0.6, or  µpremise = (0.6)(0.8) = 0.48.  The value µpremise is a measure of how applicable this 

rule is to the current system state.  This process is done for each rule, and the results 

where µpremise > 0 are considered the conclusions of the rule-base. 

Defuzzification 

Defuzzification is the step where the conclusions from the inference step are 

converted to a crisp output.  Two of the more popular defuzzification techniques are the 

center of gravity (COG) and center average methods.  The COG method calculates the 

crisp output by: 

∑ ∫
∑ ∫=

i i

i iicrisp
b

u
)(

)(

µ

µ
, 

where bi is the center of the membership function of the consequent of rule i.  The 

calculation of the term ∫µ(i) is simplified greatly when the output membership functions 

are triangular and symmetric.  For this case, it can be calculated by: 
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where w is the width of the base of the triangle. 

The center average method calculates the crisp output by: 

∑
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i premise
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Continuing with the inverted pendulum example where the angular error was –6 

degrees and the change in error was –4 degrees/second, using equation (4.1) and using 

the minimum function to quantify the premise of each rule gives a crisp output of: 

44.2
72.028.172.068.1

)72.0)(0()28.1)(2()72.0)(2()68.1)(4(
=

+++
+++

=crispu . 

Finally, using equation (4.3) and the minimum function to quantify the premise of each 

rule gives a crisp output of: 

57.2
2.04.02.06.0

)2.0)(0()4.0)(2()2.0)(2()6.0)(4(
=

+++
+++

=crispu . 

Fuzzy Reference Model Learning Control [86] 

There are two general techniques for adaptive control, direct and indirect.  Direct 

adaptive control, shown in Figure 4.5, monitors a system’s response and then modifies 

the controller in order to achieve a specified desired performance. On the other hand, 

indirect adaptive control monitors a system’s response in order to identify parameters of 

the system’s model.  The controller is designed as a function of these model parameters 

to achieve a specified desired performance.  A block diagram of an indirect adaptive 

controller is shown in Figure 4.6.  Fuzzy reference model learning control (FRMLC) is a 

direct adaptive controller. 

(4.2)

(4.3)
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Figure 4.5:  Direct Adaptive Controller. 

System
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Controller Plant
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Plant Parameters

 
Figure 4.6:  Indirect Adaptive Controller. 

The main parts of a FRMLC are the fuzzy controller, the plant, the learning 

mechanism, and the reference model.  The fuzzy controller has already been discussed in 

the previous section, and the plant is simply the system to be controlled.  The reference 

model gives the desired system response based on the current input.  The learning 

mechanism uses the outputs of the plant and of the reference model in order to calculate 

an error between the desired and actual response.  This error is used then to decide how to 

modify the rule-base of the fuzzy controller in order to drive the error to zero.  A block 

diagram of the FRMLC is given in Figure 4.7. 

The reference model is used to specify the desired performance of the system.  

The main constraint on the reference model is that it must be reasonable.  It is not 

reasonable to expect a system to achieve a better performance than what the system is 



73 

 

capable of achieving.  Every system has its limitations, and these limitations must be 

considered when choosing the reference model. 
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Figure 4.7:  FRMLC Block Diagram. 

Once the reference model is determined, a discrete error signal is calculated by: 

)()()( kTykTykTe m −= , 

where e(kT) is the current error, ym(kT) is the output of the reference model, y(kT) is the 

output of the system, and T is the sample time.  Depending on the system characteristics, 

it may also be useful to calculate the discrete change in error by: 

T

TkTekTe
kTc

)()(
)(

−−
= , 

where c(kT) is the change in error, e(kT) is the current error from equation (4.4), and 

e(kT-T) is the error calculated on the previous time sample.  Then, these results and any 

(4.4)

(4.5)
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other system data are used to determine the necessary changes to the process inputs, 

p(kT), by the learning mechanism. 

The learning mechanism is made up of a fuzzy inverse model and a rule-base 

modifier.  The purpose of the fuzzy inverse model is to take the calculations e(kT) and 

c(kT) and determine how to change the process input, u(kT), in order to drive e(kT) to 

zero.  The output of the fuzzy inverse model is the desired change in process input and is 

represented by p(kT).  First, the inputs are fuzzified by membership functions specified 

by the designer.  The inference mechanism then uses rules such as, if the error is 

“positive small” and the change in error is “zero,” then the change in process input is 

“negative small.”  It is referred to as the fuzzy inverse model because these rules typically 

depend on the plant dynamics.  Finally, the output, p(kT), is defuzzified by the COG, 

center-average or some other defuzzification technique.  Then the output, p(kT), is used 

to modify the controllers rule-base. 

The fuzzy controller’s rule-base is modified by first determining which rules are 

active.  In other words, determine which rule’s certainty is greater than zero: 

0
)(

>
ipremiseµ . 

Then, for all the rules that are active, the center of the mth output membership function is 

adjusted by: 

)()()( kTpTkTbkTb mm +−= , 

where bm(kT) is the current center of the mth output membership function, bm(kT-T) is the 

center of the mth output membership function at the previous time sample, and p(kT) is 

the desired change in process input that was calculated by the inverse model. 

(4.6)

(4.7)
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 Vehicle Linear Velocity FRMLC 

The first task in designing a controller is to determine its inputs and outputs.  

Under the MAX architecture, the propulsive and resistive wrenches are used to control 

the AGVs motion.  Each wrench is made up of a force vector, f = [fx, fy, fz], and a moment 

vector, m = [mx, my, mz].  The propulsive wrench is used to propel the AGV in the 

direction of the force or about the axis of the moment.  Since, by the careful selection of 

the vehicle’s reference frame, the only term that has an affect on the linear velocity is fx, 

it is chosen to be the linear velocity’s controller output.  One of the inputs to the 

controller is obviously the desired linear velocity, vx,d.  A second input to the controller is 

the vehicle pitch, θy, since it can have a substantial effect on the AGV’s linear velocity.  

A block diagram of the FRMLC for the linear velocity is given in Figure 4.8. 
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Figure 4.8:  Discrete Linear Velocity FRMLCV Block Diagram. 

From Figure 4.8, the controller’s input vx,d(kT) is the desired linear velocity, and 

the controller’s input θy(kT) is the vehicle’s pitch. The gains, gv and gθ, are used to 
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normalize the inputs.  By doing this, both inputs are fuzzified using the membership 

functions given in Figure 4.9.  Therefore, the gain gv is chosen to be 1/vmax, where vmax is 

the maximum velocity of the AGV, and the gain gθ is chosen to be 1/θy,max, where θy,max is 

the maximum allowable pitch.  Both of these terms, the maximum AGV velocity and the 

maximum allowable pitch, are available from the VCU configuration message under the 

MAX architecture. 

µ
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Figure 4.9:  Normalized Input Membership Functions. 

The controller’s output in Figure 4.8 fx(kT) is the first term in the propulsive 

wrench. Using the output membership functions shown in Figure 4.10, the output of the 

inference mechanism is normalized also.  The gain gf is used to scale this output to allow 

the controller to command the entire range of the term fx.  In the MAX architecture, the 

term fx has the range from –100 to 100 percent, and therefore the gain gf is chosen to be 

100. 
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Figure 4.10:  Normalized Output Membership Functions. 

Now that the inputs and the output of the fuzzy controller are defined, the rule-

base for the inference mechanism must be defined.  Typically, if little or nothing is 



77 

 

known about the plant’s characteristics, each rule’s consequent is initialized to the 

linguistic variable “zero.”  This requires the controller to completely learn the system it is 

trying to control.  By using the MAX architecture, an important conclusion about the 

plant’s characteristics can be made.  This conclusion is that increasing the term fx should 

have the general characteristic of increasing vx, and decreasing the term fx should have the 

general characteristic of decreasing vx.  With this in mind, and using the membership 

function defined in Figures 4.9 and 4.10, the rule base for the fuzzy controller is 

initialized with the rules given in Table 4.2. 

Table 4.2:  Linear Velocity Initial Rule-Base 
Desired Linear Velocity Force 

N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N4 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N3 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N2 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N1 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
Z N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P1 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P2 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P3 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P4 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 

 
 
 
 
 

Pitch 

P5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
 

It is assumed in Table 4.2 that the pitch has no affect on the control of the AGV’s 

linear velocity.  This assumption is made initially because there is not enough 

information about the plant’s characteristics to make a conclusion on how the pitch will 

affect the control of the AGV’s linear velocity.  Therefore, the controller must learn how 

to control the plant for different vehicle pitches. 

The reference model takes the desired linear velocity as input and outputs an 

estimate of what the vehicle linear velocity should be.  The model implemented here is a 
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simple first order model.  This was chosen for its simplicity where only one model 

variable needs to be determined, the time constant.  This time constant is set to the 

systems average response time to various fx commands. 

The learning mechanism uses the linear velocity calculated by the reference 

model and the current AGV linear velocity to calculate an error, e(kT) and change in 

error, ce(kT).  The error is scaled by the gain ge and the change in error is scaled by gce in 

order to use the membership functions given in Figure 4.9 for fuzzification.  These gains 

are determined by the maximum possible errors.  Therefore ge is set to 1/vdesired and gce is 

set to T/ vdesired, where vdesired is the desired tracking speed and T is the time interval.  The 

rules used by the inference mechanism are given in Table 4.3.  The conclusions of the 

rule-base are defuzzified using the COG and the membership function in Figure 4.10.  

And finally, the gain gp is used to control how fast the system adapts and is left as a 

tuning parameter. 

Table 4.3:  Learning Mechanism Rule-Base. 
Change in error Change in 

process input N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N5 N5 N5 N5 N5 N5 N5 N4 N3 N2 N1 Z 
N4 N5 N5 N5 N5 N5 N4 N3 N2 N1 Z P1 
N3 N5 N5 N5 N5 N4 N3 N2 N1 Z P1 P2 
N2 N5 N5 N5 N4 N3 N2 N1 Z P1 P2 P3 
N1 N5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 
Z N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P1 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 P5 
P2 N3 N2 N1 Z P1 P2 P3 P4 P5 P5 P5 
P3 N2 N1 Z P1 P2 P3 P4 P5 P5 P5 P5 
P4 N1 Z P1 P2 P3 P4 P5 P5 P5 P5 P5 

 
 
 
 
 

Error 

P5 Z P1 P2 P3 P4 P5 P5 P5 P5 P5 P5 
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Vehicle Angular Velocity FRMLC 

The angular velocity FRMLC uses the block diagram given in Figure 4.11, which 

is very similar to the linear velocity FRMLC block diagram.  Here the controller 

reference input, ωz,d(kT), is the current desired angular velocity, and the input v(kT) is the 

vehicle’s current linear velocity.  The linear velocity is chosen as an input since it is 

expected that more slip will occur between the vehicle tires and the ground at higher 

speeds, and therefore affect the vehicle’s angular velocity.  The gains, gω and gv, are used 

again to normalize the inputs.  The gain gω is chosen to be 1/ωz,max, where ωz,max is the 

vehicle’s maximum angular velocity.  Similarly, the gain gv is chosen to be 1/vmax where 

vmax is the vehicle’s maximum linear velocity.  Again, the information required in order 

to calculate these gains are given either by the Vehicle Control Unit (VCU) configuration 

report or measured by the Position system (POS). 
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Figure 4.11:  Angular Velocity FRMLC Block Diagram. 
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For vehicles with a nonzero minimum turning radius, ωz,max turns out to be a 

function of the AGV’s current linear velocity and its minimum turning radius: 

min
max, r

vcurrent
z =ω . 

Note that when the current linear velocity is equal to zero, the gain gω for vehicles with a 

nonzero minimum turning radius is infinite.  This is because the vehicle is not capable of 

turning unless the linear velocity is nonzero.  Since it is impossible for the vehicle to turn 

unless the linear velocity is nonzero, the gain gω is set to zero if the linear velocity is 

zero.  This is done so that the controller does not attempt to adapt for this case. 

The controller’s output in Figure 4.11 mz(kT) is the last term of the propulsive 

wrench. Using the output membership functions shown in Figure 4.10, the output of the 

inference mechanism is normalized.  The gain gm is used to scale this output to allow the 

controller to command the entire range of the term mz.  In the MAX architecture, the term 

mz also has the range from –100 to 100 percent, and therefore the gain gm is chosen to be 

100. 

Just as the MAX architecture provided information for the linear velocity 

controller, it also provides some information about the angular velocity in order to 

initialize the rule-base of its controller.  It is expected that by increasing the term mz in 

the propulsive wrench, the AGVs angular velocity will increase.  And, by decreasing the 

term mz in the propulsive wrench, the AGVs angular velocity will decrease.  This is, of 

course, with the exception when the linear velocity is equal to zero as mentioned earlier.  

With this information, and using the membership functions defined in Figures 4.9 and 

4.10, the rule-base for the angular velocity controller is initialized with the rules given in 

Table 4.4. 

(4.8)
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Table 4.4:  Angular Velocity Initial Rule-Base 
Desired Angular Velocity Moment 

N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N4 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N3 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N2 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
N1 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
Z N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P1 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P2 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P3 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
P4 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 

 
 
 
 
 

Linear 
Vel. 

P5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 
 

It is assumed in Table 4.4 that the linear velocity has no affect on the control of 

the AGVs angular velocity.  This assumption is made initially because there is not 

enough information about the plant’s characteristics to make a conclusion on how the 

linear velocity will affect the control of the AGVs angular velocity.  Therefore, the 

controller must learn how to control the plant for different linear velocities. 

The reference model here takes the desired angular velocity as input and outputs 

an estimate of what the current vehicle angular velocity should be.  The model 

implemented, like the linear velocity controller, is also a simple first order model.  Again, 

this was chosen for its simplicity where only one model variable needs to be determined, 

the time constant.  This time constant is set to the systems average response time to 

various mz commands. 

The learning mechanism uses the angular velocity calculated by the reference 

model and the current AGV angular velocity to calculate an error, e(kT) and change in 

error, ce(kT).  The error is scaled by the gain ge and the change in error is scaled by gce in 

order to use the membership functions given in Figure 4.9 for fuzzification.  These gains 

are determined again by the maximum possible errors.  Therefore ge is set to 1/ωdesired and 
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gce is set to T/ωdesired, where ωdesired is the desired angular velocity and T is the time 

interval.  The rules used by the inference mechanism are given in Table 4.3.  The 

conclusions of the rule-base are defuzzified using the COG and the membership function 

in Figure 4.10.  And finally, the gain gp is used to control how fast the system adapts and 

is again left as a tuning parameter. 
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CHAPTER 5 
RESULTS 

The new path-tracking algorithm developed in this dissertation, vector pursuit, is 

a geometric technique.  Geometric techniques use a look-ahead point, which is on the 

path at a distance L ahead of the orthogonal projection of the vehicle’s position onto the 

path, to determine the desired motion of the vehicle.  Unfortunately, there is a tradeoff in 

determining the distance L.  Increasing L tends to dampen the system leading to a stable 

system with less oscillation.  On the other hand, increasing L also tends to cause the 

vehicle to cut corners of a path.  Therefore, it is desirable to have a small look-ahead 

distance in order to accurately navigate the path, but out of necessity, a large value 

typically is used to achieve a stable system with little oscillation. 

A factor that must be considered when choosing the look-ahead distance is the 

vehicle speed.  As the vehicle speed increases, the look-ahead distance typically needs to 

be increased, too.  Having a look-ahead distance greater than zero allows the vehicle to 

start turning before it actually reaches a curve in the path.  Starting the turn early is 

desirable because of the fact that a certain amount of time is required for the vehicle to 

execute a commanded turning rate.  The faster the vehicle is going, the sooner the vehicle 

needs to start its turn. 

Ideally then, a geometric path-tracking technique would allow small look-ahead 

distances to accurately track the given path, and not be sensitive to small changes in 

vehicle speed.  This chapter presents the results of tests done to determine vector 

pursuit’s ability to track paths accurately with different look-ahead distances and at 
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different speeds.  For comparison, tests are done using follow-the-carrot and pure pursuit.  

Follow-the-carrot is the original path-tracking technique used on the Navigation Test 

Vehicle (NTV), and pure pursuit is currently a popular technique. 

Another factor that must be considered when choosing the look-ahead distance is 

the anticipated vehicle position and heading errors.  These errors are obviously preferably 

small.  Unfortunately, this is not always the case.  One example where large position and 

heading errors may be expected is if an unexpected obstacle is encountered.  Large errors 

may exist once the vehicle navigates around the obstacle and then continues to track the 

desired path.  This chapter also presents results of tests where a jog in the middle of the 

desired path is used to simulate a jump in the desired position and heading.  Again, 

follow-the-carrot and pure pursuit path-tracking techniques are used for comparison. 

The NTV developed by CIMAR at the University of Florida was the main tool 

used to test the vector pursuit path-tracking algorithm as well as the FRMLC controllers 

developed in chapters 3 and 4, respectively.  Before actually implementing the path-

tracking algorithms and the controllers on the vehicle, they were tested in simulation with 

a simple model of the vehicle.  After achieving positive results from simulation, the new 

path-tracking algorithm and the FRMLC controllers were implemented on the NTV for 

further testing.  In addition to implementing them on the NTV for testing, they were 

implemented also on a K2A robot developed by Cybermotion, Inc., of Roanoke, Virginia 

(See Figure 5.1), and on an All-Purpose Remote Transport System (ARTS) (See Figure 

5.2), which is a vehicle used by the United States Air Force Research Laboratory for 

research and design.  Before presenting the results of these tests, the method used for 

evaluating the path-tracking algorithm is presented first. 
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Figure 5.1:  Cybermotion K2A. 

 

 
Figure 5.2:  All-purpose Remote Transport System. 



86 

 

(5.1)

Method for Evaluating Path Tracking 

In order to evaluate the path-tracking algorithm, two errors are measured.  A 

position error and a heading error are measured for every new position data from the POS 

module.  These errors are calculated relative to a coordinate system that is defined to 

have its origin located at the perpendicular projection of the current vehicle location onto 

the planned path.  Its x-axis is orientated with the path direction at that point, its z-axis is 

down, and its y-axis forms a right hand coordinate system.  This coordinate system, 

referred to as the perpendicular coordinate system, as well as the position and heading 

errors, are shown graphically in Figure 5.3.  Then the position error, e, is defined to be: 

v
P ye= , 

where (PxV,PyV) are the coordinates of the vehicle position in the perpendicular coordinate 

system defined above.  Note that by the definition of this coordinate system, PxV always 

equals zero.  Next, the heading error, θe, is defined to be: 

VPe θθθ −= , 

where θP is the angle from the x-axis of the world coordinate system to the x-axis of the 

perpendicular coordinate system, θV is the angle from the x-axis of the world coordinate 

system to the x-axis of the vehicle coordinate system, and θe is in the interval (-π,π]. 

Navigation Test Vehicle (NTV) 

This section first presents the results of testing the vector pursuit path-tracking 

algorithm and the fuzzy reference model learning controllers in simulation and then 

presents the implementation results.  It concludes with the results of tests done where the 

NTV is driving backwards. 

 

(5.2)
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Figure 5.3:  Defining Position and Heading Errors. 

Simulation Model 

Using the world and vehicle coordinate systems defined in Chapter 3, a kinematic 

model of the NTV is given by the following equations: 

)cos( VV
W vx θ=& , 

)sin( VV
W vy θ=& , 

and 

W

v
V

)tan(φ
θ =& , 

where WxV and WyV give the vehicle position, θV is the vehicle heading, v is the vehicle 

speed, φ is the steering wheel angle and W is the vehicle’s wheelbase. 

Recall that the outputs of the controllers designed in Chapter 4 are the percent 

force along the vehicle’s x-axis and the percent moment about the vehicle’s z-axis.  On 

the NTV, the magnitude of percent force maps directly to the percent of the maximum 

(5.3)

(5.4)

(5.5)
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throttle position and the percent moment maps to the percent of the maximum steering 

wheel angle.  Assuming that there is no slip between the tires and the ground, mapping 

the percent moment to the percent steering wheel angle results in a linear relationship, at 

a given speed, between the percent steering wheel angle and the current angular velocity.   

On the other hand, mapping the percent force to the percent throttle results in a nonlinear 

relation between the throttle position and the current vehicle speed. 

In order to simulate the NTV’s speed, a look-up table was created that gives the 

vehicle speed based on the current throttle position.  The results given in Table 5.1 are the 

average speeds of the NTV after it had started moving.  The results are specified as being 

after the NTV had started moving because a larger percent throttle position was required 

to get the NTV moving than was required to keep it moving.  In an attempt to make the 

simulation more realistic, a minimum throttle position was chosen before any motion 

would occur.  Once the NTV began moving the look-up table was used to determine the 

vehicle speed but with a limit on the acceleration. 

Table 5.1:  Mapping of Percent Throttle to Average Vehicle Speed. 
Percent Throttle Vehicle Speed (m/s) 

0 0.0 
10 0.0 
20 1.3 
30 1.9 
40 2.7 
50 3.8 
60 4.9 
70 5.4 
80 5.9 
90 6.3 

100 6.6 
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With the NTV’s linear and angular velocity determined as functions of the current 

throttle and steering wheel positions, models are required for the NTV’s throttle and 

steering wheel.  The models for the NTV’s throttle and steering presented in the next two 

sections were developed from data taken from the NTV. 

Throttle Model 

In order to develop a simple model of the NTV’s throttle, data was taken of the 

response of the throttle to various commanded step inputs.  With this data, it was 

determined initially that a first-order model would be sufficient.  In the end, a limit on the 

throttle’s velocity was required in order for the model to be more accurate.  This 

saturation point of the throttle’s velocity was determined experimentally.  Some of the 

results of this model compared to the actual data are given in Figures 5.4 and 5.5. 

 

 
Figure 5.4:  40 Percent Throttle Step Input. 

Steering Model 

The model for the steering wheel was developed in a similar manner as the 

throttle.  Data was taken of the steering wheel’s response to various commanded step 

inputs.  Again, with this data, it was determined initially that a first-order model would be 
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sufficient with a limit on the steering wheel’s velocity.  But, a limit on the steering 

wheel’s acceleration was required also in order for the model to be more accurate.  Both 

of these saturation points of the steering wheel’s velocity and acceleration were 

determined experimentally.  Some of the results of this model compared to the actual data 

are given in Figures 5.6 and 5.7. 

 

 
Figure 5.5:  100 Percent Throttle Step Input. 

 
Figure 5.6:  40 Percent Steering Step Input. 
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Figure 5.7:  100 Percent Steering Step Input. 

Simulation Results 

Three different paths are used to test the new geometric path-tracking algorithm.  

A “U” shape path is used to test going from a straight section into a curve, and from a 

curve back into a straight section.  A figure eight path is used to test going from a right 

curve into a left curve, and from a left curve into a right curve.  And finally, a straight 

path with a jog in the middle is used to test jumping from a small error in position and 

orientation to large errors.  For comparison, follow-the-carrot and pure pursuit path-

tracking methods are implemented and tested using the same paths in simulation.  In 

order to focus on each path-tracking technique’s sensitivity to the look-ahead distance at 

various speeds, the constant k for vector pursuit methods 1 and 2 was chosen first through 

some initial experiments.  The constant was chosen to be 4.0 and 1.5 for methods 1 and 2, 

respectively.  On account of the large number of tests, the results are shown graphically 

in Appendix B. 

The first tests, shown in Figures B.1 through B.4, are a “U” shape path with a 

tracking speed of 1.5 mps and a look-ahead distance of 3 meters.  Each method was 
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capable of navigating this path with relatively small position and heading errors.  Next, 

using the same path, the look-ahead distance was increased to 5 meters, and the tracking 

speed was increased to 3.0 mps for the tests shown in Figure B.5 through B.8.  Again, 

each method navigated the path with small position and heading errors.  The last group of 

tests using the “U” shape path is shown in Figures B.9 through B.12.  The tracking speed 

for these tests was increased to 4.5 mps and the look-ahead distance was increased to 7 

meters.  Follow-the-carrot path-tracking method was unable to execute this path without 

large oscillations coming out of the curved section.  The other path-tracking techniques, 

pure pursuit and vector pursuit methods 1 and 2, were able to execute the path with small 

position and heading errors. 

The next path used to test the different path-tracking techniques is a figure eight 

path.  Just as before, the tracking speed and the look-ahead distance were varied.  Figures 

B.13 through B.16 show the results of the path-tracking techniques with a tracking speed 

of 1.5 mps and a look-ahead distance of 3 meters.  Each technique was able to navigate 

the path with small position and heading errors.  Next, in Figures B.17 through B.20, the 

tracking speed was increased to 3.0 mps and the look-ahead distance was increased to 5 

meters.  Again, all path-tracking techniques tested were able to navigate the path with 

relatively small position and heading errors.  Figures B.21 through B.24 show the results 

of increasing the tracking speed to 4.5 mps and the look-ahead distance to 7 meters.  Just 

as for the “U” shape path at 4.5 mps, the follow-the-carrot method is no longer able track 

the path without large oscillations, while the remaining techniques were able to navigate 

the figure eight path with small position and heading errors. 
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Finally, a path with a sudden jog in the middle is used to test the path-tracking 

techniques.  Initially, the tracking speed is set to 1.5 mps and the look-ahead distance is 

set to 3 meters.  Each path-tracking technique is tested with the distance of the jog 

varying from 2 to 6 meters.  These results are shown in Figures B.25 through B.44.  Both 

the follow-the-carrot and the vector pursuit method 1 resulted in oscillations after the jog.  

Both pure pursuit and vector pursuit method 2 are able to navigate the path without 

resultant oscillations.  It is noticed that the pure pursuit method converges slightly faster 

than the vector pursuit method 2.  This is characteristic is the result of vector pursuit 

method 2 considering the orientation of the look-ahead point as well as the position. 

In Figures B.45 through B.64, the tracking speed is set to 3.0 mps now and the 

look-ahead distance is set to 5 meters.  Similar results are obtained from the follow-the-

carrot method and the vector pursuit method 2 after the jog as was obtained for the slower 

tracking speed.  Pure pursuit path-tracking technique results in large position errors, but 

still no oscillations.  Vector pursuit method 2 results in a much smaller position error than 

pure pursuit, and also does not exhibit the oscillations, whereas follow-the-carrot and 

vector pursuit method 1 do exhibit oscillations. 

Finally, the tracking speed is set to 4.5 mps and the look-ahead distance is set to 7 

meters.  The results of these tests of the paths with a jog in the middle are given in 

Figures B.65 through B.84.  Again, follow-the-carrot and vector pursuit method 1 result 

in large oscillations about the path.  Pure pursuit results in some oscillation for the 

smaller jogs and large position errors for the larger jogs.  Vector pursuit method 2, on the 

other hand, results in a very smooth transition from the path before the jog to the path 

after the jog. 
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Simulation tests show that vector pursuit method 1 had difficulty handling the test 

path with a jog in the middle.  It is speculated that the reason for this difficulty is due to 

the fact that the vehicle constraints were ignored initially when determining the desired 

motion.  Because of these results, vector pursuit method 1 is not tested further in 

implementation.  On the other hand, simulation tests show promising results for the 

vector pursuit method 2 path-tracking technique.  Therefore, in order to continue testing 

this technique, it is implemented on the MCU of the NTV. 

Implementation Results 

Testing vector pursuit path-tracking method in simulation was done simply to 

validate the possibility of this method working on the NTV.  Since the models used to 

test the path-tracking algorithm in simulation were simple and obviously not exact, the 

real test is the actual implementation on the NTV.  The simulation tests proved to be 

useful since poor results were obtained from vector pursuit method 1 from the tests of a 

straight path with a jog in the middle.  Again, for this reason, vector pursuit method 1 is 

not tested on the NTV. 

The same paths used to test vector pursuit in simulation are used to test it on the 

NTV.  Once more, the constant k of the vector pursuit method 2 is kept at 1.5 in order to 

focus on the technique’s sensitivity to the look-ahead distance.  The results of vector 

pursuit path tracking on the NTV are compared again to follow-the-carrot and pure 

pursuit path-tracking techniques, which were implemented on the NTV.    Because of the 

large number, plots of the planned path and of the actual path measured from the position 

system for these tests are shown in Appendix C. 

The path used first for testing the path-tracking techniques is a “U” shape path 

with 60-meter straight sections and a 15-meter turning radius on the curved section.  Each 
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technique was required to track this path at speeds of 2 mps, 3 mps, and 4 mps.  The 

look-ahead distance was varied for different runs in order to approximate the sensitivity 

of each path-tracking technique on the look-ahead distance.  Results of these tests for a 2 

mps tracking speed are shown in Figures C.1 through C.12 and Figures 5.8 through 5.10.  

From these results, it is noticed that for follow-the-carrot and pure pursuit, the look-ahead 

distance must be greater than 3 and 4, respectively, to obtain good results.  The results of 

vector pursuit method 2, on the other hand, are good over the entire range of look-ahead 

distances tested. 
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Figure 5.8:  Analysis of Position and Heading Errors of Follow-the-Carrot Path Tracking 

of a “U” Shape Path at 2 mps. 

(a) (b)

2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

3

4

5

6

Look-ahead Distance (meters)

P
os

iti
on

 E
rr

or
 (

m
et

er
s)

Mean
Standard Deviation
Maximum Magnitude

2 2.5 3 3.5 4 4.5 5
-10

0

10

20

30

40

50

60

70

80

Look-ahead Distance (meters)

H
ea

di
ng

 E
rr

or
 (

de
gr

ee
s)

Mean
Standard Deviation
Maximum Magnitude

 
Figure 5.9:  Analysis of Position and Heading Errors of Pure Pursuit Path Tracking of a 

“U” Shape Path at 2 mps. 
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Figure 5.10:  Analysis of Position and Heading Errors of Vector Pursuit (Method 2) Path 

Tracking of a “U” Shape Path at 2 mps. 

Similar results are obtained where the tracking speed is increased to 3 mps and 4 

mps.  With a tracking speed of 3 mps (See Figures C.13 through C.24), the look-ahead 

distance must be greater than 5 meters for follow-the-carrot and greater than 6 meters for 

pure pursuit.  Vector pursuit method 2 obtained good results over the entire range tested.  

Finally, for a tracking speed of 4 mps (See Figures C.25 through C.36), follow-the-carrot 

required a look-ahead distance greater than 7 meters and pure pursuit required a look-

ahead distance greater than 8 meters.  Vector pursuit method 2 again gave good results 

over the entire range of look-ahead distances tested.  Figures 5.11 through 5.13 

summarize the results obtained for the “U” shape path by looking at the standard 

deviation of the position and heading errors. 

The next path used for testing the path-tracking techniques is a figure eight path 

with a 15-meter turning radius on each curved section.  Again, each technique was 

required to track this path at speeds of 2 mps, 3 mps, and 4 mps.  Similarly, the look-

ahead distance was varied for different runs in order to approximate the sensitivity of 

each path-tracking technique on the look-ahead distance.   
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Figure 5.11:  Standard Deviation of Position and Heading Errors of a “U” shape path at 2 

mps. 
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Figure 5.12:  Standard Deviation of Position and Heading Errors of a “U” shape path at 3 

mps. 
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Figure 5.13:  Standard Deviation of Position and Heading Errors of a “U” shape path at 4 

mps. 
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Results of these tests for a 2 mps tracking speed are shown in Figures C.37 

through C.48 and Figures 5.14 through 5.16.  Just as with the “U” shape path, the look-

ahead distance must be greater than 3 meters for follow-the-carrot and greater than 4 

meters for pure pursuit to obtain good results.  Vector pursuit again achieves good results 

over the entire range of look-ahead distances tested. 
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Figure 5.14:  Analysis of Position and Heading Errors of Follow the Carrot Path 

Tracking of a Figure Eight path at 2 mps. 
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Figure 5.15:  Analysis of Position and Heading Errors of Pure Pursuit Path Tracking of a 

Figure Eight Path at 2 mps. 
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Figure 5.16:  Analysis of Position and Heading Errors of Vector Pursuit (Method 2) Path 

Tracking of a “U” Shape Path at 2 mps. 

As expected, similar results are obtained for the figure eight path as for the “U” 

shape path where the tracking speed is increased to 3 mps and 4 mps.  With a tracking 

speed of 3 mps (See Figures C.49 through C.60), the look-ahead distance must be greater 

than 5 meters for follow-the-carrot and greater than 6 meters for pure pursuit.  Vector 

pursuit method 2 obtained good results over the entire range tested.  Finally, for a 

tracking speed of 4 mps (See Figures C.61 through C.72), follow-the-carrot required a 

look-ahead distance greater than 7 meters and pure pursuit required a look-ahead distance 

greater than 8 meters.  Vector pursuit method 2 again gave good results over the entire 

range of look-ahead distances tested.  Figures 5.17 through 5.19 summarize the results 

obtained for the figure eight path by looking at the standard deviation of the position and 

heading errors for a tracking speed of 2 meters per second.  From these figures, it is 

obvious that vector pursuit is able to maintain small position and heading errors with 

smaller look-ahead distances than both follow-the-carrot and pure pursuit.  Decreasing 

the look-ahead distance below a certain point results in large errors for both follow-the-

carrot and pure pursuit path-tracking techniques. 
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Figure 5.17:  Standard Deviation of Position and Heading Errors of a Figure Eight Path 

at 2 mps. 
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Figure 5.18:  Standard Deviation of Position and Heading Errors of a Figure Eight Path 

at 3 mps. 
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Figure 5.19:  Standard Deviation of Position and Heading Errors of a Figure Eight Path 

at 4 mps. 
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By looking at the standard deviation of position and heading errors in Figures 

5.11 through 5.13 and Figures 5.17 through 5.19 for each path-tracking method, vector 

pursuit shows to be less sensitive to the look-ahead distance, especially for smaller values 

of look-ahead distances.  This definitely is desirable for the reasons mentioned earlier.  

For example, suppose follow-the-carrot path tracking is utilized with a look-ahead 

distance of 3 meters and a tracking speed of 2 mps.  Good results are obtained under 

normal circumstances.  But, if the speed were to increase just slightly, e.g., going down a 

hill, stability would definitely be a concern.  A similar example could be made of pure 

pursuit path tracking. 

In addition to being concerned about the path-tracking technique’s sensitivity of 

the look-ahead distance to various speeds, the sensitivity of the path-tracking technique to 

large position and heading errors is also a concern.  In order to test this, a straight path is 

used with a jog in the middle, where this jog is varied from 2 meters to 6 meters.  This is 

tested again for follow-the-carrot and pure pursuit path-tracking techniques in addition to 

vector pursuit, at tracking speeds of 2, 3, and 4 meters per second.  For each speed, a 

look-ahead distance is chosen so that all three path-tracking techniques would perform 

well with small position and heading errors. 

Initially, the desired tracking speed was set to 2 mps with a look-ahead distance of 

5 meters.  The results of these tests are given in Figures C.73 through C.87.  First, it is 

noted that all three methods were able to recover after the jog in the path and converge 

back to the desired path.  Beyond that, it is also noticed that both follow-the-carrot and 

pure pursuit result in a larger overshoot of the desired path than vector pursuit.  In fact, 

for small jogs in the path, vector pursuit has almost no overshoot. 
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Next, the desired tracking speed was set to 3 mps with a look-ahead distance of 7 

meters.  The results of these tests are given in Figures C.88 through C.102.  At this speed 

and with this look-ahead distance, follow-the-carrot is no longer able to recover after the 

jog in the path but results in oscillations about the path.  Both pure pursuit and vector 

pursuit are able to converge to the path after the jog.  Although, as before, pure pursuit 

has a larger overshoot than vector pursuit before converging to the path.  Again, vector 

pursuit has almost no overshoot for each test. 

Finally, the desired tracking speed was set to 4 mps with a look-ahead-distance of 

9 meters.  This time, however, follow-the-carrot method was not tested for safety reasons.  

Large oscillations at that speed could result in the NTV rolling over.  So, the results of 

pure pursuit and vector pursuit are given in Figures C.103 through C.112.  Both pure 

pursuit and vector pursuit are able to recover after the jog in the path by converging back 

into the desired path. 

Navigating the NTV in Reverse 

In addition to implementing the vector pursuit path-tracking method for the NTV 

going forward, it was implemented also for going backwards.  As in the previous tests, a 

“U” shape and a figure eight path are used for testing.  Figures C.113 through C.115 give 

the results of the “U” shape path at 2 mps, 3 mps, and 4 mps, respectively.  And, figures 

C.116 through C.118 give the results of the figure eight path at 2 mps, 3 mps, and 4 mps, 

respectively.  Similar results were obtained going backwards as were obtained going 

forward. 
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Cybermotion K2A Implementation Results 

Cybermotion K2A is a three-wheel synchronous drive robot.  Shawver first 

automated this robot under an earlier version of the MAX architecture in 1998 [88].  The 

variables that are available to control the K2A vehicle are a drive value and a steer value.  

The VCU consists of a Little Giant that is used to convert the wrench command to a drive 

value and a steer value.  Navigation of planned paths was accomplished by using follow-

the-carrot path tracking in conjunction with PID controllers.  Oscillation was noted as a 

problem when the vehicle attempted to navigate from a curved section to a straight 

section of the path.  One of the test paths used by Shawver was a “U” shaped path where 

the curved section has a turning radius of approximately 1.3 meters.  Test results for this 

path had an average error of 4 cm and a maximum error of 20 cm. 

The total time required to implement vector pursuit and the two FRMLC 

controllers on the K2A was less than a day. The MCU was the only module that was 

updated, since the Cybermotion K2A was operating already under the MAX architecture.  

This was accomplished by simply copying the source code on the NTV’s MCU to the 

K2A’s MCU.  A short amount of time was used to adjust the look-ahead distance and 

constant k tuning parameters.  A “U” shape path and a figure eight path were used to test 

the navigation with a look-ahead distance of 0.1 meters and the constant k was set to 4.0.  

The planned path and the actual path measured by the position system of these two tests 

are shown in Figures 5.20 and 5.21.  For the “U” shape test path, the average error was 2 

cm with a standard deviation of 2 cm and a maximum magnitude of error of 6cm.  For the 

figure eight path, the average error was –1 cm with a 3 cm standard deviation and a 

maximum magnitude of error of 8 cm. 
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Figure 5.20:  K2A “U” Shape Test Path. 
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Figure 5.21:  K2A Figure Eight Test Path. 
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All-purpose Remote Transport System (ARTS) Implementation Results 

ARTS is a tracked vehicle that is controlled by manipulating the throttle in 

addition to the left and right track speeds.  The VCU on ARTS was developed by ARA to 

convert wrench commands to throttle positions, and left and right track speeds.  The time 

required to implement the vector pursuit path tracking and the FRMLC controllers was 

less than a day.  The vector pursuit constant k was set to 1.5 and the look-ahead distance 

was set to 4 meters for a velocity of 1.4 meters per second.  A “U” shape path, which has 

55 meter straight segments and 12 meter turning radius for the curved section, and a 

figure eight path, which has 12 meter turning radius, are used as test paths.  Plots of the 

planned path and the actual path measured by the position system are given in Figures 

5.22 and 5.23.  The average error for the “U” shape path was 1.8 cm with a standard 

deviation of 12 cm and a maximum magnitude of 40 cm.  The average error for the figure 

eight path was –14 cm with a standard deviation of 13 cm and a maximum magnitude of 

39 cm.  These results were accomplished without any time used for tuning! 
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Figure 5.22:  ARTS “U” Shape Test Path. 
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Figure 5.23:  ARTS Figure Eight Test Path. 
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CHAPTER 6 
CONCLUSIONS AND FUTURE WORK 

Conclusions 

Current geometric path-tracking methods such as pure pursuit or follow-the-carrot 

only use a desired position in order to determine a desired vehicle motion.  Proportional 

path-tracking method, uses both a desired position and heading, but is geometrically 

meaningless by adding terms with different units.  Vector pursuit is a new geometric 

path-tracking algorithm that takes advantage of a desired orientation as well as a desired 

position while remaining geometrically meaningful. 

Two methods based on the theory of screws were developed for vector pursuit.  In 

both methods, a desired instantaneous screw is calculated to represent the motion of the 

vehicle from its current position and orientation to a position and orientation on the path.  

The first method initially ignores the vehicle constraints when determining this desired 

instantaneous screw, and then deals with them afterward.  The second method considers 

the constraints in determining the desired instantaneous screw.  Both methods are used to 

determine a desired vehicle turning rate. 

A fuzzy reference model learning controller (FRMLC) was implemented to track 

the desired vehicle turning rate.  This controller was designed from parameters of known 

vehicle characteristics such as the maximum turning rate and the maximum speed.  

Assuming that the user would set the desired tracking speed, a second FRMLC was 

implemented to track this desired speed.  Again, this controller was designed from 
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parameters of known vehicle characteristics such as the maximum speed and the 

maximum allowable pitch. 

Both vector pursuit path-tracking methods were tested in simulation and 

compared to both follow-the-carrot and pure pursuit path-tracking methods.  In these 

tests, it was determined that the first method, for determining the desired instantaneous 

screw, had difficulty handling large position and heading errors.  The second method for 

determining the instantaneous screw, on the other hand, showed to be promising in 

simulation. 

Then, this method was implemented on the Navigation Test Vehicle (NTV), 

which was designed and built by the Center for Intelligent Machines and Robotics 

(CIMAR) at the University of Florida.  It was tested on various paths and again compared 

to follow-the-carrot and pure pursuit path-tracking techniques.  Through these tests, 

vector pursuit proved to be more robust.  Vector pursuit was less sensitive to the chosen 

look-ahead distance at various speeds, and it was able to handle situations where large 

position and orientation errors could occur, e.g., after an unexpected obstacle was 

encountered. 

In addition to implementing the vector pursuit path tracking and the FRMLCs on 

the NTV, they were implemented also on a Cybermotion K2A and on an All-purpose 

Remote Transport System.  In each case, the time required to implement the path tracking 

and controllers required less than a day. 

Future Work 

The first method used in vector pursuit to calculate the desired instantaneous 

screw did not work out for the NTV becaues of large oscillations when tested with a path 



109 

 

that has a jog in the middle.  It is presumed that the reason for the oscillations is that the 

vehicle constraints were ignored initially.  With that in mind, it would be interesting to 

test this method on a vehicle that does not have these constraints. 

Another area of possible work is in determining the two tuning parameters of 

vector pursuit, the look-ahead distance, L, and the constant k.  There are optimization 

techniques that could be used to do this, such as the golden section search optimization 

technique. 

Finally, a last area of possible work mentioned here is in the area of high speed 

path tracking.  The new path-tracking technique tested successfully on vehicles that can 

only operate at speeds of 15 miles per hour or less.  Because of vector pursuit’s ability to 

influence how fast the vehicle converges to the desired path, this technique could 

possibly be used on vehicles traveling at higher speeds. 
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APPENDIX A 
MAX INTERFACE SPECIFICATION FOR UNMANNED VEHICLES 

 
 
 
 
 
 
 
 
 
 
 
 

Developed by the Center for Intelligent Machines and Robotics 
at the University of Florida under the sponsorship of the 

Air Force Research Laboratory, Tyndall Air Force Base, Florida 
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1.0 Introduction 

 
The Center for Intelligent Machines and Robotics (CIMAR), at the University of Florida, 
has worked under the guidance of the Air Force Research Laboratory, Tyndall Air Force 
Base, Florida to develop a series of autonomously navigating vehicles.  A Kawasaki 
Mule 500 all-terrain vehicle named the Mule was first modified for computer control in 
1991 for the purpose of providing a test and development platform.  The technology 
developed on this platform has since been applied to a John Deere excavator, an 
Autonomous Survey Vehicle, and the Joint Amphibious Mine Countermeasures dozer. 
 
The original vehicle control architecture was primarily based on a shared memory 
(blackboard) approach, implemented through the use of multiple 68030 CPU boards 
running on a VME backplane.  The use of shared memory provided the advantage of 
running critical real-time procedures in parallel and having their resultant data available 
to all other programs immediately via the VME backplane.  This is the key advantage of 
using shared memory.  The problem with shared memory is that it tightly couples all of 
the sub-systems in an indirect way, making programming errors in the system difficult to 
trace.  The shared or common memory area becomes unmanageable in that a piece of 
data can be over written in error with impact somewhere else in the system.  The result is 
a system that becomes difficult to maintain or upgrade as new features and hardware are 
added.  In addition, the integration of all the systems into one backplane makes it difficult 
to use any one sub-system on a different project.  For example, to apply the position 
system to another autonomous vehicle would most certainty require significant changes 
to both hardware and software. 
 
From the experience gathered over the past years of work, a list of four architecture 
design requirements has emerged.  The architecture should: 
 

1. be comprised of a set of well-defined, self-contained, hardware 
independent modules where only the modules interface is rigorously 
defined. 

2. have the ability to scale up a system’s functionality with different 
combinations of modules 

3. provide a stepping stone toward the development of a standard 
architecture 

 
The focus of this document is to present a modular architecture that addresses the above 
design considerations.  Detailed information will be provided to document the hardware 
and software interfaces for a series of independent modules.  These modules can then be 
combined together in order to attain an autonomous navigation capability.  Figures A.1 
and A.2 provide an overview of the remote system. 
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Figure A.2:  Detail of Mobility. 
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2.0 Standardized Message Format (ASCII) 

This section presents the standardized message format including the header and end of 
message that will accompany every message.  All messages sent to or received from any 
of the MAX architecture modules will conform to this format. 
 
Header section: 

 
Field# 

 
Name 

 
Description 

 
Example 

 
0 

 
Start of Text 

 
char(0x02) not printable ASCII 

 
0x02 

 
1 

 
Message ID 

 
 

 
0200 

 
2 

 
Destination 

 
 

 
POS 

 
3 

 
Source 

 
Set by the host system (MCU, OCU) 

 
MCU 

 
4 

 
Vehicle 

 
 

 
MUL 

 
5 

 
Data Status 

 
Status of data (full, start, continue, end) 

 
0 

 
6 

 
Data Size 

 
Number of bytes in data (decimal) 
Exclude the leading & trailing ‘,’ 

 
2 

 
Data Section: 

 
Field# 

 
Name 

 
Description 

 
Example 

 
7 

 
Some Data 

 
 

 
10 

 
End of Message Section: 

 
Field# 

 
Name 

 
Description 

 
Example 

 
8 

 
Checksum 

 
8 bit unsigned sum  
Include everything but 0x02& 0x03 

 
?? 

 
9 

 
End of Text 

 
char (0x03) 

 
0x03 

 
Note #1: All messages are comma delimited as shown in the example below. 
Note #2: Data fields that are not used can be represented with just a comma (no 0.0 
required) 
Note #3: Field names, such as destination and vehicle, are NOT case sensitive. 
Note #4: There can be NO white spaces in a field (Example AMUL 1" is not allowed). 
 
Sample Message: 
[0x02]0200,POS,MCU,MUL,,,2,10,??[0x03] 
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1. Start of text 
The start of text will be marked by the byte 0x02 
 
2. Message Identification (ID) 
The message ID identifies a unique message.  MAX Modules are assigned a range of message 
IDs to implement their messaging.  The range of message IDs for the Max Modules are defined as 
follows: 
 
Vehicle Control Unit  VCU  0x0100 - 0x01ff 
Position System   POS  0x0200 - 0x02ff. 
Mobility Control Unit  MCU  0x0300 - 0x03ff 
Detection Mapping System DMS  0x0400 - 0x04ff 
Path Planner   PLN  0x0500 - 0x05ff 
 
3. Destination 
Destination identifies the intended recipient of the message.  If the message is a response to a 
request, then destination identifies the requesting module.   
 
4. Source 
Source identifies the module that sent the message. 
 
5. Vehicle 
Vehicle identifies the system that the module is contained in.  
 
6. Data Status 
Data Status indicates the state of the data.  Large data is broken into smaller packets and then 
transmitted in separate messages. The state of the data can take the form of: 
 
FULL_DATA  (0) The message sent contains a full data set. 
START_DATA (1) The message is longer than the maximum, and is therefore broken 

into smaller packets.  This signifies the start of the packets. 
CONTINUE_DATA (2) This signifies the continuation of the data. 
END_DATA  (3) This signifies the last data packet of the message. 
 
7. Data Size 
Data Size gives the size, in bytes, of the data.   
 
8.  Data 
The data content and format is specified in each MAX modules interface document. 
 
9. Checksum 
Checksum is the 8-bit unsigned sum of all bytes comprising the message packet not including the 
start of text and the end of text.  Includes the comma prior to the checksum.  The checksum is 
also represented in ASCII (2 bytes). 
 
10. End of Text 
The end of text will be the byte 0x03 
 
Notes: 
1.  In the data field, sending only the comma where data is not available is allowed.  Ex.  1.2,,2, ... 
2. All fields in the header must be filled. 
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Standard Messages 
 
In an attempt to make the interfaces between all of the modules generic and to perform 
more alike, we have developed the list of base-line messages shown below.  These base-
line messages are used to build the core of each interface to each module.  Not all of 
these messages will apply to every module and there will be additional messages as well.  
The base-line messages offer the core of the messaging and provide consistency as well 
as help keep the interfaces clean of any non-generic messaging. 
 
Input Messages: 
 

__POS___ Start Report Start outputting the modules report 
_________ Stop Report Stop outputting the modules report 
_________ Shutdown  Shutdown the system, power off 
_________ Reinitialize Re-initialize the system 
_________ Standby  Put the system in standby mode 
_________ Set Config Set the systems configuration 
_________ Request Config Request the systems configuration 
_________ Request Status Request the systems status 

 
Output Messages: 
 

__POS___ Report  The systems data report 
_________ Config Report The systems configuration report 
_________ Status Report The systems status report 

 
 
 
Note: 
The MAX interface documents define all of the messaging that is required of a particular 
module.  There may be additional messaging that is available on any particular system.  
This additional messaging should comply with the standard message format and should 
be defined in the particular module’s system documentation.  In this way you can always 
interchange position systems, for example, and still have all of the core messaging 
required for communication with it.  You can also provide the user with any additional 
features that may be available if they so choose to use. 
 
Standard Coordinate System: 
 
A standard coordinate system is attached to the vehicle where the x-axis points forward, 
the z-axis downward (see Figure A.3).  The direction of the y-axis is chosen so as to have 
a right-handed coordinate system. 
  
The parameters θx, θy, and θz, are used to define the orientation of the vehicle.  Vehicle 
orientation is defined by initially aligning the x-axis in a northerly direction and the z-
axis along the gravity vector as shown in (a).  The vehicle is then rotated by an angle θz 
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in a right-handed sense about the z-axis as shown in (b).  Subsequently the vehicle is 
rotated by an angle θy about the modified y-axis as shown in (c) followed by a rotation of 
θx about the modified x-axis as shown in (d). 
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Figure A.3:  Definition of Orientation. 
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2.1 Vehicle Control Unit (VCU) (ASCII) 

Version 2.0 
 
This section presents the messages that may be sent to the Vehicle Control Unit (VCU) 
and the messages that will be returned.  Every message will be composed of a header 
section, a data section, and an end of message section.  The data section of each message 
is defined here.  See the standardized message format documentation (section 2.0) for the 
header and end of message formats. 
 
Note: See specific module documentation for additional (system specific, non required) 
messages. 
 
The Vehicle Control Unit accepts high-level commands from its host that describe how 
the vehicle is to move.  It then translates these commands into the low-level commands 
that directly control the vehicle actuators to achieve the desired motion.  The Vehicle 
Control Unit only controls the actuators that are directly related to vehicle mobility. 
 
 
I. Input Messages: 

- VCU Start Report   - 0x0100 
- VCU Stop Report   - 0x0102 
- VCU Shutdown   - 0x0104 
- VCU Reinitialize   - 0x0106 
- VCU Standby   - 0x0108 
- VCU Request Configuration - 0x010C 
- VCU Request Status   - 0x010E 

 
- VCU Propulsive Wrench  - 0x0120 
- VCU Resistive Wrench  - 0x0122 

 
II. Output Messages:  

- VCU Report    - 0x01A0 
- VCU Configuration Report  - 0x01A2 
- VCU Status Report   - 0x01A4 
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VCU Start Report 

Input Message 
 
 
The VCU Start Report message causes the system to start outputting the VCU Report 
message.  The output rate is specified by the parameter rate, which is contained in this 
message.   If the rate is set to zero, then only one message is returned.  This is equivalent 
to a polled mode.   
 
Header section: 
Field# Name Description Example 
1 Message ID  0100 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping  1 

 
Data Section  

Field# Name Description Example 
7 Rate of updates Hz 5 

 
Example Message: 
[0x02]0100,VCU,MCU,MUL,0,1,5,??[0x03] 
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VCU Stop Report 

Input Message 
 
 
The VCU Stop Report message causes the system to stop outputting the VCU Report 
message.   The VCU remains in a ready (initialized) state. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0102 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0102,VCU,MCU,MUL,0,0,??[0x03] 
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VCU Shutdown 

Input Message 
 
 
The VCU Shutdown message causes the VCU to shutdown all of its sub-systems in the 
proper fashion.  At this time, the system may save any files or information that may be 
used on the next startup.  The power to the module may then be turned off. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0104 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0104,VCU,OCU,MUL,0,0,??[0x03] 
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VCU Reinitialize 

Input Message 
 
 
Commands the VCU to reinitialize each sub-system in the proper sequence to bring the 
system up to a state of readiness.  Once initialized, the VCU will execute commands that 
cause or resist vehicle motion.  The VCU must be initialized for vehicle motion to occur. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0106 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0106,VCU,MCU,MUL,0,0,??[0x03] 
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VCU Standby 

Input Message 
 
 
The VCU Standby message causes the system to go into a standby mode.  In standby 
mode the system is alive and ready to be re-initialized.  
 
Note: A VCU Shutdown should be given prior to turning system power off.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0108 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0108,VCU,MCU,MUL,0,0,??[0x03] 
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VCU Request Configuration 

Input Message 
 
 
This message is used to request the current configuration of the VCU.  See VCU 
Configuration Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  010C 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]010C,VCU,MCU,MUL,0,0,?? [0x03] 
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VCU Request Status 

Input Message 
 
 
This message is used to request the current status of the VCU.  See VCU Status Report 
for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  010E 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]010E,VCU,MCU,MUL,0,0,??[0x03] 
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VCU Propulsive Wrench 

Input Message 
 
 
The propulsive wrench is applied to the center of mass point of the vehicle and is used to 
propel the vehicle.  The force component of the wrench acts to translate the vehicle while 
the moment component acts to rotate the vehicle.  Essentially we are telling the VCU 
how we want to push on the vehicle where the percentage indicates the magnitude of the 
push.  For example: if the vehicle were a car, then the VCU would map a 50% Force X to 
the throttle and transmission  (e.g., 50% throttle and transmission in drive) and Moment Z 
would map to the steering.  The remaining parameters would not be used. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0120 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See Standardized message format 0 
6 Data Size Variable, set prior to shipping ?? 

 
Data Section  

Field# Name Description Example 
7 % Force X Desired Push in the x direction (Scaled from  

–100 to 100, a percentage of the maximum 
force) 

80.1 

8 % Force Y  0.0 
9 % Force Z  0.0 
10 % Moment X Desired moment about the x axis (Scaled from 

–100 to100, a percentage of the maximum 
moment) 

0.0 

11 % Moment Y  0.0 
12 % Moment Z  10.0 

 
Example Message: 
[0x02]0120,VCU,MCU,MUL,0,??, 80.1,,,,,10.0,??[0x03] 
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VCU Resistive Wrench 

Input Message 
 
 
The resistive wrench is applied to the center of mass point of the vehicle and is used to 
impede vehicle motion.  The resistive wrench uses the same six parameters as the 
propulsive wrench.  For example, if the vehicle were a car, then a 20% Force X command 
would map to the brake (e.g., brake depressed 20%). 
 
Header section: 
Field# Name Description Example 
1 Message ID  0120 
2 Destination  VCU 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle  MUL 
5 Data Status See Standardized message format 0 
6 Data Size Variable, set prior to shipping ?? 

 
Data Section  

Field# Name Description Example 
7 % Force X Desired resistive force in the x direction    

(Scaled from 0 to100, a percentage of the 
maximum force) 

20.3 

8 % Force Y  0.0 
9 % Force Z  0.0 
10 % Moment X Desired resistive moment about the x axis 

(Scaled from 0 to100, a percentage of the 
maximum moment) 

0.0 

11 % Moment Y  0.0 
12 % Moment Z  0.0 

 
Example Message: 
[0x02]0120,VCU,MCU,MUL,0,??, 20.3,,,,,,??[0x03] 
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VCU Report 

Output Message 
 
 
The VCU Report message returns the current state of the VCU 
 
Header section: 
Field# Name Description Example 
1 Message ID  01A0 
2 Destination Destination will be set equal to the source of 

the Start Rpt message 
MCU 

3 Source  VCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
2 

 
Data Section  

Field# Name Description Example 
7 % Force X Actual % Propulsive Force X 20.1 
8 % Force Y Actual % Propulsive Force Y 0.0 
9 % Force Z Actual % Propulsive Force Z 0.0 
10 % Omega X Actual % Propulsive Omega X 0.0 
11 % Omega Y Actual % Propulsive Omega Y 0.0 
12 % Omega Z Actual % Propulsive Omega Z 10.4 
13 % Force X Actual % Resistive Force X 0.0 
14 % Force Y Actual % Resistive Force Y 0.0 
15 % Force Z Actual % Resistive Force Z 0.0 
16 % Omega X Actual % Resistive Omega X 0.0 
17 % Omega Y Actual % Resistive Omega Y 0.0 
18 % Omega Z Actual % Resistive Omega Z 0.0 
19 Status See Below 01 

  
Example Message: 
[0x02]01a0,MCU,VCU,MUL,0,2,20.1,,,,,10.4,,,,,,,0100,??[0x03] 
 
19. Status Byte Description: 
Status byte 1 is generic and will not change from system to system.   
Status byte 2 is set aside to be system specific defined by the various VCU system 
modules. 
 
Message....[s1][s2] 
Status Bytes 1 and 2    
Status Byte 1 Status Byte 2 
Bit Condition when set (1 = set) Bit Condition when set (1=set) 
0 Startup  0 Contractor Reserved 
1 Busy  1 Contractor Reserved 
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2 Standby 2 Contractor Reserved 
3 Ready 3 Contractor Reserved 
4 Problem 4 Contractor Reserved 
5 Error 5 Contractor Reserved 
6 Failure 6 Contractor Reserved 
7 Shutdown 7 Contractor Reserved 

 
Description: 

Startup: Indicates the system has just been powered up 
Busy:  Indicates the system is currently processing the last command 
Standby: Indicates the following statements apply: 

- The system is ready to be reinitialized 
- The system will not respond to commands that cause or resist 
motion 
- The vehicle should remain stationary 
- The vehicle actuators should not move 
- From a mobility standpoint, the vehicle should be considered safe 

Ready:  Indicates that the system is initialized and is operational 
Problem: Indicates that a self-correcting problem has occurred and the 

problem is being corrected internally.  This problem requires no 
input from the host 

Error: Indicates that a problem has occurred that the system could not 
resolve.  An error requires the intervention of the host to be 
resolved. 

Failure: Indicates that the system has failed and will not recover. 
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VCU Configuration Report 

Output Message 
 
 
This message is used to report the current configuration of the VCU.  The following is a 
description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  01A2 
2 Destination Destination will be set equal to the source of 

the Start Rpt message 
MCU 

3 Source  VCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping ?? 

 
Data Section  

Field# Name Description Example 
7 Text Description Free form text description.  May list the main 

components used by the system and or other 
pertinent information.   

VCU 
System: 
PC/104:  

8 System Identification Gives a hex number assigned to the particular 
VCU so that it may be more uniquely 
described.  

?? 

9 Vehicle Length Length of the vehicle (Meters) 2.0 
10 Vehicle Width Width of the vehicle (Meters) 1.5 
11 Vehicle Height Height of the vehicle (Meters) 2.0 
12 Turning radius Vehicles minimum turning radius (Meters) 

Note: If the vehicle is omnidirectional then 
this variable should be set to zero. 

3.0 

13 Max speed X Meters/sec 10.0 
14 Max Speed Y Meters/sec 0.0 
15 Max Speed Z Meters/sec 0.0 
16 Max speed -X Meters/sec 10.0 
17 Max Speed -Y Meters/sec 0.0 
18 Max Speed -Z Meters/sec 0.0 
17 Max Omega X rad/sec 0.0 
19 Max Omega Y rad/sec 0.0 
20 Max Omega Z rad/sec 0.08 
21 Max Theta X Point of static roll over 40.0 
22 Max Theta Y Point of static pitch over 50.0 

 
 
Example Message: 
[0x02]01A2,MCU,VCU,MUL,0,??,VCU System PC/104, 
??,2.1,1.5,2.0,3.0,10.0,,,10.0,,,,,0.08,40.0,50.0??[0x03] 
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VCU Status Report 

Output Message 
 
 
Provides the host with the system status information 
 
Header section: 
Field# Name Description Example 
1 Message ID  01A4 
2 Destination Destination will be set equal to the source of 

the Start Rpt message 
MCU 

3 Source  VCU 
4 Vehicle  MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
8 

 
Data Section  

Field# Name Description Example 
7 Status 2 bytes:  See Below 01 

 
Example Message: 
[0x02]01a4,MCU,VCU,MUL,0,8,01,??[0x03] 
 
7. See VCU Report for Status Byte Description 
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2.2 Position Systems (POS) (ASCII) 

Version 2.0 
 
This section presents the messages that may be sent to the position system and the 
messages that will be returned.  Every message will be composed of a header section, a 
data section, and an end of message section.  The data section of each message is defined 
here.  See the standardized message format documentation (section 2.0) for the header 
and end of message formats. 
 
Note: See specific module documentation for additional (system specific, non required) 
messages. 
 
 
I. Input Messages:   

- POS Start Report  - 0x0200 
- POS Stop Report  - 0x0202 
- POS Shutdown  - 0x0204 
- POS Reinitialize  - 0x0206 
- POS Standby   - 0x0208 
- POS Set Configuration - 0x020A 
- POS Request Configuration - 0x020C 
- POS Request Status  - 0x020E 

 
 
II. Output Messages:   

- POS Report   - 0x02A0 
- POS Configuration Report - 0x02A2 
- POS Status Report  - 0x02A4 
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POS Start Report 

Input Message 
 
 
The POS Start Report message causes the system to start outputting the POS Report 
message.  The output rate is specified by the parameter rate contained in this message.   If 
the rate is set to zero, then only one message is returned, this is equivalent to polled 
mode.   
 
Header section: 
Field# Name Description Example 
1 Message ID  0200 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping 2 

 
Data Section  

Field# Name Description Example 
7 Rate of updates Hz 10 

 
Example Message: 
[0x02]0200,POS,MCU,MUL,0,2,10,??[0x03] 
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POS Stop Report 

Input Message 
 
 
The POS Stop Report message causes the system to stop outputting the POS Report 
message.   The position system remains in a ready (initialized) state. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0202 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0202,POS,MCU,MUL,0,0,??[0x03] 
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POS Shutdown 

Input Message 
 
 
The POS Shutdown message causes the position system to shutdown all of its sub-
systems in the proper fashion.  At this time, the system may save any files or information 
that may be used on the next startup.  The power to the module may then be turned off. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0204 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0204,POS,OCU,MUL,0,0,??[0x03] 
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POS Reinitialize 

Input Message 
 
 
The POS Reinitialize message causes the system to restart and re-initialize all sub-
systems in the proper sequence and bring the system up to a state of readiness. The 
Position System must be initialized for the Position Message to be valid (with the 
exception of the two status bytes which are always valid). 
 
Header section: 
Field# Name Description Example 
1 Message ID POS Reinitialize 0206 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0206,POS,MCU,MUL,0,0,??[0x03] 
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POS Standby 

Input Message 
 
 
The POS Standby message causes the system to go into a standby mode.  In standby 
mode the system is alive and ready to be re-initialized.  
 
Note: A POS Shutdown should be given prior to turning system power off.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0208 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0208,POS,MCU,MUL,0,0,??[0x03] 
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POS Set Configuration 

Input Message 
 
 
The POS Set Configuration message is used to set up the configuration of the system.  
The following gives an explanation of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  020A 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 Vehicle The system that the module is physically 

contained in.  
MUL 

8 Reference Latitude degrees  
This may be given to specify the location of a 
base station (if a DGPS is used) or perhaps the 
reference offset if a non-absolute position 
system is used.  The definition would be given 
by the particular position system 
documentation. 

29.123456 

9 Reference Longitude degrees -82.123456 
10 ReferenceElevation meters 27.123 
11 # Sensors # of sensors requiring an offset 1 
12 Position Offset X1 meters 

The position offsets give the location of a 
sensor relative to a coordinate system on the 
vehicle that the user chooses.  All of the 
sensors must be referenced to the same 
coordinate system.  In other words, the user 
chooses a coordinate system anywhere on the 
vehicle, then measures the offsets to each of 
the position system sensors used.   

-2.123 

13 Position Offset Y1 meters 
Note: The location of the coordinate system 
chosen will be the output of the module. 

 1.123 

14 Position Offset Z1 meters 
Note: A sensor placed at the origin and 
oriented with the axis, has a zero offsets 

 0.123 

15 Angular OffsetX1-
Axis 

radians 
The angular offsets give the rotation of a 
sensor relative to the same coordinate system 

 0.0 
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on the vehicle that the user chooses.  All of 
the sensors must be referenced to the same 
coordinate system. 

16 Angular OffsetY1-
Axis 

radians  0.0 

17 Angular OffsetZ1-
Axis 

radians  0.0 

18 Pos. Offset Xn   1.123 
19 Pos. Offset Yn  -1.123 
20 Pos. Offset Zn   0.123 
21 Angular OffsetXn-

Axis 
  0.0 

22 Angular OffsetYn-
Axis 

  0.0 

23 Angular OffsetZn-
Axis 

  0.0 

 
Example Message: 
[0x02]020A,POS,MCU,MUL,0,??,,MUL,29.1234567,  
 -82.1234567 27.123,2,-2.123,1.123,0.123,0.0,0.0,0.0,??[0x03] 
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POS Request Configuration 

Input Message 
 
 
This message is used to request the current configuration of the position system.  See 
POS Configuration Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  020C 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]020C,POS,MCU,MUL,0,0,??[0x03] 
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POS Request Status 

Input Message 
 
 
This message is used to request the current status of the position system.  See the POS 
Status Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  020E 
2 Destination  POS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]020E,POS,MCU,MUL,0,0,??[0x03] 
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POS Report 

Output Message 
 
 
This is the main message from the position system.  The following is a description of the 
parameters: 
 
Header section: 

Field# Name Description Example 
1 Message ID  02A0 
2 Destination Destination will be set equal to the source of 

the start Report message 
MCU 

3 Source  POS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping ?? 

 
Data Section     

Field# Name Description Example 
7 Latitude degrees. 

The current latitude in WGS-84 geodetic 
coordinates 

29.123456 

8 Longitude degrees 
The current latitude in WGS-84 geodetic 
coordinates. 

-85.123456 

9 Elevation meters 
ellipsoid height 

23.12 

10 Position RMS meters 0.03 
11 theta_x  (roll) radians 

-π/2 to π/2 
Uses the right hand rule, x is forward, z is 
down (axis attached to vehicle) 

1.12 

12 theta_y (pitch) radians 
-π /2 to π/2 

1.12 

13 theta_z (yaw) radians 
0 to 2π 
0 = Geodetic North 

3.12 

14 theta RMS radians 0.01 
15 vel_x (meters/sec) 

The instantaneous velocity of the vehicle in 
the direction of the vehicle’s x-axis.  The 
three linear velocity parameters define the 
first half of the velocity state.  The second 
half is defined by omega_x, omega_y, and 
omega_z, the rotational rates about the axes.  

2.12 

16 vel_y meters/sec 2.12 
17 vel_z meters/sec 0.12 
18 velocity RMS meters/sec 0.02 
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19 omega_x rad/sec 
The rotational rate about the x-axis of the 
vehicle. 

0.23 

20 omega_y rad/sec 
The rotational rate about the y-axis of the 
vehicle. 

0.5 

21 omega_z rad/sec 
The rotational rate about the z-axis of the 
vehicle. 

0.6 

22 Omega RMS radians/sec  
23 Time Stamp Julion Time (hhmmssss) 

The time when the position data was valid. 
12201022 

24 Status See Below 01 
 
Example Message: 
[0x02]02a0,MCU,POS,MUL,0,??,29.1234567,-85.1234567,23.12,0.03 
1.12,1.12,3.12,0.01,2.12,2.12,0.12,0.02,0.23,0.5,0.6,12201022,01,??[0x03] 
  
24. Status Byte Description: 
Status byte 1 is  generic and will not change from system to system.   
Status byte 2 is set aside to be system specific defined by the various POS system 
modules. 
 
Message....[s1][s2] 
Status Bytes 1 and 2    
Status Byte 1 Status Byte 2 
Bit Condition when set (1 = set) Bit Condition when set (1=set) 
0 Startup  0 Contractor Reserved 
1 Busy  1 Contractor Reserved 
2 Standby 2 Contractor Reserved 
3 Ready 3 Contractor Reserved 
4 Problem 4 Contractor Reserved 
5 Error 5 Contractor Reserved 
6 Failure 6 Contractor Reserved 
7 Shutdown 7 Contractor Reserved 

 
Description: 

Startup: Indicates the system has just been powered up 
Busy:  Indicates the system is currently processing the last command 
Standby: Indicates the following statements apply: 

 - The system is ready to be reinitialized 
 - The Position Report message is not valid (with the exception of 
the two status bytes that are always valid) 

Ready:  Indicates that the system is initialized and is operational 
Problem:     Indicates that a self-correcting problem has occurred and the 

problem is being corrected internally.  This problem requires no 
input from the host 
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Error: Indicates that a problem has occurred that the system could not 
resolve.  An error requires the intervention of the host to be 
resolved. 

Failure: Indicates that the system has failed and will not recover.  
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POS Configuration Report 

Output Message 
 
 
This message is used to report the current configuration of the position system.  The 
following is a description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  02A2 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  POS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 Text Description Free form text description.  May list the main 

components used by the system and or other 
pertinent information.   

Position 
System: 
MAPS 
Type-
H726; 
DGPS 
Ashtech 
Type Z-12; 
External 
Kalman 
Filter 

8 System Identification Gives a hex number assigned to the particular 
position system so that it may be more 
uniquely described.  

11 

9 Reference Latitude degrees 
This may be given to specify the location of a 
base station (if a DGPS is used) or perhaps the 
reference offset if a non-absolute position 
system is used.  The definition would be given 
by the particular position system 
documentation. 

29.123456 

10 Reference Longitude degrees -82.123456 
11 ReferenceElevation Meters 

Ellipsoid height. 
27.123 

12 # Sensors # of sensors requiring an offset 1 
13 Position Offset X1 meters 

The position offsets give the location of a 
sensor relative to a coordinate system on the 
vehicle that the user chooses.   

-2.123 
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14 Position Offset Y1 meters 
Note: The location of the coordinate system 
chosen will be the output of the module. 

 1.123 

15 Position Offset Z1 meters 
Note: A sensor placed at the origin and 
oriented with the axis, requires no offsets. 

 0.123 

16 Angular OffsetX1-
Axis 

radians 
The angular offsets give the rotation of a 
sensor relative to the coordinate system on the 
vehicle that the user chooses. 

 0.0 

17 Angular OffsetY1-
Axis 

radians  0.0 

18 Angular OffsetZ1-
Axis 

radians  0.0 

19 Pos. Offset Xn   1.123 
20 Pos. Offset Yn  -1.123 
21 Pos. Offset Zn   0.123 
22 Angular OffsetXn-

Axis 
  0.0 

23 Angular OffsetYn-
Axis 

  0.0 

24 Angular OffsetZn-
Axis 

  0.0 

 
Example Message: 
[0x02]02A2,MCU,POS,MUL,0,??,Position System: MAPS Type-H726; DGPS Ashtech 
Type Z-12; External Kalman Filter,11,29.1234567,-85.1234567,27.123,1, -
2.123,1.123,0.123,0.0,0.0,0.0,??[0x03] 
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POS Status Report 

Output Message 
 
 
Provides the host with the system status information 
Header section: 
Field# Name Description Example 
1 Message ID  02A4 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  POS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
8 

 
Data Section  

Field# Name Description Example 
7 Status 2 bytes:  See Below 01 

 
Example Message: 
[0x02]02a4,MCU,POS,MUL,0,8,01,??[0x03] 
 
7. See POS Report for Status Byte Description 
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2.3 Mobility Control Unit (MCU) (ASCII) 

Version 2.0 
 
The Mobility Control Unit (MCU) is essentially the supervisor for the mobility task.  A 
user may interact with the system by sending messages from the Operator Control Unit 
(OCU) or other supervisory component.  The MCU then issues directives to the other 
sub-modules of the system.  This section of the report serves to document the many 
messages that can be sent to and from the MCU.  The messages that are input to the 
MCU and that are sent from the MCU are organized below according to the component 
that the message communicates with. 
 
 
I. Input Messages: 

A. Inputs from the OCU component 
- MCU Start Report   - 0x0300   
- MCU Stop Report   - 0x0302 
- MCU Shutdown   - 0x0304 
- MCU Reinitialize   - 0x0306 
- MCU Standby   - 0x0308 
- MCU Set Config.   - 0x030a 
- MCU Request Config.  - 0x030c 
- MCU Request Status  - 0x030e 
- MCU Execute Path   - 0x0320 
- MCU Pause    - 0x0322 
- MCU Continue   - 0x0324  
- MCU Set Mode   - 0x0326  

 
- All VCU input messages  - See VCU interface document 

 
- All POS input messages  - See POS interface document. 

 
- ALL DMS input messages  - See DMS interface document. 

 
- All PLN input messages  - See PLN interface document 

 
B. Inputs from the VCU component 

- All VCU output Messages  - See VCU interface document 
 

C. Inputs from the POS component 
- All POS output messages  - See POS interface document 

 
  

D. Inputs from the DMS component 
- All DMS output messages  - See DMS interface document.  
- POSStart    - See POS interface document. 
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- POSStop 
- POSReqTime   

 
E. Inputs from the PLN component 

- All PLN output messages  - See PLN Interface Document 
 
II. Output Messages: 

A. Outputs to the OCU component 
- MCU Report    - 0x03A0 
- MCU Config Report   - 0x03A2 
- MCU Status Report   - 0x03A4 
- MCU Goal Reached   - 0x03C0 

 
- All VCU output messages   - See VCU interface document 

 
- All POS output messages  - See POS interface document 

 
- All DMS output messages  - See DMS interface document.  

 
- All PLN output messages  - See PLN interface document 

 
B. Outputs to the VCU component 

- All VCU input messages  - See VCU interface document 
 

C. Outputs to the POS component 
- All POS input messages  - See POS interface document. 

 
D. Outputs to the DMS component 

- All DMS input messages  - See DMS interface document. 
- POS Report    - See POS interface document. 
- POS Time Report 

 
E. Outputs to the PLN component 

- All PLN input messages  - See PLN interface document. 
- DMS Report    - See DMS interface document. 
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MCU Start Report 

Input Message 
 
 
The MCU Start Report message causes the system to start outputting the MCU Report 
message.  The output rate is specified by the parameter rate contained in this message.   If 
the rate is set to zero, then only one message is returned, this is equivalent to polled 
mode.   
 
Header section: 
Field# Name Description Example 
1 Message ID  0300 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) 1 

 
Data Section  

Field# Name Description Example 
7 Rate of updates Hz 3 

 
Example Message: 
[0x03]0300,MCU,OCU,MUL,0,1,3,??[0x03] 
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MCU Stop Report 

Input Message 
 
 
The MCU Stop Report message causes the system to stop outputting the MCU Report 
message.   The MCU system remains in a ready (initialized) state. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0302 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]0402,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Shutdown 

Input Message 
 
 
The MCU Shutdown message causes the MCU system to shutdown all of its sub-systems 
in the proper fashion.  At this time, the system may save any files or information that may 
be used on the next startup.  The power to the module may then be turned off. 
 
Header section: 

Field# Name Description Example 
1 Message ID  0304 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]0304,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Reinitialize 

Input Message 
 
 
The MCU Reinitialize message causes the system to restart and re-initialize all sub-
systems in the proper sequence and bring the system up to a state of readiness.  Note: The 
MCU may elect to check sub-system status and decide weather or not a re-initialize is 
necessary for each sub-system.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0306 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]0306,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Standby 

Input Message 
 
 
The MCU Standby message causes the system to go into a standby mode.  In standby 
mode the system is alive and ready to be re-initialized.  All sub-systems are placed into 
standby mode and would require a to be re-initialized prior to further use. 
 
Note: An MCU Shutdown should be given prior to turning system power off.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0308 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]0308,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Set Configuration 

Input Message 
 
 
The MCU Set Configuration message is used to set up the configuration of the system.  
The following gives an explanation of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  030A 
2 Destination  MCU 
3 Source Set by the host system (OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) 3 

 
Data Section  

Field# Name Description Example 
7 Vehicle The system that the module is physically 

contained in.  
MUL 

 
Example Message: 
[0x03]030A,MCU,OCU,MUL,0,3,MUL,??[0x03] 
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MCU Request Configuration 

Input Message 
 
 
This message is used to request the current configuration of the MCU system.  See MCU 
Configuration Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  030C 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]030C,MCU,OCU,MUL,0,0,?? [0x03] 
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MCU Request Status 

Input Message 
 
 
This message is used to request the current status of the MCU system.  See MCU Status 
Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  030E 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
 
NO DATA 
 
Example Message: 
[0x03]030E,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Execute Path 

Input Message 
 
 
MCU Execute Path causes the vehicle to begin execution of the path.  The path executed 
is the one currently loaded on the MCU unless a path is given in this message. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0320 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable ?? 

 
Data Section  

Field# Name Description Example 
7 Desired Vehicle Sped meters/sec 3.0 
8 # sub-goals The number of points that make up the path 

Note: If zero, then execute existing path on 
Destination is used. 

250 

9 Latitude #1 degrees 
Latitude of the first sub-goal. (WGS-84) 

29.123456 

10 Longitude #1 degrees 
Longitude of the first sub-goal. (WGS-84) 

-85.123456 

11 Altitude #1 meters 
Altitude of the first sub-goal. 

 23.12 

12 theta_x  (roll) radians 
Orientation about the x-axis, -π/2 to π/2. 
Use the right hand rule, x is forward, z is 
down (axis attached to vehicle) 

 1.12 

13 theta_y (pitch) radians 
Orientation about the y-axis, -π/2 to π/2. 

 1.12 

14 theta_z (yaw) radians 
Orientation about the z-axis, 0 to 2.0π. 
0 = Geodetic North 

 3.12 

?? Latitude #n   29.123456 
?? Longitude #n  -85.123456 
?? Altitude #n   23.12 
?? theta_x    (roll)   1.12 
?? theta_y   (pitch)   1.12 
?? theta_z    (yaw)   3.12 

 
Example Message: 
[0x03]0320,MCU,OCU,MUL,0,??,3.0,250,29.1234567,85.1234567,23.12,1.12,1.12,3.12.
.??[0x03] 
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MCU Pause 

Input Message 
 
 
This message causes the vehicle to stop path execution.  It is meant to be used as a 
temporary stop (pause).  The MCU’s sub-systems will remain in the active (ready) state 
so that path execution can continue immediately upon receipt of the MCU Continue 
message.  If a more secure state is desired than a MCU Standby message should be used 
as this will place all of the MCU’s sub-systems in a safe (Standby) mode. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0322 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x03]0322,MCU,OCU,MUL,0,0,??[0x03] 
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MCU Continue 

Input Message 
 
 
This message is used to resume vehicle motion after receipt of a MCU Pause. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0324 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size variable ?? 

 
Data Section  

Field# Name Description Example 
7 Vehicle Speed The desired vehicle speed 3.0 

 
Example Message: 
[0x03]0324,MCU,OCU,MUL,0,??,3.0,??[0x03] 
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MCU Set Mode 

Input Message 
 
 
This message is used to place the vehicle in a specific mode of operation.   
Header section: 
 
Field# Name Description Example 
1 Message ID  0324 
2 Destination  MCU 
3 Source Set by the host system (MCU, OCU) OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  0 

 
Data Section  

Field# Name Description Example 
7 Mode See Mode table below 1 

 
Example Message: 
[0x03]0324,MCU,OCU,MUL,0,0,??[0x03] 
 
Mode Name Description Number 
Safe Mode  0 
Tele-Op Mode OCU-VCU Direct 1 
Tele-Op-Assist Mode Assisted Tele-Operation. 

The MCU may intercept OCU tele-op 
commands and process them to provide 
velocity control as well as watchdog features 

2 

Autonomous Autonomous Control 3 
Teach Allows the user to record a path while tele-

operating the vehicle 
4 
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MCU Report 

Output Message 
 
 
This message is the MCU report.  The following is a description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  03A0 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) 11 

 
Data Section  

Field# Name Description Example 
7 Mode Mode of operation: See table from MCU Set 

Mode 
1 

8 VCU Status See VCU interface Document 10 
9 POS Status See POS interface Document 10 
10 DMS Status See DMS interface Document 10   
11 PLN Status See PLN interface Document 10 
12 MCU Status See Below 10 

 
Example Message: 
[0x03]03a0,MCU,OCU,MUL,0,11,1,10,10,10,10,10,??[0x03] 
 
  
12. Status Byte Description: 
Status byte 1 is generic and will not change from system to system.   
Status byte 2 is set aside to be system specific defined by the various MCU system 
modules. 
 
Message....[s1][s2] 
Status Bytes 1 and 2    
Status Byte 1 Status Byte 2 
Bit Condition when set (1 = set) Bit Condition when set (1=set) 
0 Startup  0 Contractor Reserved 
1 Busy  1 Contractor Reserved 
2 Standby 2 Contractor Reserved 
3 Ready 3 Contractor Reserved 
4 Problem 4 Contractor Reserved 
5 Error 5 Contractor Reserved 
6 Failure 6 Contractor Reserved 
7 Shutdown 7 Contractor Reserved 
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Description: 

Startup: Indicates the system has just been powered up 
Busy:  Indicates the system is currently processing the last command 
Standby: Indicates the following statements apply: 

    - The system is ready to be reinitialize 
- The system will not respond to commands that cause or resist 
motion 

     - The vehicle should remain stationary 
    - The vehicle actuators should not move 
     - From a mobility standpoint, the vehicle should be considered safe 

Ready:      Indicates that the system is initialized and is operational 
Problem:     Indicates that a self-correcting problem has occurred and the 

problem is being corrected internally.  This problem requires no 
input from the host 

Error: Indicates that a problem has occurred that the system could not 
resolve.  An error requires the intervention of the host to be 
resolved. 

Failure: Indicates that the system has failed and will not recover.  
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MCU Configuration Report 

Output Message 
 
 
This message is used to report the current configuration of the MCU system.  The 
following is a description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  03A2 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  
Field# Name Description Example 
7 Text Description Free form text description.  May list the main 

components used by the system and or other 
pertinent information.   

MCU: 
requires 
PLN, POS, 
and VCU 
modules. 

8 System Identification Gives a hex number assigned to the particular 
MCU system so that it may be more uniquely 
described.  

11 

 
Example Message: 
[0x03]03A2,MCU,OCU,MUL,0,??,MCU: requires PLN, POS, and VCU 
modules,11,??[0x03] 
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MCU Status Report 

Output Message 
 
 
Provides the host with the system status information 
Header section: 
Field# Name Description Example 
1 Message ID  03A4 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  OCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size  8 

 
 
Data Section  

Field# Name Description Example 
7 MCU Status See Below 01 

 
Example Message: 
[0x03]03a4,MCU,OCU,MUL,0,20,,01,??[0x03] 
 
7. See MCU Report for Status Byte Description 
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2.4 Detection Mapping Systems (DMS) (ASCII) 

Version 2.0 
 
This section presents the messages that may be sent to the DMS  and the messages that 
will be returned.  Every message will be composed of a header section, a data section, 
and an end of message section.  The data section of the messages are defined here.  See 
the standardized message format documentation (section 2.0) for the header and end of 
message formats. 
 
Note: See specific module documentation for additional (system specific, non required) 
messages. 
 
 
I. Input Messages:   

- DMS Start Report  - 0x0400 
- DMS Stop Report  - 0x0402 
- DMS Shutdown  - 0x0404 
- DMS Reinitialize  - 0x0406 
- DMS Standby  - 0x0408 
- DMS Set Config  - 0x040A 
- DMS Request Config - 0x040C 
- DMS Request Status  - 0x040E 

 
- POS Report   - See POS interface document 

 
II. Output Messages:   

- DMS Report   - 0x04A0 
- DMS Config Report  - 0x04A2 
- DMS Status Report  - 0x04A4  

 
- POS Start Report  - See POS interface document  
- POS Stop Report 
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DMS Start Report 

Input Message 
 
 
The DMS Start Report message causes the system to start outputting the DMS Report 
message.  The output rate is specified by the parameter rate contained in this message.   If 
the rate is set to zero, then only one message is returned, this is equivalent to polled 
mode.   
 
Header section: 
Field# Name Description Example 
1 Message ID  0400 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
?? 

 
Data Section  

Field# Name Description Example 
7 Rate of updates Hz 

The first report will include all of the changes 
to the Map since the given time and then each 
report that follows will include only new 
information. 

0.5 

8 Time Julion time, hhmmssss  
Request all changes to the Global Map since 
this time. 

12012019 

9 Classifications The DMS will report only changes to the 
Global Map with this classification. 
Used to narrow the Global Map report. 
For example: Request a Global Map report of 
just the obstacles that classified as a tree. 
Note:  0=all classifications 
See Classification table. 

0 

 
Example Message: 
[0x02]0400,DMS,MCU,MUL,0,10,5,12012019,0,??[0x03] 
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DMS Stop Report 

Input Message 
 
 
The DMS Stop Report message causes the system to stop outputting the DMS Report 
message.   The DMS remains in a ready (initialized) state. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0402 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0402,DMS,MCU,MUL,0,0,??[0x03] 
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DMS Shutdown 

Input Message 
 
 
The DMS Shutdown message causes the DMS to shutdown all of its sub-systems in the 
proper fashion.  At this time, the system may save any files or information that may be 
used on the next startup.  The power to the module may then be turned off. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0404 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
 
[0x02]0404,DMS,OCU,MUL,0,0,??[0x03] 
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DMS Reinitialize 

Input Message 
 
 
The DMS Reinitialize message causes the system to restart and re-initialize all sub-
systems in the proper sequence and bring the system up to a state of readiness.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0406 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA  
 
Example Message: 
[0x02]0406,DMS,MCU,MUL,0,0,??[0x03] 
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DMS Standby 

Input Message 
 
 
The DMS Standby message causes the system to go into a standby mode.  In standby 
mode the system is alive and ready to be re-initialized.  
 
Note: A DMS Shutdown should be given prior to turning system power off.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0408 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0408,DMS,MCU,MUL,0,0,??[0x03] 
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DMS Set Configuration 

Input Message 
 
 
The DMS Set Configuration message is used to set up the configuration of the system.  
The following gives an explanation of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  040A 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message 

format 
0 

6 Data Size Variable, set prior to shipping  ?? 
 
Data Section  

Field# Name Description Example 
7 Vehicle The system in which the module is physically 

contained.  
MUL 

8 Confidence Cutoff Do not report obstacles with a confidence less 
then this cutoff  (Confidence Range 0-9). 

6 

9 Minimum Height meters 
Dual Purpose: 

1. Do not report obstacles with a height 
less than this setting 

2. 2. Also used to set the lower limit on 
the bit-wise height (see DMS Report 
for details). Range is 0 to 99 meters. 

1 

10 Maximum Height meters 
Used to set the max height for the bit-wise 
height (see DMS REPORT for details) 

33 

11 # Sensors # sensors requiring an offset 1 
12 Position Offset X1 meters 

The position offsets give the location of a 
sensor relative to a coordinate system on the 
vehicle, which the user chooses.  All of the 
sensors must be referenced to the same 
coordinate system.  In other words, the user 
chooses a coordinate system anywhere on the 
vehicle, then measures the offsets to each of 
the DMS sensors used.   

-2.123 

13 Position Offset Y1 meters 
Note: The location of the coordinate system 
chosen will be the output of the module. 

 1.123 

14 Position Offset Z1 meters  0.123 



174 

 

Note: A sensor placed at the origin and 
oriented with the axis, has all zero offsets 

15 Angular OffsetX1-
Axis 

radians 
The angular offsets give the rotation of a 
sensor relative to the same coordinate system 
on the vehicle, which the user chooses.  All of 
the sensors must be referenced to the same 
coordinate system. 

 0.0 

16 Angular OffsetY1-
Axis 

radians  0.0 

17 Angular OffsetZ1-
Axis 

radians  0.0 

18 Position Offset Xn   1.123 
19 Position Offset Yn  -1.123 
20 Position Offset Zn   0.123 
21 Angular OffsetXn-

Axis 
  0.0 

22 Angular OffsetYn-
Axis 

  0.0 

23 Angular OffsetZn-
Axis 

  0.0 

 
Example Message: 
[0x02]040A,DMS,MCU,MUL,0,??,MUL,6,1,33,1,-2.123,1.123,0.123,0.0,0.0,0.0,.. 
...1.123,-1.123,0.123,0.0,0.0,0.0,??[0x03] 
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DMS Request Configuration 

Input Message 
 
 
This message is used to request the current configuration of the DMS.  See DMS 
Configuration Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  040C 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]040C,DMS,MCU,MUL,0,0,?? [0x03] 
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DMS Request Status 

Input Message 
 
 
This message is used to request the current status of the DMS.  See DMS Status Report 
for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  040E 
2 Destination  DMS 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  
Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]040E,DMS,MCU,MUL,0,0,??[0x03] 
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DMS Report 

Output Message 
 
 
The DMS report consists of changes to the Global Map.  When the DMS is given a Start 
Report, it responds with this message, which includes every change to the global map 
since the specified time.  If the time is given as zero, then the DMS will transmit the 
entire global map.  After the first report is sent then the DMS will continue to send DMS 
reports at the rate specified in the Start Report message.  The DMS reports that are sent 
after the first one consists only of updates since the last report (includes obstacles added 
or deleted).  The following is a description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  04A0 
2 Destination Destination will be set equal to the source of 

the start report message 
MCU 

3 Source  DMS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 # Obstacles The number of obstacles contained within the 

data. 
2 

8 Addition/Deletion 1=addition   0=deletion 1 
9 ID# Obstacle ID number. 

A unique # is given to each polygon.  If a 
polygon is deleted that number becomes 
available for use as a new polygon.  (Example 
implementation: If polygon # 2 is deleted 
from the database and then a new obstacle is 
to be added, the new obstacle would become 
#2.  Then when a DMS REPORT is given, the 
#2 obstacle would be reported as an addition 
and the host would simply replace #2.  If #2 
were deleted and no new obstacle was added 
prior to a host request, then the system would 
report #2 is to be deleted.) 

56 

10 Confidence 
#1(existence)  

The confidence represents probability that an 
obstacle occupies the space.  The confidence 
must be greater than the confidence cutoff set 
in DMSetConfig.            (Range 0 to 9) 

8 

11 Time Stamp #1 The time when the obstacle was placed within 
the database   (GMT, Julion, hhmmssss) 

12020100 

12 RMS #1 meters 
Estimation of the location error of the obstacle  

0.3 
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13 Classification #1 The identifier of the obstacle’s classification, 
i.e. whether the obstacle is a rock, tree, wall, 
etc.  See Table of class identifiers. 
0 = no information 

0 

14 Type #1 The identifier of the obstacle’s type i.e. 
whether the “tree” is an oak, pine, etc 
See Table of type identifiers. 
0 = no information 

0 

15 Class Confidence 
(Classification & 
Type)  

The confidence represents probability that the 
obstacle is of the given classification and type                                                                    
(Range 0 to 9) 
If Conf. > 3 & < 6 then there is a high 
probability that the class is correct but type is 
still unknown 
If Conf. > 7 then there is a high probability 
that both the class and type are correct. 
0 indicates no information on type or class 

0 

16 # vertices 
obstacle  #1 

The number of vertices for obstacle 1. 4 

17 Latitude #1 vert latitude of the 1st  vertex       (WGS 84) 29.123456 
18 Longitude #1vert. longitude of the 1st vertex   (WGS 84) -82.123456 
19 Altitude #1 vert. Altitude of the 1st vertex     (meters)   25.12 
?? Latitude #n vert. latitude of the nth vertex       (WGS 84) 29.123456 
?? Longitude #nvert. longitude of the nth  vertex   (WGS 84) -82.123456 
?? Altitude #n vert. Altitude of the nth vertex     (meters)   25.12 
 Height The bitwise height is used in conjunction with 

the minimum and maximum obstacle height 
(see DMSConfigReport) to create a three-
dimensional representation of the data.  For 
instance if the minimum and maximum height 
were set to 0 and 32 meters, each of the 32 
bits in the bitwise height would represent a 
meter in height.  A value of 0x00F0 would 
mean that an object is 8 meters off of the 
ground and is 8 meters in height (or 16 meters 
from the ground). 

00f0 

?? Addition/deletion Nth Obstacle 1 
 ID # (nth)  57 
 Confidence 

(existence)   (nth) 
 8 

 Time Stamp (nth)  12020100 
 RMS (nth)  0.3 
 Classification (nth)  0 
 Type (nth)  0 
 Confidence 

(Classification) 
 0 

 # verticies obstacle  
#nth 

 4 

 Latitude #1 vert  29.123456 
 Longitude #1vert.  -82.123456 
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 Altitude #1 vert.    25.12 
 Latitude #n vert.  29.123456 
 Longitude #nvert.  -82.123456 
 Altitude #n vert.    25.12 
 Height    (nth)  00f0 
 Status  01 

 
Example Message: 
[0x02]04a0,MCU,DMS,MUL,0,??,2,1,56,8,12020100,0.3, 0,0,0,4,29.1234567,-
82.1234567,25.12,.......00f0,01,??[0x03] 
 
Classification table 
Classification Identifier Description 
No information 0  
Free space 1 Clear, scanned areas 
Tree 2 A tall thing with leaves on it. 
Rock 3  
 4  

 
Status Byte Description: 
Status byte 1 is generic and will not change from system to system.   
Status byte 2 is set aside to be system specific defined by the various DMS system 
modules. 
Status Byte 1 Status Byte 2 
Bit Condition when set (1 = set) Bit Condition when set (1=set) 
0 Startup  0 Contractor Reserved 
1 Busy  1 Contractor Reserved 
2 Standby 2 Contractor Reserved 
3 Ready 3 Contractor Reserved 
4 Problem 4 Contractor Reserved 
5 Error 5 Contractor Reserved 
6 Failure 6 Contractor Reserved 
7 Shutdown 7 Contractor Reserved 

 
Description: 

Startup: Indicates the system has just been powered up 
Busy:  Indicates the system is currently processing the last command 
Standby: Indicates the system is ready to be reinitialize 
Ready:  Indicates that the system is initialized and is operational 
Problem:     Indicates that a self-correcting problem has occurred and the 

problem is being corrected internally.  This problem requires no 
input from the host 

Error: Indicates that a problem has occurred that the system could not 
resolve.  An error requires the intervention of the host to be 
resolved. 

Failure: Indicates that the system has failed and will not recover.  
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DMS Configuration Report 

Output Message 
 
 
This message is used to report the current configuration of the DMS.  The following is a 
description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  04A2 
2 Destination Destination will be set equal to the source of 

the start report message 
MCU 

3 Source  DMS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 Text Description Free form text description.  May list the main 

components used by the system and or other 
pertinent information.   

DMS: JPL 
Vision, 
TRC Sonar 
SICK 
Laser 
Takao 
Fused 

8 System Identification Gives a hex number assigned to the particular 
DMS so that it may be more uniquely 
described.  

2 

9 Vehicle See DMSSetConfig MUL 
10 Confidence Cutoff See DMSSetConfig 6 
11 Minimum Height See DMSSetConfig 1 
12 Maximum Height See DMSSetConfig 33 
13 # Sensors See DMSSetConfig 3 
14 Position Offset X1 See DMSSetConfig -2.123 
15 Position Offset Y1 See DMSSetConfig  1.123 
16 Position Offset Z1 See DMSSetConfig  0.123 
17 Angular OffsetX1-

Axis 
See DMSSetConfig  0.0 

18 Angular OffsetY1-
Axis 

See DMSSetConfig  0.0 

19 Angular OffsetZ1-
Axis 

See DMSSetConfig  0.0 

20 Position Offset Xn See DMSSetConfig  1.123 
21 Position Offset Yn See DMSSetConfig -1.123 
22 Position  Offset Zn See DMSSetConfig  0.123 
23 Angular OffsetXn-

Axis 
See DMSSetConfig  0.0 
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24 Angular OffsetYn-
Axis 

See DMSSetConfig  0.0 

25 Angular OffsetZn-
Axis 

See DMSSetConfig  0.0 

 
Example Message: 
[0x02]04A2,MCU,DMS,MUL,0,??,DMS JPL vision TRC sonar SICK laser Takao 
fused,2,MUL,6,1,33,3,-1.123,1.123,0.123,0.0,0.0,0.0,,..... ......-
.123,1.123,0.123,0.0,0.0,0.0,??[0x03] 
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DMS Status Report 

Output Message 
 
 
Provides the host with the system status information 
 
Header section: 
Field# Name Description Example 
1 Message ID  04A4 
2 Destination Destination will be set equal to the source of 

the start report message 
MCU 

3 Source  DMS 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
8 

 
Data Section  

Field# Name Description Example 
7 Status 2 bytes:  See Below 01 

 
Example Message: 
[0x02]04a4,MCU,DMS,MUL,0,8,01,??[0x03] 
 
7. See DMS Report for Status Byte Description 
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2.5 Path Planner (PLN) (ASCII) 

Version 2.0 
 
This section presents the messages that may be sent to the planner system and the 
messages that will be returned.  Every message will be composed of a header section, a 
data section, and an end of message section.  The data section of the messages are defined 
here.  See the standardized message format documentation (section 2.0) for the header 
and end of message formats. 
 
Note: See specific module documentation for additional (system specific, non required) 
messages. 
 
 
I. Input Messages:   

- PLN Shutdown  - 0x0504 
- PLN Reinitialize  - 0x0506 
- PLN Set Config.  - 0x050A 
- PLN Request Config. - 0x050C 
- PLN Request Status  - 0x050E 

 
- PLN Request Path  - 0x0520 

 
- DMS Report   - See Detection Mapping System ID 

 
 
II. Output Messages:   

- PLN Config. Report  - 0x05A2 
- PLN Status Report  - 0x05A4 

 
- PLN Path Report  - 0x05C0 

 
- DMS Start Report  - See Detection Mapping System ID 
- DMS Stop Report 
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PLN Shutdown 

Input Message 
 
 
The PLN Shutdown message causes the planner system to shutdown all of its sub-
systems in the proper fashion.  At this time, the system may save any files or information 
that may be used on the next startup.  The power to the module may then be turned off. 
 
 
Header section: 
Field# Name Description Example 
1 Message ID  0504 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x05]0504,PLN,OCU,MUL,0,0,??[0x03] 
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PLN Reinitialize 

Input Message 
 
 
The PLN Reinitialize message causes the system to restart and re-initialize all sub-
systems in the proper sequence and bring the system up to a state of readiness.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0506 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
 
Example Message: 
[0x05]0506,PLN,MCU,MUL,0,0,??[0x03] 
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PLN Standby 

Input Message 
 
 
The PLN Standby message causes the system to go into a standby mode.  In standby 
mode the system is alive and ready to be re-initialized.  
 
Note: A PLN Shutdown should be given prior to turning system power off.  
 
Header section: 
Field# Name Description Example 
1 Message ID  0508 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
10 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x02]0508,PLN,MCU,MUL,0,0,??[0x03] 
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PLN Set Configuration 

Input Message 
 
 
The PLN Set Configuration message is used to set up the configuration of the system.  
The following gives an explanation of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  050A 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping  ?? 

 
Data Section  

Field# Name Description Example 
7 Vehicle The system that the module is physically 

contained in.  
MUL 

8 Length Length of the vehicle                                  
(meters) 

2.0 

9 Width Width of the vehicle                                   
(meters) 

1.5 

10 Height Height of the vehicle                                  
(meters) 

2.0 

11 Turning radius Vehicles minimum turning radius (Meters) 
Note: If the vehicle is omnidirectional then 
this variable should be set to zero. 

3.0 

12 Number of path 
parameters 

The number of path planning parameters, that 
are specific to a given path planner, in the 
current message.  

7 

13 Parameter #1 N parameters that are specific to a given path 
planner, (e.g., use a boundary, restrict start, 
row distance, etc...). 

 

14 Parameter N   
 
Example Message: 
[0x05]050A,PLN,MCU,MUL,0,??,MUL,2.0,1.5,2.0,3.0,7,...  ??[0x03] 
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PLN Request Configuration 

Input Message 
 
 
This message is used to request the current configuration of the planner system.  See PLN 
Configuration Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  050C 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x05]050C,PLN,MCU,MUL,0,0,?? [0x03] 
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PLN Request Status 

Input Message 
 
 
This message is used to request the current status of the planner system.  See PLN Status 
Report for the response definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  050E 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
0 

 
Data Section  

Field# Name Description Example 
NO DATA 
 
Example Message: 
[0x05]050E,PLN,MCU,MUL,0,0,??[0x03] 
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PLN Request Path 

Input Message 
 
 
This message is used to request a plan.  The following is a definition of the message 
parameters.  See PLN Path Report for the response report definition. 
 
Header section: 
Field# Name Description Example 
1 Message ID  0520 
2 Destination  PLN 
3 Source Set by the host system (MCU, OCU) MCU 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
?? 

 
Data Section  

Field# Name Description Example 
7 Path Type The path type describes what kind of plan is 

being requested.  For example you may 
request a go to goal path and give the start and 
goal poses.  Alternatively, you may request a 
sweep path and specify the corner points of 
the field. 
See the Path Type table for type identifiers. 

1  

8 # points The number of points specified 
These would be the start, goal, corner points 
etc. 

4 

9 Latitude #1 degrees 
Latitude of the first point  (WGS-84) 

29.123456 

10 Longitude #1 degrees 
Longitude of the first point (WGS-84) 

-85.123456 

11 Altitude #1 meters 
Altitude of the first point 

23.12 

12 theta_x  (Roll) radians 
-π/2 to π/2 
Orientation about the x axis of the first point 
Use the right hand rule, x is forward, z is 
down (axis attached to vehicle) 

1.12 

13 theta_y(pitch) radians 
-π/2 to π/2 
Orientation about the y axis at the first point 

1.12 

14 theta_z(yaw) radians 
0 to 2π, 0 = Geodetic North 
Orientation about the z axis at the first point 

3.12 

? Latitude #n  29.123456 
? Longitude #n  -85.123456 
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? Altitude #n  23.12 
? theta_x  (Roll)  1.12 
? theta_y(pitch)  1.12 
? theta_z(yaw)  3.12 

 
Example Message: 
[0x05]0520,PLN,MCU,MUL,0,??,,1,4,29.1234567,82.1234567,23.12,1.12,1.12,3.12....29
.1234567... ,?[x03] 
 
Path Type Table 

Path Type # Description Required Information 
0   
1 Go to Goal Start Position, Goal Position 
2   
3   
4   
5 Field Sweep Corner points of field 
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PLN Path Report 

Output Message 
 
 
This is the main message from the planner system.  The following is a description of the 
parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  05C0 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  PLN 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 Path Type See table of path types under PLN Request 

Plan 
1 

8 Path Status 0=Path OK    1=Path is not valid 0 
9 Path Length Meters 2500 
10 # sub-goals number of sub-goals 950 
11 Latitude #1 degrees 

Latitude of the first point (WGS-84) 
29.123456 

12 Longitude #1 degrees 
Longitude of the first point (WGS-84) 

-85.123456 

13 Altitude #1 meters 
Altitude of the first point 

23.12 

14 theta_x  (Roll) radians 
-π/2 to π/2 
Orientation about the x axis of the first point 
Use the right hand rule, x is forward, z is 
down (axis attached to vehicle) 

1.12 

15 theta_y(pitch) radians 
-π/2 to π/2 
Orientation about the y axis at the first point 

1.12 

16 theta_z(yaw) radians 
0 to 2π, 0 = Geodetic North 
Orientation about the z axis at the first point 

3.12 

?? Latitude #n  29.1234567 
?? Longitude #n  -85.123456 
?? Altitude #n  23.12 
?? theta_x (Roll)  1.12 
?? theta_y  (pitch)  1.12 
?? theta_z  (yaw)  3.12 
?? PLN Status See Below 03 
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Example Message: 
[0x05]02a0,MCU,PLN,MUL,0,??,,29.1234567,-85.1234567,23.12, 
1.12,1.12,3.12,2.12,2.12,0.12,0.06,12201022,03,??[0x03] 
 
Status Byte Description: 
Status byte 1 is generic and will not change from system to system.   
Status byte 2 is set aside to be system specific defined by the various PLN system 
modules. 
Status Byte 1 Status Byte 2 
Bit Condition when set (1 = set) Bit Condition when set (1 = set) 
0 Startup  0 Contractor Reserved 
1 Busy  1 Contractor Reserved 
2 Standby 2 Contractor Reserved 
3 Ready 3 Contractor Reserved 
4 Problem 4 Contractor Reserved 
5 Error 5 Contractor Reserved 
6 Failure 6 Contractor Reserved 
7 Shutdown 7 Contractor Reserved 

Description: 
Startup: Indicates the system has just been powered up 
Busy:  Indicates the system is currently processing the last command 
Standby: Indicates the system is ready to be reinitialize 
Ready:  Indicates that the system is initialized and is operational 
Problem:     Indicates that a self-correcting problem has occurred and the 

problem is being corrected internally.  This problem requires no 
input from the host 

Error: Indicates that a problem has occurred that the system could not 
resolve.  An error requires the intervention of the host to be 
resolved. 

Failure: Indicates that the system has failed and will not recover.  
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PLN Configuration Report 

Output Message 
 
 
This message is used to report the current configuration of the planner system.  The 
following is a description of the parameters: 
 
Header section: 
Field# Name Description Example 
1 Message ID  05A2 
2 Destination Destination will be set equal to the source of 

the Start Report message 
MCU 

3 Source  PLN 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Variable, set prior to shipping (use sizeof()) ?? 

 
Data Section  

Field# Name Description Example 
7 Text Description Free form text description.  May list the main 

components used by the system and or other 
pertinent information.   

Planner 
System: 
Plans go to 
goal and 
field sweep 
paths 

8 System Identification Gives a hex number assigned to the particular 
planner system so that it may be more 
uniquely described.  

11 

 
Example Message: 
[0x05]05A2,MCU,PLN,MUL,0,??,Planner System: Plans go to goal and field sweep 
paths,11,??[0x03] 
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PLN Status Report 

Output Message 
 
 
Provides the host with the system status information 
 
Header section: 
Field# Name Description Example 
1 Message ID  05A4 
2 Destination Destination will be set equal to the source of 

the start Report message 
MCU 

3 Source  PLN 
4 Vehicle Set using the Set Config msg. MUL 
5 Data Status See section 2.0, Standardized message format 0 
6 Data Size Number of bytes in data (decimal) 

Exclude the leading & trailing ‘,’ 
8 

 
Data Section  

Field# Name Description Example 
7 Status 4 bytes:  See Below 01 

 
Example Message: 
[0x05]02a4,MCU,PLN,MUL,0,8,01,??[0x03] 
 
7. See PLN Report for Status Byte Description 
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APPENDIX B 
NTV SIMULATION RESULTS 

Simulations were done by using a Silicon Graphics computer and Motif and 

Inventor software libraries.  The model used to determine the vehicle motion is given in 

Chapter 5. 
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Figure B.1:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance. 
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Figure B.2: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance. 
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Figure B.3:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-ahead 

distance. 
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Figure B.4:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-ahead 

distance. 
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Figure B.5:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance. 
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Figure B.6: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance. 
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Figure B.7:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-ahead 

distance. 
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Figure B.8:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-ahead 

distance. 
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Figure B.9:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance. 



201 

 

-60 -50 -40 -30 -20 -10 0 10 20
-80

-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.10: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance. 
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Figure B.11:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance. 
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Figure B.12:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance. 
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Figure B.13:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance. 
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Figure B.14: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance. 
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Figure B.15:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance. 
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Figure B.16:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance. 
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Figure B.17:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance. 
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Figure B.18: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance. 
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Figure B.19:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance. 
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Figure B.20:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance. 

-40 -30 -20 -10 0 10 20 30
-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.21:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance. 
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Figure B.22: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance. 
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Figure B.23:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance. 
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Figure B.24:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance. 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.25:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance and 2-meter jog in path. 
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Figure B.26:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance and 3-meter jog in path. 
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Figure B.27:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance and 4-meter jog in path. 
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Figure B.28:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance and 5-meter jog in path. 
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Figure B.29:  Follow the Carrot at 1.5 meters per second with a 3-meter look-ahead 

distance and 6-meter jog in path. 
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Figure B.30: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance 

and 2-meter jog in path. 
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Figure B.31: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance 

and 3-meter jog in path. 
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Figure B.32: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance 

and 4-meter jog in path. 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.33: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance 

and 5-meter jog in path. 
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Figure B.34: Pure Pursuit at 1.5 meters per second with a 3-meter look-ahead distance 

and 6-meter jog in path. 
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Figure B.35:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.36:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance and 3-meter jog in path. 
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Figure B.37:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.38:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.39:  Vector Pursuit Method 1 at 1.5 meters per second with a 3-meter look-

ahead distance and 6-meter jog in path. 
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Figure B.40:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.41:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance and 3-meter jog in path. 
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Figure B.42:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.43:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.44:  Vector Pursuit Method 2 at 1.5 meters per second with a 3-meter look-

ahead distance and 6-meter jog in path. 
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Figure B.45:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance and 2-meter jog in path. 



219 

 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.46:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance and 3-meter jog in path. 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.47:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance and 4-meter jog in path. 



220 

 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.48:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance and 5-meter jog in path. 
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Figure B.49:  Follow the Carrot at 3.0 meters per second with a 5-meter look-ahead 

distance and 6-meter jog in path. 
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Figure B.50: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance 

and 2-meter jog in path. 
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Figure B.51: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance 

and 3-meter jog in path. 
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Figure B.52: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance 

and 4-meter jog in path. 
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Figure B.53: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance 

and 5-meter jog in path. 
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Figure B.54: Pure Pursuit at 3.0 meters per second with a 5-meter look-ahead distance 

and 6-meter jog in path. 
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Figure B.55:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.56:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance and 3-meter jog in path. 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.57:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.58:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.59:  Vector Pursuit Method 1 at 3.0 meters per second with a 5-meter look-

ahead distance and 6-meter jog in path. 
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Figure B.60:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.61:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance and 3-meter jog in path. 
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Figure B.62:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.63:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.64:  Vector Pursuit Method 2 at 3.0 meters per second with a 5-meter look-

ahead distance and 6-meter jog in path. 
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Figure B.65:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance and 2-meter jog in path. 
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Figure B.66:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance and 3-meter jog in path. 
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Figure B.67:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance and 4-meter jog in path. 
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Figure B.68:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance and 5-meter jog in path. 
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Figure B.69:  Follow the Carrot at 4.5 meters per second with a 7-meter look-ahead 

distance and 6-meter jog in path. 
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Figure B.70: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance 

and 2-meter jog in path. 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.71: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance 

and 3-meter jog in path. 
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Figure B.72: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance 

and 4-meter jog in path. 
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Figure B.73: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance 

and 5-meter jog in path. 



233 

 

-50 -40 -30 -20 -10 0 10 20 30
-80

-70

-60

-50

-40

-30

-20

-10

0

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure B.74: Pure Pursuit at 4.5 meters per second with a 7-meter look-ahead distance 

and 6-meter jog in path. 
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Figure B.75:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.76:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance and 3-meter jog in path. 
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Figure B.77:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.78:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.79:  Vector Pursuit Method 1 at 4.5 meters per second with a 7-meter look-

ahead distance and 6-meter jog in path. 
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Figure B.80:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance and 2-meter jog in path. 
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Figure B.81:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance and 3-meter jog in path. 
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Figure B.82:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance and 4-meter jog in path. 
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Figure B.83:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance and 5-meter jog in path. 
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Figure B.84:  Vector Pursuit Method 2 at 4.5 meters per second with a 7-meter look-

ahead distance and 6-meter jog in path. 
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APPENDIX C 
NTV EXPERIMENTAL RESULTS 

Flavet Field at the University of Florida was used as the site for testing vector 

pursuit path tracking.  The Navigation Test Vehicle described in Chapter 1, developed by 

the Center for Intelligent Machines and Robotics, was used in these experiments.  The 

following plots show the results along with the results of follow-the-carrot and pure 

pursuit path tracking methods. 
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Figure C.1:  Follow the Carrot at 2 meters per second with a 2-meter look-ahead 

distance. 
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Figure C.2:  Follow the Carrot at 2 meters per second with a 3-meter look-ahead 

distance. 
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Figure C.3:  Follow the Carrot at 2 meters per second with a 4-meter look-ahead 

distance. 
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Figure C.4:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance. 
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Figure C.5:  Pure Pursuit at 2 meters per second with a 2-meter look-ahead distance. 
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Figure C.6:  Pure Pursuit at 2 meters per second with a 3-meter look-ahead distance. 
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Figure C.7:  Pure Pursuit at 2 meters per second with a 4-meter look-ahead distance. 
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Figure C.8:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance. 
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Figure C.9:  Vector Pursuit (Method 2) at 2 meters per second with a 2-meter look-ahead 

distance. 
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Figure C.10:  Vector Pursuit (Method 2) at 2 meters per second with a 3-meter look-

ahead distance. 
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Figure C.11:  Vector Pursuit (Method 2) at 2 meters per second with a 4-meter look-

ahead distance. 
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Figure C.12:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance. 
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Figure C.13:  Follow the Carrot at 3 meters per second with a 4-meter look-ahead 

distance. 
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Figure C.14:  Follow the Carrot at 3 meters per second with a 5-meter look-ahead 

distance. 
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Figure C.15:  Follow the Carrot at 3 meters per second with a 6-meter look-ahead 

distance. 
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Figure C.16:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance. 
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Figure C.17:  Pure Pursuit at 3 meters per second with a 4-meter look-ahead distance. 



248 

 

-60 -50 -40 -30 -20 -10 0 10 20
-80

-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure C.18:  Pure Pursuit at 3 meters per second with a 5-meter look-ahead distance. 

-60 -50 -40 -30 -20 -10 0 10 20
-80

-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure C.19:  Pure Pursuit at 3 meters per second with a 6-meter look-ahead distance. 
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Figure C.20:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance. 
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Figure C.21:  Vector Pursuit (Method 2) at 3 meters per second with a 4-meter look-

ahead distance. 
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Figure C.22:  Vector Pursuit (Method 2) at 3 meters per second with a 5-meter look-

ahead distance. 
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Figure C.23:  Vector Pursuit (Method 2) at 3 meters per second with a 6-meter look-

ahead distance. 
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Figure C.24:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance. 
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Figure C.25:  Follow the Carrot at 4 meters per second with a 6-meter look-ahead 

distance. 
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Figure C.26:  Follow the Carrot at 4 meters per second with a 7-meter look-ahead 

distance. 
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Figure C.27:  Follow the Carrot at 4 meters per second with an 8-meter look-ahead 

distance. 
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Figure C.28:  Follow the Carrot at 4 meters per second with a 9-meter look-ahead 

distance. 
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Figure C.29:  Pure Pursuit at 4 meters per second with a 6-meter look-ahead distance. 
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Figure C.30:  Pure Pursuit at 4 meters per second with a 7-meter look-ahead distance. 
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Figure C.31:  Pure Pursuit at 4 meters per second with an 8-meter look-ahead distance. 
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Figure C.32:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance. 
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Figure C.33:  Vector Pursuit (Method 2) at 4 meters per second with a 5-meter look-

ahead distance. 
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Figure C.34:  Vector Pursuit (Method 2) at 4 meters per second with a 6-meter look-

ahead distance. 
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Figure C.35:  Vector Pursuit (Method 2) at 4 meters per second with a 7-meter look-

ahead distance. 
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Figure C.36:  Vector Pursuit (Method 2) at 4 meters per second with an 8-meter look-

ahead distance. 
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Figure C.37:  Follow the Carrot at 2meters per second with a 2-meter look-ahead 

distance. 
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Figure C.38:  Follow the Carrot at 2 meters per second with a 3-meter look-ahead 

distance. 
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Figure C.39:  Follow the Carrot at 2 meters per second with a 4-meter look-ahead 

distance. 
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Figure C.40:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance. 
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Figure C.41:  Pure Pursuit at 2 meters per second with a 2-meter look-ahead distance. 
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Figure C.42:  Pure Pursuit at 2 meters per second with a 3-meter look-ahead distance. 
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Figure C.43:  Pure Pursuit at 2 meters per second with a 4-meter look-ahead distance. 
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Figure C.44:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance. 
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Figure C.45:  Vector Pursuit (Method 2) at 2 meters per second with a 2-meter look-

ahead distance. 
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Figure C.46:  Vector Pursuit (Method 2) at 2 meters per second with a 3-meter look-

ahead distance. 
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Figure C.47:  Vector Pursuit (Method 2) at 2 meters per second with a 4-meter look-

ahead distance. 
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Figure C.48:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance. 
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Figure C.49:  Follow the Carrot at 3 meters per second with a 4-meter look-ahead 

distance. 
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Figure C.50:  Follow the Carrot at 3 meters per second with a 5-meter look-ahead 

distance. 
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Figure C.51:  Follow the Carrot at 3 meters per second with a 6-meter look-ahead 

distance. 
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Figure C.52:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance. 
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Figure C.53:  Pure Pursuit at 3 meters per second with a 4-meter look-ahead distance. 
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Figure C.54:  Pure Pursuit at 3 meters per second with a 5-meter look-ahead distance. 
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Figure C.55:  Pure Pursuit at 3 meters per second with a 6-meter look-ahead distance. 
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Figure C.56:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance. 
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Figure C.57:  Vector Pursuit (Method 2) at 3 meters per second with a 4-meter look-

ahead distance. 
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Figure C.58:  Vector Pursuit (Method 2) at 3 meters per second with a 5-meter look-

ahead distance. 
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Figure C.59:  Vector Pursuit (Method 2) at 3 meters per second with a 6-meter look-

ahead distance. 
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Figure C.60:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance. 

-40 -30 -20 -10 0 10 20 30
-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure C.61:  Follow the Carrot at 4 meters per second with a 6-meter look-ahead 

distance. 
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Figure C.62:  Follow the Carrot at 4 meters per second with a 7-meter look-ahead 

distance. 
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Figure C.63:  Follow the Carrot at 4 meters per second with an 8-meter look-ahead 

distance. 
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Figure C.64:  Follow the Carrot at 4 meters per second with a 9-meter look-ahead 

distance. 
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Figure C.65:  Pure Pursuit at 4 meters per second with a 6-meter look-ahead distance. 
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Figure C.66:  Pure Pursuit at 4 meters per second with a 7-meter look-ahead distance. 
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Figure C.67:  Pure Pursuit at 4 meters per second with a 8-meter look-ahead distance. 
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Figure C.68:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance. 
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Figure C.69:  Vector Pursuit (Method 2) at 4 meters per second with a 5-meter look-

ahead distance. 
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Figure C.70:  Vector Pursuit (Method 2) at 4 meters per second with a 6-meter look-

ahead distance. 
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Figure C.71:  Vector Pursuit (Method 2) at 4 meters per second with a 7-meter look-

ahead distance. 
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Figure C.72:  Vector Pursuit (Method 2) at 4 meters per second with an 8-meter look-

ahead distance. 
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Figure C.73:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance and 2-meter jog in path. 



276 

 

-60 -50 -40 -30 -20 -10 0 10 20 30 40
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure C.74:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance and 3-meter jog in path. 
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Figure C.75:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance and 4-meter jog in path. 
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Figure C.76:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance and 5-meter jog in path. 
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Figure C.77:  Follow the Carrot at 2 meters per second with a 5-meter look-ahead 

distance and 6-meter jog in path. 
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Figure C.78:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance and 

2-meter jog in path. 

-60 -50 -40 -30 -20 -10 0 10 20 30 40
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

East (meters)

N
or

th
 (

m
et

er
s)

Planned Path
Actual Path

 
Figure C.79:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance and 

3-meter jog in path. 
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Figure C.80:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance and 

4-meter jog in path. 
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Figure C.81:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance and 

5-meter jog in path. 
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Figure C.82:  Pure Pursuit at 2 meters per second with a 5-meter look-ahead distance and 

6-meter jog in path. 
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Figure C.83:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance and 2-meter jog in path. 
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Figure C.84:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance and 3-meter jog in path. 
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Figure C.85:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance and 4-meter jog in path. 
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Figure C.86:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance and 5-meter jog in path. 
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Figure C.87:  Vector Pursuit (Method 2) at 2 meters per second with a 5-meter look-

ahead distance and 6-meter jog in path. 
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Figure C.88:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance and 2-meter jog in path. 
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Figure C.89:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance and 3-meter jog in path. 
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Figure C.90:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance and 4-meter jog in path. 
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Figure C.91:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance and 5-meter jog in path. 
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Figure C.92:  Follow the Carrot at 3 meters per second with a 7-meter look-ahead 

distance and 6-meter jog in path. 
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Figure C.93:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance and 

2-meter jog in path. 
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Figure C.94:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance and 

3-meter jog in path. 
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Figure C.95:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance and 

4-meter jog in path. 
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Figure C.96:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance and 

5-meter jog in path. 
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Figure C.97:  Pure Pursuit at 3 meters per second with a 7-meter look-ahead distance and 

6-meter jog in path. 
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Figure C.98:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance and 2-meter jog in path. 
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Figure C.99:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance and 3-meter jog in path. 
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Figure C.100:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance and 4-meter jog in path. 
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Figure C.101:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance and 5-meter jog in path. 
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Figure C.102:  Vector Pursuit (Method 2) at 3 meters per second with a 7-meter look-

ahead distance and 6-meter jog in path. 
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Figure C.103:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance 

and 2-meter jog in path. 
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Figure C.104:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance 

and 3-meter jog in path. 
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Figure C.105:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance 

and 4-meter jog in path. 
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Figure C.106:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance 

and 5-meter jog in path. 
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Figure C.107:  Pure Pursuit at 4 meters per second with a 9-meter look-ahead distance 

and 6-meter jog in path. 
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Figure C.108:  Vector Pursuit (Method 2) at 4 meters per second with a 9-meter look-

ahead distance and 2-meter jog in path. 
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Figure C.109:  Vector Pursuit (Method 2) at 4 meters per second with a 9-meter look-

ahead distance and 3-meter jog in path. 
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Figure C.110:  Vector Pursuit (Method 2) at 4 meters per second with a 9-meter look-

ahead distance and 4-meter jog in path. 
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Figure C.111:  Vector Pursuit (Method 2) at 4 meters per second with a 9-meter look-

ahead distance and 5-meter jog in path. 
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Figure C.112:  Vector Pursuit (Method 2) at 4 meters per second with a 9-meter look-

ahead distance and 6-meter jog in path. 
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Figure C.113:  Vector Pursuit (Method 2) at -2 meters per second with a 4-meter look-

ahead distance. 
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Figure C.114:  Vector Pursuit (Method 2) at -3 meters per second with a 5-meter look-

ahead distance. 
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Figure C.115:  Vector Pursuit (Method 2) at -4 meters per second with a 6-meter look-

ahead distance. 
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Figure C.116:  Vector Pursuit (Method 2) at -2 meters per second with a 4-meter look-

ahead distance. 
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Figure C.117:  Vector Pursuit (Method 2) at -3 meters per second with a 5-meter look-

ahead distance. 
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Figure C.118:  Vector Pursuit (Method 2) at -4 meters per second with a 6-meter look-

ahead distance. 
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