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Abstract

The aim of this article is to develop a GPS/IMU Multisensor fusion algorithm,
taking context into consideration. Contextual variables are introduced to define
fuzzy validity domains of each sensor. The algorithm increases the reliability of the
position information. A simulation of this algorithm is then made by fusing GPS
and IMU data coming from real tests on a land vehicle. Bad data delivered by
GPS sensor are detected and rejected using contextual information thus increasing
reliability. Moreover, because of a lack of credibility of GPS signal in some cases
and because of the drift of the INS, GPS/INS association is not satisfactory at
the moment. In order to avoid this problem, the authors propose to feed the fusion
process based on a multisensor Kalman filter directly with the acceleration provided
by the IMU. Moreover, the filter developed here gives the possibility to easily add
other sensors in order to achieve performances required.
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1 Introduction

Autonomous Land Vehicles (ALV) have different potential applications (goods
transport, autonomous taxi, automatic highways...) and are the subject of in-
tensive researches through the world. ALV need continuous and precise po-
sitioning information. Integrity of the positioning system is one of the key
factors of such systems.
Two types of sensors are able to give position of a mobile vehicle : absolute
sensors (GPS, radar) which take their information in the environment outside
the mobile and get the position in an absolute reference frame, and dead-
reckoning sensors, which take their information on the mobile itself. In this
last case, the position is derived from the last point and the positioning error
is therefore drifting with time.
At the present time, the Global Positioning System (GPS), which is an abso-
lute sensor, is the basic component of a land positioning system. In differential
mode, it can reach centimeter precision [11]. However, the lack of credibility
of GPS in some cases, due to multipath or mask effects, often leads to mix
it with other sensors, such as dead-reckoning ones. These sensors, as for in-
stance inertial sensors (gyroscopes and accelerometers), have the advantage
of giving continuous positioning information, independent of the external en-
vironment. A package of inertial sensors may be classified into two groups[1]:
Inertial Measurement Unit (IMU) which deliver raw data from gyroscopes and
accelerometers, corrected from scale factors and biases, and Inertial Naviga-
tion System (INS), which is an IMU however the output is sent to navigation
algorithms to provide position, velocity and attitude of the vehicle.

Many research works have been led on the GPS/INS data fusion, especially
using a Kalman filter ([1], [3], [5]). Structures of GPS/INS fusion have been
investigated in [1]. However, experimental results show ([2], [4], [14]) that, in
case of extended loss or degradation of the GPS signal (more than 30 sec-
onds), positioning errors quickly drift with time. So GPS/INS association is
not a satisfactory association and the solution could be to add other absolute
or dead-reckoning sensors, in order to have precise positioning information in
any environment.
Fault detection of the GPS signal has also been investigated in [2], [3] and [6].
Sukkarieh [2] introduced a threshold derived from a statistical reasoning to
determine whether the GPS data is valid, McNeil [6] proposed weightings on
GPS and INS measurements according to fuzzy rules and Stephen [3] intro-
duced a condition on the GDOP (Geometric Dilution Of Precision, delivered
by the GPS sensor) value.

In this paper is developed a multisensor Kalman Filter (KF), which is suitable
to integrate a high number of sensors, without rebuilding the whole structure of
the filter. By introducing contextual information in the KF, validity domains
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of each sensor are defined in order to reject bad data when detected, thus
increasing the reliability of the data fusion. Reliability is defined here as the
robustness to system failures. Integrity of a navigation system is the ability
to provide reliable navigation information while also monitoring the health of
navigation data and either correct or reject bad data [1].
Basics of multisensor Kalman Filtering are exposed in section 2. Section 3
introduces contextual information as a way to define validity domains of the
sensors and so to increase reliability. A basic development of the multisensor
KF using contextual information is made in section 4 with two sensors, a GPS
and an IMU. Simulation of the algorithm presented in section 4 is made in
section 5 with data coming from real experiments. Results are compared in
terms of accuracy with a structure based on [1] and specifically developed for
the fusion of GPS and INS. First results about the integrity of the filter in
case of degradation of the GPS signal are also given.

2 Multisensor Kalman Filtering

Consider a discrete-time linear stationary signal model (1), ( [8], [9], [10]):

x(k + 1) = Fx(k) + w(k) (1)

where x(k) ∈ R
n is the state vector, w(k) ∈ R

n is a sequence of zero mean

white gaussian noise of assumed known covariance matrix Q(k) = E
[
w(k)w(k)T

]
.

F ∈ R
n×n is the known state transition matrix. In the simplest case, mea-

surements are expressed as a linear relation with respect to the state space
variables and are corrupted by noise. The following relation (2) describes the
measurements for a set of N sensors

zi(k) = Hix(k) + bi(k), i = 1...N (2)

with zi(k) ∈ R
l the measurement vector of the sensor i, bi(k) ∈ R

l the white
gaussian observation noise for the sensor i with zero mean and with assumed
known covariance matrix Ri(k) = E

[
bi(k)bi(k)T

]
, Hi ∈ R

l×n is the measure-
ment matrix associated to the sensor i and N is the number of sensors. Given
the model described by equation (1) and equation (2), the multisensor KF can
be computed as an estimation stage and a prediction stage ([12], [13], [15]).

• The estimation stage

x̂(k|k) = x̂(k|k − 1) +
N∑

i=1

Ki(k) [zi(k) − Hix̂(k|k − 1)] (3)
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with
Ki(k) = P (k|k)HT

i R−1
i (k) (4)

the Kalman gain for the data fusion associated to the sensor i, the quantity
zi(k) − Hix̂(k|k − 1) = νi(k) is called the innovation associated to the
observation from the sensor i. The uncertainty on the estimate is given by
the matrix

P−1(k|k) = P−1(k|k − 1) +
N∑

i=1

HT
i R−1

i (k)Hi (5)

Proofs of these equations from the derivation of the multisensor information
filter are given in appendix A.

• The prediction stage
The prediction stage is defined by equation (6) and equation (7)

x̂(k + 1|k) = F x̂(k|k) (6)

P (k + 1|k) = FP (k|k)F T + Q(k) (7)

3 Contextual information

V. Nimier [7] developed a theoretic framework on multisensor data fusion
taking context into consideration. He proposed a method to combine symbolic
and numerical information, in order to have a supervised fusion process. The
supervision is realized by a level of treatment which analyses the context using
contextual variables, so that the estimation process is adapted to this context.
The result is to favour measurements provided by the sensors well-adapted to
the context and to minimize the importance of those that are not well-adapted.
GPS sensor, whose signal quality depends on the environment is suitable to
this framework.

Giving a sensor i and its innovation ν i(k) ∈ R
l associated, the following rela-

tion is formed (8)
qi = νT

i (k)S−1
i (k)νi(k) (8)

with
Si(k) = HiP (k|k − 1)HT

i + Ri(k) (9)

the measurement prediction covariance matrix also called the innovation co-
variance matrix. The quadratic form qi ∈ R

+ defined by equation (8) is the-
oretically a χ2 distribution with l degrees of freedom [11], whose probability
density function (pdf) is drawn in figure 1.
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Fig. 1. pdf of a χ2 distribution with n degrees of freedom

From standard χ2 tables and usual statistical tests [16], it is possible to define
validity domains of the sensors based on the confidence level required: if the
value of qi is beyond a predefined threshold ti, then the sensor is assumed
unusable 1 and data from this sensor are ignored by the fusion process 2 . For
example, considering a 95% confidence level and an innovation ν i(k) ∈ R

3,
then ti = 7.8. The value of qi defines the validity domain of the sensor i and
is named a contextual variable.

Consider a set of N sensors. A context q = (q1, .., qN), q ∈ (R+)N is deter-
mined by N values of each contextual variable qi, i ∈ N . (R+)N , which is the
definition domain of q, is called the contextual space. A sensor i is valid for a
set of contexts represented by a subset of (R+)N , named Ci, expressed by (10)

Ci =
{
q ∈ (R+)N | qi < ti

}
(10)

To every subset J ∈ 2{1,..,N} correspond the group of sensors whose indices are
contained into J . Given J ∈ 2{1,..,N}, cJ is called the exclusive validity domain
; it represents the subsets of contexts where the sensors J are the only valid
sensors. The expression of cJ is given by equation (11) where {{1,..,N}(J) is the
complementary of J into {1, .., N}.

1 In fact, if the quadratic form of the innovation exceeds the threshold, this suggests
that either the physical model of the system is invalid, or the measurements are
invalid. Here the latter is assumed, the physical model being always considered as
correct.
2 For a given sensor, when the quadratic form of the innovation exceeds the thresh-
old, the choice was made to reject all the observations from this sensor. However,
subset testing of the innovations could be conducted to try to remove any erroneous
measurement. This could possibly allow more observations to be used, since all ob-
servations from a given sensor wouldn’t necessarily be rejected. Such a method has
not been tested yet.
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cJ =
{
q ∈ (R+)N | ql < tl and qm > tm, l ∈ J, m ∈ {{1,..,N}(J)

}
(11)

A partition of the contextual space is defined by

A = {cJ , J ∈ 2{1,..,N}} (12)

4 GPS/IMU data fusion

4.1 Definition of the state and measurement models

• State model

Considering the standard state model of a KF defined by equation (1), the
state model chosen is a Wiener process acceleration model [12]. It is a basic
model giving a good compromise between complexity and performance in the
modelling of a land vehicle dynamics. x(k) ∈ R

9 is the state vector represent-
ing position, velocity and acceleration in North, East and Down directions. In
such a model, F and w are equal to:

F =




I3 TI3
T 2

2
I3

03 I3 TI3

03 03 I3




and w(k) =




T 3

6
B

T 2

2
B

TB




γ(k)

with γ(k) ∈ R a zero mean white gaussian noise of assumed known covariance,

B =




1

1

1




, I3 =




1 0 0

0 1 0

0 0 1




and 03 =




0 0 0

0 0 0

0 0 0




.

So w(k) is a zero mean white gaussian noise with assumed known covariance

E
[
w(k)w(j)T

]
= Q(k)∆(k, j) with ∆(k, j) =





1 if k = j

0 if k 6= j


.

• Measurement models

Observations given by the sensors are, in the absolute frame, position for the
GPS and acceleration for the IMU. This latter is obtained by transforming
data given by accelerometers (corrected from biases and scale factors by in-
ternal algorithms of the IMU) from the body frame to the absolute reference
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frame, using data delivered by gyroscopes 3 . In this very simplified context,
GPS and IMU measurement models are

zGPS(k) = HGPS(k)x(k) + bGPS(k), HGPS =




I3 03 03

03 03 03

03 03 03




(13)

zIMU(k) = HIMU(k)x(k) + bIMU(k), HIMU =




03 03 03

03 03 03

03 03 I3




(14)

with bGPS(k) and bIMU(k) zero mean white gaussian noises of respectively
assumed known covariances RGPS(k) and RIMU(k).

4.2 Definition of the contextual space

Using equations (8) and (9), validity domains of GPS and IMU sensors are
determined through the definition of contextual variables. A context q =
{qGPS, qIMU} , q ∈ R

2, is defined by two measures qGPS and qIMU defined as





qGPS = (νGPS(k))T (SGPS(k))−1
νGPS(k)

qIMU = (νIMU(k))T (SIMU(k))−1
νIMU(k)

(15)

with





SGPS(k) = HGPSP (k|k − 1) (HGPS)T + RGPS(k)

SIMU(k) = HIMUP (k|k − 1) (HIMU)T + RIMU(k)
(16)

the covariance matrices of the GPS and IMU innovations.

Figure 2 summarizes the different validity domains according to the contex-
tual variables qGPS and qIMU .

Thresholds are defined considering the confidence level required. For exam-
ple, given that νGPS(k) ∈ R

3 and νIMU(k) ∈ R
3, then GPSThreshold =

IMUThreshold = 7.8 for a 95% confidence level.
CGPS is the subset of contexts for which the GPS sensor is valid, i.e. when

3 Gyroscopes data are assumed to have a negligible error. A simple linear model is
chosen in this paper to illustrate the method but more sophisticated models could
be implemented to model inertial sensors dynamics in a more realistic way.
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Fig. 2. Sensors validity domains

qGPS < GPSThreshold ; CIMU is the subset of contexts for which the IMU
sensor is valid, i.e. when qIMU < IMUThreshold ; cGPS is the subset of con-
texts for which the GPS sensor is the only sensor valid, i.e. when qGPS <

GPSThreshold and qIMU > IMUThreshold. c0 is the subset of contexts for
which there isn’t any valid sensor. So it comes: c0 = CGPS

⋂
CIMU , cGPS =

CGPS

⋂
CIMU , cIMU = CGPS

⋂
CIMU and cGPS+IMU = CGPS

⋂
CIMU .

The set A = {c0, cGPS, cIMU , cGPS+IMU} defines a partition of the contextual
space.

Bounds of the validity domains are chosen according to a X % confidence
level from χ2 tables. Fuzzy logic is then introduced to bring imprecision in the
definition of the contextual space. Sensors are not defined as being whether
valid or invalid, but can have a certain degree of thrust between these two
states. Degrees of thrust are modelling by membership functions µGPS and
µIMU (figure 3).

Probabilities of validity of each sensor according to the contextual variables
can be calculated using membership functions µGPS and µIMU :





P (CGPS| {qGPS, qIMU}) = µGPS(qGPS)

P (CIMU | {qGPS, qIMU}) = µIMU(qIMU)

P (CGPS ∩ CIMU | {qGPS, qIMU}) = µGPS(qGPS) × µIMU(qIMU)

(17)
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Fig. 3. Fuzzy rules

Probabilities of exclusive validity β are





βGPS = P (cGPS) = P (CGPS) − P (CGPS ∩ CIMU)

βIMU = P (cIMU) = P (CIMU) − P (CGPS ∩ CIMU)

βGPS+IMU = P (cGPS+IMU) = P (CGPS ∩ CIMU)

β0 = P (c0) = 1 − P (CGPS) − P (CIMU) + P (CGPS ∩ CIMU)

(18)

β coefficients verify

β0 + βGPS + βIMU + βGPS+IMU = 1 (19)

4.3 Equations of the Kalman Filter

Estimate at time k is obtained by weighting, using the β masses defined by
the contextual variables, the estimates obtained with the different sensor as-
sociations. The following equations are derived from equations (3), (4) and
(5).

The estimate obtained only taking the GPS data is :
x̂GPS(k|k) = x̂(k|k − 1) + KGPS(k) (zGPS(k) − HGPSx̂(k|k − 1))
KGPS(k) = PGPS(k|k) (HGPS)T (RGPS)−1

(PGPS(k|k))−1 = P−1(k|k − 1) + (HGPS)T (RGPS)−1
HGPS

In the same way, the estimate obtained only taking the INS data is :
x̂IMU(k|k) = x̂(k|k − 1) + KIMU(k) (zIMU(k) − HIMU x̂(k|k − 1))
KIMU(k) = PIMU(k|k) (HIMU)T (RIMU)−1

(PIMU(k|k))−1 = P−1(k|k − 1) + (HIMU)T (RIMU)−1
HIMU

The estimate obtained by fusing the GPS and IMU data is :
x̂GPS+IMU(k|k) = x̂(k|k−1)+KGPS|(GPS+IMU)(k) (zGPS(k) − HGPSx̂(k|k − 1))
+KIMU |(GPS+IMU)(k) (zIMU(k) − HIMU x̂(k|k − 1))

9



KGPS|(GPS+IMU)(k) = PGPS+IMU(k|k) (HGPS)T (RGPS)−1

KIMU |(GPS+IMU)(k) = PGPS+IMU(k|k) (HIMU)T (RIMU)−1

(PGPS+IMU(k|k))−1 = P−1(k|k−1)+(HGPS)T (RGPS)−1
HGPS+(HIMU)T (RIMU)−1

HIMU

β weightings are then calculated from values of qGPS and qIMU , using mem-
bership functions µGPS and µIMU (see figure 4 and equations (17) and (18)).
Table 1 summarizes the different estimates and their associated weighting β.

Table 1
Estimates according to the valid sensors and their associated weightings

Sensors Estimate Weighting associated

None x̂(k|k − 1) β0

GPS only x̂GPS(k|k) βGPS

IMU only x̂IMU (k|k) βIMU

GPS+IMU x̂GPS+IMU(k|k) βGPS+IMU

Fig. 4. Implementation of fuzzy logic to determine membership functions µGPS and
µIMU

By using the methodology presented in [7], the final estimate is determined
by (see appendix B):

x̂(k|k) = β0x̂(k|k − 1) + βGPSx̂GPS(k|k)

+βIMU x̂IMU(k|k) + βGPS+IMU x̂GPS+IMU(k|k)
(20)
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The autocovariance matrix of the estimation error is given by:

P (k|k) = β0P (k|k − 1) + βGPS

[
PGPS(k|k) + (x̂(k|k) − x̂GPS(k|k)) (x̂(k|k) − x̂GPS(k|k))T

]

+βIMU

[
PIMU(k|k) + (x̂(k|k) − x̂IMU(k|k)) (x̂(k|k) − x̂IMU(k|k))T

]

+βGPS+IMU

[
PGPS+IMU(k|k) + (x̂(k|k) − x̂GPS+IMU(k|k)) (x̂(k|k) − x̂GPS+IMU(k|k))T

]

(21)

The prediction stage is the same as for a classic KF (equations (6) and (7)):

x̂(k + 1|k) = F x̂(k|k)

P (k + 1|k) = FP (k|k)F T + Q

5 Simulation

Tests have been made on a land vehicle in Nantes (France). Data have been
collected from a DGPS (Differential GPS) sensor and a set of inertial sensors.
The DGPS is a bi-frequential RTK/OTF (Real Time Kinematic/On The Fly)
sensor with centimeter precision whose data acquisition frequency is 5 Hz.
Inertial sensors package is an Octans 5000, a fiber-optic gyrocompass, whose
data acquisition frequency is 75 Hz. The Octans delivers roll, pitch, heading
and accelerations of the vehicle in the frame of the vehicle. Data are corrected
from biases and scale factors by internal algorithms.
Real position being not available, an artificial white gaussian noise is added
to DGPS measurement so that to get a GPS signal with meter-level preci-
sion. So DGPS measurement is taken as the ”real position” and DGPS noised
data (afterwards called GPS data) are taken as the GPS observation deliv-
ered by the sensor. Improvements of positioning precision are studied between
the GPS data and the GPS/IMU filtered data, the reference being the DGPS
data. Figures 5 and 6 show the histogram of the position error for the GPS
only data and the GPS/IMU filtered data.

In order to characterize the performances of the filter, it is compared to a
structure specifically developed for the GPS/INS data fusion : the direct feed-
back method filter [1], illustrated in figure 7. In this filter, the state vector of
the KF is the error of position and the velocity of the INS.

Tables 2 and 3 show that when there is no loss of GPS signal, i.e. in an ideal
context, performances of the multisensor filter are slightly inferior to those
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Fig. 6. Histogram of the position error of the GPS/IMU filtered signal
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Fig. 7. Direct feedback method filter

of the direct feedback filter. Next simulations will show the behavior of the
algorithm developed in this paper when sensor failures occur.

• Effects of multipath on the filter

One of the main interests of the filter developed in this paper lies in its ability
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Table 2
Performances of the direct feedback filter

GPS data GPS/INS fusion Improvement

p.e.a.a (m) 2.25 0.81 64.2%

p.e.s.b.b (m) 0.93 0.32 66.1%

95 % c.l.c (m) 3.89 1.37 64.8%
a : position error average

b : position error sigma bound

c : confidence level

Table 3
Performances of the multisensor filter

GPS data GPS/IMU fusion Improvement

p. e. a. (m) 2.23 0.82 63.2%

p. e. s. b. (m) 0.96 0.38 60.3%

95 % c. l. (m) 3.92 1.49 62.0%

to take into account contextual aspects and so to detect erroneous data. An
environment favorable to multipath is simulated by introducing a bias on the
GPS position data, as illustrated in figure 8. If there is no control of the
health of the data, position estimate would follow biased position of the GPS
signal resulting in a large error on the position estimate. With this algorithm,
failure of the GPS data is detected thanks to qGPS (figure 9) whose value is
far beyond the validity threshold. GPS data are assumed bad and IMU only is
used in the fusion process. As it can be seen in figure 11, the two sigma bound
of the estimate is quickly drifting with time (from 2700 to 3100) because of
the use of the dead-reckoning sensor only. Failures of the IMU sensor are also
detected by the filter using qIMU statistics, as illustrated figure 10. Spikes are
due to erroneous measurements of the IMU from time to time. A comparison is
made on figure 8 between the positioning errors of three types of sensor failure
detection: use of fuzzy logic (method developed in this paper), use of classical
logic by a 95% threshold on the normalized innovation (method developed in
[2]) and non-detection of sensor failures. As shown in figure 8, classical and
fuzzy logic give much more better results than non-detection when multipath
occur. Figures 12 and 13 give more precisely the improvement of fuzzy logic
on classical one and non-detection in function of time. Simulations show an
improvement of about 5% in that case between fuzzy and classical logic and
20% between fuzzy logic and non-detection. These first results have to be
confirmed by tests on real experiments.
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6 Conclusion and further research

This paper presents a multisensor KF taking context into consideration, based
on fuzzy subsets. Simulations show that the multisensor filter has quite the
same performances as the direct feedback structure developed in [1]. However,
the multisensor filter is able to integrate a high number of sensors without
changing its structure and the algorithm. In a first approximation, simplified
linear state and observation models were proposed to illustrate the use of
contextual information. Works are in progress to model vehicle and inertial
sensors dynamics in a more realistic way.
Moreover, by introducing contextual information, reliability of the data fusion
process is improved: bad data coming from sensors can be detected and re-
jected, especially GPS ones (due to multipath). First simulations show that
fuzzy logic gives slightly better results than classical logic, but this results
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Fig. 12. Improvement of fuzzy logic on classical logic

have to be confirmed with real experiments.

Moreover, it could be interesting to look further on the different contextual
information to determine the nominal state of work of the GPS sensor, in
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Fig. 13. Improvement of fuzzy logic on non-detection of sensor failures

order to define more precisely fuzzy validity bounds of the GPS thus increasing
reliability of the fusion process.

For instance, the following data should be taken as contextual variables:

• data given by the GPS sensor, like the GDOP (Geometric Dilution Of Pre-
cision) or the number of satellites in line of sight.

• variables coming from external sensors, like a radar detecting objects in
the vicinity of the sensor (creating multipath) or a map matching algorithm
indicating if the vehicle is in an environment more or less hostile to GPS
signals.
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Appendix A. Multisensor Information Filter

The information form of the Kalman filter is introduced because of the simple
additive nature of the update stage (22). It makes it very attractive for multi-
sensor estimation([13], [15]). The information state y and information matrix
Y are defined as

16



ŷ(k|k) = Y (k|k)x̂(k|k)

Y (k|k) = P (k|k)−1

Equations of the prediction stage are given by

ŷ(k|k − 1) = Y (k − 1|k − 1)FY (k − 1|k − 1)−1ŷ(k − 1|k − 1)

Y (k|k − 1) = (FY (k|k − 1)−1F T + Q(k))−1

Each observation zi(k) (2) contributes ii(k) to the information state ŷ and
Ii(k) to the information matrix Y.

ii(k) = HT
i Ri(k)−1zi(k)

Ii(k) = HT
i Ri(k)−1Hi

Under information form, the update stage of discrete time Kalman filter re-
duces to

ŷ(k|k) = ŷ(k|k − 1) +
N∑

i=1
ii(k)

Y (k|k) = Y (k|k − 1) +
N∑

i=1
Ii(k)

(22)

So the update state estimate is obtained by

x̂(k|k) = P (k|k)ŷ(k|k) = P (k|k)(ŷ(k|k − 1) +
N∑

i=1
ii(k))

x̂(k|k) = P (k|k)P (k|k − 1)−1x̂(k|k − 1) +
N∑

i=1
P (k|k)HT

i Ri(k)−1zi(k)

x̂(k|k) = (P (k|k)P (k|k−1)−1+
N∑

i=1
P (k|k)HT

i Ri(k)−1Hi)x̂(k|k−1)+
N∑

i=1
P (k|k)HT

i Ri(k)−1(zi(k)−

Hix̂(k|k − 1))

x̂(k|k) = P (k|k)Y (k|k)x̂(k|k − 1) +
N∑

i=1
P (k|k)HT

i Ri(k)−1νi(k)

x̂(k|k) = x̂(k|k − 1) +
N∑

i=1

Ki(k)ν i(k)

The covariance matrix is then obtained by

P (k|k) = (P (k|k − 1)−1 +
N∑

i=1

HT
i Ri(k)−1Hi)

−1
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Appendix B. Origin of the βJ coefficients

Using classical bayesian estimation theory, the state estimate of the Kalman
filter is obtained by :

x̂(k|k) = E[x(k)|z(k)] =
∫

x(k)p(x(k)|z(k))dx

Let us define the set A = {cJ , J ∈ 2{1,..,N}} as a partition of the contextual
space ((11), (12)). If we now apply the theorem of total probabilities to p(x|z),
it comes :

p(x|z) =
∑

J∈2{1,..,N}

p(x, cJ |z)

p(x|z) =
∑

J∈2{1,..,N}

p(cJ |z)p(x|z, cJ)

We get βJ = p(cJ |z): indeed, βJ coefficients being calculated from values of
νi(k) = zi(k) − Hx̂(k − 1|k) (see equations (15), (17) and (18)), they are
conditioned by the value of the measure z.
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