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Abstract

We study the spectral approximation properties of finite element and NURBS spaces from a global
perspective. We focus on eigenfunction approximations and discover that the L2-norm errors
for finite element eigenfunctions exhibit pronounced “spikes” about the transition points between
branches of the eigenvalue spectrum. This pathology is absent in NURBS approximations. By way
of the Pythagorean eigenvalue error theorem, we determine that the squares of the energy-norm
errors of the eigenfunctions are the sums of the eigenvalue errors and the squares of the L2-norm
eigenfunction errors. The spurious behavior of the higher eigenvalues for standard finite elements is
well-known and therefore inherited by the energy-norm errors along with the spikes in the L2-norm
of the eigenfunction errors. The eigenvalue pathology is absent for NURBS. The implications of
these results to the corresponding elliptic boundary-value problem and parabolic and hyperbolic
initial-value problems are discussed.
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1 Introduction

We study the spectral approximation properties of finite elements and NURBS. Our work builds
on earlier investigations, namely, Cottrell et al. [7], Reali [15], Hughes et al. [13], and Evans and
Hughes [9]. See also Cottrell et al. [6]. In these works, we focused primarily on the approximations
of eigenvalues from a global perspective. That is, we investigated a number of modal problems and
compared finite elements with NURBS in their ability to approximate eigenvalues for all modes.
In the case of [13], we also compared discrete wave number approximations for the Helmholtz
equation. Our primary analytical tool in these studies was discrete Fourier/von Neumann analysis
(see Richtmyer and Morton [16]). Our main findings were that, per degree-of-freedom and for
the same polynomial order p, NURBS were much more accurate than finite elements. With the
exception of a few “outlier” modes, in many cases the NURBS eigenvalues enjoyed almost spectral
accuracy, and the so-called “optical” branches of finite element eigenvalue approximations diverged
with p. This last fact was a surprising finding and one that caused considerable interest and some
consternation. A question that naturally arises is “What are the consequences of these errors in
the spectrum to various boundary- and initial-value problems?” An initial answer to this question,
in the context of the Helmholtz equation, was provided in [13], in which it was shown that in
certain wave-number intervals propagating waves become evanescent waves, a completely spurious
phenomenon.

We approach this question more systematically herein. To that end we review the eigenvalue
problem and its approximation by finite elements. We note that it has been well-known in engi-
neering and mathematics circles that the higher modes are poorly approximated (see, e.g., Hughes
[12] and Strang and Fix [17]). In fact, it is well-known that they are not approximated at all.
This is explicit in the standard finite element error estimates. However, in consideration of various
boundary- and initial-value problems, the eigenvalue approximation is not the only issue. The
eigenfunction approximation is fundamental as well. The errors in the discrete approximations of
linear boundary- and initial-value problems can be completely expressed in terms of the eigenvalue
and eigenfunction errors of the corresponding eigenproblem using modal analysis techniques. For
this purpose we need to know the errors in the eigenvalues and the eigenfunctions for all the modes,
again necessitating a global analysis approach, in contrast with the standard asymptotic finite ele-
ment error estimates which tell us that the low modes are accurate and converge at specific rates.
There is one very interesting result for the Galerkin formulation of the eigenvalue problem that is
global, that is, it pertains to each and every mode. We refer to it as the “Pythagorean eigenvalue
error theorem”; roughly speaking, it says that, for each mode, the error in the eigenvalue and the
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square of the error in the eigenfunction (in say the L2-norm1) sum to the square of the error in the
energy-norm. This constitutes an error budget that will influence the errors in the corresponding
boundary- and initial-value problems. We focus in this work on the simplest elliptic operator, the
second derivative in one space dimension. We determine the eigenvalue and eigenfunction errors, in
the L2- and energy-norm, and plot the budgets for all modes for C0-continuous finite elements and
Cp−1- continuous NURBS for p = 2, 3, and 4. There is nothing new to say about the eigenvalue er-
rors. However, there is quite a surprise in the eigenfunction results for finite elements. Specifically,
large error “spikes” appear at the transition points between the acoustic (lowest modes) and optical
branches. We note that there are p−1 transition points in the spectrum for order-p approximations.
Furthermore, these spikes are not present in L2-best approximations of the eigenfunctions. These
results are contrasted with those for NURBS in which case there are no error spikes whatsoever
and the approximation quality of the eigenfunctions in L2 is indistinguishable from the L2-best
approximation. Overall, the spectral accuracy differences between finite elements and NURBS is,
to say the least, striking.

We then return to the original question of the implications of spectral errors on those of
boundary- and initial-value problem errors. To do this we construct expressions for the errors
in the boundary- and initial-value problems in terms of the eigenvalues and eigenfunctions of the
discrete and continuous (i.e., exact) problems. Specifically, we look at the elliptic boundary-value
problem and parabolic and hyperbolic initial-value problems. The different mathematical struc-
tures of these cases lead to different conclusions. We argue that the inaccuracy of the higher finite
element modes is not a serious issue for the elliptic boundary-value problem; it is of some, but small,
concern for the parabolic initial-value problem; and it is a significant concern for the hyperbolic
initial-value problem. We illustrate this point with numerical calculations. We further discuss this
issue from the standpoint of current industrial practice in solving hyperbolic initial-value prob-
lems, specifically structural dynamics problems. In this discipline, it is apparent that the preferred
time-integration procedures are designed to compensate for the inaccuracy of the higher finite el-
ement modes. This has also been known for some time in the computational structural dynamics
community. Nevertheless, the magnitude of the problem, that the current results dramatize for
higher-order finite elements, seems to be a new finding. A positive result is that NURBS elements
are not subject to the pathologies noted for C0-continuous finite elements and produce accurate
results in the same circumstances.

A summary of the remainder of the paper follows. We begin with preliminaries and notational
conventions in Section 2. In Section 3 we present the elliptic eigenvalue problem, standard finite
element error estimates, and the aforementioned spectral results. In Section 4 we assess the elliptic
boundary-value problem in light of the spectral results, and we do the same for the parabolic and
hyperbolic initial-value problems in Sections 5 and 6, respectively. We draw conclusions in Section
7. In Appendix A we perform an analytical investigation to verify some of the numerical results
presented in Section 3.

2 Preliminaries

As a prelude to our study, we mention that we have certain specific problem classes in mind. For
example, our results will apply to the Laplace operator and to the classical linear elasticity operator,

1For purposes of this discussion we are assuming the eigenvalue problem involves a mass matrix and a stiffness
matrix. A typical case would be linear elasticity, in which case the mass and stiffness matrices would be associated
with the L2- and H1-norms. In buckling problems of thin structures the mass matrix is replaced by an initial-stress
stiffness matrix, the L2-norm is replaced by the H1-norm, and the stiffness matrix is associated with the H2-norm.
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and to the various types of boundary- and initial-value problems that can be formulated in terms
of these operators. The abstract variational framework that pertains to these problems includes
many other cases of practical interest as well.

Let Ω be a bounded and connected domain in R
d, where d ∈ Z

+ is the number of space
dimensions. We assume Ω has a Lipschitz boundary ∂Ω. Let Hm(Ω) denote the Sobolev space of
functions with square-integrable generalized derivatives of degree r, where r = 0, 1, . . . ,m ∈ Z

+.
Let V be a closed subspace of (Hm(Ω))n, where n ∈ Z

+. In the typical case under consideration,
the functions in V will satisfy some type of homogenous boundary conditions, appropriate to the
problem being considered. We will not need to be more specific about this for what we have in
mind. Let (·, ·) and a(·, ·) be symmetric bilinear forms. We assume both are continuous and coercive
in the following sense: For all v,w ∈ V,

a(v,w) ≤ ‖v‖E‖w‖E (1)

‖w‖2E = a(w,w) (2)

(v,w) ≤ ‖v‖‖w‖ (3)

‖w‖2 = (v,w) (4)

where ‖ · ‖E is the energy-norm which is assumed equivalent to the (Hm(Ω))n-norm on V and ‖ · ‖
is the (L2(Ω))n = (H0(Ω))n norm.

3 Elliptic Eigenvalue Problem

The elliptic eigenvalue problem is fundamental to our investigation. It is of course of engineering
interest itself, in that within the context of elasticity it describes important cases of free vibration
and linearized buckling. As we shall see later on, the errors in the eigenvalue problem engendered
by the finite-dimensional space provide insight into potential errors in the elliptic boundary-value
problem and the parabolic and hyperbolic initial-value problems. The elliptic eigenvalue problem
is stated as follows: Find eigenvalues λl ∈ R

+ and eigenfunctions ul ∈ V, for l = 1, 2, . . . ,∞, such
that, for all w ∈ V,

λl(w, ul) = a(w, ul) (5)

It is well-known that 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . ., and that the eigenfunctions are (L2(Ω))n-
orthonormal, that is, (uk, ul) = δkl where δkl is the Kronecker delta, for which δkl = 1 if k = l and
δkl = 0 otherwise. The normalization of the eigenfunctions is actually arbitrary. We have assumed
without loss of generality that ‖ul‖ = 1, for all l = 1, 2, . . . ,∞. It follows from (5) that

‖ul‖2E = a(ul, ul) = λl (6)

and a(uk, ul) = 0 for k 6= l.

3.1 Galerkin Formulation

Now let us introduce a finite-dimensional approximation space Vh ⊂ V. We think of Vh as either
a standard finite element space or a space of maximally smooth B-splines or NURBS2. There are

2Throughout, we usually favor using the terminology NURBS over B-splines for generality because the conventional
view is that B-splines just represent the special case of NURBS that are “unweighted” in the sense that the weights
are all equal to 1. However, if a study was performed specifically with unweighted NURBS, that is, B-splines, we
will so specify. On the other hand, NURBS are simply B-splines in a space of dimension d+ 1, but this only creates
confusion in the specificity of the terminologies.
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obviously many other possibilities but we will focus on these herein. The discrete counterpart of
(5) is: Find λh

l ∈ R
+ and uhl ∈ Vh such that for all wh ∈ Vh,

λh
l (w

h, uhl ) = a(wh, uhl ) (7)

The solution of (7) has similar properties to the solution of (5). Specifically, 0 < λh
1 ≤ λh

2 ≤ . . . ≤
λh
N , where N is the dimension of Vh, (uhk , u

h
l ) = δkl, ‖uhl ‖2E = a(uhl , u

h
l ) = λh

l , and a(uhk , u
h
l ) = 0 if

k 6= l.
The comparison of

{

λh
l , u

h
l

}

to {λl, ul} for all l = 1, 2, . . . , N is the key to gaining insight into
the errors of the discrete approximations to the elliptic boundary-value problem and the parabolic
and hyperbolic initial-value problems. Most of the classical functional analysis results describing
error estimates for the eigenvalues and eigenfunctions are asymptotic, that is, for each fixed N
they are applicable only to the errors of the lowest modes of the finite-dimensional space Vh. In
general, a large portion of the eigenvalue/eigenfunction spectrum, the so-called “higher modes,”
are not approximations of their exact counterparts in any meaningful sense. A nice analytical
study of a finite element method utilizing Hermite cubic basis functions is contained in Strang and
Fix [17], Chapter 6, pages 226–228, where it is shown that the upper part of the spectrum has no
approximability whatsoever. It is further stated therein on page 227 that these higher modes can be
simply ignored. We take issue with this. In fact, in certain circumstances we are in almost complete
disagreement with it. Nevertheless, it is well-known in the structural engineering discipline that the
higher modes are grossly inaccurate, but the precise point in the spectrum where the eigenvalues
and eigenfunctions cease to approximate their corresponding exact counterparts is never known in
realistic engineering situations. Engineers typically make extremely conservative estimates based
on experience, often only “accepting” a minute fraction of N , the number of modes represented
by the entire discrete system. However, the situation is potentially very different for the discrete
approximations of elliptic boundary-value problems and parabolic and hyperbolic problems. In
these cases, all modes may participate in the solution to some extent and, as we will see later,
inaccurate higher modes may not always be simply ignored.

Asymptotic error estimates may be very optimistic in that they ignore the deleterious effects
of the higher modes. The situation is even more disconcerting in nonlinear analyses in that there
is modal coupling between inaccurate higher modes and accurate lower modes. In these cases the
ostensible accuracy of the lower modes can be vitiated by the large errors in the higher modes. For
example, insufficiently refined discretizations of turbulent flows are susceptible to this fate [3].

In what follows we will investigate the errors caused by all modes in the discrete approximation.
The results will provide insight into the very different behavior of C0-continuous finite elements
in elliptic boundary-value problems compared with parabolic problems compared with hyperbolic
problems. Our approach is not asymptotic, rather it may be characterized as a global analysis

approach.
The fundamental global error analysis result for elliptic eigenvalue problems is the Pythagorean

eigenvalue error theorem. It is simply derived and is done so on page 233 of Strang and Fix [17].
The theorem is global in that it is applicable to each and every mode in the discrete approximation.
Provided that ‖uhl ‖ = ‖ul‖,

λh
l − λl

λl
+

‖uhl − ul‖2
‖ul‖2

=
‖uhl − ul‖2E

‖ul‖2E
, ∀l = 1, 2, . . . , N (8)

Note that the relative error in the lth eigenvalue and the square of the (L2(Ω))n-norm error in the
lth eigenfunction sum to equal the square of the relative energy-norm error in the lth eigenfunction.
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‖uhl − ul‖
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λ
1/2
l

Figure 1: Graphical representation of the Pythagorean eigenvalue error theorem.

Due to the normalizations introduced earlier, (8) can also be written as

λh
l − λl

λl
+ ‖uhl − ul‖2 =

‖uhl − ul‖2E
λl

, ∀l = 1, 2, . . . , N (9)

See Figure 1. We note that the first term in (9) is always non-negative as λh
l ≥ λl, a consequence

of the “minimax” characterization of eigenvalues (see [17], page 223). It also immediately follows
from (9) that

λh
l − λl ≤ ‖uhl − ul‖2E (10)

‖uhl − ul‖2 ≤ ‖uhl − ul‖2E
λl

(11)

3.2 Summary of Standard Finite Element Estimates for the Eigenvalue Problem

For a given mode, finite element error estimates can be derived provided the mesh size h satisfies

a smallness condition of the form hλ
1/(2m)
l ≤ ǫ where 2m is the order of the differential operator

and ǫ < 1 is a constant independent of h and λl. The main results, from Strang and Fix [17], pages
228–236, are

λh
l − λl

λl
≤ c

(

hλ
1/(2m)
l

)2(p+1−m)
(12)

‖uhl − ul‖E
λ
1/2
l

≤ c
(

hλ
1/(2m)
l

)p+1−m
(13)

‖uhl − ul‖ ≤ c
(

hλ
1/(2m)
l

)σ
(14)

where
σ = min {p+ 1, 2 (p+ 1−m)} (15)

in which p is the degree of complete polynomial exactly representable by the finite element space

Vh and c is a constant independent of h and λl. Note that the dimensionless quantity hλ
1/(2m)
l is

a measure of how well the discrete finite element space Vh resolves the continuous eigenfunction
ul. Consequently, as the continuous eigenvalue λl increases in size, a more refined mesh must be
utilized in order to obtain discrete eigenvalues and eigenfunctions satisfying a prescribed accuracy.
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Moreover, it should be noted that the estimates given by (12)-(14) only hold for the lowest modes

of Vh due to the smallness condition hλ
1/(2m)
l ≤ ǫ. This smallness condition also suggests that the

lowest modes converge exponentially as the polynomial order p is increased, but this exponential

convergence becomes less pronounced as hλ
1/(2m)
l → ǫ.

Analogous estimates for B-splines and NURBS, to the best of our knowledge, have not yet been
obtained, but we conjecture that similar results can be obtained. Indeed, the estimates given by
(12)-(14) are largely a consequence of best approximation error. As such, we expect the lowest
modes for NURBS to be more accurate than the lowest modes for finite elements. This expectation
is based on prior work which compared the best approximation properties of finite elements and
NURBS using the framework of Kolmogorov n-widths [8]. In Subsection 3.3, we will zoom in on the
lowest modes for both finite element and NURBS spaces to examine their corresponding accuracy.

Unfortunately, the estimates given by (12)-(14) do not apply to the highest modes of the dis-
crete space Vh. Instead, other approaches such as discrete Fourier/von Neumann analysis (see
Richtmyer and Morton [16]) must be employed to analyze these often troublesome modes. This
was precisely the approach taken in investigations by Cottrell et al. [7], Reali [15], and Hughes
et al. [13] where the approximation of eigenvalues was conducted from a global perspective. The
main conclusions from these works were that (i) the “eigenfrequencies” (i.e., square roots of the
eigenvalues) were significantly more accurate for NURBS than for finite elements for a fixed number
of degrees-of-freedom; (ii) finite element spectra are characterized by spurious “optical branches”
while NURBS spectra are not; (iii) for a fixed number of degrees-of-freedom, the “optical branches”
of the finite element spectra diverge with increasing polynomial order p; and (iv) for a fixed number
of degrees-of-freedom, almost the entire NURBS spectrum converges with increasing polynomial
order, achieving almost spectral accuracy. The one caveat to (iv) is so-called “outlier” frequencies,
but their number is very small and independent of N . The divergent optical branches of finite ele-
ment spectra correspond to a fixed but rather large fraction of N . These are the modes that offer
no approximability of their exact counterparts. For example, for the standard, second-derivative
operator in one-dimension, one-half the modes, that is, N/2 modes, occupy the optical branch for
p = 2. That the behavior of the optical branches is poor for finite elements has been known since
the earliest numerical studies of finite element methods (see, e.g., Hughes [12]). However, that
the situation actually worsened with p was a surprise. This created some consternation within the
finite element research community. One response was that since the lowest modes were, at the same
time, becoming more accurate with p, the higher modes could be ignored. Concerning the eigen-
problem per se, we view this response as reasonable and consistent with our previous discussion.
Another response was that the inaccuracy of the higher modes was irrelevant for other problems of
interest. We accept this response if we consider only the elliptic boundary-value problem. In this
case, the best approximation property in the energy-norm is the trump card. The participation of
the inaccurate higher modes in the solution is suppressed thereby. However, we feel this response
is only partially appropriate for the parabolic initial-value problem and false for the hyperbolic
initial-value problem, as well as for the corresponding time harmonic case (i.e., the generalized
Helmholtz equation).

We previously analyzed the classical Helmholtz equation case in Hughes et al. [13]. Our
results indicated that within certain bands of wave numbers, the finite element solutions would
be completely spurious in that propagating waves would be transmogrified into evanescent waves.
This was investigated thoroughly by Thompson and Pinsky in [18] and verified numerically for
cubic finite elements in [13]. This pathology does not occur for NURBS.

One limitation of our previous work was that we focused our attention exclusively on eigenfre-
quency errors. As we shall see shortly, it is also important to investigate eigenfunction errors. In
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fact, another surprise is in the offing.

3.3 Numerical Investigation of Spectral Approximations

We consider the elliptic eigenvalue problem for the second-order differential operator in one-
dimension with homogeneous Dirichlet boundary conditions. The variational form of the problem
is given by (5), in which

a(w, ul) =

∫ 1

0

dw

dx

dul
dx

dx (16)

(w, ul) =

∫ 1

0
wuldx (17)

The eigenvalues are λl = π2l2 and the eigenfunctions are ul =
√
2 sin (lπx), l = 1, 2, . . . ,∞. This

may be interpreted physically as the eigenvalue problem associated with a linear elastic rod under-
going axial deformations, or a string under constant tension undergoing transverse deformation,
etc. In contrast with our previous studies, we will present the eigenvalue errors, rather than the
eigenfrequency errors, and, in addition, L2(0, 1)- and energy-norm eigenfunction errors. We will
plot the various errors in a format that represents the Pythagorean eigenvalue error theorem bud-
get. We will restrict our study to quadratic, cubic, and quartic finite elements and B-splines. In all
cases, we assume linear geometric parametrizations and uniform meshes. In the case of B-splines
this means the Bézier elements all have the same size, namely, h = 1/(N − (p − 2)). See Cottrell
et al. [7]. Our results constitute portraits of all the errors for discrete spaces of any dimension N .
Strictly speaking, for B-splines the results are only true for sufficiently large N , due to the use of
open knot vectors, but in this case “sufficiently large” is not very large at all, say N > 30. For
smaller spaces, the results change slightly. The results that we present here were computed using
N ≈ 1, 000 and validated using a mesh convergence study and by comparing our results to ana-
lytical computations (see Appendix A). Moreover, we confirmed that the Pythagorean eigenvalue
error theorem was preserved to high precision in all of our numerical experiments.

Let us begin with results for C1-continuous quadratic B-splines, presented in Figure 2(a). The
results for the relative eigenvalue errors (red curve) follow the usual pattern that has been seen
before. The squares of the eigenfunction errors in L2(0, 1) are also well-behaved (blue curve) with
virtually no discernible error until about l/N = 0.6, and then monotonically increasing errors in
the highest modes. The sums of the errors produce the squares of the relative energy-norm errors
(black curve), as per the Pythagorean eigenvalue error theorem budget. There are no surprises
here.

Next we compare with C0-continuous quadratic finite elements in Figure 2(b). The pattern of
eigenvalue errors (red curve), consisting of two branches, the acoustic branch for l/N < 1/2, and
the optical branch for l/N ≥ 1/2, is well-known for this case. However, the eigenfunction error
in L2(0, 1) (blue curve) represents a surprise in that there is a large spike about l/N = 1/2, the
transition point between the acoustic and optical branches. Again, the square of the energy-norm
eigenfunction error term (black curve) is the sum, as per the budget. This is obviously not a
happy result. It suggests that if modes in the neighborhood of l/N = 1/2 are participating in the
solution of a boundary-value or initial-value problem, the results will be in significant error. The
two unpleasant features of this result are (i) the large magnitude of the eigenfunction errors about
l/N = 1/2 and (ii) the fact that they occur at a relatively low mode number. That the highest
modes are significantly in error is well-established for C0-continuous finite elements, but that there
are potential danger zones much earlier in the spectrum has not been recognized previously. The
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midpoint of the spectrum in one-dimension corresponds to the quarter point in two dimensions
and the eighth point in three dimensions, and so one must be aware of the fact that the onset of
inaccurate modes occurs much earlier in higher dimensions.

The spikes in the eigenfunction error spectrum for C0-finite elements raise the question as to
whether or not the eigenfunctions are representative of the best approximation to eigenfunctions in
the vicinity of l/N = 1/2. To answer this question, we computed the L2(0, 1) best approximations
of some of the exact eigenfunctions and plotted them in Figure 8(b). (They are indicated by ×.)
The case for C1-continuous quadratic B-splines is presented in Figure 8(a) for comparison. For this
case there are almost no differences between the best approximation of the exact eigenfunctions
and the computed eigenfunctions. However, for the C0-continuous quadratic finite elements, the
differences between the computed eigenfunctions and the L2(0, 1) best approximations of the exact
eigenfunctions are significant, as can be seen in Figure 8(b). The spike is nowhere to be seen in the
best approximation results. We conclude that the Galerkin formulation of the eigenvalue problem
is simply not producing good approximations to the exact eigenfunctions about l/N = 1/2 in the
finite element case.3

We observe from Figures 2(a) and (b) that the initial portion of the spectrum is well-resolved
for both C1-continuous quadratic B-splines and C0-continuous quadratic finite elements. This is
expected due to the error estimates that were discussed in Subsection 3.2. In order to better compare
the initial portion of the error spectrum for B-splines and finite elements, detailed views of the first
10% of the modes (i.e., l/N ≤ 1/10) are presented in Figures 5(a) and (b). Note that while all of
the errors are of small magnitude in this portion of the spectrum, the eigenvalue and eigenfunction
errors are much smaller for C1-continuous quadratic B-splines than they are for C0-continuous
quadratic finite elements. Indeed, the eigenvalue error at l/N ≈ 1/10 (and the square of the
energy-norm eigenfunction error) is more than fifteen times smaller for C1-continuous quadratic B-
splines than for C0-continuous quadratic finite elements. This is consistent with available analytical
results (see Table 1, Appendix A). Also note that in this portion of the spectrum, the eigenvalue
errors dominate L2(0, 1) eigenfunction errors, and thus the energy-norm errors are almost entirely
attributable to the eigenvalue errors.

The comparison of C2-continuous cubic B-splines and C0-continuous cubic finite elements is
presented in Figures 3(a) and (b), respectively. See Table 1, Appendix A, for the analytical com-
parison. As we would anticipate, the C2-continuous B-spline results are uniformly more accurate
than the C1-continuous quadratic B-spline results (cf. Figure 2(a)). The eigenvalue error results for
the C0-continuous cubic finite elements are divided among three branches (see Figure 3(b)). The
separation points are at l/N = 1/3 and 2/3. (This follows from the general fact that there are p
equal-length branches for pth-degree C0-continuous finite elements.) The eigenvalue and eigenfunc-
tion errors in this case for the acoustic branch, that is the low modes l/N < 1/3, are smaller than the
corresponding ones for the C0-continuous quadratic finite elements (cf. Figure 2(a)). However, for
the branch beyond l/N = 2/3 they are worse. The results for the region between, 1/3 ≤ l/N ≤ 2/3,
are a bit mixed due to the fact that the locations of branch separation are not coincident. (This
becomes clearer when we consider the case p = 4 and compare it with p = 2, for which we have
coincident separation points.) Note that the spikes in the eigenfunction errors are again located
at the separation points. We have plotted the L2(0, 1) best approximations of some of the exact
eigenfunctions in Figures 9(a) and (b) and, as in the quadratic case, the spikes are nowhere to be
seen in the best approximation results. In Figures 6(a) and (b), detailed views of the first 10% of

3In contrast with the elliptic boundary-value problem, there is no guarantee that the Galerkin formulation of the
eigenvalue problem will produce best approximations of the eigenfunctions in any norm. This is apparent here for
the L2(0, 1)- and energy-norm for C0-continuous finite elements. Curiously, the results for B-splines seem to be at
least very close to best approximations in the L2(0, 1)-norm.
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the modes in the error spectrum are presented, and like before, the eigenvalue and eigenfunction
errors are far smaller for C2-continuous cubic B-splines than they are for C0-continuous cubic finite
elements.

The comparison of C3-continuous quartic B-splines and C0-continuous quartic finite elements
is presented in Figures 4(a) and (b), respectively. Again, the improvement of all the results for the
quartic B-splines is uniform (see Figure 4(a)). There are no discernible errors of any kind up to
about l/N = 0.7. For the C0-continuous quartic finite elements there are four branches (see Figure
4(b)). The first, l/N < 1/4, is extremely accurate with respect to all quantities. There is also no
discernible spike in eigenfunction errors at l/N = 1/4, but there are large spikes about l/N = 1/2
and 3/4. As in the previous cases, the spikes are absent in the L2(0, 1)-best approximations of
the functions, as displayed in Figures 10(a) and (b). The uppermost optical branch errors are
growing compared with the lower-order finite element cases (cf. Figures 2(b) and 3(b)). In Figures
7(a) and (b), detailed views of the first 10% of the modes in the error spectrum are provided, and
even though C0-continuous quartic finite elements are extremely accurate in the first portion of
the spectrum, they are markedly less accurate than C3-continuous B-splines. At l/N ≈ 1/10, the
eigenvalue error for C0-continuous quartic finite elements is nearly three thousand times as large
as the eigenvalue error for C3-continuous B-splines, as confirmed analytically (see Table 1, Section
A), and the energy-norm eigenfunction error is more than fifty times as large. Consequently, even
for problems in which the higher modes are not participating, C3-continuous quartic B-splines hold
a distinct advantage over C0-continuous quartic finite elements in terms of approximability.

One question that remains is what is the behavior of discrete eigenfunctions near the transition
points between the branches of the error spectrum. To answer this question, we have visualized dis-
crete eigenfunctions for C3-continuous quartic B-splines and C0-continuous finite elements near the
transition points l/N = 1/4, 1/2, and 3/4 (for N = 99) in Figures 12 and 13 and the corresponding
exact eigenfunctions in Figure 11. We immediately observe that all of the discrete eigenfunctions
for C3-continuous quartic B-splines are qualitatively and quantitatively accurate, though less so
for the discrete eigenfunctions near the last transition point l/N = 3/4. This is consistent with our
prior observations. On the other hand, while the discrete eigenfunctions for C0-continuous quartic
B-splines are accurate near the first transition point l/N = 1/4, they are exceptionally inaccurate
near the transition points l/N = 1/2 and 3/4, both qualitatively and quantitatively. In fact, the
discrete eigenfunctions near these last two points appear to be the superposition of several waves
with different frequencies and wavelengths as opposed to just a single wave. We have observed
similar phenomena for C0-continuous finite elements of different degree p ≥ 2.

Engineering folklore regards the accuracy of the eigenvalues as a surrogate for the accuracy of
the eigenfunctions. The justification for this is the Rayleigh quotient,

λh
l =

a(uhl , u
h
l )

(uhl , u
h
l )

(18)

in which the eigenvalue is determined by the corresponding eigenfunction. Clearly, if the eigen-
function is accurate, so will be the eigenvalue. However, it is not clear at all that an accurate
eigenvalue implies an accurate eigenfunction, and our spectral results demonstrate that such an
implication is incorrect. For example, in Figure 4(a), as we approach l/N = 1, the eigenfunction
errors are increasing when the eigenvalue errors are decreasing. Likewise, in Figure 4(b), in the
acoustic branch as we approach l/N = 1/2, the eigenvalue error is small and diminishing at the
same time as the eigenfunction error is increasing rapidly and becoming quite large.

As has been mentioned in previous works [7, 13], there are a collection of so-called “outlier”
modes in the NURBS spectrum that appear to offer no approximability when a uniform mesh is
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Figure 2: Pythagorean eigenvalue error theorem budget for quadratic elements. (a) C1-continuous B-splines; (b) C0-continuous finite
elements. The blue curves are ‖uhl −ul‖2, the red curves are (λh

l −λl)/λl, and the black curves are ‖uhl −ul‖2E/λl. Note that ‖ul‖ = ‖uhl ‖ = 1,
‖ul‖2E = λl, and ‖uhl ‖2E = λh

l .
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Figure 3: Pythagorean eigenvalue error theorem budget for cubic elements. (a) C2-continuous B-splines; (b) C0-continuous finite elements.
The blue curves are ‖uhl − ul‖2, the red curves are (λh

l − λl)/λl, and the black curves are ‖uhl − ul‖2E/λl. Note that ‖ul‖ = ‖uhl ‖ = 1,
‖ul‖2E = λl, and ‖uhl ‖2E = λh
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Figure 4: Pythagorean eigenvalue error theorem budget for quartic elements. (a) C3-continuous B-splines; (b) C0-continuous finite
elements. The blue curves are ‖uhl −ul‖2, the red curves are (λh
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Figure 5: Pythagorean eigenvalue error theorem budget for quadratic elements and l/N ≤ 1/10. (a) C1-continuous B-splines; (b) C0-
continuous finite elements. The blue curves are ‖uhl −ul‖2, the red curves are (λh
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Figure 6: Pythagorean eigenvalue error theorem budget for cubic elements and l/N ≤ 1/10. (a) C2-continuous B-splines; (b) C0-
continuous finite elements. The blue curves are ‖uhl −ul‖2, the red curves are (λh
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Figure 7: Pythagorean eigenvalue error theorem budget for quartic elements and l/N ≤ 1/10. (a) C3-continuous B-splines; (b) C0-
continuous finite elements. The blue curves are ‖uhl −ul‖2, the red curves are (λh
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Figure 8: Comparisons of eigenfunctions computed by the Galerkin method with L2(0, 1) best ap-
proximations of the exact eigenfunctions. (a) C1-continuous quadratic B-splines; (b) C0-continuous
quadratic finite elements. The blue curves are ‖uhl − ul‖2, where uhl is the Galerkin approximation
of ul, and the ×’s are ‖ũhl − ul‖2, where ũhl is the L2(0, 1) best approximation of ul.
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Figure 9: Comparisons of eigenfunctions computed by the Galerkin method with L2(0, 1) best
approximations of the exact eigenfunctions. (a) C2-continuous cubic B-splines; (b) C0-continuous
cubic finite elements. The blue curves are ‖uhl − ul‖2, where uhl is the Galerkin approximation of
ul, and the ×’s are ‖ũhl − ul‖2, where ũhl is the L2(0, 1) best approximation of ul.
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Figure 10: Comparisons of eigenfunctions computed by the Galerkin method with L2(0, 1) best
approximations of the exact eigenfunctions. (a) C3-continuous quartic B-splines; (b) C0-continuous
quartic finite elements. The blue curves are ‖uhl − ul‖2, where uhl is the Galerkin approximation of
ul, and the ×’s are ‖ũhl − ul‖2, where ũhl is the L2(0, 1) best approximation of ul.
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Figure 11: Visualization of the exact 24th, 26th, 49th, 51st, 74th, and 76th eigenfunctions.

20



0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

24th eigenfunction 26th eigenfunction

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

49th eigenfunction 51st eigenfunction

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

y

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

y

74th eigenfunction 76th eigenfunction

Figure 12: Visualization of the discrete 24th, 26th, 49th, 51st, 74th, and 76th eigenfunctions for a
C3-continuous quartic B-spline approximation where the total number of discrete modes is N = 99.
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Figure 13: Visualization of the discrete 24th, 26th, 49th, 51st, 74th, and 76th eigenfunctions for a
C0-continuous quartic finite element approximation where the total number of discrete modes is
N = 99. These eigenfunctions correspond to modes near the transition points between branches in
the error spectrum.
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Figure 14: Visualization of the discrete eigenfunctions corresponding to “outlier” modes for a C3-
continuous quartic B-spline approximation where the total number of discrete modes is N = 99.
Only the last two modes are significantly in error. This holds for all significantly large values of N .

utilized. These modes lie at the end of the spectrum and are finite in number. Numerical evidence
has revealed that, in the context of the problem given by (5), there are precisely p − 1 outlier
modes when p is odd and p − 2 outlier modes when p is even. In Figures 14(a) and (b), the
discrete eigenfunctions corresponding to the two outlier modes for C3-continuous quartic B-splines
are presented for N = 99. It is apparent from the figures that the (N − 1)st and N th discrete
eigenfunctions are very inaccurate. In fact, they are mirror images of each other, zero throughout
most of the domain, and only nonzero near the domain boundaries. While this spurious qualitative
behavior may introduce error for problems in which the outlier modes are participating, the fact
that the eigenfunctions hold support only near the boundaries of the domain indicates that their
presence will not spoil the accuracy of numerical approximations in the interior of the domain, at
least in the context of linear elliptic, parabolic, and hyperbolic problems. It is worth noting that
we have observed that the outlier modes for other polynomial degrees are also only nonzero near
the domain boundaries.

We think the results comparing the accuracy of eigenvalues and eigenfunctions for equal-order
B-spline and finite element cases speak for themselves. Maximally smooth B-splines are simply
much more accurate than equal-order C0-continuous finite elements based on equal numbers of
degrees-of-freedom.

4 Elliptic Boundary-value Problem

Let f ∈ (L2(Ω))n be a given function, referred to as the forcing. The continuous elliptic boundary-
value problem is stated as follows: Find u ∈ V such that for all w ∈ V

a(w, u) = (w, f) (19)

The discrete counterpart is: Find uh ∈ Vh such that for all wh ∈ Vh

a(wh, uh) = (wh, f) (20)
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The usual approach to obtaining error estimates for (20) is to utilize the fact that uh is the best
approximation to u in ‖ · ‖E , that ‖ · ‖E is equivalent to the (Hm(Ω))n-norm, and standard approx-
imation estimates [17], from which it immediately follows that

‖uh − u‖E ≤ chp+1−m‖u‖p+1 (21)

Error estimates in (L2(Ω)n) can be obtained using the Aubin-Nitsche method, viz.,

‖uh − u‖ ≤ chσ‖u‖p+1 (22)

where σ = min {p+ 1, 2(p + 1−m)}. These results hold for both finite elements and B-splines. All
standard mathematical texts on finite elements may be consulted for background. Equation (21)
is proved for B-splines in Bazilevs et al. [4], and (22) is a simple exercise.

We now investigate the approximation of (19) by (20) from the point of view of eigenfunction
expansions. Due to the completeness of the eigenfunctions, we can expand the solutions of (19)
and (20) in terms of the eigenfunctions of the continuous and discrete eigenvalue problems,

u =

∞
∑

l=1

dlul (23)

ul =
N
∑

l=1

dhl u
h
l (24)

where dl and dhl are the Fourier coefficients of the continuous and discrete solutions, respectively. We
can solve for the Fourier coefficients by substituting (23) and (24) into (19) and (20), respectively,
and by replacing w in (19) with uk and wh in (20) by uhk , and by using the orthogonality properties
and normalizations described earlier. We have

λldl = fl
def
= (ul, f) (25)

λh
l d

h
l = fh

l
def
= (uhl , f) (26)

and so

u(x) =
∞
∑

l=1

fl
λl
ul(x) (27)

uh(x) =
N
∑

l=1

fh
l

λh
l

uhl (x) (28)

Consequently, the error in the solution is

e(x) = uh(x)− u(x)

= ē(x) + e′(x)

ē(x) =

N
∑

l=1

ēl(x)

=
N
∑

l=1

(

fh
l

λh
l

uhl (x)−
fl
λl
ul(x)

)

(29)
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e′(x) =

∞
∑

l=N+1

e′l(x)

=

∞
∑

l=N+1

(

− fl
λl
ul(x)

)

(30)

We refer to ē as the resolved error and e′ as the unresolved error. Clearly, nothing can be done
about e′ within the Galerkin method. It is what it is. However, ē is completely determined by
the errors in the discrete eigenvalues and eigenfunctions. If the projection of the forcing onto the
eigenfunctions is confined to the eigenmodes that are grossly inaccurate, it follows from (29) that
uh will likely be significantly in error.4 Let us assume that the lth eigenmode is one such mode and
estimate ēl in the

(

L2(Ω)
)n
-norm and energy-norm. To this end, it is convenient to introduce the

temporary notations

a =
1

λl
(31)

b = fl = (ul, f) (32)

c = ul (33)

ah =
1

λh
l

(34)

bh = fh
l = (uhl , f) (35)

ch = uhl (36)

εa = ah − a =
1

λh
l

− 1

λl
(37)

εb = bh − b =
(

uhl − ul, f
)

= (el, f) (38)

εc = ch − c = uhl − ul = el (39)

With these, we can write

ēl = ahbhch − abc

= (a+ εa)(b+ εb)(c+ εc)− abc

= (abεc + aεbc+ abεc) + (aεbεc + εabεc + εaεbc) + εaεbεc (40)

This is a cubic polynomial in the errors εa, εb, and εc, with coefficients depending on the exact
data represented by a, b, and c. Note that this is an exact expression for the modal error, ēl. Now
we wish to estimate the norms of ēl. To do this we first need to estimate εa, εb, εc, a, b, and c:

|a| = 1

λl
(41)

|b| = |(ul, f)| ≤ ‖ul‖‖f‖ = ‖f‖ (42)

‖c‖ = ‖ul‖ = 1 (43)

‖c‖E = ‖ul‖E = λ
1/2
l (44)

4In the elliptic boundary-value problem setting, there is the possibility of cancellation of modal errors as each error
component ēl can be either positive or negative. Cancellation of modal errors will be discussed further in Subsection
4.1.
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|εa| =
∣

∣

∣

∣

1

λh
l

− 1

λl

∣

∣

∣

∣

=
1

λh
l

(

λh
l − λl

λl

)

≤ 1

λl

(

λh
l − λl

λl

)

(45)

|εb| = |(el, f)|
≤ ‖el‖‖f‖ (46)

‖εc‖ = ‖el‖ (47)

‖εc‖E = ‖el‖E (48)

Employing these in (40), we have

‖ēl‖ ≤
(

1

λl
‖f‖‖el‖+

1

λl
‖el‖‖f‖+

1

λl

(

λh
l − λl

λl

)

‖f‖
)

+

(

1

λl
‖el‖2‖f‖+

1

λl

(

λh
l − λl

λl

)

‖f‖‖el‖+
1

λl

(

λh
l − λl

λl

)

‖el‖‖f‖
)

+
1

λl

(

λh
l − λl

λl

)

‖el‖2‖f‖

=
‖f‖
λl

(

2‖el‖+
(

λh
l − λl

λl

)

(

1 + 2‖el‖+ ‖el‖2
)

+ ‖el‖2
)

=
‖f‖
λl

(

(

2‖el‖+ ‖el‖2
)

(

1 +

(

λh
l − λl

λl

))

+

(

λh
l − λl

λl

))

=2
‖f‖
λl

(

‖el‖
(

1 +
1

2
‖el‖

)(

1 +

(

λh
l − λl

λl

))

+
1

2

(

λh
l − λl

λl

))

(49)

It is apparent from (49) that ‖ēl‖ is bounded by terms involving ‖el‖ and
(

λh
l − λl

)

/λl. By (10)
and (11) these can both be estimated in terms of ‖el‖E :

‖e‖l ≤ 2
‖f‖
λl

(

‖el‖E
λ
1/2
l

(

1 +
1

2

‖el‖E
λ
1/2
l

)

(

1 +
‖el‖2E
λl

)

+
1

2

‖el‖2E
λl

)

(50)

As is evident, the exact eigenvalues in the denominators tend to diminish the influence of the higher
modes.

Proceeding as before, but this time for the energy-norm, we have

‖ēl‖E ≤
(

1

λl
‖f‖‖el‖E +

1

λ
1/2
l

‖el‖‖f‖+
1

λ
1/2
l

(

λh
l − λl

λl

)

‖f‖
)

+

(

1

λl
‖el‖‖f‖‖el‖E +

1

λl

(

λh
l − λl

λl

)

‖f‖‖el‖E +
1

λ
1/2
l

(

λh
l − λl

λl

)

‖el‖‖f‖
)

+
1

λl

(

λh
l − λl

λl

)

‖el‖‖f‖‖el‖E (51)

This expression reveals that the eigenfunction errors in the (L2(Ω))n-norm and the energy-norm,
and the eigenvalue errors, influence ‖ēl‖E . As before, thanks to (10) and (11), we can express ‖el‖
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and
(

λh
l − λl

)

/λl in terms of ‖el‖E :

‖ēl‖E ≤
(

1

λl
‖f‖‖el‖E +

1

λl
‖el‖E‖f‖+

1

λ
3/2
l

‖el‖2E‖f‖
)

+

(

1

λ
3/2
l

‖f‖‖el‖2E +
1

λ2
l

‖f‖‖el‖3E +
1

λ2
l

‖el‖3E‖f‖
)

+
1

λ
5/2
l

‖el‖4E‖f‖ (52)

Simplifying the above expression:

‖ēl‖E ≤ 2
‖f‖‖el‖E

λl

(

1 +
‖el‖E
λ
1/2
l

+
‖el‖2E
λl

+
1

2

1

λ
3/2
l

‖el‖3E

)

= 2
‖f‖‖el‖E

λl

(

1 +
‖el‖E
λ
1/2
l

(

1 +
‖el‖E
λ
1/2
l

+
1

2

‖el‖2E
λl

))

(53)

Once again, the beneficial effect of the exact eigenvalues is apparent.

4.1 Reconciliation with the “Best Approximation Property”

From (29) it seems apparent that a discrete solution to the elliptic boundary-value problem has the
potential to be significantly in error. On the other hand, it is well-known that the Galerkin solution
to the elliptic boundary-value problem possesses the so-called best approximation property in the
energy-norm. The best approximation property is indeed a very strong and important result. It
guarantees that we get the best possible fit of u by uh in the energy-norm. Optimal error estimates
ensue from this property. However, it is not in conflict with the observations made about (29). If
the discrete eigenvalues and eigenfunctions that are participating in the solution are grossly in error,
the “best approximation” will most likely not be very good. There are well-known examples of this
phenomenon. The phenomenon of “locking” may be mentioned, of which there are several different
manifestations, such as, volumetric locking, shear locking, membrane locking, etc. Volumetric
locking fits precisely into the present elliptic boundary-value problem format. For example, consider
a plane strain elasticity problem in which the ratio of the Lamé parameters, λ and µ, is very large,
say λ/µ ≫ 1. Solve a typical problem, such as the classical benchmark of a plane strain beam
in bending (see, e.g., Figures 4.4.1 and 4.4.2 on page 220 in Hughes [12]), for which there is an
exact Airy stress function solution. Utilize standard linear triangular or bilinear quadrilateral finite
elements. The results are grossly inaccurate (see, e.g., Figure 4.7.1 on page 249 in Hughes [12]).
Nevertheless, they represent the best approximation in the energy-norm for the function spaces
employed. Over the years, deficiencies of this kind have been circumvented through a variety of
alternative finite elements and variational formulations. However, the type of pathology identified
in our eigenvalue and eigenfunction calculations, that is, Figures 2-4, represents a quite different
problem, but one that is not a major concern for the elliptic boundary-value problem. The reason
for this is that higher modes usually do not participate significantly in solutions, except possibly
locally. This is referred to as elliptic regularity in mathematics and Saint-Venant’s principle in
mechanics. The manifestation of this in the modal result is that eigenvalues are in the denominators

of the discrete and exact solutions and they significantly attenuate the participation of the higher
modes. Consequently, the standard elliptic boundary-value problems are usually forgiving, despite
the potential for error expressed in Figures 2-4.
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There is also a possibility that the overall solution error may be small even if the modal errors
are large due to cancellation of error. Each modal component ēl of the resolved error ē may be
positive or negative. If two of the modal errors are large but equal in magnitude and opposite in
sign, then they will cancel each other out when summed together in (29). However, this cancellation
phenomena is entirely limited to the elliptic setting. In the hyperbolic setting, for example, modal
errors oscillate at different frequencies and the consequences of our global error estimates are fully
realized at later times even if there is an initial cancellation of errors. In Subsection 6.1, we will
present a numerical example illustrating this phenomenon.

5 Parabolic Initial-value Problem

Let

VT =

{

v ∈ L2 (0, T ;V) : ∂v
∂t

∈ L2 ((0, T );V∗)

}

(54)

where T ∈ R
+ is the final time of interest and V∗ is the dual space of V, and let f ∈ L2

(

(0, T ); (L2(Ω))n
)

,
the forcing, and U ∈ (L2(Ω))n, the initial condition, be given functions. The continuous, parabolic
initial-value problem is stated as follows: Find u ∈ VT such that for all w ∈ V and almost every
t ∈ (0, T ),

〈

w,
∂u

∂t
(t)

〉

+ a(w, u(t)) = (w, f(t)) (55)

and
(w, u(0)) = (w,U) (56)

where 〈·, ·〉 is the duality pairing. We remark that (56) makes sense as functions in VT also lie
in C

(

[0, T ]; (L2(Ω))n
)

, the space of continuous functions u : [0, T ] → (L2(Ω))n (see Theorem 3 in
Section 5.9.2 of Evans [10]). Let

Vh
T =

{

v ∈ L2
(

(0, T );Vh
)

:
∂v

∂t
∈ L2

(

(0, T );Vh
)

}

(57)

The semi-discrete counterpart of the parabolic initial-value problem is: Find uh ∈ Vh
T such that for

all wh ∈ V and almost every t ∈ (0, T ),

〈

wh,
∂uh

∂t
(t)

〉

+ a(wh, uh(t)) = (wh, f(t)) (58)

and
(wh, uh(0)) = (wh, U) (59)

The standard finite element error estimate for the parabolic case is

‖e(t)‖ ≤ chσ

(

‖u(t)‖(Hp+1(Ω))n) + exp
(

−λh
1t
)

‖u(0)‖(Hp+1(Ω))n +

∫ t

0
exp

(

−λh
1(t− τ)

)

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

(Hp+1(Ω))n
dτ

)

(60)
where σ is the constant defined in (15) and λh

1 > 0 is the smallest eigenvalue of the discretized
eigenproblem [17].
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Employing eigenfunction expansions, we can express the solutions of (55) and (58) as

u(t) =

∞
∑

l=1

dl(t)ul (61)

uh(t) =
N
∑

l=1

dhl (t)u
h
l (62)

where dl(t) and dhl (t) are the Fourier coefficients of the continuous and discrete solutions, re-
spectively. To generate uncoupled first-order ordinary differential equations governing the Fourier
coefficients, we substitute (61) and (62) into (55) and (58), respectively, and replace w in (55) by
uk and wh in (58) by uhk , and employ the orthogonality properties of the eigenfunctions, to arrive
at

ḋl(t) + λldl(t) = fl(t)
def
= (ul, f(t)) ∀l = 1, 2, . . . ,∞ (63)

and
ḋhl (t) + λh

l d
h
l (t) = fh

l (t)
def
= (uhl , f(t)) ∀l = 1, 2, . . . , N (64)

where a superposed dot denotes time differentiation. Proceeding analogously with (56) and (59),
we determine the corresponding initial conditions

dl(0) = Ul
def
= (ul, U) ∀l = 1, 2, . . . ,∞ (65)

and
dhl (0) = Uh

l
def
= (uhl , U) ∀l = 1, 2, . . . , N (66)

Solving the initial-value problems for the ordinary differential equations, we obtain

dl(t) = Ul exp (−λlt) +

∫ t

0
exp (−λl(t− τ)) fl(τ)dτ (67)

and

dhl (t) = Uh
l exp

(

−λh
l t
)

+

∫ t

0
exp

(

−λh
l (t− τ)

)

fh
l (τ)dτ (68)

and so

u(x, t) =

∞
∑

l=1

(

Ul exp (−λlt) +

∫ t

0
exp (−λl(t− τ)) fl(τ)dτ

)

ul(x) (69)

and

uh(x, t) =

N
∑

l=1

(

Uh
l exp

(

−λh
l t
)

+

∫ t

0
exp

(

−λh
l (t− τ)

)

fh
l (τ)dτ

)

uhl (x) (70)

The error can then be expressed as

e(x, t) =uh(x, t)− u(x, t)

= ē(x, t) + e′(x, t)

ē(x, t) =
N
∑

l=1

ēl(x, t)

=

N
∑

l=1

(

Uh
l exp

(

−λh
l t
)

uhl (x)− Ul exp (−λlt)ul(x)

+

∫ t

0
exp

(

−λh
l (t− τ)

)

fh
l (τ)dτu

h
l (x)−

∫ t

0
exp (−λl(t− τ)) fl(τ)dτul(x)

)

(71)
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e′(x, t) =

∞
∑

l=N+1

e′l(x, t)

=

∞
∑

l=N+1

(

−Ul exp (−λlt)ul(x)−
∫ t

0
exp (−λl(t− τ)) fl(τ)dτul(x)

)

(72)

Again, there is nothing more to be said about e′. For ē the error is due to the errors in eigenvalues
and eigenfunctions. The errors in decay rates are due exclusively to the errors in eigenvalues. The
initial condition error is due to the projection error of U onto the eigenfunctions. This decays
rapidly for the higher modes but is important at early times say up to t = O(λ−1

l ) for the error
in Ul. The situation is similar for the forcing. If f is concentrated around time t̄, then errors may
be appreciable for short time intervals thereafter, say for (t − t̄)+ = O(λ−1

l ) where (·)+ denotes
the Macaulay bracket, that is, (τ)+ = τ if τ > 0, and is zero otherwise. The rationale for this
is provided by assuming the forcing to be an impulse at time t̄, that is, a Dirac distribution with
respect to time

f(x, t) = f̄(x)δ(t − t̄) (73)

Then

fl(t) = (ul(x), f(x, t))

=
(

ul(x), f̄
)

δ(t− t̄)

= f̄lδ(t− τ) (74)

Likewise,

fh
l (t) =

(

uhl (x), f(x, t)
)

=
(

uhl (x), f̄
)

δ(t− t̄)

= f̄h
l δ(t − τ) (75)

Substituting (74) and (75) into (71) results in

ē(x, t) =

N
∑

l=1

(

Uh
l exp

(

−λh
l t
)

uhl (x)− Ul exp (−λlt) ul(x)

+

∫ t

0

(

exp
(

−λh
l (t− τ)

)

f̄h
l u

h
l (x)− exp (−λl(t− τ)) f̄lul(x)

)

δ(t− τ)dτ

)

=
N
∑

l=1

(

Uh
l exp

(

−λh
l t
)

uhl (x)− Ul exp (−λlt)ul(x)

+ f̄h
l exp

(

−λh
l (t− t̄)+

)

uhl (x)− f̄l exp
(

−λl (t− t̄)+
)

ul(x)
)

(76)

From (76) we see that the error due to an impulse at time t̄ behaves very much like the error in
initial data. If we view the forcing to be decomposed into a sequence of impulses, then each impulse
would create an error similar in form to the error created by the initial data. Consequently, we can
simplify our discussion of errors by considering only those caused by initial data.

As in the case of the elliptic boundary-value problem, it is revealing to investigate the contri-
bution of a typical modal error. However, the analysis is similar to that performed for the elliptic
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boundary-value problem and is tedious, so we will content ourselves with presenting only final
results, neglecting forcing contributions. For the

(

L2(Ω)
)n
-norm, the estimate is

‖ēl(t)‖ ≤ exp (−λlt) ‖U‖
{

2‖el‖ (2 + ‖el‖) + min
{

‖el‖2Et, 1
}}

≤ exp (−λlt) ‖U‖
{

2
‖el‖E
λ
1/2
l

(

2 +
‖el‖E
λ
1/2
l

)

+min
{

‖el‖2Et, 1
}

}

(77)

Clearly for large times, the term exp (−λlt) dominates, and ‖ēl‖ → 0 as −λlt → −∞. For short
times, that is ‖el‖2Et < 1, we have

‖ēl(t)‖ ≤ exp (−λlt) ‖U‖
{

2
‖el‖E
λ
1/2
l

(

2 +
‖el‖E
λ
1/2
l

)

+ ‖el‖2Et
}

(78)

Likewise, for the energy-norm, we have

‖ēl(t)‖E ≤ exp (−λlt) ‖U‖
{

2‖el‖E
(

2 +
‖el‖E
λ
1/2
l

)

+ λ
1/2
l min

{

‖el‖2Et, 1
}

}

(79)

As for the (L2(Ω))n-norm, ‖ēl‖E → 0 as −λt → −∞. For short times,

‖ēl(t)‖E ≤ exp (−λlt) ‖U‖
{

2‖el‖E
(

2 +
‖el‖E
λ
1/2
l

)

+ λ
1/2
l min

{

‖el‖2Et, 1
}

}

(80)

Examination of (77)-(80) again confirms that modal errors may be explicitly expressed in terms of
errors of the eigenfunctions in the (L2(Ω))n-norm and the energy-norm, and errors in the eigenval-
ues.

The fact that higher modes decay exponentially fast suggests that the parabolic problem is also
very forgiving, at least after a short time interval of O(λ−1

k ), where k here denotes the lowest mode
number for which the discrete eigenvalue and/or eigenfunction are/is significantly in error.

6 Hyperbolic Initial-value Problem

Let

VT =

{

v ∈ L2 (0, T ;V) : ∂v
∂t

∈ L2
(

(0, T ); (L2(Ω))n
)

and
∂2v

∂t2
∈ L2 ((0, T );V∗)

}

(81)

where, as before, T ∈ R
+, V∗ is the dual of V and f ∈ L2

(

(0, T ); (L2(Ω))n
)

is the forcing. Let
U ∈ (L2(Ω))n and V ∈ V∗ be the initial data, referred to as the initial displacement and initial
velocity, respectively. The continuous hyperbolic initial-value problem is: Find u ∈ VT such that
for all w ∈ V and almost every time t ∈ (0, T ),

〈

w,
∂2u

∂t2
(t)

〉

+ a(w, u(t)) = (w, f(t)) (82)

(w, u(0)) = (w,U) (83)

and
〈

w,
∂u

∂t
(0)

〉

= 〈w, V 〉 (84)
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where 〈·, ·〉 is the duality pairing. We remark that (83) and (84) make sense because functions in VT

lie in C
(

[0, T ]; (L2(Ω))n
)

and their time derivatives lie in C ([0, T ];V∗) (see Theorem 2 in Section
5.9.2 of Evans [10]). Let

Vh
T =

{

v ∈ L2
(

0, T ;Vh
)

:
∂v

∂t
∈ L2

(

(0, T );Vh
)

and
∂2v

∂t2
∈ L2

(

(0, T );Vh
)

}

(85)

The semi-discrete counterpart of (82)-(84) is: Find uh ∈ Vh
T such that for all wh ∈ V h and almost

every time t ∈ (0, T ),
〈

wh,
∂2uh

∂t2
(t)

〉

+ a(wh, uh(t)) = (wh, f(t)) (86)

(

wh, uh(0)
)

=
(

wh, U
)

(87)

and
(

wh,
∂uh

∂t
(0)

)

=
〈

wh, V
〉

(88)

Let

E

(

u,
∂u

∂t

)

=
1

2

((

∂u

∂t
,
∂u

∂t

)

+ a(u, u)

)

(89)

denote the total energy. The square root of E is a norm on
(

L2(Ω)
)n × V, equivalent to the

(

L2(Ω)
)n×(Hm(Ω))n-norm. The standard finite element error estimate for the hyperbolic problem

in the energy-norm is

E

(

e,
∂e

∂t

)1/2

≤c

(

hν
(

‖u(0)‖(Hp+1(Ω))n + ‖u(t)‖(Hp+1(Ω))n
)

+ hσ

(

∥

∥

∥

∥

∂u

∂t
(0)

∥

∥

∥

∥

(Hp+1(Ω))n
+

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

(Hp+1(Ω))n
+

∫ t

0

∥

∥

∥

∥

∂2u

∂t2
(τ)

∥

∥

∥

∥

(Hp+1(Ω))n
dτ

))

(90)

where σ is defined in (15) and ν = p + 1 − m [17]. Note that ν ≤ σ. Consequently, for early
times the rate of convergence of the energy-norm is ν. At times of order h−m, the σ term begins
to dominate in the sense that the error becomes O(hσt) for t ≥ O(h−m) due to the time integral in
(90).

Proceeding as for the parabolic case (see (61)-(66)), we arrive at the uncoupled second-order,
ordinary differential equations, and corresponding initial conditions, governing the Fourier coeffi-
cients:

d̈l(t) + λldl(t) = fl(t) ∀l = 1, 2, . . . ,∞ (91)

with

dl(0) = Ul ∀l = 1, 2, . . . ,∞ (92)

ḋl(0) = Vl
def
= 〈ul, V 〉 ∀l = 1, 2, . . . ,∞ (93)

and
d̈hl (t) + λh

l d
h
l (t) = fh

l (t) ∀l = 1, 2, . . . , N (94)
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with

dhl (0) = Uh
l ∀l = 1, 2, . . . , N (95)

ḋhl (0) = V h
l

def
= 〈uhl , V 〉 ∀l = 1, 2, . . . , N (96)

Solving these ordinary differential equations and defining the two frequencies ωl = (λl)
1/2 and

ωh
l =

(

λh
l

)1/2
, we obtain

dl(t) = Ul cos (ωlt) +
Vl

ωl
sin (ωlt) +

1

ωl

∫ t

0
sin (ωl(t− τ)) fl(τ)dτ (97)

dhl (t) = Uh
l cos

(

ωh
l t
)

+
V h
l

ωh
l

sin
(

ωh
l t
)

+
1

ωh
l

∫ t

0
sin
(

ωh
l (t− τ)

)

fh
l (τ)dτ (98)

and so

u(x, t) =

∞
∑

l=1

(

Ul cos (ωlt) +
Vl

ωl
sin (ωlt) +

1

ωl

∫ t

0
sin (ωl(t− τ)) fl(τ)dτ

)

ul(x) (99)

uh(x, t) =
N
∑

l=1

(

Uh
l cos

(

ωh
l t
)

+
V h
l

ωh
l

sin
(

ωh
l t
)

+
1

ωh
l

∫ t

0
sin
(

ωh
l (t− τ)

)

fh
l (τ)dτ

)

uhl (x) (100)

The error is then expressed in the now familiar way as

e(x, t) =uh(x, t) − u(x, t) = ē(x, t) + e′(x, t)

ē(x, t) =

N
∑

l=1

(

Uh
l cos

(

ωh
l t
)

uhl (x)− Ul cos (ωlt)ul(x) +
V h
l

ωh
l

sin
(

ωh
l t
)

uhl (x)−
Vl

ωl
sin (ωlt)ul(x)

+
1

ωh
l

∫ t

0
sin
(

ωh
l (t− τ)

)

fh
l (τ)dτu

h
l (x)−

1

ωl

∫ t

0
sin (ωl(t− τ)) fl(τ)dτul(x)

)

(101)

e′(x, t) =
∞
∑

l=N+1

(

−Ul cos (ωlt)−
Vl

ωl
sin (ωlt)−

1

ωl

∫ t

0
sin (ωl(t− τ)) fl(τ)dτ

)

ul(x) (102)

By assuming the forcing is a Dirac distribution with respect to time, as in the parabolic case (see
(73)-(76)), we can simplify (101) to

ē(x, t) =

N
∑

l=1

(

Uh
l cos

(

ωh
l t
)

uhl (x)− Ul cos (ωlt) ul(x) +
V h
l

ωh
l

sin
(

ωh
l t
)

uhl (x)−
Vl

ωl
sin (ωlt)ul(x)

+
f̄h
l

ωh
l

sin
(

ωh
l (t− t̄)+

)

uhl (x)−
f̄l
ωl

sin
(

ωl (t− t̄)+
)

ul(x)

)

(103)

Thus, we see that an impulse at t̄ behaves similarly to the initial velocity, but at times later than t̄.
Therefore, we can simplify our discussion of errors to consideration of those induced by the initial
data.

As before, the analysis of modal errors is tedious. Consequently, we will just present final
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results. The errors due to initial displacement are

‖ēl(t)‖ ≤ ‖U‖
{

‖el‖ (2 + ‖el‖) | cos (ωlt) |+ (1 + ‖el‖ (2 + ‖el‖))
∣

∣

∣
cos
(

ωh
l t
)

− cos (ωlt)
∣

∣

∣

}

≤ ‖U‖
{‖el‖E

ωl

(

2 +
‖el‖E
ωl

)

| cos (ωlt) |+
(

1 +
‖el‖E
ωl

(

2 +
‖el‖E
ωl

))

∣

∣

∣
cos
(

ωh
l t
)

− cos (ωlt)
∣

∣

∣

}

(104)

‖ēl(t)‖E ≤ ‖U‖
{

‖el‖E (2 + ‖el‖) | cos (ωlt) |+ (ωl + ‖el‖E (2 + ‖el‖))
∣

∣

∣
cos
(

ωh
l t
)

− cos (ωlt)
∣

∣

∣

}

≤ ‖U‖
{

‖el‖E
(

2 +
‖el‖E
ωl

)

| cos (ωlt) |+
(

ωl + ‖el‖E
(

2 +
‖el‖E
ωl

))

∣

∣

∣
cos
(

ωh
l t
)

− cos (ωlt)
∣

∣

∣

}

(105)

The errors due to initial velocity may be obtained from the above by replacing ‖U‖ with ‖V ‖/ωl,
cos
(

ωh
l t
)

by sin
(

ωh
l t
)

, and cos (ωlt) by sin (ωlt), viz.,

‖ēl(t)‖ ≤ ‖V ‖
ωl

{

‖el‖ (2 + ‖el‖) | sin (ωlt) |+ (1 + ‖el‖ (2 + ‖el‖))
∣

∣

∣
sin
(

ωh
l t
)

− sin (ωlt)
∣

∣

∣

}

≤ ‖V ‖
ωl

{‖el‖E
ωl

(

2 +
‖el‖E
ωl

)

| sin (ωlt) |+
(

1 +
‖el‖E
ωl

(

2 +
‖el‖E
ωl

))

∣

∣

∣
sin
(

ωh
l t
)

− sin (ωlt)
∣

∣

∣

}

(106)

‖ēl(t)‖E ≤ ‖V ‖
ωl

{

‖el‖E (2 + ‖el‖) | sin (ωlt) |+ (ωl + ‖el‖E (2 + ‖el‖))
∣

∣

∣
sin
(

ωh
l t
)

− sin (ωlt)
∣

∣

∣

}

≤ ‖V ‖
ωl

{

‖el‖E
(

2 +
‖el‖E
ωl

)

| sin (ωlt) |+
(

ωl + ‖el‖E
(

2 +
‖el‖E
ωl

))

∣

∣

∣
sin
(

ωh
l t
)

− sin (ωlt)
∣

∣

∣

}

(107)

As for the elliptic boundary-value problem and the parabolic initial-value problem, we see from
(104)-(107) that the modal errors may be bounded by the eigenfunction errors in the (L2(Ω))n-
norm and energy-norm, and the eigenvalue errors.

As we can observe from the initial displacement terms, any projection error in initial displace-
ment will manifest itself immediately, as cos 0 = 1, and will oscillate in time thereafter unattenuated
due to the presence of the cosine behavior in time. There are no eigenvalues in the denominator,
as in the elliptic boundary-value problem, and no exponentially decaying terms, as in the parabolic
initial-value problem, to mitigate high modal errors. The errors in initial velocity start out as zero
but quickly build up to their full values and oscillate in time thereafter undiminished in magnitude.
Forcing errors behave similarly. As these errors will occur in the higher and intermediate modes,
their impact will be felt almost instantaneously compared with the periods of the accurately repre-
sented lower modes. Nevertheless, there is some help from the eigenfrequencies in the denominators,
but it is not as strong as for the eigenvalues in the denominators for the elliptic boundary-value
problem because ωl = (λl)

1/2.
Both displacement and velocity phase errors,

∣

∣cos
(

ωh
l t
)

− cos (ωlt)
∣

∣ and
∣

∣sin
(

ωh
l t
)

− sin (ωlt)
∣

∣,
eventually vitiate the solution no matter how accurate the projection errors.

The main conclusion for the hyperbolic case is that any modal error that is severe, combined with
any initial data or forcing that non-negligibly projects onto that mode, will create significant errors
that will appear virtually instantaneously and will persist thereafter for all time. In the hyperbolic
case, we conclude that one cannot simply ignore the higher modes if they are significantly in error,
and for the case of C0-continuous finite elements the higher-modes, and even modes that might be
categorized as intermediate, are significantly in error. The latter case might be of the most concern.
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Nonlinear cases involving sudden loading, such as occurs in physical impact of elastic structures,
would seem to fall into the category of hyperbolic problems in which errors of the kind anticipated
might be severe. We believe that there is overwhelming practical evidence to support this. In
engineering practice one does not exactly solve the t-continuous semi-discrete Galerkin equations.
Time-stepping algorithms are utilized that introduce strong damping of the higher modes, suppress-
ing their detrimental influence. In this regard, we may mention the HHT algorithm of Hilber et al.
[11] and the generalized α algorithm of Chung and Hulbert [5], that are employed in implicit codes,
such as Abaqus [1], and the artificial viscosities employed in explicit codes such as LS-DYNA [14].5

Thus, in suppressing the influence of erroneous higher modes, these strategies result in solutions
that are closer to the projection of the exact solutions. Nevertheless, it would seem that the more
accurate higher-mode behavior of spline-based approximations would diminish, but not entirely
eliminate, the need for algorithmic damping mechanisms and would produce significantly more
accurate response in hyperbolic cases. An example illustrating this follows in the next subsection.

6.1 Numerical Investigation of Hyperbolic Approximations

To further elucidate the implications of error estimate (101), let us consider a very simple numerical
test problem. Given f(t) = 0, U = sin(51πx), and V = 0, the exact solution to the hyperbolic
initial-value problem given by (82)-(84) is

u(x, t) = sin(51πx) cos(51πt)

Note that this is a single wave solution, with solution coefficients (see (99))

Ul =

{

1/
√
2 if l = 51
0 otherwise

, Vl = 0, fl = 0

B-spline and finite element approximations to the hyperbolic initial-value problem are explicitly
given by formula (100), wherein

Uh
l =

(

uhl , sin (51πx)
)

, V h
l = 0, fh

l = 0 (108)

In what follows, we consider C3-continuous quartic B-spline and C0-continuous quartic finite ele-
ment approximation spaces of dimension N = 99. We plot the solution coefficients Uh

l for these
two approximation spaces in Figure 15 and note that Uh

l ≈ Ul for all l in the case of C3-continuous
quartic B-splines. Consequently, we expect the quartic B-spline approximation to the hyperbolic
initial-value problem to resemble a single wave solution. In the case of C0-continuous quartic finite
elements, Uh

l is of appreciable magnitude for both l = 49 and l = 51, and thus we expect the quar-
tic finite element approximation to be composed of two different waves. Moreover, finite element
modes 49 and 51 are both located near the transition point between the second and third branches
in the error spectrum, and as illustrated in Figure 13, the eigenfunctions corresponding to these
modes are very inaccurate. For all of the above reasons, and in light of the error estimate provided
by (101), we anticipate that the quartic finite element approximation to the hyperbolic initial-value
problem has no approximability whatsoever, especially at later times t. This runs counter-intuitive
to what one might normally anticipate, as modes with high wavenumber are not participating in
the numerical solution of the hyperbolic problem.

We present the exact solution u(x, t) = sin(51πx) cos(51πt) in conjunction with the C3-continuous
quartic B-spline and C0-continuous quartic finite element approximations over the first half-cycle

5Both Abaqus and LS-DYNA now provide both implicit and explicit algorithmic options.
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Figure 15: Plots of the initial condition coefficients Uh
l for C3-continuous quartic B-spline and

C0-continuous quartic finite element solutions of the hyperbolic initial-value problem with exact
solution u(x, t) = sin(51πx) cos(51πt). The total number of discrete modes for the numerical
solutions is N = 99.

t ∈ [0, 1/51] in Figure 16. The B-spline and finite element approximations were obtained by eval-
uating formula (100) using the coefficients given by (108). The B-spline approximation is visually
exact over the first half-cycle and the finite element approximation is also fairly accurate. How-
ever, the finite element approximation does exhibit some spurious composite wave structure. It
should be remarked that while the discrete initial condition for the finite element approximation is
composed of modes 49 and 51, both of which are highly inaccurate, the initial condition is actually
well-resolved. This enhanced resolution is due to cancellation of modal errors. In Figure 17, we
present the exact solution and quartic B-spline and finite element approximations over the sixth
half-cycle t ∈ [5/51, 6/51]. We immediately note that the B-spline approximation is nearly exact in
the “eyeball norm”, but the finite element approximation is both quantitatively and qualitatively
inaccurate. The two-wave structure of the finite element approximation is visually apparent over
this time period, as the influence of both modes 49 and 51 is observable in the plots. Lastly, in
Figure 18, we present the exact solution and B-spline and finite element approximations over the
eleventh half-cycle t ∈ [10/51, 11/51]. The B-spline approximation is still very accurate over this
time period, but dispersion error has started to affect the solution to a minor degree. The B-spline
wave approximation is oscillating at a slightly higher frequency than the exact wave solution due
to the minimax principle, and hence the B-spline approximation will eventually lose approxima-
bility at sufficiently later times t. In contrast with the B-spline approximation, the finite element
approximation has lost all approximability by the eleventh half-cycle and bears no resemblance
whatsoever to the exact solution.

In addition to directly evaluating formula (100), we also solved the semi-discrete hyperbolic
problem given by (86)-(88) numerically in time using the classical Runge-Kutta method as well as
the generalized α algorithm [5]. We obtained very similar results to those reported here provided
sufficiently small time-steps were employed to resolve the frequencies of the semi-discrete approxi-
mations. Moreover, we found that algorithmic damping was unable to restore qualitative accuracy
for the quartic finite element approximation. In particular, it was discovered that algorithmic
damping either did not significantly affect the quartic approximation or damped both participating
modes. This is due to the fact that both participating finite element modes are medium modes.
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Figure 16: Plots of the exact and numerical solutions to the hyperbolic initial-value problem with
exact solution u(x, t) = sin(51πx) cos(51πt) over the first half-cycle t ∈ [0, 1/51]. The total number
of discrete modes for the displayed numerical solutions is N = 99. Snapshots from top to bottom
correspond to times t = 0, 0.25/51, 0.5/51, 0.75/51, and 1/51 respectively.
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Figure 17: Plots of the exact and numerical solutions to the hyperbolic initial-value problem with
exact solution u(x, t) = sin(51πx) cos(51πt) over the sixth half-cycle t ∈ [5/51, 6/51]. The total
number of discrete modes for the displayed numerical solutions is N = 99. Snapshots from top to
bottom correspond to times t = 5/51, 5.25/51, 5.5/51, 5.75/51, and 6/51 respectively.
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Figure 18: Plots of the exact and numerical solutions to the hyperbolic initial-value problem with
exact solution u(x, t) = sin(51πx) cos(51πt) over the eleventh half-cycle t ∈ [10/51, 11/51]. The
total number of discrete modes for the displayed numerical solutions is N = 99. Snapshots from
top to bottom correspond to times t = 10/51, 10.25/51, 10.5/51, 10.75/51, and 11/51 respectively.
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We have conducted a collection of other numerical tests, and our conclusion has always been
the same: if any of the “spurious” finite element eigenfunctions corresponding to spikes in the
error spectrum participate in the numerical solution of a hyperbolic initial-value problem, then
the corresponding finite element approximation has no qualitative or quantitative accuracy. On
the other hand, NURBS approximations of hyperbolic initial-value problems are well-behaved in
all modes (except a finite number of “outlier” modes) and are limited only by dispersion error for
sufficiently smooth solutions. Additionally, NURBS approximations exhibit much less dispersion
error than finite element approximations, even for the lowest modes of the spectrum (recall Figures
5-7). We simply conclude that, for the same polynomial order and an equal number of degrees-of-
freedom, NURBS approximations of hyperbolic initial-value problems are much more robust and
accurate than finite element approximations.

7 Conclusions

We have studied the accuracy of finite elements and NURBS approximations to the elliptic eigen-
value problem, and the implications of these results to the corresponding elliptic boundary-value
problem and the parabolic and hyperbolic initial-value problems. One observation made herein
is that the errors in the solutions to these problems can be expressed entirely in terms of the
eigenfunction and eigenvalue errors. The inaccuracy of the higher modal eigenvalues in finite el-
ement approximations has been known for quite some time. The results herein have revealed a
new phenomenon: There are large error spikes in the L2-norms of the eigenfunction errors centered
about the transitions between branches of the finite element eigenvalue spectrum. The squares
of the energy-norm eigenfunction errors are sums of squares of L2-norm eigenfunction errors and
eigenvalue errors, which exhibit thereby the worst behavior of both. The NURBS errors are better
behaved in every respect. The L2-norms of the eigenfunction errors are indistinguishable from the
L2 best approximation errors of the eigenfunctions. The eigenvalue spectra do not have optical
branches and, with the exception of a few “outlier modes”, exhibit convergence of almost the entire
spectrum. The upshot is that this is a demonstrably serious problem in the hyperbolic case, much
less so in the parabolic case, and not a significant concern for the elliptic boundary-value problem.
The situation is much more positive for NURBS elements in all cases.
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A Analytical Computation of Eigenvalue Errors

In this appendix, we analytically compute the eigenvalue errors for the one-dimensional Laplace
eigenproblem subject to homogeneous Dirichlet boundary conditions and discretized by B-splines
and finite elements. We begin by deriving an expression for the eigenvalue error for linear ap-
proximations (where the two approaches coincide), and we then extend our results to higher-order
B-spline and finite element approximations.

A.1 Eigenvalue Errors for Linear Approximations

In what follows, consider a uniform mesh 0 = x0 < x1 < . . . xA < . . . < xN+1 = 1, where the
number of elements is nel = N + 1 and the mesh-size is h = 1/nel. The system obtained by
discretizing the homogeneous Laplace eigenproblem by linear finite elements on the uniform mesh
is

λhh

6
(uA−1 + 4uA + uA+1) +

1

h
(uA−1 − 2uA + uA+1) = 0, A = 1, . . . , N (109)

u0 = uN+1 = 0 (110)

where N is the total number of degrees-of-freedom, uA = uh(xA) is the nodal value of the discrete
normal mode uh at node xA, and λh is the eigenvalue corresponding to mode uh. We write (109)
in the compact form

(

λhh2

c
+ β

)

uA = 0, A = 1, . . . , N (111)

where c is a constant and α and β are operators, defined in this case to be

c = 6, (112)

αuA = uA−1 + 4uA + uA+1 (113)

βuA = uA−1 − 2uA + uA+1 (114)

Assuming a sinusoidal discrete normal mode which satisfies uA = C sin(ωxA) for A = 1, . . . , N and
C a normalization constant (see Hughes [12], Chapter 9), we obtain

(

(ωhh)2

c
α+ β

)

sin(Aωh) = 0, A = 1, . . . , N (115)

where ω =
√
λ and ωh =

√
λh are the exact and discrete eigenfrequencies, respectively. Substituting

expressions (112)-(114) for c, α, and β and using the trigonometric identity sin(a+ b)+sin(a− b) =
2 sin(a) sin(b) yields

(ωhh)2

6
(2 + cos(ωh))− 1 + cos(ωh) = 0 (116)

The eigenvalue error
λh − λ

λ
=

(

ωh

ω

)2

− 1 is then easily expressed as

λh − λ

λ
=

6(1− cos(ωh))

(ωh)2(2 + cos(ωh))
− 1 (117)
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This formula can now be evaluated to obtain the induced error in approximating any eigenvalue
λl = (ωl)

2 = π2l2 using linear finite elements.

A.2 Eigenvalue Errors for Higher-Order B-spline Approximations

The computations carried out above for linear elements can largely be repeated for Cp−1-continuous
B-spline approximations of degree p > 1. This is due to the fact that smooth B-spline ap-
proximations inherit a uniform stencil equation for all control points except the first and last p
points when defined on a uniform mesh. For example, the system obtained by discretizing the
homogeneous Laplace eigenproblem by C1-continuous quadratic B-splines on the uniform mesh
0 = x0 < x1 < . . . xA < . . . < xN = 1 is

λhh

120
(14u0 + 40u1 + 25u2 + u3) +

1

6h
(6u0 − 8u1 + u2 + u3) = 0 (118)

λhh

120
(2u0 + 25u1 + 66u2 + 26u3 + u4) +

1

6h
(2u0 + u1 − 6u2 + 2u3 + u4) = 0 (119)

λhh

120
(uA−2 + 26uA−1 + 66uA + 26uA+1 + uA+2)

+
1

6h
(uA−2 + 2uA−1 − 6uA + 2uA+1 + uA+2) = 0, A = 3, . . . , N − 2

(120)

λhh

120
(uN−3 + 26uN−2 + 66uN−1 + 25uN + 2uN+1)

+
1

6h
(uN−3 + 2uN−2 − 6uN−1 + uN + 2uN+1) = 0 (121)

λhh

120
(uN−2 + 25uN−1 + 40uN + 14uN+1)

+
1

6h
(uN−2 + uN−1 − 8uN + 6uN+1) = 0 (122)

u0 = uN+1 = 0 (123)

where h = 1/nel and the uA’s are the control variables of mode uh. We refer to (118), (119),
(121), and (122) as the boundary stencil equations and (120) as the interior stencil equations. In
the following, rather than find the exact eigenpair (uh, λh) which satisfies both the boundary and
interior stencil equations, we seek an admissible normal mode and associated eigenvalue which only
satisfy the interior stencil equations and homogeneous Dirichlet boundary conditions. We expect
that this approximate eigenpair will converge to the exact discrete eigenpair as N → ∞.6 If we
assume that the admissible normal mode takes the form

uA = C sin (ωh (A− 1/2)) , A = 1, . . . , N (124)

u0 = uN+1 = 0 (125)

where ω =
√
λ is the exact eigenfrequency, we obtain the simplified interior stencil equations

(

(ωhh)2

c
α+ β

)

sin((A− 1/2)ωh) = 0, A = 3, . . . , N − 2 (126)

6It should be noted that the admissible normal mode and its associated eigenvalue will not converge to the exact
discrete eigenpair (uh, λh) if the discrete normal mode uh is an outlier mode. However, there are no outlier modes in
the quadratic setting.
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where ωh =
√
λh is the discrete eigenfrequency and

c = 20 (127)

αuA = uA−2 + 26uA−1 + 66uA + 26uA+1 + uA+2 (128)

βuA = uA−2 + 2uA−1 − 6uA + 2uA+1 + uA+2 (129)

Invoking the trigonometric identity sin(a + b) + sin(a − b) = 2 sin(a) sin(b) in (126) yields the
following expression for the eigenvalue error:

λh − λ

λ
=

20(3 − 2 cos(ωh)− cos(2ωh))

(ωh)2(33 + 26 cos(ωh) + cos(2ωh))
− 1 (130)

Note that the above expression is valid only for the admissible normal mode and not the exact
discrete normal mode. Nonetheless, we expect that it yields a correct expression for the eigenvalue
error in the limit of mesh refinement.

We now repeat the above procedure for cubic and quartic B-splines, but we omit details for
brevity. The interior stencil equations for a uniform C2-continuous cubic B-spline approximation
take the form

(

λhh2

c
+ β

)

uA = 0, A = 4, . . . , N − 3 (131)

where

c = 42 (132)

αuA = uA−3 + 120uA−2 + 1191uA−1 + 2416uA + 1191uA+1 + 120uA+2 + uA+3 (133)

βuA = uA−3 + 24uA−2 + 15uA−1 − 80uA + 15uA+1 + 24uA+2 + uA+3 (134)

If we assume a sinusoidal admissible normal mode and follow the same steps as in the quadratic
case, we arrive at the following expression for the eigenvalue error:

λh − λ

λ
=

42(40 − 15 cos(ωh)− 24 cos(2ωh)− cos(3ωh))

(ωh)2(1208 + 1191 cos(ωh) + 120 cos(2ωh) + cos(3ωh))
− 1 (135)

The interior stencil equations for a uniform C3-continuous quartic B-spline approximation are
(

λhh2

c
+ β

)

uA = 0, A = 5, . . . , N − 4 (136)

where

c = 72 (137)

αuA = uA−4 + 502uA−3 + 14608uA−2 + 88234uA−1 + 156190uA

+ 88234uA+1 + 14608uA+2 + 502uA+3 + uA+4 (138)

βuA = uA−4 + 118uA−3 + 952uA−2 + 154uA−1 − 2450uA

+ 154uA+1 + 952uA+2 + 118uA+3 + uA+4 (139)

and assuming a sinusoidal admissible normal yields the following expression for the eigenvalue error:

λh − λ

λ
=

72(1225 − 154 cos(ωh) − 952 cos(2ωh)− 118 cos(3ωh) − cos(4ωh))

(ωh)2(78095 + 88234 cos(ωh) + 14608 cos(2ωh) + 502 cos(3ωh) + cos(4ωh))
− 1 (140)
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p = 2 p = 3 p = 4

Cp−1 1.382·10−5 3.338·10−8 8.542·10−11

C0 2.121·10−4 6.740·10−6 2.347·10−7

C0 to Cp−1 ratio 1.535·101 2.019·102 2.748·103

Table 1: Analytically computed eigenvalue errors at 10% of the spectrum (i.e., for l/N = 1/10) for
Cp−1-continuous B-spline and C0-continuous finite element approximations of degree p = 2, . . . , 4.

In the first row of Table 1, we have reported the analytically computed eigenvalue errors at 10%
of the spectrum (i.e., for l/N = 1/10) for Cp−1-continuous B-spline approximations of degree
p = 2, . . . , 4 in the limit N → ∞. It should be repeated that these errors correspond to the
admissible normal modes and not the exact discrete normal modes, but we expect these errors to
coincide in the limit of mesh refinement.

A.3 Eigenvalue Errors for Higher-Order Finite Element Approximations

The extension of our previous results to C0-continuous finite elements of degree p > 1 is a delicate
procedure as multiple stencils are present even away from the domain boundaries. Namely, there
is a stencil associated with the “element edges” and a set of p − 1 stencils associated with the
internal nodes (i.e., the nodes internal to an element). In the context of dispersion analysis, this
issue has been circumvented by means of a static condensation procedure which solves for the
internal “bubble” degrees of freedom in terms of the edge nodes. By employing this technique,
Ainsworth [2] derived a collection of discrete dispersion relations for higher-order finite elements of
the form cos(khh) = f(kh) where h = 1/nel and k and kh are the exact and discrete wave numbers,
respectively. In virtue of the duality principle between dispersion and spectrum analysis (see [13]),
we equivalently have the relationship cos(ωh) = f(ωhh) where ω and ωh are the exact and discrete
eigenfrequencies. For quadratic finite elements, this relationship takes the form

cos(ωh) =
3(ωhh)4 − 104(ωhh)2 + 240

(ωhh)4 + 16(ωhh)2 + 240
(141)

The above equation can be solved for the discrete eigenvalues λh = (ωh)2, giving rise to the following

two solutions for the eigenvalue error
λh − λ

λ
=

(

ωh

ω

)2

− 1:

λh
1,2 − λ

λ
=

52 + 8 cos(ωh)∓
√

−176 cos2(ωh) + 1792 cos(ωh) + 1984

(ωh)2(3− cos(ωh))
− 1 (142)

These two solutions represent two distinct branches of the eigenvalue spectrum. The first branch,
the so-called acoustical branch, is valid for ωh ∈ [0, π], while the second branch, the optical branch,
is valid for ωh ∈ [π, 2π]. By substituting in the expression ωlh = πl/nel into (142) and noting which
branch the eigenfrequency belongs to, one can evaluate the error for any discrete eigenvalue λh

l .
The relation between the exact and discrete eigenfrequencies in the cubic finite element setting

is

cos(ωh) =
− 4(ωhh)6 + 540(ωhh)4 − 11520(ωhh)2 + 25200

(ωhh)6 + 30(ωhh)4 + 1080(ωhh)2 + 25200
(143)

For cubic finite elements, there are three eigenvalue branches (one acoustical and two optical, valid
respectively for ωh ∈ [0, π], ωh ∈ [π, 2π], and ωh ∈ [2π, 3π]) which correspond to the three solutions
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λh
1,2,3 of the cubic equation:

(cos(ωh) + 4)(λhh)3 + (30 cos(ωh) − 540)(λhh)2 + (1080 cos(ωh) + 1520)λhh+

+25200(cos(ωh)− 1) = 0 (144)

Similarly, there are four eigenvalue branches (one acoustical and three optical, valid respectively
for ωh ∈ [0, π], ωh ∈ [π, 2π], ωh ∈ [2π, 3π], and ωh ∈ [3π, 4π]) for a quartic finite element approxi-
mation. These can be obtained by starting from the relation

cos(ωh) =
5(ωhh)8 − 1800(ωhh)6 + 134064(ωhh)4 − 2378880(ωhh)2 + 5080320

(ωhh)8 + 48(ωhh)6 + 3024(ωhh)4 + 161280(ωhh)2 + 5080320
(145)

given in [2], replacing ωh =
√
λh, and then finding the four solutions λh

1,2,3,4 of the quartic equation:

(cos(ωh)− 5)(λhh)4 + (48 cos(ωh) + 1800)(λhh)3 + (3024 cos(ωh)− 134064)(λhh)2 +

+(161280 cos(ωh) + 2378880)λhh+ 5080320(cos(ωh) − 1) = 0 (146)

In the second row of Table 1, we have reported the analytically computed eigenvalue errors at 10%
of the spectrum (i.e., for l/N = 1/10) for C0-continuous finite elements of degree p = 2, . . . , 4 in the
limit N → ∞, and in the third row of the table, we have reported the ratio between the eigenvalue
errors of the finite element and B-spline approximations.
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