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Lecture 6:  Representation Invariants and Abstraction Functions 

6.1  Introduction 

In this lecture, we describe two tools for understanding abstract data types: the 
representation invariant and the abstraction function. The representation 
invariant describes whether an instance of a type is well formed; the abstraction 
function tells us how to interpret it. Representation invariants can amplify the 
power of testing. It’s impossible to code an abstract type or modify it without 
understanding the abstraction function at least informally. Writing it down is 
useful, especially for maintainers, and crucial in tricky cases. 

6.2  What is a Rep Invariant? 

A representation invariant, or rep invariant for short, is a constraint that 
characterizes whether an instance of an abstract data type is well formed, from 
a representation point of view. Mathematically, it is a formula over the 
representation of an instance; you can view it as a function that takes objects of 
the abstract type and returns true or false depending on whether they are well 
formed: 

RI : Object -> Boolean 

Consider the linked list implementation that we discussed last time. Here was its 
object model: 

The LinkedList class has a field, header, that holds a reference to an object of the 
class Entry. This object has three fields: element, which holds a reference to an 
element of the list; prev, which points to the previous entry in the list; and next, 
which points to the next element. 

This object model shows the representation of the data type. As we have 
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mentioned before, object models can be drawn at various levels of abstraction. 
From the point of view of the user of the list, one might elide the box Entry, and 
just show a specification field from List to Object.  This diagram shows that object 
model in black, with the representation in gold (Entry and its incoming and 
outgoing arcs) hidden: 

 

The representation invariant is a constraint that holds for every instance of the 
type. Our object model already gives us some of its properties: 
·  It shows, for example, that the header field holds a reference to an object of 

class Entry. This property is important but not very interesting, since the field is 
declared to have that type; this kind of property is more interesting for the 
contents of polymorphic containers such as vectors, whose element type 
cannot be expressed in the source code. 

·  The multiplicity marking ! on the target end of the header arrow says that the 
header field cannot be null. (The ! symbol denotes exactly one.) 

·  The multiplicities ? on the target end of the next and prev arrows say that 
each of the next and prev arrows point to at most one entry. (The ? symbol 
denotes zero or one.) 

·  The multiplicities ? on the source end of the next and prev arrows say that 
each entry is pointed to by at most one other entry’s next field, and by at most 
one other entry’s prev field. (The ? symbol denotes zero or one.) 

·  The multiplicity ? on the target end of the element field says that each Entry 
points to at most one Object. 

Some properties of the object model are not part of the representation invariant. 
For example, the fact that entries are not shared between lists (which is 
indicated by the multiplicity on the source end of the header arrow) is not a 
property of any single list. 

There are properties of the representation invariant which are not shown in the 
graphical object model: 
·  When there are two e1 and e2 entries in the list, if e1.next = e2, then e2.prev = 

e1. 
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·  The dummy entry at the front of the list has a null element field. 

There are also properties that do not appear because the object model only 
shows objects and not primitive values. The representation of LinkedList has a 
field size that holds the size of the list. A property of the rep invariant is that size is 
equal to the number of entries in the list representation, minus one (since the first 
entry is a dummy). 

In fact, in the Java implementation java.util.LinkedList, the object model has an 
additional constraint, reflected in the rep invariant. Every entry has a non-null 
next and prev: 

 

Note the stronger multiplicities on the next and prev arrows. Here is a sample list 
of two elements (and therefore three entries, including the dummy): 
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When examining a representation invariant, it is important to notice not only 
what constraints are present, but also which are missing. In this case, there is no 
requirement that the element field be non-null, nor that elements not be shared. 
This is what we’d expect: it allows a list to contain null references, and to contain 
the same object in multiple positions. 

Let’s summarize our rep invariant informally: 

for every instance of the class LinkedList 
 the header field is non-null 
 the header field has a null element field 
 there are (size + 1) entries 
 the entries form a cycle starting and ending with the header entry 
 for any entry, taking prev and then next returns you to the entry 

We can also write this a bit more formally: 

all p: LinkedList | 
 p.header != null 
 &&  p.header.element = null 
 && p.size + 1 = | p.header.*next | 

 && p.header = p.header.next 
p.size + 1 

 && all e in p.header.*next | e.prev.next = e 

To understand this formula, you need to know that 
·  for any expression e denoting some set of objects, and any field f, e.f denotes 

the set of objects you get if you follow f from each of the objects in e; 
·  e.*f means that you collect the set of objects obtained by following f any 

number of times from each of the objects in e; 
·  | e | is the number of objects in the set denoted by e. 

So p.header.*next for example denotes the set of all entries in the list, because 
you get it by taking the list p, following the header field, and then following the 
next field any number of times. 

One thing that this formula makes very clear is that the representation invariant is 
about a single linked list p. Another fine way to write the invariant is this: 

 R(p) =  
  p.header != null 
  &&  p.header.element = null 
  && p.size + 1 = | p.header.*next| 

         && p.header = p.header.next 
p.size + 1

 
  && all e in p.header.*next | e.prev.next = e 

in which we view the invariant as a boolean function. This is the point of view 
we’ll take when we convert the invariant to code as a runtime assertion. 

The choice of invariant can have a major effect both on how easy it is to code 
the implementation of the abstract type, and how well it performs. Suppose we 
strengthen our invariant by requiring that the element  field of all entries other 
than the header is non-null. This would allow us to detect the header entry by 
comparing its element to null;  with the current invariant, operations that require 
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traversal of the list must count entries instead or compare to the header field. 
Suppose, conversely, that we weaken the invariant on the next and prev 
pointers and allow prev at the start and next at the end to have any values. This 
will result in a need for special treatment for the entries at the start and end, 
resulting in less uniform code. Requiring prev at the start and next at the end 
both to be null doesn’t help much. 

6.3  Inductive Reasoning 

The rep invariant makes modular reasoning possible. To check whether an 
operation is implemented correctly, we don’t need to look at any other 
methods. Instead, we appeal to the principle of induction. We ensure that every 
constructor creates an object that satisfies the invariant, and that every mutator 
and producer preserves the invariant: that is, if given an object that satisfies it, it 
produces one that also satisfies it. Now we can argue that every object of the 
type satisfies the rep invariant, since it must have been produced by a 
constructor and some sequence of mutator or producer applications. 

To see how this works, let’s look at some sample operations of our LinkedList class. 
The representation is declared in Java like this: 

public class LinkedList { 
 Entry header; 
 int size; 
 class Entry { 
  Object element; 
  Entry prev; 
  Entry next; 
  Entry (Object e, Entry p, Entry n) {element = e; prev = p; next = n;} 
  } 
 ...  

Here’s our constructor: 

public LinkedList () { 
 size = 0; 
 header = new Entry (null, null, null); 
 header.prev = header.next = header; 
 } 

Notice that it establishes the invariant: it creates the dummy element, forms the 
cycle, and sets the size appropriately.  

The mutator add takes an element and adds it to the end of the list: 

public void add (Object o) { 
 Entry e = new Entry (o, header.prev, header); 
 e.prev.next = e; 
 e.next.prev = e; 
 size++; 
 } 

To check this method, we can assume that the invariant holds on entry. Our task 
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is to show that it also holds on exit. The effect of the code is to splice in a new 
entry just before the header entry, i.e., this new entry becomes the last entry in 
the next chain, so we can see that the constraint that the entries form a cycle is 
preserved. Note that one consequence of being able to assume the invariant on 
entry is that we don’t need to do null reference checks: we can assume that 
e.prev and e.next are non-null, for example, because they are entries that 
existed in the list on entry to the method, and the rep invariant tells us that all 
entries have non-null prev and next fields. 

Finally, let’s look at an observer. The operation getLast returns the last element of 
the list or throws an exception if the list is empty: 

public Object getLast () { 
 if (size == 0) throw new NoSuchElementException (); 
 return header.prev.element; 
 } 

Again, we assume the invariant on entry. This allows us to dereference 
header.prev, which the rep invariant tells us cannot be null. Checking that the 
invariant is preserved is trivial in this case, since there are no modifications. 

6.4  Interpreting the Representation 

Consider the mutator add again, which takes an element and adds it to the end 
of the list: 

public void add (Object o) { 
 Entry e = new Entry (o, header.prev, header); 
 e.prev.next = e; 
 e.next.prev = e; 
 size++; 
 } 

We checked that this operation preserved the rep invariant, by correctly splicing 
a new entry into the list. What we didn’t check, however, was that it was spliced 
into the right position. Is the new element inserted into the start or the end of the 
list? It looks as if it’s at the end, but that assumes that the order of entries 
corresponds to the order of elements. It would be quite possible (although 
perhaps a bit perverse) for a list p with elements o1, o2, o3 to have 

p.header.next.element = o3; 
p.header.next.next.element = o2; 
p.header.next.next.element = o1; 

To resolve this problem, we need to know how the representation is interpreted: 
that is, how to view an instance of LinkedList as an abstract sequence of 
elements. This is what the abstraction function provides. The abstraction function 
for our implementation is: 

A(p) = 
 if p.size = 0 then 
  <>  (the empty list) 
 else 
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  <p.header.next.element, p.header.next.next.element, ...> 
  (the sequence of elements with indices 0.. p.size-1 whose ith element is 
p.nexti+1.element) 

6.5  Abstract and Concrete Objects 

In thinking about an abstract type, it helps to imagine objects in two distinct 
realms. In the concrete realm, we have the actual objects of the 
implementation. In the abstract realm, we have mathematical objects that 
correspond to the way the specification of the abstract type describes its values. 

Suppose we’re building a program for handling registration of courses at a 
university. For a given course, we need to indicate which of the four terms Fall, 
Winter, Spring and Summer the course is offered in. In good MIT style, we’ll call 
these F, W, S and U. What we need is a type SeasonSet whose values are sets of 
seasons; we’ll assume we already have a type Season. This will allow us to write 
code like this: 

if (course.seasons.contains (Season.S)) ... 

There are many ways to represent our type. We could be lazy and use 
java.util.ArrayList; this will allow us to write most of our methods as simple 
wrappers. The abstract and concrete realms might look like this: 

 

The oval below labelled [F,W,S] denotes a concrete object containing the array 
list whose first element is F, second is W, and third is S. The oval above labelled 
{F,W,S} denotes an abstract set containing three elements F, W and S. Note that 
there may be multiple representations of the same abstract set: {F, W, S}, for 
example, can also be represented by [W,F, S], the order being immaterial, or by 
[W,W,F, S] if the rep invariant allows duplicates. (Of course there are many 
abstract sets and concrete objects that we have not shown; the diagram just 
gives a sample.) 

Abstract realm 

Concrete realm 

[F, W, S] [W, F, S] [W, W, F, S] [W, F] 

{ F, W, S } { F, W } 

A A A A 
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The relationship between the two realms is a function, since each concrete 
object is interpreted as at most one abstract value. The function may be partial, 
since some concrete objects -- namely those that violate the rep invariant -- 
have no interpretation. This function is the abstraction function, and is denoted 
by the arrows marked A in the diagram. 

Suppose our SeasonSet class has a field eltlist holding the ArrayList. Then we can 
write the abstraction function like this: 

A(s) = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)} 

That is, the set consists of all the elements of the list. 

Different representations have different abstraction functions. Another way to 
represent our SeasonSet is using an array of 4 booleans. Here the abstraction 
function may, for example, map 

[true, false, true, false] 

to {F,S}, assuming the order F, W, S, U for the elements of the array. This order is 
the information conveyed by the abstraction function, which might be written, 
assuming the array is stored in a field boolarr as 

A(s) = 

 (if s.boolarr[0] then {F} else {})  U 
 (if s.boolarr[1] then {W} else {}) U 
 (if s.boolarr[2] then {S} else {})  U 
 (if s.boolarr[3] then {U} else {}) 

We could equally well have chosen a different abstraction function, that orders 
the seasons differently: 

A(s) = 

 (if s.boolarr[0] then {S} else {})  U 
 (if s.boolarr[1] then {U} else {}) U 
 (if s.boolarr[2] then {F} else {}) U 
 (if s.boolarr[3] then {W} else {}) 

An important lesson from this last example is that ‘choosing a representation’ 
means more than naming some fields and selecting their types. The very same 
array of booleans can be interpreted in different ways; the abstraction function 
tells us which. Likewise, in our linked list example, the abstraction function tells us 
how the order of entries corresponds to the order of elements. It is a common 
error of novices to imagine that the abstraction function is obvious, since you 
can always guess what it is from the declarations in the code. Unfortunately, this 
is often not true: it takes careful reading of the linked list code to discover that 
the first entry is a dummy entry, for example. 

6.6  Example: Boolean Formulas in CNF 

Let’s look at an example of a simple representation with a tricky abstraction 
function. A boolean formula is a mathematical formula constructed from 
propositions (symbols that can be assigned the values true and false) and logical 
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operators. For example, the formula 

CourseSix => sixOneSeventy 

uses two propositions, courseSix and sixOneSeventy, and the logical implication 
operator. It says that if courseSix is true, sixOneSeventy is true also. A boolean 
formula is satisfiable if there is some assignment of boolean values to the 
propositions that makes the formula true. This formula is satisfiable, since we can 
set courseSix to false, or we can set both propositions to true. 

An algorithm that determines whether a formula is satisfiable, and if so returns 
satisfying values for the propositions is called a SAT solver. SAT solvers have many 
applications, and their technology has advanced dramatically in the last 
decade. They are used in design tools for checking design constraints, in 
planners for finding plans, in testing tools for finding tests that expose particular 
classes of error, and so on. A SAT solver can also be used to check a proof. 
Suppose we assert that it follows from 

CourseSix => sixOneSeventy 

and  

sixOneSeventy =>lateNights 

that! 

courseSix => lateNights 

This is elementary reasoning using modus ponens, of course, but let’s see how to 
check it with a SAT solver. We simply conjoin the premises to the negation of the 
conclusion: 

(courseSix => sixOneSeventy)  (sixOneSeventy  =>  lateNights) ( ! (courseSix 
 => lateNights)) 

and present this formula to the solver. The solver will find it not satisfiable, and will 
have demonstrated that it is impossible to have the premises be true and not the 
conclusion: in other words, the proof is valid. 

Most SAT solvers use a representation of boolean formulas known as conjunctive 
normal form, or CNF for short. A formula in CNF is a set of clauses; each clause is 
a set of literals; a literal is a proposition or its negation. The formula is interpreted 
as a conjunction of its clauses and each clauses is interpreted as a disjunction of 
its literals. A more helpful name for CNF is product of sums, which makes it clear 
that the outermost operator is product (ie., conjunction). 

For example, the CNF formula 

{{a}{ !b,c}} 

is equivalent to the conventional formula 

a Λ (!b V c ) 

Our formula above would be represented in CNF as 

{ {! courseSix,sixOneSeventy}, {! sixOneSeventy, lateNights}, {courseSix}, {! 
lateNights} } 

Let’s consider now how we might build an abstract data type that holds 
formulas in CNF. Suppose we already have a class Literal for representing literals. 
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Here is one reasonable representation that uses the Java library ArrayList class: 

public class Formula { 
 private ArrayList clauses; 
 ... 
 } 

The clauses field is an ArrayList whose elements are themselves ArrayLists of 
literals. 

Our representation invariant might then be 

R(f) = 
 f.clauses != null && 
 all c: f.clauses.elts | 
  c instanceof ArrayList && c != null && 
   all l: c.elts | c instanceof Literal && c != null 

I’ve used the specification field elts here to denote the elements of an ArrayList. 
The rep invariant says that the elements of the ArrayList clauses are non-null 
ArrayLists, each containing elements that are non-null Literals. 

Here, finally, is the abstraction function: 

A(f) = true Λ C (f.clauses.elts[0]) Λ  ... Λ C(f.clauses.elts[(size(f.clauses) -1]) 
 where C(c) = false V c.elts[0] V ... V  c.elts[0]  

Note how I’ve introduced an auxiliary function C that abstracts clauses into 
formulas. Looking at this definition, we can resolve the meaning of the boundary 
cases. Suppose f.clauses is an empty ArrayList. Then A(f) will be just true, since the 
conjuncts on the right-hand side of the first line disappear. Suppose f.clauses 
contains a single clause c, which itself is an empty ArrayList. Then C(c) will be 
false, and A(f) will be false too. These are our two basic boolean values: true is 
represented by the empty set of clauses, and false by the set containing the 
empty clause. 

6.7  Benevolent Side Effects 

What is an observer operation? In our introductory lecture on representation 
independence and data abstraction, we defined it as an operation that does 
not mutate the object. We can now give a more liberal definition. 

An operation may mutate an object of the type so that the fields of the 
representation change, will maintaining the abstract value it denotes. We can 
illustrate this phenomenon in general with a diagram: 
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The execution of the operation op mutates the representation of an object from 
r1 to r2. But  r1 and r2 are mapped by the abstraction function A to the same 
abstract value a, so the client of the datatype cannot observe that any change 
has occurred. 

For example, the get method of LinkedList may cache the last element 
extracted, so that repeated calls to get for the same index will be speeded up. 
This writing to the cache (in this case just the two fields) certainly changes the 
rep, but it has no effect on the value of the object as it may be observed by call-
ing operations of the type. The client cannot tell whether a lookup has been 
cached (except by noticing the improvement in performance). 

In general, then, we can allow observers to mutate the rep, so long as the 
abstract value is preserved. We will need to ensure that the rep invariant is not 
broken, and if we have coded the invariant as a method checkRep, we should 
insert it at the start and end of observers. 

6.8  Summary 

Why use rep invariants? Recording the invariant can actually save work:  
·  It makes modular reasoning possible. Without the rep invariant documented, 

you might have to read all the methods to understand what’s going on before 
you can confidently add a new method. 

·  It helps catch errors. By implementing the invariant as a runtime assertion, you 
can find bugs that are hard to track down by  other means. 

 
The abstraction function specifies how the representation of an abstract data 
type is interpreted as an abstract value. Together with the representation 
invariant, it allows us to reason in a modular fashion about the correctness of an 
operation of the type. 

In practice, abstraction functions are harder to write than representation 
invariants. Writing down a rep invariant is always worthwhile, and you should 
always do it. Writing down an abstraction function is often useful, even if only 
done informally. But sometimes the abstract domain is hard to characterize, and 
the extra work of writing an elaborate abstraction function is not rewarded. You 
need to use your judgment. 
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