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Abstract

High-density oligonucleotide arrays allow researchers
to measure mRNA transcript abundance for thou-
sands of genes on a single array. The large number
of genes, multiple sources of variation, and typically
small number of experimental units (EUs) combine to
make analysis of data from these arrays challenging.
We describe our experience in applying data analytic
techniques to replicated microarray experiments. In
particular, we focus on a framework that includes at-
tention to Scale, Additive Fits to account for probe
and chip biases, assessment of Experimental-unit
variability, and where possible, using processes that
are Resistant to extreme values (hence the SAFER
acronym). Our approach aims to provide results in
terms that are familiar to the analyst and easily in-
terpreted by biologists. Moreover, by emphasizing
resistant methods and not ignoring variability due
to sampling, the approach aims to provide measures
that speak to the repeatability of the results.

1 Introduction

The ultimate goals of gene expression experiments us-
ing microarrays and the analysis of data arising from
these experiments are varied. Elucidation of biologi-
cal pathways, classification of samples or compounds,
and discovery of patterns of co-regulation are only a
few of the many uses for this assay. However, un-
derlying these high level questions are the more ba-
sic questions of 1) for which genes have we detected
expression, and 2) for which genes has the expres-
sion level changed between experimental conditions.
We are interested in addressing these questions in a
statistically sound and effective manner. To do so
requires an approach that allows us to effectively a)
quantify transcript abundance b) assess the precision
of our estimate of transcript abundance and c) assess

the quality and integrity of the data. This manuscript
focuses on a few important aspects of a) and b).

2 Data description

We consider data arising from high-density oligonu-
cleotide DNA arrays. Characteristics of these arrays
are described elsewhere ([1, 2]). Briefly, each gene or
EST to be queried is represented by a probeset on
the array. An array contains thousands of probesets.
Typically, each probeset consists of 14 to 20 probe
pairs, where each probe-pair is composed of a perfect
match (PM) oligonucleotide probe and a mismatch
(MM) oligonucleotide probe. Labeled samples rep-
resenting mRNA populations are hybridized to the
arrays and gene expression is quantitated by fluores-
cence. We generally begin analysis after the initial
image processing has summarized the pixel intensi-
ties, so that we have one fluorescence value for each
probe.

3 The Basic Approach

There are multiple sources of variation in these exper-
iments, including variation due to the sampling of the
EUs, preparation of the samples (including isolation
of mRNA and production of cRNA), measurement er-
ror due to the hybridization of the array, fluorescence
detection, and contamination (e.g. dust).

We believe that there are advantages to looking
at all of the arrays in an experiment simultaneously.
The signal of individual probe-pairs is consistent over
the arrays, and thus can be modeled and used to
facilitate quantification on an individual array. This
approach was pioneered by Li and Wong([3]). Li and
Wong fit a multiplicative model to fluorescence values
Y=PM-MM,

Y = (probe effect) * (chip effect) + error

using least squares. To obtain resistance to extreme
values Li and Wong take an iterative approach of test-
ing for and omitting outliers. We prefer to fit a simi-



lar model using methods that are more resistant than
least squares. In particular we fit the model

f(Y ) = probe effect + chip effect + error,

using a highly resistant polishing technique ([4, 5]).
To enhance additivity the fluorescence values (PM-
MM) are transformed. Li and Wong’s success with
a multiplicative model suggests using f(Y)=log(Y).
However, since log(Y) is undefined for Y < 0 and has
large derivative for small Y, we use a linear-log hy-
brid transformation for f(). This transformation has
the property that it is linear over an interval [0, c],
but changes like log Y for large Y. It is continuous
and smooth (continuous first derivative for Y > 0)
and can improve the fit of an additive model to the
data (as judged by a Tukey one degree of freedom test
for additivity). Results also suggest that the trans-
formed data have variances that are fairly stable over
a wide range of expression values.

For many experiments, the largest components of
variability are likely to be 1) between-EU variabil-
ity and 2) between preps (mRNA, cDNA) variabil-
ity. Yet the emphasis in many papers describing
analysis of microarray experiments has been on es-
timating measurement error (pixel-pixel, spot-spot,
gene-gene(within an array)). To estimate between-
EU variability, it is necessary to measure at least two
EUs in one or more treatment groups. Moreover,
it seems unlikely that between-EU variability is con-
stant or a simple function of expression level for all of
the genes. In some circumstances, for example when
one of the goals of the experiment is to compare the
variability of expression levels for different genes, the
assumption of similar sampling variability across the
EUs is inappropriate.

Accordingly, we have found it useful to employ
techniques to assess the sampling variability for each
gene individually. In particular, since the number
of EUs sampled is usually small, we have found the
ANOVA method useful for estimating a variability
parameter that includes sampling variability. Tests in
which the observed test statistics are assessed against
a distribution obtained by permuting the labels at-
tached to the EUs are also useful (e.g., [6]).

4 Details of our Algorithm

In this section we describe some specifics of an al-
gorithm we have employed that exemplifies our ap-
proach. First, we set notation and terminology.
Our approach assumes that the experiment included
M ≥ 1 experimental conditions, referred to as treat-
ment groups. One or more arrays are present for each

group. The arrays within a group are referred to as
replicates. At least one treatment group must have
two or more replicate arrays.

Treatment groups are indexed by i, i = 1, . . . , M .
Replicate arrays within a treatment group are in-
dexed by j, j = 1, . . . , ni, where ni is the number
of arrays for group i. Thus the pair of indices ij
identifies a single array. On each array there are K
probesets, indexed by k. Probes within a probeset
are indexed by `, ` = 1, . . . , Lk, where the number
of probes per probeset, Lk, is typically 14–20. Note
that k also will be used to index the gene nominally
probed by probeset k.

We begin statistical analysis with the probe-level
data. Probe-level data consist of PM and MM val-
ues for each probe, for each probeset, for each array.
PMijk` is the PM value for the `-th probe in probeset
k on the j-th array in treatment group i. MMijk` is
defined similarly.

Yijk` will represent the intensity “signal” that is the
basis for estimating gene expression levels. Typically
it will be PMijk` − MMijk`, possibly adjusted for
background or positional effects on the array, but it
could also be PMijk` alone.

In our implementation of the approach we allow for
the possibility that Yijk` might be missing for some
probes on some arrays (e.g. “masked” probes).

4.1 Scaling

This step performs a simple pre-normalization to ad-
just for overall differences in brightness between ar-
rays.

a) For each probe in each probeset, we calculate
the median of MM across all arrays:

medk` = median(MM11k`, . . . , MMMnM k`)

b) For each array ij, we calculate a resistant,
weighted linear regression of (MMijk` − medk`) on
medk`. The weights are 1/med2

k`. The result is a fit-
ted slope coefficient bij for each array. We have typ-
ically used the MM-estimator, implemented as the
lmRobMM() function in S-PLUS ([7]).

c) Multiply all the signal values on an array by the
scaling factor SFij = 1/(1 + bij). The scaled signal
is

SSijk` = Yijk`SFij .

d) We typically plot the scaling factors SFij so that
the variation between arrays can be examined.

4.2 Transformation

In this step we apply a nonlinear transformation, the
“hybrid transformation” to signal values. The pur-



pose is to improve the additivity of array- and probe-
specific effects (subsection 4.3), and to stabilize the
variability of intensity values across a wide range of
intensities.

Transformed signal = TSijk` = f(SSijk`),

where

f(x) =





a if x < a
x if a ≤ x ≤ c
c ln(x/c) + c if x > c.

The transformation is specified by two parameters
a and c. We have typically used a = 0 and c = 20.

4.3 Additive fits to adjust for probe-
specific effects

For each probeset k, we calculate a resistant addi-
tive fit to estimate array- and probe-specific effects
on transformed signal. The array effects are adjusted
for the probe effects.

a) The additive model is

TSijk` = GEk + Aijk + Pk` + εijk`

where
GEk = Grand effect: overall signal level for probe-

set k across all probes and arrays
Aijk = Array-specific effect for array ij
Pk` = Probe-specific effect for probe `
εijk` = Residual variability

b)We fit the additive model using a resistant
method such as median polish (see section 6B of [8]).
Median polish is an iterative method that operates
on a matrix by alternately extracting row and col-
umn medians. The result can sometimes depend
on whether the iteration starts with rows or with
columns. We have adopted the convention that the
iteration starts with extracting medians for arrays
(across probes). Iteration continues until convergence
or until a limit on the number of iterations is reached.
We use a limit of 50 iterations. The polish produces
values for GEk, Aijk, Pk`, and εijk`. Only GEk and
Aijk are needed for subsequent steps.

c) We typically compute Tukey’s test ([8]) for non-
additivity of array and probe effects for each probe-
set. However, we do not interpret the resulting p-
values literally since this test is not resistant to out-
liers or non-Gaussian noise distributions. Instead,
the p-values provide an index of non-additivity that
can be used as a check on values for parameters such
as a and c in the previous subsection.

4.4 Normalization

Although the the arrays were scaled to each other in
subsection 4.1, that procedure probably does not ad-
equately normalize the arrays. The magnitude of ar-
ray specific biases may depend on expression level, so
we seek a procedure that will make the arrays compa-
rable across the entire range of expression. We have
found the following procedure useful for this purpose.

a) Identify the set of genes, K, with the least
between-treatment-group variability. If the num-
ber of treatment groups is M = 1, use all genes:
K = {1, 2, . . . ,K}. Otherwise, for the gene repre-
sented by probeset k, define:

medik = median(Ai1k, . . . , Ainik), the median ar-
ray effect associated with probeset k for all ni arrays
in treatment group i. Define the between group vari-
ability, the within group variability and their trun-
cated ratio by,

BVk =
∑

i

|medik|

WVk =
∑

i

medianj(|Aijk −medik|),

RVk = BVk/ max(WVk, 0.01),

respectively.
Partition the genes into four bins based on quartiles

of GEk, k = 1, . . . ,K. Within each bin b, choose
the fraction frac of genes with the smallest between-
within ratios; call this set of genes Kb. Then K is the
union of K1, K2, K3, and K4. For example if there
are K = 4000 genes, each bin will have 1000 genes.
If frac = 0.50 then Kb will consist of the 500 genes
in bin b with the smallest values of RVk, and K will
consist of the 4×500 = 2000 genes in K1 through K4.
(In practice the number of genes per bin might not be
exactly K/4 and the number of selected genes per bin
might not be exactly (frac)×K/4 because of rounding
and because of tied values of GEk or RVk.) Note that
frac is a parameter of the algorithm. It should be set
to a value no higher than the proportion of genes
not expected to differ between treatment groups. We
currently use frac = .50.

Define GE(−) to be the minimum value of GEk over
all genes in K, and define GE(+) to be the maximum.

b) For each array ij, fit a smooth, nonparametric
regression curve to Aijk versus GEk, using only the
genes k in K. The curve should be fit by an outlier-
resistant method such as loess. Loess is described in
sections 8.1.2 and 8.4.2 of [9]. Adjustable parameters
for the loess smoother are its span (called α in [9]
and degree (called λ). We have used span= 0.5 and
degree= 1. We also use the S-Plus default of 4 itera-
tions for the robustness part of the fitting procedure.



The result is a separate fitted curve gij(GE) for each
array ij.

c) Use function gij() to produce normalized array
effects for each ij:

NAijk = Aijk − gij(GE′
k),

where

GE′
k =





GE(−) if GEk < GE(−)

GEk if GE(−) ≤ GEk ≤ GE(+)

GE(+) if GEk > GE(+).

GEk is truncated to the interval from GE(−) to
GE(+) to avoid extrapolating gij() beyond the range
of values used to estimate it.

d) We graph the normalization curves gij(GE) as
a function of GE, so that the magnitude and pattern
of normalization adjustments for each array can be
examined.

4.5 Estimate expression levels

The final estimated expression level for gene k on
array ij is

Xijk = GEk + NAijk (transformed scale)
X ′

ijk = f−1(Xijk) (original intensity scale),

where f−1 is the back transformation defined by

f−1(x) =





a if x < a
x if a ≤ x ≤ c
c exp(x−c

c ) if x > c.

a and c are the parameters of the hybrid transforma-
tion defined in subsection 4.2 above.

4.6 Summarize expression levels by
treatment group and gene

Recall that ni is number of replicate arrays for treat-
ment group i, i = 1, . . . , M . Define nik to be the
number of replicate arrays in group i for which we
have data for gene k; i.e., the number of arrays j
for which Xijk is not missing. The mean and stan-
dard error of expression level for group i (transformed
scale) are:

X̄ik =
1

nik

∑

j

Xijk

s2
ik =

1
nik − 1

∑

j

(Xijk − X̄ik)2

SEik =
√

s2
ik/nik

When the degrees of freedom for estimating the
standard error for each group is small, we often re-
place s2

ik with the pooled within-group variance esti-
mate,

s2
pk =

∑
i(nik − 1)s2

ik∑
i(nik − 1)

.

The approximate mean and standard error of ex-
pression level on the original intensity scale are:

X̄ ′
ik = f−1(X̄ik)

SE′
ik =





0 if X̄ ′
ik < a

SEik if a ≤ X̄ ′
ik ≤ c

(X̄ ′
ik/c)SEik if X̄ ′

ik > c.

4.7 Examine the relation of variability
to expression level

a) Compute between-group and pooled within-group
variances of expression level on the transformed scale.
These are similar to BVk and WVk calculated in sub-
section 4.4, but use means and variances rather than
medians and median absolute deviations. The formu-
las for the grand mean (GM), between group mean
square (BG), and pooled within-group variance (s2

pk)
are

GMk =
∑

i

∑

j

Xijk/
∑

i

nik

BGk =
1

M − 1

∑

i

nik(X̄ik −GMk)2

b) As in subsection 4.4, partition the genes into
four bins based on quartiles of GEk (not GMk).
Within each bin select the fraction frac of genes with
smallest between-group variability BGk. Call the col-
lection of selected genes from all bins K. Fit a loess
curve to√spk (i.e., the fourth root of s2

pk) versus GEk

for the genes in K. (The reason for fitting the fourth
root rather than s2

pk or spk is that the distribution of
the former is less skewed.) We have used loess pa-
rameters span = 0.33 and degree = 1. Let h(GE) be
the fitted curve.

c) Plot √spk against GEk for the genes in K and
overlay the curve h(GE). This graph shows whether
and how the replicate variability of gene expression
values depends on expression level.

4.8 Compare expression levels be-
tween groups

Equal variances of expression level (on the trans-
formed scale) are assumed for all groups for a given



gene. The pooled estimate of the variance for gene k
is s2

pk from subsection 4.6.
a) A p-value for comparison of treatment groups

i1 and i2 for gene k is obtained from a two-sided,
two-sample t-test.

t =
X̄i1k − X̄i2k

spk

√
1

ni1k
+ 1

ni2k

Refer t to a t-distribution with
∑

i(nik − 1) degrees
of freedom to determine the p-value. Note that the
test statistic t is calculated using estimates of means
and variances on the hybrid transformed scale.

b) Calculate an expression ratio and log-ratio to
compare groups on the original intensity scale. To
avoid very large or infinite log-ratios (positive or neg-
ative), set a threshold d on the original intensity scale.
Replace expression levels less than d by d when cal-
culating ratios and log-ratios:

Ri1i2k =
max(X̄ ′

i1k, d)
max(X̄ ′

i2k, d)

log-ratio = LRi1i2k = log10 Ri1i2k.

We have used d = 1 for this parameter of the algo-
rithm.

Approximate standard errors for the log-ratios can
be calculated using the following formulae.

LRi1i2k = log10[max(X̄ ′
i1k, d)]− log10[max(X̄ ′

i2k, d)]

and SE(LRi1i2k) ≈
√

Var{log10[max(X̄ ′
i1k, d)]}+ Var{log10[max(X̄ ′

i2k, d)]}.

If d ≤ c, the parameter for the hybrid transformation,

then Var{log10[max(X̄ ′
ik, d)]} ≈





0 if X̄ ′
ik < max(a, d)

1
(ln 10)2

1
X̄′2

ik

s2
pk

nik
if max(a, d) ≤ X̄ ′

ik ≤ c

1
(ln 10)2

1
c2

s2
pk

nik
if X̄ ′

ik > c.

Otherwise Var{log10[max(X̄ ′
ik, d)]} ≈

{
0 if X̄ ′

ik < c ln(d/c) + c
1

(ln 10)2
1
c2

s2
pk

nik
otherwise.

5 Discussion and Conclusions

Microarrays hold great promise for helping re-
searchers understand complex patterns of gene ex-
pression, but in many ways they are not different

from other assays. Statistically sound methods for
quantification of assay results are necessary. We have
described an approach that emphasizes looking at all
of the arrays in an experiment simultaneously. This
allows resistant estimation of probe-specific effects.
Moreover, we suggest that the assessment of repeata-
bility should not ignore sources of variability that
are likely to be substantial, in particular between-
EU variability. We have given some details of our
implementation of this approach.
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