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Abstract

In particle physics experiments, the momenta of charged
particles are studied by observing their deflection in a mag-
netic field. Dedicated detectors measure the particle tracks
and complex algorithms are required for track recognition
and reconstruction. This CPU-intensive task is usually im-
plemented as off-line software running on PC clusters. In
this paper, we present a system-on-chip design for the track
recognition and reconstruction based on modern FPGA
technologies. The basic principle of the algorithm is ported
from software into the FPGA fabric. The fundamental ar-
chitecture of the tracking processor is described in detail.
Working as processing engines in compute nodes, the track-
ing processor contributes to recognize potential track can-
didates in real-time and promotes the selection efficiency of
the data acquisition and trigger system. Our design study
shows that the tracking module can be integrated in a single
Xilinx Virtex-4 FX60 FPGA. The processing capability of
the design is about 16.7K sub-events per second per mod-
ule with our experimental setup, which achieves 20 times
speedup compared to the software implementation.

1 Introduction

Modern nuclear and particle physics experiments, for ex-
ample HADES [1] and PANDA [2] at GSI, BESIII [3] at
IHEP, LHC [4] at CERN, are expected to run at a very high
reaction rate (e.g. PANDA, 10-20 MHz) and able to de-
liver a data rate of up to hundred GBytes/s (PANDA, up to
200 GBytes/s). Among the huge amounts of data, in many
cases only a rare proportion is of interest due to its particular
physics contents and should be selected for in-depth physics
analysis. Besides, these amounts of data cannot be entirely
stored because of the storage limitation. Therefore it is es-
sential to realize an efficient on-line data acquisition and
trigger system which processes the sub-events coming from

detectors and reduces the data rate by several orders of mag-
nitude via rejecting background data. In the contemporary
facilities, the trigger system is normally divided into multi-
ple levels, and some feature extraction algorithms were im-
plemented as sophisticated criteria in latter levels, specif-
ically Cherenkov ring pattern recognition, Time-Of-Flight
(TOF) analysis and Shower pattern recognition [5] [6] [7].
Only the sub-events which possess expected patterns and
could be successfully correlated with each other receive a
positive decision and are forwarded to the event-builder and
further the mass storage for later off-line analysis. Others
will be discarded in the real-time processing.

Particle track reconstruction in detectors is a process of
computing and identifying the flying tracks of charged par-
ticles traversing a magnetic field. It is an important task with
which the particle’s momentum can be studied [8] [9] [10].
This work is most CPU-intensive and traditionally the cal-
culation was implemented as the off-line software executed
on PC clusters after experiments. However, due to the in-
creasing data rate in modern experiments, it becomes highly
necessary to port fully or partially of the algorithm into
the in-field data acquisition and trigger hardware for selec-
tive event filtering. Together with other feature extraction
methods, the track recognition and reconstruction algorithm
works to select interesting physics events and thereby sig-
nificantly reduce the amount of raw data written to the mass
storage.

As the great development of FPGA technologies and the
HW/SW co-design methodology, FPGA based designs are
well suited for high performance and reconfigurable appli-
cations especially the field of scientific computing. Here
we base our design on the Xilinx platform FPGA, which
has the capability to build embedded systems on-chip, as
well provides large freedom to design application-specific
processors with the programmable logic resource. In sec-
tion 2 we will first explain the basic physics principle of
the track recognition and reconstruction in an example de-
tector, the HADES experiments at GSI Darmstadt. Some
previous work will also be addressed. In section 3, the hi-



erarchical architecture of the computation platform will be
demonstrated. In section 4 we focus on the tracking ap-
plication and describe the Tracking Processing Unit (TPU)
design in detail. In section 5 the experimental results are
presented and in section 6 we conclude the paper and pro-
pose our future work.

2 Application Description

2.1 Principle of Track Recognition and
Reconstruction

The HADES tracking system, as an instance of modern
experimental facilities, consists of four Mini Drift Cham-
ber (MDC) detectors which have six identical trapezoidal
sectors. Two MDC layers are located before and two be-
hind the toroidal magnetic field which is produced by 6 su-
perconducting coils, as shown in figure 1(a). A total num-
ber of 24000 sense wires are arranged in six orientations
and 24 layers: +40◦, -20◦, 0◦, 0◦, +20◦, -40◦, as shown in
figure 1(b). Sense wires are elementary units used to re-
construct particle tracks by generating pulse signals when
charged particles traverse the detector close to them. The
important term drift cell is defined as the long thin strip
area centered around a sense wire and delimited by the field
wires and the cathode wires [11] [12]. When a particle
passes through this area and causes the sense wire to pro-
duce a pulse signal, we call that this drift cell or the sense
wire is “fired”.

(a) Lateral cut-away view of the
HADES detector system

(b) One sector of the MDC with six
orientation wires

Figure 1. MDCs in HADES detector system

Particle tracks will be bent in the magnetic field between
inner (I - II) and outer (III - IV) MDCs. The magnet is
constructed in such a way that the magnetic field practically
does not penetrate into MDC modules. Thus segments of
tracks before and behind the coil could be approximately
described by straight lines. They can be reconstructed sep-
arately with the inner or outer MDC information. The basic

Figure 2. Track recognition and reconstruc-
tion in inner MDCs

principle is quite similar and thus in this paper we focus
only on the inner part.

Figure 2 shows a coordinate system in which a charged
particle passes through two inner MDCs. When the beam
hits the target, charged particles are emitted from the target
position and go forward through drift cells in different lay-
ers in a straight path. Therefore pulse signals are produced
on the fired sense wires with high probability (>95%). Vi-
sualizing every fired drift cell as a line, apparently the parti-
cle passed through the MDC at the point where all the wires
from different layers cross. In our practical computation,
the track candidate search is performed for two chambers
per sector simultaneously. As shown in figure 2, the sensi-
tive volume of each drift cell is projected from the bound-
ary of the target onto a plane located between the chambers.
When a particle goes through all the 12 layers (6 orienta-
tions and layers per MDC module) from the target, projec-
tions of the fired drift cells provide overlapped regions on
the projection plane. To search for such regions the projec-
tion plane is treated as a two dimensional histogram with
the projection area as bins (grids). For each fired drift cell,
its projection bins are all increased by one. By finding the
locally maximum bins whose values are also above a given
threshold, track candidates can be recognized and the tracks
are reconstructed as straight lines from the point-like target
to those bins.

Obtained from the off-line analysis, figure 3(a) is a 2-
dimensional plot for one sector and with 2 passed particles.
The scale on the right side shows the correspondence be-
tween the bin values and the colors in the plot. Figure 3(b)
shows the 3-dimensional display of figure 3(a) for a single
track. The peak in the center is recognized as the candi-



date bin which was most likely caused by a particle passing
through this point.

x, (mm)

-400 -300 -200 -100 0 100 200 300 400

y, 
(m

m)
    

  

200

300

400

500

600

700

800

0

2

4

6

8

10

12
Event 74 Sector 4

(a) Projection plane with two passed tracks
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(b) 3D display of the accumulated bins for a single track

Figure 3. Particle tracks in the projection
plane of one sector

2.2 Previous Work

The tracking computation has the features of high com-
puting power requirement and complex algorithm. Many
contemporary experiments use the software-on-PC-cluster
off-line solution to search for particle tracks. For example
the existing HADES on-line trigger processing does not ex-
ploit the information from the tracking sub-system due to
the large amount of raw data (a few GBytes/s). This trigger
system was developed more than 10 years ago based on the
Xilinx XC4000 series FPGAs, and at that time the tracking
algorithm was hardly implemented in hardware [6]. The
lack of the on-line tracking processing led to a significant
loss in event selectivity and thus the corresponding part is
expected to be added in the data acquisition and trigger sys-
tem.

There does also exist some hardware implementation, for

instance the ATLAS level 2 trigger [7]. However their so-
lution appears as PCI cards in commodity PCs, which only
releases the simple but computing-intensive steps to FPGAs
while remains others on CPUs. Hence it is in fact hard-
ware/software co-processing and the work relies much on
the PC. In addition the limited bandwidth between CPUs
and FPGAs via the PCI bus becomes the bottleneck and has
to be considered when partitioning the algorithm steps to
the CPU and the FPGA.

3 Computation Platform

3.1 Computation Network Architecture

To manage the data rate of up to hundred GBytes/s, all
feature extraction algorithms will be partitioned and run in
parallel in a network architecture. Shown in figure 4, Com-
pute Nodes (CN) provide both internal and external chan-
nels. Via the external interconnections including optical
links and Gigabit Ethernet, data streams are received from
detectors and the selected results after processing are for-
warded to the PC farm for storage or high level analysis.
The internal high-speed connections are employed to par-
tition the algorithms and to correlate results among them.
We utilize the ATCA full-mesh backplane [13] to provide
flexible communications among all compute nodes.

Figure 4. Computation network for on-line
feature extraction

3.2 Compute Node

Figure 5 shows the schematic of a CN board for proto-
type design. On each board there are five Xilinx Virtex-4
FX60 FPGAs, four of which (No. 1 to 4) work as algo-
rithm processors and the fifth (No. 0) as a switch interfac-
ing to other CNs via the full-mesh backplane. Each pro-



cessor FPGA has multiple external links and all five ones
are equipped with local DDR2 memories for data buffering
and large look-up table purposes. Point-to-point on-board
interconnections make it convenient to partition algorithm
implementations and realize parallel processing in different
FPGA nodes.

Figure 5. Compute node design

3.3 System on the FPGA Node

The Xilinx platform FPGA possesses many kinds of
hardcore components, such as the PowerPC 405 embed-
ded CPU, RocketIO multi-gigabit transceivers, and Gigabit
Ethernet MAC [14]. Accompanied with softcore libraries,
a bus-based system can be built and integrated in a sin-
gle FPGA (see figure 6). Feature extraction processors,
in our case the Tracking Processing Unit (TPU), are con-
nected to the system bus. They utilize the hardware parallel
and pipelined architecture to speedup the data processing
over software. Running on the embedded PowerPC, the
open-source Linux operating system takes charge of net-
work protocol processing, as well as interaction tasks with
the operators including reconfiguring the system, adjusting
experimental parameters, or displaying results, etc.. Hence
the CPU/FPGA solution can be implemented on a single
chip, with which the density of computing power as well
as the flexibility of reconfiguring components and intercon-
nections are increased significantly.

Compared to the previous implementation, our design
is able to process detector data without dependence on the
CPU. The pure hardware processing eliminates the band-
width limitation between the CPU and the algorithm pro-
cessor, and makes it possible to integrate multiple cores in
one bus system for parallel processing.

Figure 6. FPGA node with TPU connected to
the PLB bus

4 TPU Design in FPGA

As shown in figure 7, the TPU design is decomposed into
four modules, specifically two Look-Up Tables (LUT), the
accumulate unit and the peak finder. For each sense wire,
the address LUT stores its address information and the pro-
jection LUT shows which bins on the projection plot will
be touched by the wire’s projection. The address LUT is
arranged in the Block RAM (BRAM) inside the FPGA to
save access time and decrease bus utilization. The projec-
tion LUT may be large therefore it is implemented in the
external DDR memory. With the guidance of the address
information, the accumulate unit accumulates the touched
times by fired wires for all the bins. Finally the peak finder
calculates and figures out the exact points where particles
probably passed through.

Figure 7. Block diagram of the TPU structure



4.1 Projection LUT and Address LUT

The inputs of the TPU are serial numbers of fired sense
wires from the MDC circuits. To decide which bins on the
projection plane might be touched by the shadow of fired
wires, real-time calculation should be avoided due to the
geometrical complexity. Instead, an off-line built projec-
tion LUT is used to store this information with the serial
numbers of wires as entries. To save storage space, only the
bins in the projection plot from the plane starting address
and within the length should be considered when building
the LUT mapping. As an instance of projecting a +20◦ drift
cell and shown in figure 8, only the bottom bins are consid-
ered as the projection information since the bins on the top
are obviously not touched by the shadow. Hence from the
serial number of a sense wire, the address LUT derives the
plane starting address and the length, as well as the LUT
starting address which indicates the starting location in the
physical memory and initializes DMA transfers.

Figure 8. Projection and touched bins of a
fired drift cell on the projection plane

In practice, we use 128 x 256 bins as the resolution of the
projection plot. Compared to the method which concerns all
the bins in the projection plot for the wires, our mechanism
not only shrinks the projection LUT size to even less than
one fifth (1.5 MB vs. 8.6 MB), but also significantly saves
clock cycles when feeding data from the DDR LUT to the
processing unit and avoids meaningless computation.

4.2 Accumulate Unit

The accumulate unit works to accumulate the touched
times of bins, when the LUT data for different orientation
wires are supplied by DMA transfers.

This module is basically structured by a dual-port
BRAM block, some adders and registers (shown in fig-
ure 9). The BRAM block is 3-dimensional and has 4 bits per

bin which allow to represent the maximum 12 layer wires
of two MDCs. Initially all the bins are reset to zero. As the
projection LUT provides data which show if a specific bin
will be touched (a bit of ’1’) by a fired wire or not (a bit
of ’0’), the values of bins are correspondingly increased by
one or not. For each wire, the accumulation only happens
on those bins from the plane starting address and within
the length, which are both from the address LUT outputs.
The computation process is pipelined in two stages. One
is to write the accumulated results into the BRAM block.
The other is to read out the values of the next address and
get them ready for the next cycle accumulation. After the
processing of all fired wires within a time slot, the entire
BRAM block will be exported to the next level peak finder,
searching for the peak bins or track candidates. Then the
BRAM block will be reset again and get ready for the next
round computation.

Figure 9. Pipelined structure of the accumu-
late unit

4.3 Peak Finder

The peak finder is the most computing-intensive part in
the entire TPU design. It indicates not only which bins have
values no less than the threshold, but also the exact peak
bins in their neighbourhoods where tracks probably passed.
Figure 10 shows the motivation to build such a module.
There are seven bins meeting the threshold requirement as-
suming the threshold is 10. However in fact they belong to a
single track. So more delicate computation should be done
to find out the peak bin in this area, which is most probably
the point a particle passed through in the projection plane.
In case of multiple peaks with the same value and neigh-
boured with each other, we can export any one of them or
directly all according to the system requirement.

To indicate the peak in an area, each bin is arranged
to be compared with all its eight neighbours, except those
in the boundaries which have fewer neighbours. If none
of the neighbours is greater than that bin, it is determined



Figure 10. Selection of the peak bin in the
neighbourhood

Figure 11. Pipelined peak finding process

as the peak. Otherwise the greater neighbours overcome
it and keep on searching. This calculation was imple-
mented as pipelined comparisons in our design. Shown
in figure 11, the input data go downwards cycle by cycle
from “data in”, passing two levels of registers “Reg1 array”
and “Reg2 array” until the results come out. Using the
same data from figure 10, the pipelined peak finding pro-
cess is demonstrated by four sub-figures for four clock cy-
cles. Each square in “Reg1 array” which represents a sin-
gle bin with its value inside, is being compared with four
of its neighbours: the upper-left, the upper, the upper-right,
and the left, with an arrow indicating a comparison. It is
also being compared with its right neighbour as the com-
parison is initiated by its right neighbour bin. Moreover
the bins in “Reg2 array” are being compared with their re-
spective lower-left, lower and lower-right neighbours by us-
ing the same comparators. Hence in summary, each bin is
compared with its three lower neighbours when it stays in
“Reg2 array”, and with its five upper and horizontal neigh-
bours after it steps to “Reg1 array” in the next clock cycle.
The comparison results with the lower neighbours are stored
in the register “lower result reg” temporarily. A bit of “1”
means none of its lower neighbours is larger than that bin
while “0” means it cannot be the peak and will be ignored.
In case of two neighboured bins having the same value, the
one in the higher address direction (right and upper) wins

the comparison and may go on being compared with those
at even higher addresses. The bit from “lower result reg”
will be ANDed with the results from the five upper and hor-
izontal comparisons and the threshold comparison. If the
final result is ’1’, that bin is the peak in its area and is rec-
ognized as a track candidate. Figure 12 illustrates the Reg-
ister Transfer Level (RTL) schematic of the pipelined peak
finder.

Figure 12. The RTL structure of the peak
finder

5 Experimental Results

5.1 Implementation Results

The TPU design was described in VHDL and synthe-
sized using Xilinx ISE 8.2. When the projection plane is
configured as 128 x 256 bins, the resource consumption
statistics are shown in table 1 as well as the utilized per-
centages of the Xilinx Virtex-4 FX60 FPGA. The TPU is
connected to the PLB bus via an IP interface (IPIF) [15].
Hence the resource utilizations of both the compute node
platform and the PLB-IPIF are listed in the table as well.
From the statistics, we can see that 17.7% Block RAM re-
source is used by the TPU, in which the dual-port BRAM
block in the accumulate unit and the address LUT are two
main consumers. In addition 10.2% LUT resource and 3.4%
Flip-Flops contribute to mainly construct the comparators
and registers in the device. As shown in the last column of
the table, the whole system with a TPU connected utilizes
32.8% LUTs, 18% Flip-Flops, 25.4% BRAMs and 6.3%
DSP slices of the Virtex-4 FX60. So we conclude that it
is feasible to integrate the entire system in a single Virtex-
4 FX60 to perform the on-line inner track recognition and
reconstruction.

The synthesis timing summary shows that the TPU de-
sign could run at above 125 MHz without any optimization



Resources TPU compute node
platform

PLB-IPIF system with
TPU (sum)

4-input
LUTs

5175 out
of 50560
(10.2%)

8531 out of
50560 (16.9%)

2900 out
of 50560
(5.7%)

16606 out
of 50560
(32.8%)

Slice Flip-
Flops

1715 out
of 50560
(3.4%)

5724 out of
50560 (11.3%)

1640 out
of 50560
(3.2%)

9079 out
of 50560
(18.0%)

Block
RAMs

41 out of
232 (17.7%)

18 out of 232
(7.8%)

0 59 out of 232
(25.4%)

DSP
Slices

0 8 out of 128
(6.3%)

0 8 out of 128
(6.3%)

Table 1. Resource consumption

effort. To match the speed of the PLB bus, we fix the clock
frequency of the TPU as 100 MHz.

5.2 Performance Measurements

The processing capability of the TPU depends heavily
on the counts and the position of fired wires within a time
slot. Since the projection LUT mappings for the wires in
different positions have various sizes, transferring data to
the TPU takes different clock cycles. In our cycle-accurate
simulation, we assumed 30 fired sense wires (around 3 par-
ticle tracks) in each sub-event from MDCs and the projec-
tion LUT size of 5.7 Kbits per wire on average (1.5 MB
for 2110 wires). Both the PLB bus and the TPU run at
100 MHz. With this experimental setup, it takes less than
6000 cycles, which is equivalent to 60 µs, to process one
MDC sub-event. This implies a processing capability of
16.7K sub-events per second. In contrast the software in
C program which ran on an Intel Xeon 2.4 GHz and 1 GB
DDR2 memory server with the Gentoo Linux operating sys-
tem, achieves only 0.82K sub-events per second in the same
experimental condition. Hence the speedup of 20 for the
hardware processing is foreseen and even more might be
achieved after the design optimization.

6 Conclusion and Future Work

We have presented the work of porting the track recog-
nition and reconstruction algorithm into the FPGA fabric
and constructing the embedded system on the FPGA. The
tracking processing unit appears as a PLB device in the
bus system and performs the pattern recognition computa-
tion. The design was described in VHDL with the partition
of four modules: two LUTs, the accumulate unit and the
peak finder. The implementation results justify the feasi-
bility of integrating the system in a single Xilinx Virtex-4
FX60 FPGA.

The future work includes to partition and parallelize the
algorithm and to distribute in multiple nodes of the com-
putation network. Design optimizations such as improving

the clock frequency or increasing the bus data width are also
expected for gaining higher performance.
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