
Dynamic Symmetry Reduction

E. Allen Emerson and Thomas Wahl

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas, Austin/TX 78712, USA

Abstract. Symmetry reduction is a technique to combat the state ex-
plosion problem in temporal logic model checking. Its use with symbolic
representation has suffered from the prohibitively large BDD for the orbit
relation. One suggested solution is to pre-compute a mapping from states
to possibly multiple representatives of symmetry equivalence classes. In
this paper, we propose a more efficient method that determines repre-
sentatives dynamically during fixpoint iterations. Our scheme preserves
the uniqueness of representatives. Another alternative to using the orbit
relation is counter abstraction. It proved efficient for the special case of
full symmetry, provided a conducive program structure. In contrast, our
solution applies also to systems with less than full symmetry, and to sys-
tems where a translation into counters is not feasible. We support these
claims with experimental results.

1 Introduction

Model checking [CE81,QS82] is a successful approach to formal verification of
finite-state concurrent systems. Numerous attempts have been made to combat
its main obstacle, the state space explosion problem. Symmetry reduction is a
technique that exploits replication. The state space is reduced by considering
global states equivalent that are identical up to applications of structure auto-
morphisms, for example permutations that interchange the identities of partici-
pating components. This equivalence, the orbit relation, gives rise to a bisimilar
quotient structure over the equivalence classes (orbits) [ES96,CEFJ96].

Symmetry reduction was first successfully incorporated into explicit-state
verifiers, such as Murϕ [ID96]. Disappointingly, it was discovered that sym-
bolic representation using BDDs, by then becoming a standard in large-scale
system verification, seemed not to combine favorably with symmetry reduction
[CEFJ96]. The reason is that the BDD for the orbit relation is provably in-
tractably large.

In this paper we present a strategy of bypassing the orbit relation. To perform
symmetry reduction, it is not necessary to build a representation of the quotient
structure. Instead, the reduction can be achieved by computing transition images
with respect to the unreduced structure, and immediately afterwards mapping
the new states to their respective representatives. The main contribution of this

This work was supported in part by NSF grants CCR-009-8141 and CCR-020-5483,
and SRC contract 2002-TJ-1026. Email: {emerson|wahl}@cs.utexas.edu

paper is to provide an efficient symbolic algorithm for a function that takes a
set of states and computes their representatives, given the underlying symmetry
group and the permutation action. We first concentrate on full component sym-
metry, the most frequent and beneficial case in practice. We go on to show how
to extend our algorithm to other symmetry groups and to data symmetry (see
section 2).

Our solution compares with previous approaches as follows. et al.ClarkeCEFJ96
proposed the admission of multiple orbit representatives. This affords the possi-
bility to map a state to that representative of its orbit for which this mapping
is most efficient. The relation ξ associating states with their representatives is
pre-computed in a BDD. This method, albeit an improvement, was not effective
enough for systems of interesting size. This is in part because the BDD for ξ is
generally still huge, and in part due to the multiplicity of the representatives,
such that symmetry is not exploited to the fullest extent. In comparison, our
method dynamically computes representatives of states, i.e. embedded in the
model checking process. In addition to preserving the uniqueness of orbit repre-
sentatives, this has the important advantage that there is no need to compute, let
alone store for the lifetime of the program, the representative mapping ξ. Further,
for reachability analysis we only maintain representatives actually encountered
during the computation, which might be few. In contrast, pre-computing repre-
sentatives (irrespective of reachability) may consume a lot of resources, only to
find afterwards that a state close to an initial state already has a bug.

Another technique, generic representatives [ET99], applies to the special case
of fully symmetric systems. The idea is that two global states are symmetry-
equivalent exactly if for every local state L, the number of components residing
in L is the same in both global states. This approach requires a translation of the
original program text into one that represents global states as vectors of counters,
one counter for each local state. The Kripke structure derived from the new
program can then be model-checked without further symmetry considerations.
This method, more generally known as counter abstraction [PXZ02], proved to
be very efficient—if applicable: it is limited to full component symmetry, its
performance degrades if there are too many local states, and the translation to
counters can be non-trivial [EW03]. Our new reduction algorithm is not based
on counting processes in local states and thus does not suffer from any of these
problems.

In summary, this paper presents an exact, yet flexible and efficient response to
the orbit relation dilemma of symbolic symmetry reduction. It works with many
common symmetry groups and even applies to data symmetry. It requires no
expensive up-front computation of a representative mapping and no translation
of the input program, nor does it depend unreasonably on the number of local
states. Experimental results document the superiority of our approach to existing
ones, often by orders of magnitude.

2 Background: Symmetry Reduction

Intuitively, the Kripke model M = (S,R) of a system is symmetric if it is in-
variant under certain transformations of its state space S. In general, such a
transformation is a bijection π : S → S. The precise definition of π depends
on the type of symmetry; common ones are discussed in the next paragraph.
Given π, we derive a mapping at the transition relation level by defining π(R) =
{(π(s), π(t)) : (s, t) ∈ R}. Structure M is said to be symmetric with respect to a
set G of bijections if π(R) = R for all π ∈ G. The bijections with this property
are called automorphisms of M and form a group under function composition,
M ’s symmetry group.

The most common type of symmetry is known as component symmetry. In
this case, the automorphism π takes over the task of permuting the components.
Let li denote the local state of component i ∈ [1..n]; then π is derived from a per-
mutation on [1..n] and acts on a state s as π(s) = π(l1, . . . , ln) = (lπ(1), . . . , lπ(n)).
Under data symmetry [ID96], an automorphism acts on data values, in the form
π(l1, . . . , ln) = (π(l1), . . . , π(ln)). For example, the permutation π on {a, b} that
flips a and b acts on state (a, a) under component symmetry by exchanging po-
sitions 1 and 2 in the pair to yield the same state (a, a). Under data symmetry,
π exchanges the values a and b to yield (b, b).

2.1 Exploiting Symmetry

Given a group G of automorphisms π : S → S, the relation θ := {(s, t) : ∃π ∈ G :
π(s) = t} on S defines an equivalence between states, known as orbit relation;
the equivalence classes it entails are called orbits [CEFJ96]. Relation θ induces
a quotient structure M = (S,R), where S is a chosen set of representatives of
the orbits, and R is defined as

R = {(s, t) ∈ S × S : ∃s, t ∈ S : (s, s) ∈ θ ∧ (t, t) ∈ θ ∧ (s, t) ∈ R}. (1)

Depending on the size of G, M can be up to exponentially smaller than M . In
case of symmetry, i.e. given π(R) = R for all π ∈ G, M is bisimulation equivalent
to M ; the bisimulation relation is ξ = (S×S)∩θ. Relation ξ is actually a function
and maps a state s to the unique representative s of its equivalence class under θ.
Summarizing, for two states s, s with (s, s) ∈ ξ and any symmetric formula f ,
i.e. such that p⇔ π(p) is a tautology for every propositional subformula p of f
and every π ∈ G,

M, s |= f iff M, s |= f. (2)

2.2 Unique versus Multiple Representatives

Equation 1 defining the quotient transition relation makes use of the orbit rela-
tion θ. et al.ClarkeCEFJ96 show that computing this relation can be expensive
in both time and space, especially in a symbolic context. There is currently no
polynomial-time algorithm for deciding, for an arbitrary symmetry group G,

whether there is a permutation mapping a given state to another. In addition,
a symbolic representation of the orbit relation using BDDs can be shown to
require space exponential in the smaller of the number of components and the
number of local states per component. This is even true for special symmetries,
such as the important full symmetry group.

An alternative that avoids the orbit relation is provided by the same authors
[CEFJ96]. In their approach, the quotient structure is allowed to have more than
one representative per orbit. The programmer supplies a choice of representative
states Rep. In [CEFJ96], precise conditions are given for the existence of a set
C ⊆ G of permutations such that

ξ := {(s, r) : r ∈ Rep ∧ ∃π ∈ C : π(s) = r}

is a suitable representative relation from which a bisimulation equivalent quotient
structure can be derived. This quotient is the structure M = (Rep, R), where R is
defined as before in equation 1, except that S is replaced by Rep, and θ by ξ. The
intuition behind this is that for any state s, in order to find a representative r for
it (i.e. (s, r) ∈ ξ), it suffices to try applying permutations from C to s, instead of
all permutations from G. If C is exponentially smaller than G, this is a big win in
the search for a representative of s. Indeed, as experiments have shown, avoiding
the orbit relation this way certainly outweighs the cost of extra representative
states.

2.3 Counter Abstraction of Fully Symmetric Systems

For the case of fully symmetric systems of concurrently executing components,
one can make use of the following observation in order to represent orbits. Two
global states, viewed as vectors of local state identifiers, are identical up to
permutation exactly if for every local state L, the frequency of occurrence of L
is the same in the two states—permutations only change the order of elements,
not the elements themselves. An orbit can therefore be represented as a vector of
counters, one for each local state, that records how many of the components are
in the corresponding local state. For example, in a system with local states N , T
and C, the states (N,N, T,C), (N,C, T,N), and (T,N,N,C) are all symmetry-
equivalent; their orbit (which contains other states as well) can be represented
compactly as (2N, 1T, 1C) or just (2, 1, 1).

In practice, it may be possible to rewrite the program describing a fully
component-symmetric system such that its variables are local state counters in
the first place (before building a Kripke structure). This procedure is known
as counter abstraction [PXZ02]. The advantage of the counter notation is that
the symmetry is implicit in the representation; the very act of rewriting the
program from the specific notation of local state variables into the generic [ET99]
notation of local state counters implements symmetry reduction. Subsequently,
model checking can be applied to the structure derived from the counter-based
program without further considerations of symmetry.

In addition to being applicable only to fully symmetric systems, counter ab-
straction requires that automorphisms act on states only by changing the order of

state components, not their values (as they do under data symmetry), since only
then counters are insensitive to automorphism application. Further, since rewrit-
ing the program in terms of counters in fact anonymizes the components, vari-
ables containing component identifiers complicate matters, for example pointers
to other components [EW03].

3 Dynamically Computing Representatives

Symmetry reduction and model checking can be combined in two principally
different ways. The straightforward method seems to be to build a representation
of the quotient structure M and then model check it. Fig. 1 (left) shows the
standard fixpoint routine to compute the representative states satisfying EF bad ,
assuming we have a BDD representation of the quotient transition relation R.
We use bad to denote the representatives of bad states of M .

Y := ∅
repeat
Y ′ := Y
Y := bad∨EXR Y

until Y = Y ′

return Y

Z := ∅
repeat
Z′ := Z
Z := bad ∨ α(EXR Z)

until Z = Z′

return Z

Fig. 1. Two ways to compute the representative states satisfying EF bad

In practice, this algorithm is usually not the method of choice for symbolic
model checking. The reason is that direct computation of the BDD for the quo-
tient transition relation R is very expensive. Equation 1 involves the orbit rela-
tion directly and is thus intractable as an algorithm. In our experiments, we were
only able to compute this BDD in a reasonable amount of time for very simple
examples. An intuitive argument for the complexity is that the orbit relation,
even if not used during the computation of R, is essentially embedded in the
BDD for R.

An alternative is to modify the model checking algorithm. Consider the ver-
sion in fig. 1 (right). It is identical to the one on the left, except that it uses the
operation α(EXR Z) in the computation of the next iterate: It first applies to
Z the backward image operator with respect to R, rather than with respect to
R. It then employs some mechanism α that maps the results to representatives,
formally defined as

α(T) = {t ∈ S : ∃t ∈ T : (t, t) ∈ θ}. (3)

Viewing the quotient M as an abstraction of the concrete system M , α precisely
denotes the abstraction function, mapping concrete to abstract states. The al-
gorithm in fig. 1 (right) is an instance of the abstract interpretation framework

[CC77]. Generally, abstract images can be computed by mapping the given ab-
stract state to the concrete domain using the concretization function γ, then
applying the concrete image, and finally mapping the result back to the abstract
domain using α. Symmetry affords the simplification that γ can be chosen to be
the identity function, since abstract states (i.e. representatives) are embedded in
the concrete state space. We can thus apply EXR (the concrete backward image
operator) directly to a set of abstract states (Z, in fig. 1 (right)), obtaining the
set of concrete successor states. Applying α produces the final abstract backward
image result.

Given different implementations of α, fig. 1 (right) actually represents a fam-
ily of symmetry reduction algorithms. The definition of α (3) is based on the
orbit relation and is therefore inappropriate as a recipe for an algorithm. An-
other way to compute α is as forward image under a precomputed representative
relation ξ ⊆ S×S. This technique was used by et al.ClarkeCEFJ96 in connection
with multiple representatives; the authors describe ways to obtain such a rela-
tion without explicitly using the orbit relation θ. In contrast, we propose in this
paper to compute the set of representatives of a set of states dynamically during
the execution of symbolic fixpoint algorithms, instead of a priori statically. This
has two advantages:

1. We avoid computing, and storing at all times, the table ξ associating states
with representatives, which is expensive.

2. For reachability analysis, we do not need the complete set of representatives
S, which is required for the computation of ξ. Rather we only maintain
representatives encountered during the computation.

The algorithm to compute α depends on the type and underlying group of
symmetry. In the following section, we first describe in detail the algorithm for
the most common and important case of full component symmetry. Later, in
section 6, we present extensions to other symmetries and also generalize our
algorithm to full CTL model checking.

4 Computation of α under Full Component Symmetry

A scheme for defining representatives frequently used in the case of full compo-
nent symmetry is the following. Recall that an orbit consists of all states that
are identical up to permutations of components, which amounts to permutations
of the local states of the components. Given some total ordering among the lo-
cal states, there is a unique state in each orbit where the local states appear
in ascending order. Thus, the unique representative of a state can be chosen to
be the lexicographically least element of the state’s orbit. This element can be
computed by sorting the local state vector representing the given state.1

How can this be accomplished symbolically? Not every sorting algorithm
lends itself to symbolic implementation. Compared to an explicit-state algorithm,
1 We assume for now that there are no symmetry-relevant global variables; section 6

below generalizes.

instead of sorting one vector of local states, we want to sort an entire set of
local state vectors in one fell swoop. One algorithm that allows this efficiently is
bubble sort. It is a comparison-based sorting procedure that rearranges the input
vector in-place by swapping out-of-order elements. To symbolically bubble-sort
a set of vectors simultaneously, we remark: Instead of comparing two elements
of the input vector, the algorithm forms a subset of vectors for which the two
elements in question are out of order. Instead of swapping one pair of out-of-
order elements, we apply the swap operation to all vectors in the subset, in one
step.

The operation of swapping two items turns out to be the factor dominating
efficiency. Its complexity depends heavily on the distance, in the BDD variable
ordering, of the bits involved in the swap. In order to keep this distance small,
we exploit one key feature of bubble sort: it is optimal in the locality of swap
operations—it swaps only adjacent elements.

The lexicographical order of global states is based on a total order ≤ on the
local states of the components. For a fixed global state z, this order ≤ induces
a total order ≤z on the components via

p ≤z q iff lp(z) ≤ lq(z),

where li(z) is the local state of component i in global state z. Given ≤z, and
denoting by n the total number of components, the set of representative states
(the lexicographically least orbit elements) is defined as

S = {z ∈ S : ∀p < n : p ≤z p+ 1} =
⋂
p<n

{z ∈ S : p ≤z p+ 1}. (4)

For our algorithm, the exact definition of ≤z is irrelevant; we only need it
to be a total order on the components. This flexibility turns out to be useful in
situations where considering just the local states of components is not enough
to characterize representative states; these situations are discussed in section 6.
Our sorting algorithm looks for states z with components that are not in correct
order with respect to ≤z, and swaps them. This is repeated until a fixpoint is
reached, see fig. 2.

α(T):

1. Z := T
2. repeat
3. Z′ := Z
4. Z := τ(Z)
5. until Z = Z′

6. return Z

τ(Z):

1. for p := 1 to n− 1 do
2. Zbad := Z ∧ ¬{z : p ≤z p+ 1}
3. if Zbad 6= ∅ then
4. Zgood := Z \ Zbad

5. Zswapped := swap(p, p+ 1,Zbad)
6. Z := Zgood ∨ Zswapped

7. return Z

Fig. 2. Computing the representative mapping α using subroutine τ

For p ranging from 1 to n − 1, the predicate transformer τ in 2 (right)
computes Zbad , the set of states in Z in which components p and p+ 1 are not

in the correct order (line 2). If Zbad is non-empty, the algorithm first saves the
set of states in Z in which p and p + 1 are in correct order (line 4) and then
swaps components p and p + 1 in all states in Zbad (line 5). The simultaneous
swapping can be achieved by swapping the bits that store components p and
p+ 1 in the BDD for Zbad , which effects all states in Zbad . This is the expensive
step of the algorithm; it profits from the fact that these bits are nearby (see
section 5). Finally, the untouched and the swapped states in Z are combined to
give the new value for Z (line 6).

5 Correctness and Efficiency of the Algorithm

Our algorithm is an instance of the template shown in fig. 1 (right). We first show
more generally that the template computes the same result as the algorithm
in the same figure on the left. We only assume that α maps the states of its
argument set to representatives.

Lemma 1 Let α satisfy

α(T) = {t ∈ S : ∃t ∈ T : (t, t) ∈ θ}. (5)

Then, for an arbitrary set P ⊆ S of representatives, EXR P = α(EXR P).

Proof : In the following, we slightly overload the symbol α and write α(t) for
the unique representative of a single state t, i.e. the unique element of α({t}).

s ∈ α(EXR P)
⇔ 〈def. of backward image and function application〉
∃s, t : s = α(s) ∧ (s, t) ∈ R ∧ t ∈ P

⇔ 〈“⇒”: t := t and note t ∈ P ⊆ S, so t = α(t) = α(t)〉
〈“⇐”: s := π(s′) for π : π(t) = t. Then α(s′) = α(s), π(s′, t) = (s, t) ∈ R〉
∃s′, t, t : s = α(s′) ∧ t = α(t) ∧ (s′, t) ∈ R ∧ t ∈ P

⇔ 〈def. of R〉
∃t : (s, t) ∈ R ∧ t ∈ P

⇔ 〈def. of backward image〉
s ∈ EXR P. �

Corollary 2 The two algorithms in fig. 1 return the same set (and they do so
with the same number of iterations of the repeat loop).

Proof : Let Yi and Zi denote the ith iterates of the two algorithms. Then for
all i, Yi ⊆ S, Zi ⊆ S (by the definitions of bad , backward image in R and α).
Thus, utilizing lemma 1, for all i, Yi = Zi, from which the two claims follow. �

Lemma 3 The algorithm in fig. 2 computes α satisfying equation 5.

Proof : We will show termination and partial correctness.
Termination: The argument is essentially the same as for standard bubble

sort. Every call to swap(p, p + 1,Zbad) brings the local state of at least one of

the components p and p+ 1 closer to its correct position. Hence, after about n2

swaps, there is no pair (p, p+1) left with ¬(p ≤z p+1). Thus, Zbad as computed
in line 2 (fig. 2 (right)) is empty in every iteration of the for loop, Z remains
unchanged, and the condition Z = Z ′ in line 5 (left) is true.

Partial correctness: We use two observations.

(I) When the algorithm terminates, we know that for all values of p, Zbad as
computed in line 2 (right) is empty. Hence, Z ⊆

⋂
p<n{z : p ≤z p + 1} = S

(equation 4), so Z = α(T) ⊆ S.
(II) Predicate transformer τ manipulates the set Z by applying transpositions

(swap) to states in Z. Hence, at the end T and α(T) contain the same states
up to permutations.2

These observations allow us to prove α(T) = {t ∈ S : ∃t ∈ T : (t, t) ∈ θ} as two
inclusions:
⊆: Consider t ∈ α(T). From (I) we know t ∈ S. From (II) we conclude that

there exists t in T with (t, t) ∈ θ.
⊃: Consider t ∈ S, t ∈ T such that (t, t) ∈ θ. From (II) we conclude that

there exists π such that π(t) ∈ α(T). From (I) we conclude π(t) ∈ S. Since there
is exactly one representative of t in S, we derive π(t) = t, so t ∈ α(T). �

Corollary 4 The algorithm in fig. 1 (right), using the computation of α in fig. 2,
correctly implements backward reachability analysis on the quotient structure.

Efficiency Considerations

The set {z : p ≤z p+ 1}, which is by definition {z : lp(z) ≤ lp+1(z)}, needs to be
calculated only once for each p. The condition that the local state of component p
is at most that of component p + 1 can be expressed symbolically with a BDD
of size O(l2), for the number l of possible local states.

As indicated earlier, the swap operation in line 5, fig. 2 (right), is the bottle-
neck of the algorithm. In BDD terms, it corresponds to pairwise swapping of all
bits that represent the two items to be swapped. The complexity of swapping
two bits in all elements of a set T , i.e. computing

{(. . . xj . . . xi . . .) : (. . . xi . . . xj . . .) ∈ T},

depends exponentially on the distance d of xi and xj in the BDD variable or-
dering. To illustrate this claim, we observe that in the BDD for T , every subtree
rooted at a node labeled xi contains at most 2d nodes labeled xj . Each such
node labeled xj has an immediate subtree that corresponds to one of the cases
affected by the swap, namely (xi, xj) = (0, 1) and (xi, xj) = (1, 0). These 2d

subtrees must be moved.
BDD variable orderings usually have the property that it is possible to index

the components as 1, . . . , n such that the distance between corresponding bits
2 There is, however, in general no single π such that α(T) = π(T), i.e. α by itself is

not just a permutation.

of components p and q is proportional to |p − q|. Consider, for example, the
following frequently used orderings:

concatenated: b11 . . . b1 log l b21 . . . b2 log l bn1 . . . bn log l

interlaced: b11 . . . bn1 b12 . . . bn2 b1 log l . . . bn log l

where bij denotes the jth bit of component i. For the concatenated ordering, the
distance between the jth bit of component p and the jth bit of component q is
log l · |p− q|; for the interlaced ordering, it is |p− q|.

Bubble sort, among the numerous sorting procedures, enjoys the unique fea-
ture of swapping only adjacent components. The distance |p− q| is hence 1, for
every swap operation, thus minimizing the complexity of swapping. This proves
bubble sort optimal for our purpose of symbolic sorting.

6 Generalizations

6.1 Other Types of Symmetry

The idea of sorting to obtain unique orbit elements only works for the case of full
component symmetry. Without proof, we give here the idea of how to compute
α for other, less lucrative, but still somewhat common types of symmetry.

Consider first the case of component symmetries. Permutations act on states
in the form π(l1, . . . , ln) = (lπ(1), . . . , lπ(n)). Our solution for full symmetry gen-
eralizes as follows. Call a symmetry group G of permutations on [1..n] nice if
there exists a “small” subset F of G with the following property: A state z is
lexicographically least in its orbit exactly if there is no π ∈ F with π(z) <lex z.
Many common symmetry groups are nice. For full symmetry, F can be chosen
as the set of n − 1 transpositions (i i + 1) (1 ≤ i < n). Set F also happens to
be a generating set for the full symmetry group. If the group G itself is small,
F := G is a viable choice. This is, for example, the case for the n rotations gen-
erated by the left shift cycle (1 2 . . . n). Note that in this case the generating
set {(1 2 . . . n)} is not a valid choice for F : The vector z := (BCA) is not
lexicographically least, yet applying the generating permutation does not make
z smaller (applying it twice does).

Given a nice group G, consider the algorithm for α as before in fig. 2 (left),
but with subroutine τ as shown in fig. 3. Again, Zbad in line 2 selects the states
z in Z that are not lexicographically least. By the niceness of G, this means
that for some π ∈ F , π(z) <lex z. Line 5 applies π element-wise to Zbad . This
algorithm terminates, since <lex is a well-order on the set of local state vectors.
Hence, eventually there will be no π such that for some z, π(z) <lex z. Partial
correctness follows from an argument similar to that in lemma 3.

If G is nice, we expect to have a small set F of permutations that can be
traversed in line 1. The direct application of π in line 5 may be expensive.
However, π can be expressed as a product of at most 1/2n(n− 1) transpositions
of adjacent elements. As argued in section 5, transpositions of neighbors are the
least expensive permutations, as for implementation using BDDs. The important

τ(Z):

1. for π in F do
2. Zbad := Z ∧ {z : π(z) <lex z}
3. if Zbad 6= ∅ then
4. Zgood := Z \ Zbad

5. Zswapped := {π(z) : z ∈ Zbad}
6. Z := Zgood ∨ Zswapped

7. return Z

Fig. 3. Subroutine τ for nice symmetry groups

point is that the algorithm for τ in fig. 3 resembles bubble sort, in that it is in-
place, and it only swaps neighboring processes if the π’s in F are rewritten as
products of transpositions.

For data symmetry (see section 2), the idea of lexicographically least orbit
elements no longer applies. A set of unique representatives can be defined as
{(l1, . . . , ln) : ∀i : li ≤ i}. To compute the mapping α, the algorithm in fig. 2 can
still be used, with only slight modifications. Set Zbad (line 2) contains the states
from Z that satisfy lp > p. Line 5 swaps the values p and lp in all states in Zbad .
Since lp may vary from state to state in Zbad (even for fixed p), a loop over the
possible values of lp is required.

6.2 Process-Id Variables

Often, systems have id-sensitive global variables containing component ids, such
as the identity of a process holding a token or a reference to a process having
an exclusive copy of some cache data. In this case, the condition ∀p : p < n :
lp(z) ≤ lp+1(z) is not enough to guarantee that z is a unique representative
state. Consider, for instance, the two states (A,A,B, 1) and (A,A,B, 2) of a
three-process system with one id-sensitive global variable (listed last). Since
components 1 and 2 are both in local state A in both states, the permutation that
flips 1 and 2 proves the states equivalent.3 The local states appear in ascending
order: AAB. Yet, the states differ, compromising uniqueness. The solution is to
define the unique representative as the orbit element with ascending local states
where the id-sensitive variables have minimal values (1, in the example above).
In this case, p ≤z p+ 1 means for state z and the local states of p and p+ 1 that
either lp(z) < lp+1(z), or lp(z) = lp+1(z) and none of the id-sensitive variables
has value p+ 1. This condition is violated for z := (A,A,B, 2) and p := 1. Thus,
the permutation (1 2) will be applied to z, whereupon it turns into (A,A,B, 1).

This solution can be extended to the more challenging case of id-sensitive
local variables, the general treatment of which is beyond the scope of this paper.

6.3 Full CTL Model Checking

Section 4 can be summarized as having presented an efficient algorithm for the
computation of EXR Z, used in backward reachability analysis. This algorithm
3 This permutation acts on (permutes) the id-sensitive variable; see [EW03] for details.

generalizes to all CTL formulas as follows. Existential modalities (EG, EF, EU)
have a fixpoint characterization based on existential backward images. For exam-
ple, EG f can be calculated as the greatest fixpoint of the predicate transformer
λ(Z) = f ∧ EXZ. For the quotient structure, an algorithm similar to that in
fig. 1 (right) can be used.

The universal backward image AXR Z cannot be replaced by an analogous
construct involving α. Suppose we wish to compute the representative states
satisfying AG good on the quotient structure. An algorithm similar to that in fig.
1 (left) exists, which computes the greatest fixpoint of λ(Z) = good ∧ AXR Z.
However, in general α(AXR Z) $ AXR Z. The underlying problem is that the
abstraction function α distributes over set union, but not intersection:

α(P ∪Q) = α(P) ∪ α(Q), but
α(P ∩Q) $ α(P) ∩ α(Q) (in general).

The solution is to reduce universal to existential modalities. Care must be
taken in that negation over the quotient structure is with respect to S, the set
of representatives. Thus, in a context where states are encoded as elements of S,
we have to compute {s ∈ S : s 6∈ Z} as S ∧ ¬Z. We obtain

AXR Z = S ∧ ¬(EXR(S ∧ ¬Z)) = S ∧ ¬(α(EXR(S ∧ ¬Z))).

The above solutions for the universal modalities require the set S of all rep-
resentatives. Depending on the application and the definition of representatives,
the BDD for this set can be (but is not always) costly. It can be computed
as α(true), but the “direct” way based on the expression

⋂
p<n p ≤z p + 1 is

often more efficient. Other than S, the above equations only involve boolean
primitives, existential backward image with respect to R, and the abstraction
function α. This makes our technique complete for CTL.

7 Experimental Results

We present results of verifying example systems using our technique, with respect
to properties that came along with the system specification. Our tool uses the
CUDD BDD package [Som]. We ran the examples on an i686/1400 Mhz PC
with 256MB main memory. In tables, the figure behind the name of an example
indicates the number of components involved. “Number of BDD Nodes” refers
to the peak number of BDD nodes allocated at any time during execution. It
represents the memory bottleneck of the verification run. The abbreviations s,
m, h, M stand for seconds, minutes, hours, and million, respectively.

In Table 1, we compare our dynamic symmetry reduction technique to the
aforementioned alternative methods, Multiple Representatives and Counter Ab-
straction. To ensure fair comparison, we set various BDD parameters individ-
ually for each technique such that it performed best. The MsLock example is
a simplified model of a queuing lock algorithm [MS91]. The simplification was
necessary to make the system amenable to counter abstraction. The example

Multiple Counter Dynamic Sym-
Representatives Abstraction metry Reduction

Number of Number of Number of
Problem

BDD Nodes
Time

BDD Nodes
Time

BDD Nodes
Time

MsLock 10 369,239 1:15m 68,154 29s 24,092 15s

MsLock 20 4,407,127 4:05h 325,325 7:06m 139,990 9:35m

MsLock 30 (>13M) (>28h) 725,672 24:26m 375,649 1:23h

CCP 03 16,522,710 13:12h 1,988,991 7:55m 14,088 1s

CCP 05 (>12M) (>35h) 4,001,573 1:49h 74,754 14s

CCP 10 — — (>14M) (>18h) 1,075,206 26:35m

CCP 15 — — — — 4,947,726 6:17h
Table 1. Comparison to Multiple Representatives and Counter Abstraction

denoted CCP refers to a buggy version of a cache coherence protocol suggested
by S. German, see for example [LS]. Due to the presence of errors, parameterized
model checking (for arbitrary n) initially fails on this protocol (an inductive in-
variant proving the safety property does not exist). Model checkers such as our
tool can then be used to provide an error trace for fixed values of the size param-
eter. This example is characterized by a large number of local states, which is
why counter abstraction performs much worse on it than our dynamic technique.
The Multiple Representatives approach suffers from the high cost of building the
representative mapping ξ.

Without Sym- Multiple Dynamic Sym-
metry Reduction Representatives metry Reduction

Number of Number of Number of
Problem

BDD Nodes
Time

BDD Nodes
Time

BDD Nodes
Time

Comp&Swap 40 376,681 1m 157,470 25s 48,433 10s

Comp&Swap 50 (>14M) (>24h) 4,259,627 37:34m 419,529 4:03m

Comp&Swap 60 — — (>10M) (>24h) 6,246,717 2:10h

Fetch&Store 40 1,083,830 4:12m 413,036 2:02m 160,628 40s

Fetch&Store 50 (>12M) (>24h) (>11M) (>24h) 2,017,634 29:43m

Fetch&Store 60 — — — — (>12M) (>24h)

Distrib. List 30 861,158 28s 708,339 20s 60,394 2s

Distrib. List 40 6,380,209 4:35m 2,963,024 2:37m 213,448 5s

Distrib. List 50 (>15M) (>24h) 13,580,042 29:30m 271,366 11s
Table 2. Comparison to unreduced Model Checking and Multiple Representatives

The second table presents examples to which counter abstraction can not be
applied. The reason is that here permutations act upon states by not only chang-
ing the order of local state components, but also their values. “Comp&Swap”
and “Fetch&Store” are two versions of the queuing lock [MS91], a simplification
of which was used in the MsLock example above. The “Distrib. List” example
is a distributed protocol for processes in a FIFO queue sending and receiving
messages, acting as a relay if asked to do so [MD]. Symmetry exists in both the
processes and the messages. In this table we also show results of the verification
run without symmetry reduction, where the intermediate BDDs become huge
quickly. Our technique invariably outperforms the other two, for large problem
instances by orders of magnitude.

8 Summary

In this paper, we have presented a dynamic symmetry reduction technique that
surpasses, to the best of our knowledge, previously known techniques dramat-
ically. Multiple Representatives suffer from symptoms similar to those of orbit
relation-based approaches (although alleviated). Counter abstraction is often ef-
ficient if operative, but does not scale well for systems of components with a
large local state space, requires full symmetry, and is only applicable to symme-
tries with “simple” permutation action. In contrast, our solution is not based
on counters and thus more flexible, yet it does not suffer from the problems
associated with storing pairs of states and their representatives.

Our method can generally be seen as a symbolic abstraction technique that
avoids pre-computing the abstraction function, but rather offers an efficient sym-
bolic algorithm to map concrete to abstract states on the fly. In connection with
symmetry reduction, there was a need for such a technique, due to the ongoing
difficulties with the orbit relation.

Bubble sort is traditionally regarded naive and not successful on large sort-
ing problems. Our decision to use it in the representative mapping under full
symmetry is an instance of a phenomenon often seen in parallel programming:
The most clever and sophisticated sequential algorithms are not always the best
in a new computational model. Instead, a simple-minded routine can prove very
suitable. In our case, we believe that the locality of bubble sort, i.e. its affecting
only nearby elements and being in-place, is paramount.

Related Work. In addition to the references mentioned in the introduction, the
work closest to ours is the paper by Barner and Grumberg [BG02], who con-
sidered combining symmetry and symbolic representation using BDDs mainly
for falsification. If too large, the set of reached representatives is under-approxi-
mated, which renders the algorithm inexact. Also, their work uses multiple rep-
resentatives and therefore forgoes some of the symmetry reduction possible. Fi-
nally, there is a lot of other work on symmetry not directly related to symbolic
representation [PB99,God99,SGE00,HBL+03, among many].

References

[BG02] Sharon Barner and Orna Grumberg. Combining symmetry reduction and
under-approximation for symbolic model checking. In Computer-Aided Ver-
ification (CAV), 2002.

[Bry86] Randy Bryant. Graph-based algorithms for Boolean function manipulation.
Transactions on Computers (TC), 1986.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Principles of Programming Languages (POPL), 1977.

[CE81] Edmund Clarke and Allen Emerson. The design and synthesis of synchro-
nization skeletons using temporal logic. In Logic of Programs (LOP), 1981.

[CEFJ96] Edmund Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Ex-
ploiting symmetry in temporal logic model checking. Formal Methods in
System Design (FMSD), 1996.

[ES96] Allen Emerson and Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design (FMSD), 1996.

[ET99] Allen Emerson and Richard Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Correct Hardware
Design and Verification Methods (CHARME), 1999.

[EW03] Allen Emerson and Thomas Wahl. On combining symmetry reduction and
symbolic representation for efficient model checking. In Correct Hardware
Design and Verification Methods (CHARME), 2003.

[God99] Patrice Godefroid. Exploiting symmetry when model-checking software. In
Formal Methods for Networked and Distributed Systems (FORTE), 1999.

[HBL+03] Martijn Hendriks, Gerd Behrmann, Kim Guldstrand Larsen, Peter Niebert,
and Frits Vaandrager. Adding symmetry reduction to Uppaal. In Formal
Modelling and Analysis of Timed Systems (FORMATS), 2003.

[ID96] Norris Ip and David Dill. Better verification through symmetry. Formal
Methods in System Design (FMSD), 1996.

[LS] Shuvendu Lahiri and Sanjit Seshia. UCLID: A Verification Tool for Infinite-
State Systems. http://www-2.cs.cmu.edu/~uclid/.

[MD] Ralph Melton and David Dill. Murφ Annotated Reference Manual, rel. 3.1.
http://verify.stanford.edu/dill/murphi.html.

[MS91] John Mellor-Crummey and Michael Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. Transactions on Computer Sys-
tems (TOCS), 1991.

[PB99] Manish Pandey and Randal Bryant. Exploiting symmetry when verifying
transistor-level circuits by symbolic trajectory evaluation. Transactions on
Computer-Aided Design (TCAD), 1999.

[PXZ02] Amir Pnueli, Jessie Xu, and Leonore Zuck. Liveness with (0, 1,∞)-counter
abstraction. In Computer-Aided Verification (CAV), 2002.

[QS82] Jean-Pierre Quielle and Joseph Sifakis. Specification and verification of con-
current systems in CESAR. In International Symposium on Programming
(ISOP), 1982.

[SGE00] Prasad Sistla, Viktor Gyuris, and Allen Emerson. SMC: a symmetry-based
model checker for verification of safety and liveness properties. Transactions
on Software Engineering and Methodology (TOSEM), 2000.

[Som] Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. University
of Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD/.

